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Genome sequencing and CAZymes repertoire analysis of
Diaporthe eres P3-1W causing 8Hongyang9 postharvest rot in
China
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Kiwifruit postharvest rot caused by several fungal pathogens, is one of the most
destructive diseases that leads to the tremendous economic loss in kiwifruit industry
worldwide. In this study, we ûrst isolated the strain P3-1W as a causal agent of 8Hongyang9
postharvest rot disease in China and identiûed as Diaporthe eres based on the
morphological and molecular data. To further understand pathogenic mechanism, we
sequenced the genome of this strain using PacBio and Illumina sequencing technologies.
The resultant assembly revealed the genome of D. eres P3-1W had a total length of
58,489,835 bp, with N50 of 5,939,879 bp and 50.7% GC content. 15,407 total protein-
coding genes (PCGs) were predicted and functionally annotated using the diûerent public
databases. The genome analysis of D. eres P3-1W showed a total of 857 carbohydrate-
active enzymes (CAZymes), one of the virulence factors were identiûed and shared the
general characteristics with seven other Diaporthe species albeit of the diûerent numbers.
The CAZymes repertoires of these Diaporthe genomes all were divided into six classes:
glycoside hydrolases (GHs), carbohydrate esterases (CEs), polysaccharide lyases (PLs),
glycosyltransferases (GTs), and auxiliary activities (AA) and carbohydrate binding modules
(CBMs). And the CAZymes included 12 AAs, 68 GHs, 30 GTs, 7 PLs, 10 CEs, and 24 CBMs in
D. eres P3-1W genome. In addition, four cell wall polysaccharide-disassembling enzymes,
including cellulase, ³-galactosidase, polygalacturonase and pectin methylesterases
showed a signiûcant peak of enzymic activities at the second day after D. eres P3-1W
infection. The results of this study provide useful resources for further exploration of the
complicated pathogenic mechanisms in D. eres P3-1W.
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15 Abstract 

16 Kiwifruit postharvest rot caused by several fungal pathogens, is one of the most destructive 

17 diseases that leads to the tremendous economic loss in kiwifruit industry worldwide. In this study, 

18 we first isolated the strain P3-1W as a causal agent of �Hongyang� postharvest rot disease in 

19 China and identified as Diaporthe eres based on the morphological and molecular data. To 

20 further understand pathogenic mechanism, we sequenced the genome of this strain using PacBio 

21 and Illumina sequencing technologies. The resultant assembly revealed the genome of D. eres 

22 P3-1W had a total length of 58,489,835 bp, with N50 of 5,939,879 bp and 50.7% GC content. 

23 15,407 total protein-coding genes (PCGs) were predicted and functionally annotated using the 

24 different public databases. The genome analysis of D. eres P3-1W showed a total of 857 

25 carbohydrate-active enzymes (CAZymes), one of the virulence factors were identified and shared 

26 the general characteristics with seven other Diaporthe species albeit of the different numbers. 

27 The CAZymes repertoires of these Diaporthe genomes all were divided into six classes: 
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28 glycoside hydrolases (GHs), carbohydrate esterases (CEs), polysaccharide lyases (PLs), 

29 glycosyltransferases (GTs), and auxiliary activities (AA) and carbohydrate binding modules 

30 (CBMs). And the CAZymes included 12 AAs, 68 GHs, 30 GTs, 7 PLs, 10 CEs, and 24 CBMs in 

31 D. eres P3-1W genome. In addition, four cell wall polysaccharide-disassembling enzymes, 

32 including cellulase,  polygalacturonase and pectin methylesterases showed a 

33 significant peak of enzymic activities at the second day after D. eres P3-1W infection. The 

34 results of this study provide useful resources for further exploration of the complicated 

35 pathogenic mechanisms in D. eres P3-1W. 

36

37 Introduction

38 Kiwifruit is an economically important fruit crop in the genus Actinidia of Actinidiaceae 

39 family. China has become the center of the diversity of kiwifruit. For example, approximately 52 

40 Actinidia species have been identified in China (Huang 2016). Kiwifruit began the 

41 demonstration history in the early 20th century when the wild seeds from China were transferred 

42 into New Zealand (Ferguson 1984). To date, numerous cultivation varieties have been developed, 

43 in which A. chinensis and A. chinensis var. deliciosa are two most commercial kiwifruit varieties 

44 (Waswa et al. 2024). �Hongyang� (A. chinensis) is the first cultivar with a red-flesh inner 

45 pericarp, which derived from clonally selected wild germplasm in central China (Zhen et al. 

46 2004). �Hongyang� has received considerable attention over the last forty years and is widely 

47 grown in China because of delicious taste and high nutritional components (vitamin C, minerals, 

48 carotenoids and anthocyanins) (Wang et al. 2021a).

49 However, �Hongyang� is highly susceptible to soft rot disease during cultivation and 

50 postharvest storage, which results in the significant economic loss each year and has become a 

51 serious problem to threaten its industry (Jiqing et al. 2019; Ling et al. 2023b). It has documented 

52 that several fungal pathogens from the genera Botrytis, Diaporthe and Alternaria can cause fruit 

53 rot during storage (Li et al. 2017a; Ling et al. 2023b). Among these pathogens, Botrytis sp. and 

54 Diaporthe sp. have always been considered the most important pathogens for stored kiwifruit. At 

55 present, the major strategy to control these pathogens is dependent on the environmentally 

56 harmful fungicides, which can lead to persistent residues of fungicides in the fruit and the 

57 increasing risk of antifungal resistance development  (Bardas et al. 2010). Alternative method is 

58 the application of biocontrol agents (i.e. yeast) against several postharvest pathogens (Francesco 
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59 et al. 2016). The efficacy of these controlling pathogen strategies is mainly attributed to different 

60 action mechanisms, such as the production of antifungal compounds and cell wall degrading 

61 enzymes (CWDEs) and so on. In order to reduce the impact of this destructive disease, an 

62 increased understanding of the pathogenicity mechanisms of the responsible species is of vital 

63 importance. 

64 The complete genome sequences of the causal agents provide the basic information to 

65 explore their pathogenicity. At present, a wide variety of different next-generation sequencing 

66 (NGS) technologies are now available (Di Bella et al. 2013). For example, Illumina�s HiSeq can 

67 produce a number of short reads with a high sequencing depth at comparatively low costs, which 

68 exhibits mean error rates < 1% (Laehnemann et al. 2016). However, the assembly problem needs 

69 to be overcome because the short reads often have shown the complex repeats. Alternatively, the 

70 third-generation sequencing platform Pacific Bioscience (PacBio) using single-molecule real-

71 time (SMRT) sequencing technology can provide the longer reads over 20 kb to overcome the 

72 assembly problems associated with short reads. However, lower sequencing depth and higher 

73 error rates have reported in this platform (Laehnemann et al. 2016). Therefore, combination of 

74 PacBio and HiSeq reads provides the improvements in assembly contiguity and per-base 

75 accuracy (Laehnemann et al. 2016). Our recent study has shown that the complete genome of 

76 Alternaria tenuissima P1-2W, a new causal agent of �Hongyang� soft rot disease has achieved 

77 the high quality of assembly at the chromosome level  (Ling et al. 2023a).

78 Plant cell wall is the first barrier against pathogen attack and is largely comprised of 

79 polysaccharides (i.e. hemicellulose, cellulose and pectin) (Chen et al. 2018). Carbohydrate 

80 Active Enzymes (CAZymes) secreted by the pathogens always perform the breakdown of the 

81 cell wall polysaccharides and often regarded as one of pathogenic factors (Castillo et al. 2017). 

82 These enzymes have been classified into six categories by carbohydrate-active enzyme (CAZy) 

83 database: auxiliary activity (AA), carbohydrate esterase (CE), and carbohydrate-binding modules 

84 (CBMs), glycoside hydrolase (GH), glycosyl transferase (GT), polysaccharide lyases (PL) (Drula 

85 et al. 2022). In recent years, genome sequencing has revealed a large number of candidates for 

86 CAZymes have been extensively described for many pathogenic species (Castillo et al. 2017). 

87 The pathogenicity of these fungus has reported to be associated with cell wall degrading 

88 enzymes (CWDEs) during infection. An array of CWDEs, such as cellulase (Cx), 

89 galactosidase  polygalacturonase (PG) and pectin methylesterases (PME), can induce the 
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90 disassembly of cell wall polysaccharides, which is beneficial to pathogen infection  (Ramos et al. 

91 2016). Changes in these CWDE activities were associated with the disease development in some 

92 plants, such as Longyan (Chen et al. 2018), apples (Miedes & Lorences 2006), grapefruits (Shi et 

93 al. 2019), pumpkin (Li et al. 2023). 

94 In this study, a pathogenic strain P3-1W was isolated from the diseased �Hongyang� fruit 

95 with a typical rot symptom. And the genome of P3-1W was then sequenced and assembled by a 

96 combination of Illumina NovaSeq and PacBio SMRT sequencing technologies. Finally, genome-

97 wide identification of CAZymes-encoding genes were performed, and the activities of several 

98 CAZymes genes such as Cx,  PG and PME were investigated during the different P3-1W 

99 infecting stages. Therefore, description of genome coupled with the enzyme assay results will 

100 contribute to the understanding of the underlying mechanisms of pathogenicity of the strain P3-

101 1W.

102 Materials & Methods

103 Pathogen isolation and pathogenicity test

104 �Hongyang� fruits with typical symptoms of rot were collected from a cold storage in 

105 Liupanshui City of Guizhou Province. The pathogen was obtained and purified from the diseased 

106 fruit by a routine tissue isolation method as previously described (Ling et al. 2023b). To evaluate 

107 the potential as pathogens of �Hongyang� soft rot disease, mycelial plugs (5 mm in diameter) of 

108 the pathogen obtained from potato dextrose agar (PDA) media were placed on the surface of 

109 fresh healthy kiwifruits, which were incubated at 25 °C in the dark until the rot symptomatic 

110 tissues were observed. The pathogen was re-isolated from the diseased tissues. Sterile PDA plugs 

111 with the same size was used as control. Three trials were conducted, and each time included 5 

112 fruits.

113 Pathogen identification

114 The pathogenic strain was identified with both morphological and molecular methods. For 

115 morphological identification, the strain was cultured on PDA media at 25 °C for 3 days. For 

116 molecular identification, the DNA of the pathogen was extracted with the fungal DNA isolation 

117 kit (Sangon Biotech, Shanghai, China) according to the manufacture� protocol. Internal 

118 transcribed spacer (ITS) and translation elongation factor 1 (TEF1) gene segments were 

119 amplified, and the primers of each segment were described in Table S1. The polymerase chain 

120 reaction (PCR) system contained 12.5  2 × Taq PCR mix, 0.4  each primer (10  L ), 1 
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121  DNA template, and 8.2  double distilled water. PCR reaction was used the following 

122 programs: initial denaturation at 95 # for 3 min, following by 35 cycles of denaturation at 95 # 

123 for 20 s, annealing 58 # for 30 s and extension at 72 # for 1 min and a final extension at 72 # 

124 for 5 min. The resultant PCR product was sequenced by Sangon Biotech.

125 ITS (PP256503) and TEF1 segments (Table S2) were use for phylogenetic analysis [23]. 

126 The corresponding sequences from 86 Diaporthe species were downloaded from NCBI database 

127 (Table S3). Two loci sequences were concatenated to a single alignment dataset for phylogenetic 

128 inference using maximum likelihood analysis (ML). The phylogenetic tree was conducted using 

129 RAxML v7.2.6 (Stamatakis 2006) under GTRGAMMA model for 1000 bootstraps (Drummond 

130 et al. 2012).

131 Genomic DNA Extraction and Sequencing

132 The pathogenic strain P3-1W was cultured on PDA media at 25 °C in the dark for 4 days. 

133 Up to 100 mg the mycelia of pathogen were collected from the Petri dishes and frozen with 

134 liquid nitrogen. The genomic DNA of the pathogen was extracted with DNeasy Plant Kit 

135 (Qiagen, Hilden, Germany) following the protocol provided by the manufacture. The quality of 

136 DNA was measured with Nanodrop 2000c (Thermo Scientific, Wilmington, USA). 

137 For Illumina sequencing platform, the 350 bp paired-end library was constructed according 

138 to the manufacturer�s introductions (Illumina) and sequenced on the Illumina Novaseq 6000 

139 platform by Berry Genomics Company (http://www.berrygenomics.com/. Beijing, China). 

140 Basically, the libraries were prepared following these steps: DNA fragmentation by sonication, 

141 end-polishing of the DNA fragments, A-tailing and ligation with the full-length adapters for 

142 Illumina sequencing, PCR amplification, and purification of PCR products (AMPure XP bead 

143 system). The libraries were analyzed for size distribution using an Agilent 2100 Bioanalyzer. 

144 PacBio SMRT bell library preparation was performed using the procedure as follows: (1) 7 

145  high quality genomic DNA was evaluated using pulsed-field electrophoresis, most of DNA 

146 fragments should be longer than 20 Kb. (2) DNA was sheared with mode size of 40 Kb or larger 

147 using g-TUBE (Covaris 520079). (3) AMPure® PB Beads was used to concentrate DNA (Pacific 

148 Biosciences 100-265-900). (4) SMRTbell library was prepared using the Kit 2.0. Single-Strand 

149 overhangs was removed, and then we performed DNA damage reparation, end-repair, A-tailing, 

150 adapter ligation and Enzymatic digestion. At last, Library size-selection was conducted by 
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151 SageELF (Sage Science ELF000). (5). After library size selection, the library was prepared for 

152 sequencing for 15/30 hours on the Sequel II/IIe system (Pacific Biosciences, CA, USA).

153 Genome assembly and annotation

154 Illumina sequencing reads were first used to make a survey to estimate genome size and 

155 heterozygosity with Jellyfish (Hesse 2023) and GenomeScope (Ranallo-Benavidez et al. 2020). 

156 After filtering the low-quality reads, the clean reads were used to de novo assemble into contigs 

157 and scaffolds with SOAPdenovo software (Bankevich et al. 2012). The genome assemble quality 

158 was assessed by Benchmarking Universal Single-Copy Orthologues (BUSCO) (Simão et al. 

159 2015). The assembled genome was scanned using RepeatMasker (Tarailo-Graovac & Chen 2009) 

160 to mask the repeat sequences and annotate TEs. The prediction of protein-coding genes (PCGs) 

161 was performed with Funannotate (https://github.com/nextgenusfs/funannotate). tRNA and rRNA 

162 genes were identified using tRNAscan-SE and BAsic Rapid Ribosomal RNA Predictor (barrnap), 

163 respectively. Rfam was used to annotate the snRNAs with the default parameters. The functional 

164 annotation of PCGs was performed by BLASTP against NR 

165 (https://blast.ncbi.nlm.nih.gov/Blast.cgi), COG (https://www.ncbi.nlm.nih.gov/COG/), GO 

166 (http://geneontology.org/) and KEGG (http://www.genome.jp/kegg/).

167 Identification of CAZymes genes and comparative analysis

168 Carbohydrate-active enzyme (CAZyme) searches against Pfam Hidden Markov Models 

169 (HMMs) were performed using HMMER 3.0 package (http://hmmer.org/) available from 

170 dbCAN database (Zheng et al. 2023). DIAMOND was used for fast blast hits in the CAZy 

171 database.

172 Eight additional fungal genomes were included for comparative analyses. D. amygdali 

173 CAA958, D. eres CBS 160.32, D. capsici, D. citri ZJUD2, D. citriasiana ZJUD30, P. longicolla, 

174 D. batatatis, and D. phragmitis NJD1. Of them, D. phragmitis NJD1 was one of causal agent of 

175 kiwifruit rot (Wang et al. 2021b) and used to perform a comparison of the characteristics of 

176 genome. Seven other genomes were used to compare the abundance of CAZymes and these 

177 species used in this study were mainly pathogens of soybean (Li et al. 2017b), citrus (Gai et al. 

178 2021), grapevine (Morales-Cruz et al. 2015), blueberry (Hilário et al. 2022), sunflower 

179 (Baroncelli et al. 2016), walnut (Fang et al. 2020) and sweet potato (Yang et al. 2022).

180 Crude enzyme extraction and assay of enzyme activity 
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181 The strain P3-1W was cultured on PDA media for strain activation. Mycelial plugs (5 mm) 

182 were cut from the edge of a 3-day-old colony of the strain and transferred to the surface of 

183 �Hongyang� fruit with 4 or 5 small wounds. The blank PDA plug with the same size was 

184 established as the negative control group. After inoculation, the fruits were sealed and incubated 

185 under the dark conditions and disease progression was monitored. Then, the lesion margins 

186 between infected and healthy fruit were collected each day after inoculation for examining 

187 enzyme activity.

188 Crude enzyme was extracted based on the procedures described by Chen� method (Chen et 

189 al. 2018) with some modifications. Briefly, three grams of fresh fruit tissue were homogenized 

190 with 12 mL of 2 M NaCl buffer solution (including 10 mmoL/L EDTA and 5 g/L PVP) adjusted 

191 to pH 7.4 using Tris-HCl, at 4 °C. Then homogenate was centrifuged at 15000 × g for 30 min at 

192 4 °C. The supernatant was used as the crude enzymatic extract. 

193 The enzyme activities of cellulase (Cx), PG and PME was determined with 3,5-

194 dinitrosalicylic acid (DNS) colorimetric method. The reaction mixture contained 1.0 ml substrate 

195 solution and 1.0 ml of sodium acetate buffer (pH 4.4) and the reaction was initiated by adding 

196 0.5 ml of crude enzyme, following by incubation at 37 °C for 30 min. A volume of 1.5 mL of 

197 DNS was then added to the reaction mixture after the reaction was terminated by boiling for 5 

198 min and the OD values of reducing production were measured at 540 nm. The reaction mixture 

199 by adding boiled crude enzyme was used as the blank. The experiments were repeated at least 

200 three times. The substrates for Cx, PG, and PME were 1% (w/w) carboxymethyl cellulose, 1.0% 

201 (m/v) polygalacturonic acid and 1.0% (m/v) pectin, respectively. The PG and PME activities 

202 were expressed as reducing units (RU). One RU was defined as the amount of enzyme required 

203 to release reducing groups at 1  using D-galacturonic acid as standard. By contrast, one 

204 unit (U) of cellulase activity was defined as the micromoles of glucose released per minute of 

205 reaction using glucose as standard.

206   activity was determined in a reaction mixture including 5.0 mL of 

207 20 mmol sodium acetate (pH 4.7), 2ml of 3 mmol/L  and 

208 1.0 mL of crude enzyme. The reaction was incubated at 37 °C for 30 min. A volume of 2 mL of 

209 0.2 mmol/L Na2CO3 was then added to the mixture to stop the reaction. The concentration of the 

210 reducing product was determined at 420 nm with p-nitrophenol (PNP) as a standard. One unit of 

211  activity referred to the amount of enzyme that produced 1 mmol PNP per hour.
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212 Results

213 Isolation and identification of pathogen

214 The fungal isolate P3-1W was obtained from the diseased fruit of �Hongyang� using the 

215 tissue isolation method. After incubation, the colony of this strain was round and cream-like on 

216 PDA media, with a white surface, while the back turned brown (Figure 1A and B). To confirm 

217 the pathogenicity of this strain, the healthy �Hongyang� fruits with 4 to 5 pinholes were 

218 inoculated by mycelial plugs (5 mm in diameter) of the strain P3-1W from PDA media and the 

219 sterile PDA plug was applied as the negative control treatment. At the fifth day of inoculation, 

220 the fruits inoculated with mycelial plugs of P3-1W showed the obvious symptom of soft rot, 

221 whereas the control remained asymptomatic (Figure 1C and D). Moreover, the strain was 

222 successful reisolated from the diseased fruits of �Hongyang�, which the morphological characters 

223 was consistent with that of the strain P3-1W. Therefore, the strain P3-1W was confirmed as the 

224 causal agent responsible for �Hongyang� soft rot disease in this study. The sequences of internal 

225 transcribed spacer (ITS) and translation elongation factor 1 (TEF1) of this strain were amplified 

226 to construct the phylogenetic tree. Phylogenetic analysis revealed that the strain of P3-1W was 

227 clustered into one clade with D. eres (Figure S1). Therefore, the strain P3-1W was identified as 

228 D. eres. 

229 The genome characteristics of D. eres P3-1W

230 In this study, the genome sequence of D. eres P3-1W was obtained using a combination of 

231 two sequencing platforms. Illumina platform first generated 242.15 × and 97,013,864 paired-end 

232 short reads (Table 1). These short reads were processed for quality control and adapter trimming, 

233 and the resultant clean reads were used to reveal the overall genome characteristics of D. eres 

234 P3-1W. Based on Kmer analysis, the genome size was estimated at 58.9 Mb, with a 

235 heterozygosity ratio of 17.5%. In addition, we performed the sequencing of PacBio long reads 

236 (~20 kb). Approximately 613,696 subreads (about 12 Gb, ~208 ×) were generated and the 

237 lengths of mean and N50 subreads were 19,950 bp and 22,159 bp, respectively (Table 1). De 

238 novo assembly of D. eres P3-1W genome was achieved using SOAPdenovo software and a total 

239 of 14 scaffolds were obtained. The assembled genome of D. eres P3-1W was 58,489,835 bp in 

240 size, with N50 of 5,939,879 bp and 50.7% GC content (Table 2). In addition, we estimated the 

241 completeness of genome assembly using BUSCO, and found that this genome included 97.6% of 

242 the conserved core genes sets (Table 2). By contrast, D. phragmitis NJD1 was found to cause the 
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243 kiwifruit soft rot and its genome sequenced by Illumina and PacBio has been released (Wang et 

244 al. 2021b). Its genome has contained 28 contigs with a contig N50 of 3,550,333 bp (Table 2). 

245 Apparently, the genome assembly of D. eres P3-1W in this study had a higher quality than that 

246 of D. phragmitis NJD1. 

247 A total of 1,473,598 bp of the repetitive sequences were identified with RepeatMasker 

248 (Tarailo-Graovac & Chen 2009), accounting for 2.52% of D. eres P3-1W genome (Table 2). The 

249 masked genome sequence was used for the ab initio gene prediction. A total of 15,407 protein-

250 coding genes (PCGs) with the mean length of 1,584 bp were predicted in D. eres P3-1W genome 

251 (Table 2). And the number of tRNA and rRNA genes was 143 and 45, respectively (Table 2). In 

252 addition, 23 non-coding RNA genes were identified in the genome of D. eres P3-1W (Table 2). 

253 To further determine the functions of these PCGs, 97.28% out of 15,407 PCGs were functionally 

254 annotated in the different databases as listed in Table 2. Our results revealed that 14,988 genes 

255 had significant sequence similarity with orthologous proteins in NCBI-NR database. In addition, 

256 6,003 PCGs were assigned to COG categories (Figure 2), in which the most abundant category 

257 was �Carbohydrate metabolism and transport�, followed by �Secondary Structure�. Among three 

258 GO classifications, the commonest molecular functions of PCGs were �binding� and �catalytic 

259 activity�; in terms of biological process, the majority were associated with �cellular processes� 

260 and �metabolic processes�; three most abundant cellular components were �cell�, �organelle� 

261 and �membranes� (Figure S2). To further identify the biological pathways of these PCGs, we 

262 performed KEGG pathway analysis. In total, 2,979 genes were annotated in the KEGG database 

263 (Table 2), in which �global view and maps� was the most enriched term, followed by �amino 

264 acid metabolism� and �Carbohydrate metabolism� (Figure S3). This annotated functions of 

265 PCGs in D. eres P3-1W were similar to those in D. phragmitis NJD1 had the similar annotation 

266 except for COG and KEGG pathway in the big difference in gene number (Table 2). 

267 The identification of CAZyme genes in D. eres P3-1W genome

268 In the present study, annotation of D. eres P3-1W genome using the dbCAN database 

269 revealed a total of 857 genes were identified to encode for putative CAZymes, accounting for 

270 5.49% of the predicted genes (Table 2 and Figure 3). The distribution of CAZymes in D. eres 

271 P3-1W and seven other fungi species was showed in Figure 3. The results demonstrated that the 

272 total number of CAZymes ranged from 857 in D. eres P3-1W and D. amygdali up to 1,580 in D. 

273 citri ZJUD2 (Figure 3). All six classes of CAZymes were detected in these species� genomes and 
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274 glycoside hydrolases (GHs) and auxiliary activities (AAs) were the two groups with the most 

275 abundant predicted proteins (Figure 3). Four other CAZymes showed the different distribution in 

276 all analyzed species. For example, 142 CBMs were identified in D. capsici, but only 20 ones in 

277 D. amygdali. Relatively speaking, the number of PLs showed the smallest change in six classes 

278 of CAZymes (Figure 3). Among these species, the member number of each CAZyme family in D. 

279 eres P3-1W was the most similar to that of in D. eres CBS 160.32.

280 In D. eres P3-1W genome, GHs was the largest CAZymes family and 374 genes belonging 

281 to 68 different subfamilies were made up 43.64% of CAZymes repertoire (Figure 3 and 4). The 

282 main subfamilies were GH43 (34), GH5 (26), GH3 (23), GH18 (17), GH28 (16), GH16 (16) and 

283 GH13 (15) (Figure 4A). In addition, a vast array of genes was associated with cellulase (GH3, -5, 

284 -6, -7, -12, and -45), pectinase (GH28), hemicellulose (GH11 and GH43), xylanase (GH10, -11, 

285 and -30) and chitinase (GH18) in the genome of D. eres P3-1W. In the present study, CAZyme 

286 annotation revealed that D. eres P3-1W contained a total of 11 AA families with 221 AAs in its 

287 genome sequence (Figure 4B). Cellobiose dehydrogenases (AA3) subfamily was prominent, with 

288 74 members, and xylo- and cello-oligosaccharide oxidases (AA7) subfamily was the second 

289 largest subfamily with 57 AAs in D. eres P3-1W genome (Figure 4B). Carbohydrate esterase 

290 (CE) family classification also revealed that the majority of CEs were CE10 subfamily members 

291 (50), followed by CE5 members (18) (Figure 4C). In addition, 30 genes predicted to encode PLs 

292 were identified and belonged to 7 subfamilies (Figure 4D). Of them, pectase lyases PL1 was the 

293 most prominent subfamily, 3 subfamilies (PL11, -26, -27) with only one gene were identified in 

294 the genome of P3-1W (Figure 4D). Among GT family, GT32 and GT71 subfamilies were the 

295 most abundant (Figure 4E). However, CBMs were the smallest family of CAZymes and only 24 

296 members were found in the genome, in which CBM50 was the most abundant subfamily (Figure 

297 4F). 

298 The activity of four enzymes during inoculation of D. eres P3-1W

299 In this study, the activities of   cellulase (Cx), polygalacturonase (PG) 

300 and pectin methylesterase (PME) were detected during the different stages of D. eres P3-1W 

301 inoculation and the raw data were shown in Table S4. As can be seen in Figure 5, four enzymes 

302 except  showed the similar trends during D. eres P3-1W infection. The activities of these 

303 three enzymes began to increase after inoculation and reached their maximum activities at the 

304 second day after inoculation (dpi), and declined from 3 dpi, and then increased at 5 dpi (Figure 
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305 5A, B and C). The activities of these enzymes during D. eres P3-1W inoculation were 

306 significantly higher than the control at the same infection time. By contrast, the activity of  

307 showed the little difference from those of three above enzymes. Similarly, its activities 

308 significantly increased in the first two days after P3-1W inoculation, then sharply declined from 

309 3 dpi. Especially, the activity of  was decreased to the level of control at the fifth dpi 

310 (Figure 5D). 

311 Discussion

312 In this study, we isolated Diaporthe strain P3-1W as the causal agent of �Hongyang� 

313 postharvest rot disease. Previous studies have documented that many Diaporthe species have 

314 been frequently reported as plant pathogenic fungi and are responsible for diseases of 

315 economically important plants (Santos et al. 2017). It is evident that many fungi in the genus 

316 Diaporthe can cause plant ulcers, leaf blight, cankers, branch blight, leaf spot, shoot dieback, 

317 fruit rot, root rot, and bark necrosis (Chaisiri et al. 2021; Fang et al. 2020; Simão et al. 2015). 

318 Currently, the taxonomy of Diaporthe primarily based on molecular data combined with 

319 morphological characterization and host associations (Abramczyk et al. 2023; Santos et al. 2017). 

320 In the early years, one ITS segment as the official fungal barcode (Mathew et al. 2015; Ménard 

321 et al. 2014) can identify the Diaporthe species but now at least two loci segments (i.e. ITS and 

322 TEF1) are used to identify this genus species due to the actively changing taxonomy of 

323 Diaporthe (Santos et al. 2017). In this study, our results indicated that the strain P3-1W was 

324 identified as D. eres based on ITS and TEF1 segments. Previous studies have shown that 

325 Diaporthe species, including D. phragmitis (Wang et al. 2021b), Phomopsis longicolla (Liu et al. 

326 2020), D. perniciosa, D. actinidiae (Lee 2001), D. ambigua (Auger et al. 2013), D. novem (Díaz 

327 et al. 2014), D. australafricana, D. rudis (Díaz et al. 2017), D. lithocarpus (Li et al. 2016) and D. 

328 viticola (Luongo 2011) have caused the kiwifruit soft rot or fruit decays. In recent years, D. eres 

329 has been reported in association with fruit rot in hardy kiwifruit in China (Liu et al. 2021a) and A. 

330 deliciosa kiwifruit in South Korea (Park et al. 2023). Therefore, D. eres as a causal agent was 

331 first reported in the �Hongyang� kiwifruit in China. 

332 In past decades, the studies on Diaporthe mostly focused on the identification of plant 

333 pathogens, endophytic fungi, and their metabolites (Strobel et al. 2011; Tanney et al. 2016). In 

334 recent years, numerous next-generation sequencing (NGS) technologies are now available, 

335 providing cheaper, faster, and higher-throughput sequencing. The third-generation sequencing 
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336 platform PacBio RS II has been successfully applied in the genome sequencing of many 

337 pathogenic Diaporthe species, such as D. citri (Liu et al. 2021b), D. phragmitis (Wang et al. 

338 2021b), P. longicolla (Zhao et al. 2021), D. ilicicola (Emanuel et al. 2022). In addition, high 

339 confidence reads from Illumina can be used to correct the errors inherent in PacBio sequences. 

340 Therefore, hybrid assemblies use the combined approaches of PacBio and Illumina sequencing 

341 technologies to yield improvements in assembly contiguity and per-base accuracy (Laehnemann 

342 et al. 2016). To date, the genome-sequencing studies have been performed to reveal the 

343 pathogenicity-related genes (candidate effectors, cellular transporters, biosynthetic metabolite 

344 gene clusters (BGCs), and CAZymes) in the pathogenic strains (Hilário et al. 2022; Li et al. 

345 2017b; Park et al. 2018). In the present study, we obtained a high-quality genome sequence of D. 

346 eres P3-1W. Functional annotation of this genome revealed that the genes involved in 

347 �Carbohydrate metabolism and transport� were the most abundant. And then, we focused on the 

348 analysis of CAZymes that are often involved in pathogenicity and have received attention 

349 because of their colonization of plant host by degrading plant cell wall.

350 For the pathogenic fungi, the successful infection means can break the barriers of plant cell 

351 wall by degenerating polysaccharides, such as cellulose, beta-glucans, hemicellulose, and pectin. 

352 A variety of CAZymes are involved in the degeneration of these abovementioned 

353 polysaccharides components and widely found in plant pathogenic fungi (Castillo et al. 2017). In 

354 this study, the high-quality genome sequence of D. eres P3-1W had 857 CAZymes, which were 

355 classified into 68 subfamilies of GHs, 30 subfamilies of GTs, 10 subfamilies of CEs, 12 

356 subfamilies of AAs, and 7 subfamilies of PLs genes. Meanwhile, our results indicated that six 

357 CAZymes families were identified in other Diaporthe species, indicating the presence of all 

358 CAZymes families might become the general features of this genus species. Previous study has 

359 revealed that the genes encoding pectinase (GH28), cellulase (GH3 and GH12) and 

360 hemicellulose (GH11 and GH43) in GHs family are related to Valsa Mali infecting apple (Silva 

361 et al. 2020). In this study, a vast array of genes associated with cellulase (GH3, -5, -6, -7, -12, 

362 and -45), pectinase (GH28), hemicellulose (GH11 and GH43), xylanase (GH10, -11, and -30) 

363 and chitinase (GH18) were found in the genome sequence of D. eres P3-1W. Based on the 

364 results, we speculate that D. eres P3-1W might possess the potential to degrade these substrates 

365 as a major source of carbon in nature. Meanwhile, these results indicated that these genes might 

366 play an important role in D. eres P3-1W pathogenicity. 
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367 To further validate our hypotheses, we examined the activities of four enzymes (PG, PME, 

368  and Cx) in this study. PG and PME are two major enzymes to digest pectin that is a 

369 complex polysaccharide present in the middle lamella of plant cell walls (Patidar et al. 2018). 

370 Moreover, previous studies have shown that only PG enzymes do not sufficiently degrade pectin 

371 and the synergistic action PG and PME enzymes can accelerate the depolymerization of pectin 

372 (Li et al. 2019). Our results indicated that the activities of PG and PME were significantly 

373 enhanced by D. eres P3-1W treatment, suggesting that D. eres P3-1W infection promoted the 

374 depolymerization and dissolution of pectin. Meanwhile, the activities of Cx, an enzyme of 

375 degrading cellulose as well as  were prompted by P3-1W. Therefore, these results 

376 suggested that D. eres P3-1W infection can cause a significant increase in the activities of 

377 CWDEs. In this study, CWDEs is a big family, and an array of candidate genes were identified. 

378 However, which member was associated with the pathogenicity of D. eres P3-1W? Which 

379 member plays the major role in the pathogenicity of D. eres P3-1W? These questions need to be 

380 studied in the future.

381 Conclusions

382 In this study, D. eres P3-1W was first reported as a causal agent of �Hongyang� kiwifruit 

383 postharvest rot disease. The genome of D. eres P3-1W was sequenced by combination of 

384 Illumina and PacBio sequencing technology. The size of the genome was 58,489,835 bp, with 

385 N50 of 5,939,879 bp and 50.7% GC content. Among predicted 15,407 PCGs, a total of 857 

386 CAZymes were identified and included 12 AAs, 68 GHs, 30 GTs, 7 PLs, 10 CEs, and 24 CBMs 

387 in D. eres P3-1W genome. Moreover, the activities of Cx,  PG and PME were apparently 

388 promoted by D. eres P3-1W infection. Therefore, description of genome coupled with the 

389 enzyme assay results will contribute to the understanding of the underlying mechanisms of 

390 pathogenicity of D. eres P3-1W.

391 Supplementary Materials: Figure S1: The ML phylogenetic tree of P3-1W and 86 other 

392 Diaporthe species based on ITS and TEF1; Figure S2: GO categories assigned to PCGs of P3-

393 1W genome; Figure S3: KEGG pathway annotation of PCGs of P3-1W. Table S1: Primer sets 

394 and corresponding amplification targets; Table S2: TEF1 sequences of D. eres P3-1W; Table S3: 

395 The Diaporthe species used in the construction of phylogenetic tree; Table S4: The raw data of 

396 the activity of four enzymes (Cx,  PG and PME).
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Figure 1
The colony morphology of strain P3-1W isolated from diseased 8Hongyang9 fruits:

The colony morphology of strain P3-1W isolated from diseased 8Hongyang9 fruits: (A) the
front of colony and (B) the back of colony and symptoms of soft rot in 8Hongyang9 fruit
artiûcially inoculated mycelial plugs of P3-1W (C) and control (D) for 5 days after inoculation.
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Figure 2
COG categories assigned to the PCGs of D. eres P3-1W genome
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Figure 3
Comparative analysis of CAZymes in D. eres P3-1W and seven other Diaporthe species
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Figure 4
Number of CAZymes in D. eres P3-1W genome.

Number of CAZymes in D. eres P3-1W genome. Number of (A) GHs subfamilies; (B) AAs
subfamilies; (C) CMBs subfamilies; (D) CEs subfamilies; (E) GTs subfamilies and (F) PLs
subfamilies

PeerJ reviewing PDF | (2024:02:97008:0:1:NEW 23 Feb 2024)

Manuscript to be reviewed



Figure 5
The activities of CWDEs during the diûerent infection time of D. eres P3-1W.

The activities of CWDEs during the diûerent infection time of D. eres P3-1W. Activity of (A)
Cx; (B) PG; (C) PME and (D) ³-Gal.
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Table 1(on next page)

Table 1 Genome sequencing statistics of D. eres P3-1W
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1 Table 1. Genome sequencing statistics of D. eres P3-1W

Illumina Total reads 97,013,864  

Coverage 242.15 ×

Raw data 14,552,079,600 bp

Clean data 13,901,222,433 bp

Estimated size 58.9 Mb

Heterozygosity 17.5%

PacBio Subreads bases 12,243,480,442 bp

Coverage 208.78 ×

Subreads reads 613,696

Subreads Mean Length 19,950 bp

Subreads N50 22,159 bp

2

3
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Table 2(on next page)

Table 2 The genome features of D. eres P3-1W compared with D. phragmitis NJD1
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1 Table 2� The genome features of D. eres P3-1W compared with D. phragmitis NJD1

D. eres P3-1W D. phragmitis NJD1

Genome size (bp) 58,489,835 58,328,132 

GC% 50.7 50.82

N50 (bp) 5,939,879 3,550,333 

Number of scaffolds/contigs 14 28

Repeat sequence (bp) 1,473,598 /

Total genes 15,618 12,393

PCGs 15,407 12393

ncRNAs 23 16

rRNAs 45 37

tRNAs 143 174

CAZymes 857 806

Genome BUSCO% 97.64 97.90

NR annotation 14,988 11,624

COG annotation 6,003 2,206

GO annotation 7,656 7,853

KEGG 2,979 10,207

2

3
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