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ABSTRACT
Background: Biodiversity, crucial for understanding ecosystems, encompasses
species richness, composition, and distribution. Ecological and environmental
factors, such as habitat type, resource availability, and climate conditions, play pivotal
roles in shaping species diversity within and among communities, categorized into
alpha (within habitat), beta (between habitats), and gamma (total regional) diversity.
Hummingbird communities are influenced by habitat, elevation, and seasonality,
making them an ideal system for studying these diversities, shedding light on
mutualistic community dynamics and conservation strategies.
Methods: Over a year-long period, monthly surveys were conducted to record
hummingbird species and their visited flowering plants across four habitat types
(oak forest, juniper forest, pine forest, and xerophytic shrubland) in Tlaxcala,
Mexico. Three locations per habitat type were selected based on conservation status
and distance from urban areas. True diversity measures were used to assess alpha,
beta, and gamma diversity of hummingbirds and their floral resources.
Environmental factors such as altitude and bioclimatic variables were explored for
their influence on beta diversity.
Results: For flowering plants, gamma diversity encompassed 34 species, with oak
forests exhibiting the highest richness, while xerophytic shrublands had the highest
alpha diversity. In contrast, for hummingbirds, 11 species comprised the gamma
diversity, with xerophytic shrublands having the highest richness and alpha diversity.
Our data reveal high heterogeneity in species abundance among habitats. Notably,
certain floral resources like Loeselia mexicana and Bouvardia ternifolia emerge as key
species in multiple habitats, while hummingbirds such as Basilinna leucotis,
Selasphorus platycercus, and Calothorax lucifer exhibit varying levels of abundance
and habitat preferences. Beta diversity analyses unveil habitat-specific patterns, with
species turnover predominantly driving dissimilarity in composition. Moreover, our
study explores the relationships between these diversity components and
environmental factors such as altitude and climate variables. Climate variables, in
particular, emerge as significant contributors to dissimilarity in floral resource and
hummingbird communities, highlighting the influence of environmental conditions
on species distribution.
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Conclusions: Our results shed light on the complex dynamics of
hummingbird-flower mutualistic communities within diverse habitats and
underscore the importance of understanding how habitat-driven shifts impact alpha,
beta, and gamma diversity. Such insights are crucial for conservation strategies aimed
at preserving the delicate ecological relationships that underpin biodiversity in these
communities.

Subjects Biodiversity, Conservation Biology, Ecology
Keywords Alpha diversity, Beta diversity, Floral resources, Habitat-driven diversity,
Hummingbirds, Gamma diversity

INTRODUCTION
The study of biodiversity, the variety of life forms within ecosystems, help us
understand the organization, complexity, interconnectedness and resilience of
communities (Tilman, Reich & Knops, 2006; Campbell, Murphy & Romanuk, 2011). Its
study extends beyond a mere cataloging of species; it involves a comprehensive
examination of the richness, composition, and distribution of species, spanning from local
to regional scales (Jost, 2006). Ecological factors, both biotic (i.e., species interactions) and
abiotic (e.g., temperature and precipitation), influence the distribution of species and
population density within a community (Pearson & Dawson, 2003; Benton, 2009). These
environmental and biological factors act as filters that determine which species can survive
and thrive in a specific area, and their coexistence is contingent upon their specific needs
and requirements based on competition for resources (Wisz et al., 2013). This way,
diversity within communities is primarily shaped by these ecological processes
(Chesson, 2000).

It is widely recognized that species diversity exhibits spatial heterogeneity. For example,
at a regional scale, significant disparities in species richness have been widely documented
among habitats (e.g., MacArthur, 1965; Būhning-Gaese, 1997). These spatial trends have
given rise to the concept of three levels of species diversity: alpha (a), beta (β), and gamma
diversity (γ) (Whittaker, 1960). The partitioning of biodiversity into three components
offers a powerful framework to unravel the intricacies of these diversity patterns. Firstly,
alpha diversity characterizes species richness and abundance within a single habitat,
providing insights into the structure of local communities. Secondly, beta diversity
quantifies the turnover of species between habitats, shedding light on the ecological
processes driving community assembly and turnover. Lastly, gamma diversity,
encompassing total species richness across multiple habitats, reflects broader regional
diversity patterns (Whittaker, 1960). Fundamental topics in ecological research have
revolved around distribution patterns and mechanisms that maintain species diversity
across environmental gradients (Lyons & Willig, 2002; McCain, 2009; Wang et al., 2007).
Understanding these patterns and mechanisms is crucial for devising strategies and
measures aimed at preserving species diversity in the face of environmental changes.

Because of their feeding ecology, hummingbirds (Aves: Trochilidae) are closely tied to
their floral resources (Abrahamczyk & Kessler, 2015). Their extreme specialization in

Martínez-Roldán et al. (2024), PeerJ, DOI 10.7717/peerj.17713 2/25

http://dx.doi.org/10.7717/peerj.17713
https://peerj.com/


dependence on nectar consumption has led these tiny birds to often track the availability of
nectar sources by following the blooming of flowers, an ability that enables them to survive
and thrive in various habitats across the Americas (Leimberger et al., 2022). The dynamics
shaping hummingbird communities have been explored in numerous studies, revealing an
intriguing trend. Hummingbird communities in low-lying habitats (≤50 m a. s. l.),
encompassing both dry and humid forests, experience an upsurge in both species richness
and abundance (Buzato, Sazima & Sazima, 2000). In contrast, a different scenario
unfolds in habitats surrounded by temperate vegetation at higher and colder elevations
(>2,000 m a. s. l. with temperatures around −5 �C), such as cloud forests and coniferous
forests. In these habitats, there is a tendency for a decrease in the richness and abundance
of hummingbird species (Graham et al., 2009; Partida-Lara et al., 2018). Interestingly, this
general pattern doesn’t account for the remarkable species richness in the montane region
of the Andes, where elevation has instead generated diverse topographical features that
have promoted high speciation rates (Rahbek et al., 2007).

In addition to the habitat type’s impact on the structure of hummingbird communities,
seasonality also exerts an effect due to variations in environmental variables that directly
influence the floral resources they utilize, such as precipitation. In this regard, it has been
demonstrated that in habitats with scarce precipitation, such as tropical dry forests, the
peak flowering of plants visited by hummingbirds primarily occurs during the dry season
(Arizmendi & Ornelas, 1990; Bustamante-Castillo, Hernández-Baños & Arizmendi, 2018;
Martínez-García, González & Ortiz-Pulido, 2020). Conversely, in temperate environments
such as conifeous forests, the flowering peaks of these plants align with the rainy season
(Des Granges, 1979; Lara, 2006). In response to this seasonal effect in the environment,
there is typically a positive relationship where a greater number of flowers (i.e., flowering
peaks) denotes higher diversity and abundance of hummingbirds at the local level (Cotton,
2007). Therefore, the dynamics of this relationship over time can led hummingbird
communities to undergo restructuring (Wolf, Stiles & Hainsworth, 1976; Arizmendi &
Ornelas, 1990; Lara, 2006).

The interaction between hummingbirds and flowers is an ideal context to explore the
three diversity components. The diversity of both these groups may be influenced by
factors such as resource availability, and habitat specialization. By dissecting the alpha,
beta, and gamma diversity patterns within this context, we aim to uncover the mechanisms
driving the assembly and maintenance of these intricate mutualistic communities. Central
Mexico is a hotspot of ecological diversity, characterized by its varied topography, altitude
gradients, and climatic variability (Sánchez-Cordero et al., 2005). This ecological
heterogeneity provides a unique backdrop for exploring biodiversity patterns and
underlying ecological processes. Among the states within this region, Tlaxcala, the smallest
state in the country (after the capital Mexico City), holds a unique geographical position
that facilitated the collection of comprehensive data on the diversity of hummingbirds and
their flowers across different vegetation types. This provided insights into the dynamics of
these communities within a confined yet ecologically diverse area.

The main goal of our research was to describe the alpha, beta, and gamma diversity
patterns within hummingbird-flower communities across the most representative habitats

Martínez-Roldán et al. (2024), PeerJ, DOI 10.7717/peerj.17713 3/25

http://dx.doi.org/10.7717/peerj.17713
https://peerj.com/


of the region: the oak forest, pine forest, juniper forest, and xerophytic shrubland. These
habitats encompass environmental conditions ranging from typically humid and
cold to dry and warm and are mainly found covering altitudinal ranges from 2,400 to
2,700 m a.s.l., although pine forests can be found at elevations as high as 4,000 m a.s.l. at
the highest point in the region, La Malinche volcano. Considering the variability in our
studied habitats, we expected significant variations in alpha, beta, and gamma diversity in
hummingbird-flower communities across oak forest, pine forest, juniper forest, and
xerophytic shrubland habitats due to their distinct environmental conditions.
Additionally, we hypothesized that abiotic factors such as altitude, temperature, and
precipitation would influence species composition between these habitats (beta diversity).
Finally, we expected higher alpha diversity in habitats with more varied conditions, while
beta diversity will likely correlate with specific environmental factors distinguishing each
habitat.

MATERIALS AND METHODS
Study area
From February 2014 to January 2015, samplings were carried out in four types of
vegetation (hereafter referred to as “habitats”) characteristic of the state of Tlaxcala,
Mexico: oak forest, juniper forest, pine forest, and xerophytic shrubland. Based on digital
land use and vegetation maps at a 1:250,000 scale, as well as information about the
vegetation within the state of Tlaxcala (National Institute of Statistics and Geography of
Mexico (INEGI), 2009, 2010; Acosta, Delgado & Cervantes, 1992; Luna, Morrone &
Espinosa, 2007), three locations were selected for each habitat (Fig. 1). For their selection,
these locations met the following requirements: (i) belong to conserved areas according to
National Institute of Statistics and Geography of Mexico (INEGI) (2010), (ii) be distant
from urban areas (~3 km), and (iii) be separated from each other to ensure sampling
independence (average distance between locations greater than 13 km). Subsequently,
across three locations, for each of four habitat types, we established five 500 m transects per
habitat with 20 m wide bands on each side, with transect number varying between two and
one per locality, totaling five transects per habitat type. Maintaining 100 m distance
between transects within localities, this design yielded 20 total transects with georeferenced
coordinates and altitudes (m a.s.l.) recorded via GPS (Garmin Etrex 30).

In each location, the transects were established in sites that could encompass the
dominant tree species for the habitat type. In oak forest, species of the Quercus genus
predominate, such as Q. crassipes, Q. glaucoides, Q. laurina, and Q. mexicana. The
dominant tree species in juniper forest is Juniperus deppeana. In pine forest, characteristic
species include Pinus montezumae, P. hartwegii, P. patula, and P. leiophylla. Finally, in
xerophytic shrubland, dominant species include Yucca filifera,Nolina longifolia,Dasylirion
acrotriche, and Opuntia robusta (Fig. 1).

Sampling of hummingbirds and their flower plants
To identify and quantify the abundance of hummingbirds and the flowering plants they
visited, monthly surveys were conducted over a 12-month period at five transects
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established for each habitat type. Sampling was carried out from 8:00 to 13:00 h. During
this period, all the hummingbirds detected within the transect were recorded, whether they
were observed foraging on the flowers, perched, or in flight. The observed individuals were
identified with the assistance of specialized field guides (Williamson, 2001; Arizmendi &
Berlanga, 2014). Using this information, we obtained the number of individuals per
hummingbird species for each survey.

Concurrently, all plant species within a transect (i.e., plants exhibiting tubular flowers,
bright colors, and nectar production; Faegri & van Der Pijl, 1979) were recorded. Species
that did not fit the proposed ornithophilous syndrome were also included in the records if
hummingbirds were observed foraging on them. Floral abundance was measured as the
number of open flowers per plant species in each transect. The identification of plant
species was conducted using dichotomous keys (Calderón & Rzedowski, 2001). Sample
completeness (sample coverage) for hummingbirds and plant species across habitat types
was performed using the ‘iNext’ function from the iNEXT package (Hsieh, Ma & Chao,
2016) in RStudio, ver. 2023.03.0 + 386 (RStudio Team, 2022). The iNEXT package uses a
unified framework based on Hill numbers to estimate sample completeness at different
sample sizes, incorporating both interpolation (rarefaction) and extrapolation techniques
(Chao et al., 2014;Hsieh, Ma & Chao, 2016). By utilizing the ‘iNext’ function, rarefaction is
inherently performed as part of the interpolation process, ensuring that sample
completeness can be compared across samples with different sizes or sampling efforts.

Figure 1 Maps showing (A) the location of the state of Tlaxcala, Mexico (shown in black), and (B) the locations of the monitored habitats,
where the diversity of hummingbirds and their flowering plants was studied. The colored circles represent the transects established for each
habitat type: Oak forest (OF) in green, pine forest (PF) in yellow, juniper forest (JF) in purple, and xerophytic shrubland (XS) in blue. Sources: ESRI,
Garmin, National Institute of Statistics and Geography of Mexico (INEGI) (2009). Uso del suelo y vegetación, escala 1:250,000, serie IV. 2009, and
Qgis version 2.18, 2016. QGIS Geographic Information System. QGIS Association: http://www.qgis.org. Photo credit: Hellen Martínez-Roldán.

Full-size DOI: 10.7717/peerj.17713/fig-1
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Diversity measures
Studies focusing on avian diversity often use gamma diversity to assess regional species
richness (e.g.,Metcalf et al., 2022), alpha diversity for local species composition (e.g., Jarrett
et al., 2021), and beta diversity to analyze habitat-based variation (e.g., de Deus et al., 2020).
In plant ecology, similar diversity measures elucidate species turnover and richness across
various plant communities (e.g., Fontana et al., 2020; Vetaas, Shrestha & Sharma, 2021).
Here, to assess the structure and differences in hummingbird and plant assemblages within
the study region, we performed an analysis of regional diversity (gamma diversity) by
considering all habitats as a unit. Additionally, we conducted a detailed analysis of local
diversity within each habitat (alfa diversity), examined how the respective assemblages
differ between communities (beta diversity), and explored the origins of differences among
habitats, including species turnover and variations in species richness. Furthermore, we
assessed the potential role of environmental factors in explaining differences between
communities within each habitat. These concepts are pivotal for understanding biological
processes across diverse habitats, the structure of biological communities, and the
distribution of species at local and regional level. Their practical applications extend to
environmental management and conservation of biodiversity.

Each diversity index, H, can be expressed as its true diversity index or equivalent
numbers (qD(H)), also referred to as Hill numbers (Jost, 2006; Moreno et al., 2017).
Equivalent numbers represent the essential components (i.e., species, communities) that a
balanced community with equally common species would possess, assuming that the
diversity index of the balanced community matches that of the real community (Jost, 2006,
2010; Pereyra & Moreno, 2013). Thus, effective numbers depict the structure of the real
community in equivalent units, enabling comparisons of the degree of change between
communities (Jost, 2006, 2007). Effective numbers qD derived from the following formula
(Jost, 2007):

qD ¼
Xs

i¼1

pqi

 !1=1�q

where pi is the relative frequency of species i, q is the order of diversity measurement, and S
is the number of species. The parameter q has an exponential property that determines the
sensitivity of the index to the relative abundance of species (Jost, 2006, 2007). Species
richness corresponds to the diversity index of order 0 and is insensitive to the relative
frequency of species. The diversity measure of order 1 is equivalent to the exponential of
Shannon’s entropy and weights rare and common species proportionally to their
abundance. The diversity measures of order 2 are equivalent to Simpson’s inverse
measures, which favor abundant species while excluding rare ones (Hill, 1973; Jost, 2006,
2007).

To measure diversity across the region encompassing the four habitat types, we
computed the gamma diversity index (qDγ) using the multiplicative partitioning of
regional diversity as proposed byWhittaker (1960), where qDγ =qDa*qDβ. The equivalent
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numbers, expressed as 0Da, denotes the number of species in the communities (0Dβ)
required to match the total species count in the region (0Dγ).

To evaluate diversity at a local level, we calculated alpha diversity (orders q = 0,1,2) for
the community composition within each habitat concerning the hummingbird and plant
species assemblages.

Among communities, changes in species composition are explained by β diversity
(Whittaker, 1960). The β diversity can arise from two processes: species turnover and
nestedness; both components identify the source of disparities between communities
(Carvalho, Cardoso & Gomes, 2012). These two components explain β diversity additively
(βcc = β-turnover + β-nestedness). To derive β diversity and its components (β-turnover,
β-nestedness), three measures were calculated: a) species common to both sites, b) species
exclusive to one site, and c) species exclusive to the other site (see formulas in Carvalho,
Cardoso & Gomes, 2012). βcc represents a proportion of dissimilarity between two
communities, where 0 indicates that communities share all species, and one corresponds to
communities that do not share any species; however, βcc does not take species abundances
into account, while Hill numbers do consider abundance in addition to species richness.
Additionally, species turnover (β-turnover) varies from 0 (when species composition is
identical) to 1 (when species composition is entirely different). The values of β-nestedness
follow the same scale from 0 to 1 (when species richness is equal or different respectively).

Furthermore, following Jost (2007), gamma diversity was calculated for orders q = 0 and
q = 1, considering the unequal weighting of plant and hummingbird communities. Alpha
diversity, essential for understanding each community’s composition was assessed for
orders 0, 1 and 2. Finally, beta diversity and its components across the four habitats for
both communities were computed according to Carvalho, Cardoso & Gomes (2012) and
Carvalho et al. (2013). All analysis were performed with RStudio, ver. 2023.03.0 + 386
(RStudio Team, 2022), using the vegan package (Oksanen et al., 2022).

The relationship between beta diversity and environmental factors
Subsequently, the correlation of β diversity (βcc, β-turnover, β-nestedness) and
environmental factors such as altitude, and 19 bioclimatic variables obtained from the
WorldClim website (http://www.worldclim.org), was assessed using Mantel tests (Sokal &
Rohlf, 1995). Simple Mantel tests assess the correlation between two dissimilarity matrices,
while partial Mantel tests allow controlling for the effect of a third matrix (in this case, the
dissimilarity matrix of the other environmental variables) when evaluating the correlation
between the two main matrices. These tests enable us to determine if the variation in β

diversity among communities is related to differences in the selected environmental
variables, which can help understand the factors influencing the structure and composition
of communities in the studied region. For this purpose, the values of each bioclimatic
variable were extracted for each transect, and a principal component analysis (PCA) was
performed to condense the abiotic variables. Highly correlated variables were removed, as
well as those with less contribution to the components explaining >90% of the variance.
The selected variables were annual precipitation (Bio12), precipitation of wettest quarter
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(Bio16), and altitude. Dissimilarity matrices were constructed using the Bray-Curtis
method for the selected variables. Simple and partial Mantel tests were conducted with
9,999 permutations. The Mantel tests were computed with RStudio, ver. 2023.03.0 + 386
(RStudio Team, 2022), using the vegan package.

RESULTS
Abundance of flowering plants and hummingbirds
The observed number of plant and hummingbird species in the study seemed to reach
an asymptote in relation to our sampling effort across the four sampled habitats (a total of
180 h of evenly distributed observation efforts for each habitat throughout the study). For
plant species, we detected 99.91% for the oak forest, 99.62% for pine forest, 99.57% for
juniper forest and, 99.95% for xerophytic shrubland according to the Chao2 estimator,
after conducting 12 samples for each habitat type throughout the study (File S1, Fig. 1S).
Likewise, we detected 98.15% of the hummingbird species estimated for the oak forest,
96.25% for pine forest, 98.40% for juniper forest and 95.16% of those estimated for the
xerophytic shrubland (File S1, Fig. 2S).

The samplings conducted throughout the study in the four habitat types allowed for the
total recording of 34 plant species, which were classified into 22 genera, 17 families, and 11
orders (File S2). Of the total quantified flower abundance, 83% was recorded in five plant
species: Loeselia mexicana (24%), Bouvardia ternifolia (14%), Castilleja tenuiflora (18%),
Penstemon roseus (16%), and Salvia elegans (11%). The last three plant species belong to
the order Lamiales (45% of the total abundance). Likewise, L. mexicana, C. tenuiflora, and
B. ternifolia were shared species in all four habitat types, thus being characteristic plant
species within the region (Fig. 2A). Therefore, the description of the results hereafter will
be particularly based on these plant species, as well as in the case of the hummingbird
species referred to below.

Regarding the hummingbird species, considering all the sampled habitats, a total of 11
species were recorded, classified into nine genera and one family (Trochilidae). In terms of
abundance, three hummingbird species comprised 86% of the total abundance. Basilinna
leucotis was the most abundant hummingbird species in the region (69%), followed in
much lower abundance by Selasphorus platycercus (11%), Colibri thalassinus (6.3%), and
Calothorax lucifer (5%). The first three hummingbird species were recorded in all four
habitat types, while C. lucifer was only recorded in xerophytic shrubland (File S2, Fig. 2B).

The abundances of the aforementioned plant and hummingbird species exhibited high
heterogeneity among the studied habitats (Figs. 3A, 3B, 4A and 4B). For example,
L. mexicana was the most abundant plant species in the sampled sites of juniper forest and
oak forest, but scarce in pine forest and xerophytic shrubland. C. tenuiflora was
particularly abundant in xerophytic shrubland, but recorded with low abundance in the
other habitats. B. ternifolia was abundant in juniper forest, xerophytic shrubland and oak
forest, but not in pine forest. In pine forest, both P. roseus and S. elegans were abundant
species. In contrast, in oak forest, the abundance of both species was low, while in juniper
forest and xerophytic shrubland they were not recorded (File S2, Figs. 3A and 4A).
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Hummingbird species abundances were also highly variable among the sampled
habitats. B. leucotis was the most abundant species in pine forest, oak forest, and juniper
forest, while less abundant in xerophytic shrubland. Conversely, S. platycercus was the
most abundant in xerophytic shrubland, and less abundant in other habitats. C. thalassinus
was one of the most abundant species in pine forest and showed very low abundances in
the remaining habitat types. Finally, C. lucifer was an abundant species found exclusively in
the xerophytic shrubland habitat (File S2, Figs. 3B and 4B).

Diversity measures
Richness at regional level of plants was 34 species (0Dγ), with an average local richness
(0Da) of 16.5 effective species and 2.06 effective communities (0Dβ) necessary to account
the regional species richness within the region. This implies that on average, 48.5% (1/0Dβ)
of the total plant species are present in a single habitat. For hummingbird assemblages, the
average richness (0Da) was 7.3 effective species, representing 66.6% of the total species
recorded within the region (0Dγ = 11). With a 0Dβ of 1.5 effective communities needed to

Figure 2 Rank/abundance plots for hummingbirds and their flowering plants species at the regional
level in Tlaxcala, Mexico. Rank/abundance curves show the distribution of plant and hummingbird
species from most to least abundant. (A) Loeselia mexicana (LOEMEX), Castilleja tenuiflora (CASTEN),
Penstemon roseus (PENROS), Bouvardia ternifolia (BOUTER), and Salvia elegans (SALELE) were the
most abundant plant species within the region, while (B) Basilinna leucotis (BASLEU), Selasphorus
platycercus (SELPLA), and Colibri thalassinus (COLTHA) highly dominate in all sampled habitat types.
Photo credit: Ubaldo Marquez-Luna, Hellen Martínez-Roldán, Juan Manuel González, María José Pérez-
Crespo and Carlos Lara. Full-size DOI: 10.7717/peerj.17713/fig-2
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achieve regional richness, it suggests minimal species turnover within the region.
Considering the effective communities in hummingbirds, the species recorded in
xerophytic shrubland (nine spp.) and oak forest (two spp.) contribute to completing the
regional richness (Table 1).

In terms of the regional diversity 1Da (equiprobable species) in the plants, an average
community calculated 4.4 effective species, while 8.7 effective species were observed in the
entire region (1Dγ). The communities required to complement 1Dγ are 2 (1Dβ), indicating
that an average community contained 50% of the equiprobable species in the region. For
the hummingbird assemblages, an average community displayed 2.5 effective species
(1Da), and the region exhibited 3.3 effective species (1Dγ). To complement 1Dγ, 1.3
communities were required (1Dβ), with an average community encompassing 77% of the
equiprobable species in the region (Table 1). Regional diversity (1Dγ) aligned closely with
the abundant species recorded within the region (Fig. 2).

Figure 3 Rank/abundance plots for the hummingbirds and their flowering plant species by each
sampled habitat type. (A) Loeselia mexicana (LOEMEX), Castilleja tenuiflora (CASTEN), Penstemon
roseus (PENROS), Bouvardia ternifolia (BOUTER), Salvia elegans (SALELE), S. polystachya (SALPOL)
and S. melissodora (SALMEL) were the most abundant plant species in each sampled habitat type: Oak
forest (OF), pine forest (PF), juniper forest (JF), and xerophytic shrubland (XS), while (B) Basilinna
leucotis (BASLEU), Selasphorus platycercus (SELPLA), Colibri thalassinus (COLTHA) and Calothorax
lucifer (CALLUC) highly dominate in all sampled habitat types. The hummingbird silhouette used in
Figs. 3–6 was obtained from an open source platform (https://www.phylopic.org/images/2bf1e800-5384-
45cd-a533-ac940b8eadd6/trochilidae) and created by Ferran Sayol. The flower silhouette in these figures
was created by the authors using Adobe Photoshop 7.0 software (Adobe Inc., San Jose, CA, USA).

Full-size DOI: 10.7717/peerj.17713/fig-3
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Regarding alpha diversity (a), the habitat with the highest richness (0D) of plant species
was oak forest (22 species), followed by pine forest (18 species), and xerophytic shrubland
(14 species). Juniper forest (12 species) had the lowest richness, with the lowest number of
effective species of 1D (2.1) and 2D (1.8), particularly recording two dominant species
(L. mexicana and B. ternifolia) (Fig. 3B). In contrast, habitats with the highest number of
effective species in orders 1 and 2 are pine forest (1D = 5.3, 2D = 3.8) and xerophytic
shrubland (1D = 5.2, 2D = 3.5), respectively (Fig. 5B; Table 2). Consequently, in terms of
order 1 diversity, on average, pine forest and xerophytic shrubland exhibited 2.5 times
more diverse than juniper forest and 1.4 times more diverse than oak forest. Pine forest
presented the five most abundant species within the region (P. roseus, S. elegans,
C. ternuiflora, L. mexicana, B. ternifolia) (Fig. 2B), while xerophytic shrubland shared three

Figure 4 Relative abundance (%) of key plant and hummingbird species across different forest types.
(A) Percentage of herbaceous plant species: Bouvardia ternifolia (BOUTER), Castilleja tenuiflora
(CASTEN), Loeselia mexicana (LOEMEX), Penstemon roseus (PENROS), and Salvia elegans (SALELE).
(B) Percentage of hummingbird species: Basilinna leucotis (BASLEU), Calothorax lucifer (CALLUC),
Colibri thalassinus (COLTHA), and Selasphorus platycercus (SELPLA).

Full-size DOI: 10.7717/peerj.17713/fig-4

Table 1 Multiplicative partition of the gamma diversity (true diversity, modified from Jost, 2007)
into its components: Dγ (regional diversity), Dβ (effective communities), and Da (average alpha).

Gamma diversity

Dγ diversity
and
its components

Hummingbirds Flowering Plants

0D 1D 0D 1D

Dγ 11 3.3 34 8.7

Dβ 1.5 1.3 2.06 2

Da 7.3 2.5 16.5 4.4

Note:
Da and Dγ are expressed in the same units of species, while Dβ is expressed in communities. Superscripts correspond to
diversity values of orders 0 and 1, based on Hill numbers representing the effective number of species or communities.
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species with pine forest (C. ternuiflora, B. ternifolia, L. mexicana) and had two exclusive
abundant species (Salvia chamaedryoides and Salvia melissodora) (File S2).

The habitat with the highest diversity of hummingbird species was xerophytic
shrubland, recording the highest richness (0D = 9) and the greatest number of effective
species (1D = 5.2, 2D = 4.2). In this habitat, five abundant hummingbird species were
found, two of which ranked among the most abundant species in the region, and one was
exclusive to xerophytic shrubland (B. leucotis, S. platycercus, S. rufus, A. colubris, and
C. lucifer, respectively) (Fig. 3A). In contrast, the lowest diversity of hummingbird species
was observed in oak forest, pine forest, and juniper forest, with assemblages having a
similar number of effective species. Considering the order 1 diversity measure, the

Figure 5 Alpha diversity profiles of hummingbirds and their flowering plant species in the four
sampled habitat types. By following the true diversity concept (Jost, 2006), we obtained the diversity
profiles for (A) plants and (B) hummingbirds, showing variation in the number of effective species for
each sampled habitat type: Oak forest (OF), pine forest (PF), juniper forest (JF), and xerophytic
shrubland (XS). Superscripts correspond to diversity values of orders 0, 1, and 2; values for orders 1 and 2
are shown as Hill numbers, representing the effective number of species.

Full-size DOI: 10.7717/peerj.17713/fig-5

Table 2 Alpha diversity (true diversity, modified from Jost, 2006) of hummingbirds and their
flowering plants in oak forest (OF), pine forest (PF), juniper forest (JF), and xerophytic shrubland
(XS).

Alpha diversity

Hummingbirds Flowering plants

Habitat type 0D 1D 2D 0D 1D 2D

OF 7 2.2 1.5 22 3.7 2.6

PF 7 2 1.4 18 5.3 3.8

JF 6 2.2 1.5 12 2.1 1.8

XS 9 5.2 4.2 14 5.2 3.5

Note:
Superscripts correspond to diversity values of orders 0, 1, and 2, represented by Hill numbers, reflecting the effective
number of species.
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xerophytic shrubland was, on average, 2.77 times more diverse than the other habitat types
(Fig. 5A; Table 2).

Beta diversity (b)
The βcc values obtained among the plant communities indicate dissimilarity ranging from
0.52 to 0.77 (where 1 represents maximum dissimilarity). Xerophytic shrubland is
dissimilar compared to the other three habitats (>0.70) (Table 3). The dissimilarity among
all communities is primarily attributed to species turnover (β-turnover), except in oak
forest vs. juniper forest, where dissimilarity is attributed to differences in richness (β-

Table 3 Beta diversity based on the partition of total beta diversity (βcc), species replacement (β-
turnover) and species richness differences (β-nestedness) for hummingbirds and their flowering
plants.

Beta diversity

Hummingbirds Flowering plants

Habitat type β-turnover β-nestedness βcc β-turnover β-nestedness βcc

OF vs. JF 0.25 0.13 0.38 0.09 0.43 0.52

OF vs. PF 0.44 0 0.44 0.43 0.14 0.57

OF vs. XS 0.36 0.18 0.55 0.43 0.29 0.71

JF vs. PF 0.44 0.11 0.56 0.50 0.25 0.75

JF vs. XS 0.20 0.30 0.50 0.60 0.10 0.70

PF vs. XS 0.20 0.20 0.40 0.62 0.15 0.77

Note:
This analysis was carried out across four sampled habitat types: oak forest (OF), pine forest (PF), juniper forest (JF), and
xerophytic shrubland (XS).

Figure 6 Contribution of species turnover and differences in species richness to beta diversity of
hummingbirds and flowering plants. Plots show beta diversity of (A) plant and (B) hummingbird
species, where each segment shows the proportion of each component for each habitat pair: Oak forest
(OF), pine forest (PF), juniper forest (JF), and xerophytic shrubland (XS).

Full-size DOI: 10.7717/peerj.17713/fig-6
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nestedness) (Fig. 6A; Table 3). The hummingbird communities have dissimilarity ranging
from 0.38 to 0.56. Overall, dissimilarity is driven by species turnover (Fig. 6B; Table 3).
When evaluating the beta diversity between pairs of sites, a very similar trend was found
for plants and hummingbirds, where the dissimilarity was mainly due to β-turnover, with
low contribution in β-nestedness. However, the highest values of total beta (βcc) between
habitats occurred in plant communities, while lower values were observed in hummingbird
assemblages, indicating greater similarity in hummingbird species composition between
habitats (Figs. 6A and 6B).

The relationship between beta diversity and environmental factors
Mantel’s simple and partial tests for plant species, between the beta components and
selected environmental factors in the study, showed a positive correlation in βcc
dissimilarities with the climate variables precipitation (Bio12), precipitation of wettest
quarter (Bio16), and altitude ranging from r = 0.34 to r = 0.45. Partial correlations confirm
that climate variables contribute more in the relationship. Similar results were obtained for
species turnover (β-turnover), with correlation coefficients ranging from r = 0.27 to r = 0.4
(Table 4). In summary, we found variation in the species turnover rate for both measured
variables (altitude and climate variables). However, environmental conditions had a
greater effect on the dissimilarity of plant species assemblages. For hummingbird species
assemblages, differences in βcc and β-turnover are explained by climate variables (r = 0.45)
and not by altitude (Table 4). Correlations for richness differences (β-nestedness) were not
significant in either case (plants and hummingbirds).

Table 4 Correlation results (Mantel tests) between beta diversity of hummingbirds and their flowering plants, altitude and the climatic
variables precipitation (Bio12) and precipitation of wettest quarter (Bio16) were analyzed for each locality. Numbers in bold indicate statis-
tical significance. Additionally, we conducted Partial Mantel tests to examine the results after eliminate the effects of altitude (Climate Variables-
Altitude) and climatic variables (Altitude-Climate Variables).

Hummingbirds

Altitude Climate variables Climate variables-altitude Altitude-climate variables

r p r p r p r p

βcc −0.01 0.50 0.45 <0.01 0.45 <0.01 0.03 0.41

β-turnover −0.20 0.91 0.31 <0.01 0.30 <0.01 −0.19 0.90

β-nestedness 0.22 0.13 0.01 0.41 0.03 0.34 0.22 0.13

Flowering plants

βcc 0.34 <0.01 0.45 <0.01 0.51 <0.01 0.42 <0.01

β-turnover 0.27 0.01 0.40 <0.01 0.44 <0.01 0.33 <0.01

β-nestedness −0.05 0.54 −0.12 0.93 −0.12 0.94 −0.06 0.57

Note:
Da and Dγ are expressed in the same units of species, while Dβ is expressed in communities. Superscripts correspond to diversity values of orders 0 and 1, based on Hill
numbers representing the effective number of species or communities.
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DISCUSSION
Our study provides a comprehensive understanding of the abundance, composition, and
diversity of flowering plants and hummingbirds across different habitat types in central
Tlaxcala, Mexico. The main goal of our research was to unravel the alpha, beta, and gamma
diversity patterns within hummingbird-flower communities across the most representative
habitats of the region: the oak forest, pine forest, juniper forest, and xerophytic shrubland
(Fig. 1). These habitats form gradients of humidity and temperature in the same landscape,
ranging from typically humid and cold conditions in the forests to dry and warm
environments in the xerophytic shrubland.

As expected, we found significant variations in alpha, beta, and gamma diversity of
hummingbird-flower communities across these habitats (Figs. 5 and 6, Tables 1 and 2),
confirming that their distinct environmental conditions play a crucial role in shaping
species composition and diversity patterns. These findings align with previous studies
documenting higher species richness and turnover in habitats with greater environmental
heterogeneity (Tuanmu & Jetz, 2014; Socolar et al., 2016). Our results also supported the
hypothesis that abiotic factors such as altitude, temperature, and precipitation influence
species composition between habitats (beta diversity). We found significant positive
correlations between climate variables and dissimilarities in both plant and hummingbird
species assemblages (Table 4), highlighting the importance of environmental conditions in
structuring these communities (Chase et al., 2011; Belmaker & Jetz, 2015).

Interestingly, we observed a higher turnover of plant species compared to
hummingbirds along the studied environmental gradient (Fig. 6, Table 3). This difference
may be attributed to the greater mobility of hummingbirds, which allows them to exploit a
wider variety of habitats and resources (Hadley & Betts, 2012). In contrast, plants are more
limited in their dispersal and distribution due to factors such as substrate availability,
competition, and seed dispersal mechanisms (Willson, 1993; Dalling et al., 2002). This
finding has important implications for conservation strategies in the region. While
hummingbirds demonstrate a degree of habitat generalism, many plant species exhibit
specialized associations with specific habitats. Therefore, preserving a mosaic of diverse
habitats is crucial to maintain the unique plant assemblages they support and to ensure the
availability of resources for hummingbirds across the landscape (Hobbs et al., 2014; Socolar
et al., 2016).

The distance among study sites could influence beta diversity patterns by affecting
species turnover across habitats, isolation and connectivity of populations, changes in
environmental conditions, species dispersal abilities, and broader biogeographic patterns
(Soininen, McDonald & Hillebrand, 2007). We addressed this by selecting geographically
separated locations (average distance > 13 km) for each habitat type (Fig. 1), allowing for a
more nuanced understanding of biodiversity patterns within and among habitat types.
However, while our study design considered spatial separation, future research could delve
deeper into environmental gradients and landscape connectivity to better understand
biodiversity patterns in complex landscapes like those in Tlaxcala, Mexico.
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It is important to emphasize that, although our study did not directly quantify the
interactions between plants and hummingbirds, the observed patterns in species
abundance and distribution (Figs. 2–4) strongly suggest the existence of intricate
interaction networks that deserve further exploration in future research (Vázquez et al.,
2009; Trøjelsgaard & Olesen, 2013). Understanding these complex ecological relationships
is crucial for predicting how changes in the abundance and distribution of one group may
affect the other, and for developing effective conservation strategies that consider the
interdependence of these species.

The documentation of a diverse array of plant species across multiple taxonomic groups
highlights the ecological significance of the floral community in our study area (Potts et al.,
2010; Ollerton, Winfree & Tarrant, 2011). The prevalence of five key plant species—
Loeselia mexicana, Bouvardia ternifolia, Castilleja tenuiflora, Penstemon roseus, and Salvia
elegans—in terms of flower abundance is notable (Figs. 2–4). These species, characterized
by red flowers, may occupy key resource positions within the ecosystem, influencing
community composition and structure (Paine, 1969; Scogin, 1983). Furthermore, the
presence of characteristic plant species shared across all four habitat types underscores
their ecological importance and potential role as indicators of habitat health (Lechner,
Chan & Campos-Arceiz, 2018).

Within the realm of hummingbird diversity, our study identifies 11 recorded species,
categorized into nine genera within the family Trochilidae (Fig. 2). The hummingbird
species richness in our study region is relatively higher compared to other temperate
forests of North and South America, where up to 13 species may be present (Abrahamczyk
& Renner, 2015; López-Segoviano, Bribiesca & Arizmendi, 2018). The resident Basilinna
leucotis emerges as the dominant hummingbird species, constituting a substantial 69% of
the regional hummingbird population (Figs. 2–4). This dominance can potentially
influence plant-hummingbird interactions and pollination dynamics within the ecosystem
(Stiles, 1981;Magrach et al., 2020). Interestingly, the second most abundant hummingbird
species was the long-distance migrant Selasphorus platycercus, recorded throughout most
of the year in all four habitat types (Figs. 2–4). This finding suggests that both resident and
winter migratory populations can be found and may even reproduce in these habitats,
highlighting the importance of the region for hummingbird conservation.

Our exploration of alpha diversity among different habitats unveils intriguing patterns
of species richness and evenness (Fig. 5, Table 2). Habitats such as pine forest and
xerophytic shrubland stand out as bastions of high alpha diversity of flowering plants,
suggesting the presence of diverse and evenly distributed species assemblages (Grime,
1998). In contrast, juniper forest exhibits lower diversity, beckoning further investigation
into the drivers of this pattern, including resource availability and biotic interactions
(Connell, 1978; Tilman, 1982). Understanding the variations in alpha diversity among
habitats has profound implications for crafting effective land management and
conservation strategies. Our findings underscore the imperative to prioritize the protection
and restoration of diverse habitats to maintain biodiversity and enhance ecosystem
resilience (Noss & Cooperrider, 1994).
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The exploration of beta diversity, especially the dissimilarity among plant and
hummingbird communities, unveils the uniqueness of species assemblages across habitats
(Fig. 6, Table 3). The high dissimilarity observed in xerophytic shrubland points to the
existence of distinctive ecological communities, potentially shaped by factors such as
dispersal limitation, environmental gradients, or species interactions (Legendre et al.,
2009). Additionally, the lower dissimilarity of hummingbird assemblages compared to
plants may be attributed to hummingbirds’ higher mobility, enabling them to exploit
diverse habitats more readily (Hadley & Betts, 2012). Overall, the dissimilarity in species
composition is primarily due to species turnover, implying unique ecological roles and
contributions of different species to each habitat. These findings emphasize the paramount
importance of preserving a variety of habitats to safeguard the diverse assemblages they
harbor.

The computation of gamma diversity (Dγ) and beta diversity (Dβ) provides a
quantitative foundation for unraveling the regional biodiversity of plant and hummingbird
species (Table 1). These metrics, integral to contemporary ecological research (Chao et al.,
2014), lay the groundwork for informed regional biodiversity assessments and
conservation planning (Jost et al., 2010). The finding of low species turnover in
hummingbird assemblages suggests a degree of stability in the species composition across
habitats, while higher turnover in plants reflects the presence of habitat specialists
alongside widespread species. This nuanced understanding of species turnover has
far-reaching implications for ecosystem connectivity and resilience. The presence of
habitat specialists signals unique ecological roles and dependencies within their respective
ecosystems, urging conservationists to consider the holistic preservation of habitats
(Devictor et al., 2007; Cardinale et al., 2012).

Our study found a significant relationship between environmental factors (specifically
climate variables) and dissimilarities in both plant species and hummingbird species
assemblages (Table 4). The positive correlation observed in Bcc indicates that as climate
variables and altitude vary, the dissimilarity in the composition of plant species increases.
Furthermore, the results show that climate variables play a more influential role in this
relationship compared to altitude (Table 4). This suggests that the climatic conditions of a
habitat are particularly important in shaping the composition of plants. The variations in
species turnover (β-turnover) also align with this pattern, reinforcing the impact of
environmental conditions on the diversity and composition of plant species. In the case of
hummingbird species, the dissimilarities in βcc and β-turnover are mainly influenced by
climate variables, not altitude. This emphasizes the significance of climate in determining
the composition and diversity of hummingbird species across different habitats.

However, our study did not find significant correlations for richness differences (β-
nestedness) for both plant and hummingbird species (Table 4). This implies that
differences in species richness between habitats were not strongly related to the measured
environmental variables and altitude. Thus, the positive correlations detected between beta
diversity and climate variables, offer compelling insights into the potential influence of
climate change on species composition within our research region (Bellard et al., 2012).
The ramifications of shifting climate conditions extend to alterations in species
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distributions, impacting ecological dynamics and the provisioning of ecosystem services
(Parmesan, 2006).

Previous studies have shown that climate change can be particularly threatening to
hummingbirds by affecting the phenology of floral resources on which they depend
(Inouye et al., 2000;McKinney et al., 2012). Even minor changes in blooming dates may be
of consequence, as hummingbirds will eventually arrive after flowering begins, which
could reduce their nesting success (Aldridge et al., 2011; McKinney et al., 2012). This
disruption in the flowering phenology within and among different habitats can affect both
latitudinal and altitudinal migration undertaken by hummingbirds following these floral
resources. The established interaction networks between hummingbirds and their floral
resources should be incorporated into future studies of geographic distribution models and
climate change. Thus, our findings accentuate the central role played by environmental
conditions in shaping species assemblages (Chase et al., 2011). This knowledge informs the
development of effective habitat conservation and restoration strategies that account for
the influence of climate and topography on ecosystem structure and function (Sax et al.,
2007; Hobbs et al., 2014).

CONCLUSIONS
Our study provides valuable insights into the diversity patterns and community
structuring of flowering plants and hummingbirds across different habitat types in central
Tlaxcala, Mexico. The findings underscore the significant influence of environmental
factors, particularly climate variables, on shaping the distribution and assembly of these
ecologically coupled groups. The higher turnover of plant species compared to
hummingbirds highlights the importance of considering species-specific traits, such as
dispersal abilities and resource requirements, when developing conservation strategies.
While hummingbirds exhibited a degree of habitat generalism, allowing them to exploit
multiple habitats, many plant species were more specialized, leading to unique community
assemblages across the landscape. Therefore, preserving habitat heterogeneity and
landscape connectivity emerges as a key strategy to sustain regional biodiversity and
promote ecosystem resilience in the face of environmental change.

Our results emphasize the paramount importance of preserving habitat heterogeneity to
safeguard regional biodiversity. Key habitats harboring high species diversity and unique
assemblages, such as the xerophytic shrubland and pine forests, should be prioritized for
protection. Furthermore, maintaining landscape connectivity is crucial to facilitate the
movement and gene flow of more mobile species like hummingbirds.

This study lays the foundation for future research investigating the intricate interaction
networks between flowering plants and hummingbirds, and how these ecological
relationships may be impacted by environmental changes and anthropogenic disturbances.
By considering the complex interplay between species, habitats, and environmental factors,
we can develop informed conservation strategies that promote ecosystem resilience and
ensure the long-term persistence of these vital ecological partnerships. Ultimately, our
findings emphasize the necessity of adopting a holistic approach to biodiversity
conservation, one that recognizes the interdependence of species and the importance of
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preserving diverse habitats to maintain functional and resilient ecosystems. Such an
approach is essential for mitigating the ongoing biodiversity crisis and safeguarding the
invaluable ecological services provided by these intricate ecological webs.
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