Applicability and perspectives for DNA barcoding of soil invertebrates (#96785)

First submission

Guidance from your Editor

Please submit by 20 Mar 2024 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

11 Figure file(s) 6 Table file(s)

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Applicability and perspectives for DNA barcoding of soil invertebrates

Jéhan Le Cadre Corresp., 1, 2, Finn Luca Klemp 1, Miklós Bálint 3, 4, Stefan Scheu 1, 5, Ina Schaefer 1, 3, 4

Corresponding Author: Jéhan Le Cadre Email address: jehanlecadre@gmail.com

Belowground invertebrate communities are dominated by species-rich and very small microarthropods that require long handling times and high taxonomic expertise for species determination. Molecular based methods like metabarcoding circumvent the morphological determination process by assigning taxa bioinformatically based on sequence information. The potential to analyse diverse and cryptic communities in short time at high taxonomic resolution is promising. However, metabarcoding studies revealed that taxonomic assignment below family-level in Collembola (Hexapoda) and Oribatida (Acariformes) is difficult and often fails. These are the most abundant and species-rich soil-living microarthropods, and the application of molecular-based, automated species determination would be most beneficial in these taxa. In this study, we analysed the presence of a barcoding gap in the standard barcoding gene cytochrome oxidase I (COI) in Collembola and Oribatida. The barcoding gap describes a significant difference between intra- and interspecific genetic distances among taxa and is essential for bioinformatic taxa assignment. We collected COI sequences of Collembola and Oribatida from BOLD and NCBI and focused on species with a wide geographic sampling to capture the range of their intraspecific variance. Our results show that intra- and interspecific genetic distances in COI overlapped in most species, impeding accurate assignment. When a barcoding gap was present, it exceeded the standard threshold of 3 % intraspecific distances and also differed between species. Automatic specimen assignments also showed that most species comprised of multiple genetic lineages that caused ambiguous taxon assignments in distance-based methods. Character-based taxonomic assignment using phylogenetic trees and monophyletic clades as criterion worked for some species of Oribatida but failed completely for Collembola. Notably, parthenogenetic species showed lower genetic

 $^{^{}m 1}$ J. F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany

² Biocenter, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany

³ Senckenberg Biodiversity Climate Research Center, Frankfurt Main, Germany

⁴ Loewe Center for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt Main, Germany

⁵ Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany

variance in COI and more accurate species assignment than sexual species. The different patterns in genetic diversity among species suggest that the different degrees of genetic variance result from deep evolutionary distances. This indicates that a single genetic threshold, or a single standard gene, will probably not be sufficient for the molecular species identification of many Collembola and Oribatida taxa. Our results also show that haplotype diversity in some of the investigated taxa was not even nearly covered, but coverage was better for Collembola than for Oribatida. Additional use of secondary barcoding genes and long-read sequencing of marker genes can improve metabarcoding studies. We also recommend the construction of pan-genomes and pan-barcodes of species lacking a barcoding gap. This will allow both to identify species boundaries, and to cover the full range of variability in the marker genes, making molecular identification also possible for species with highly diverse barcode sequences.

1	Title: Applicability and perspectives for DNA barcoding of son invertebrates
2	
3	Jéhan Le Cadre ^{1,2} , Finn Luca Klemp ¹ , Miklós Bálint ^{3,4} , Stefan Scheu ^{1,5} , Ina Schaefer ^{1,3,4}
4	
5	¹ J. F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen,
6	Germany
7	² Ludwig-Maximilians-Universität München, Biocenter, Großhaderner Str. 2, 82152 Planegg-
8	Martinsried, Germany
9	³ Senckenberg Biodiversity Climate Research Center, Frankfurt am Main, Germany
10	⁴ Loewe Center for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main,
11	Germany
12	⁵ Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany
13	
14	
15	Corresponding Author: jehanlecadre@gmail.com
16	Jéhan Le Cadre ^{1,2}
17	¹ J. F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen,
18	Germany
19	² Ludwig-Maximilians-Universität München, Biocenter, Großhaderner Str. 2, 82152 Planegg-
20	Martinsried, Germany
21	Email address: jehanlecadre@gmail.com
22	
23	
24	

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

Background

Belowground invertebrate communities are dominated by species-rich and very small microarthropods that require long handling times and high taxonomic expertise for species determination. Molecular based methods like metabarcoding circumvent the morphological determination process by assigning taxa bioinformatically based on sequence information. The potential to analyse diverse and cryptic communities in short time at high taxonomic resolution is promising. However, metabarcoding studies revealed that taxonomic assignment below familylevel in Collembola (Hexapoda) and Oribatida (Acariformes) is difficult and often fails. These are the most abundant and species-rich soil-living microarthropods, and the application of molecularbased, automated species determination would be most beneficial in these taxa. In this study, we analysed the presence of a barcoding gap in the standard barcoding gene cytochrome oxidase I (COI) in Collembola and Oribatida. The barcoding gap describes a significant difference between intra- and interspecific genetic distances among taxa and is essential for bioinformatic taxa assignment. We collected COI sequences of Collembola and Oribatida from BOLD and NCBI and focused on species with a wide geographic sampling to capture the range of their intraspecific variance. Our results show that intra- and interspecific genetic distances in COI overlapped in most species, impeding accurate assignment. When a barcoding gap was present, it exceeded the standard threshold of 3 % intraspecific distances and also differed between species. Automatic specimen assignments also showed that most species comprised of multiple genetic lineages that caused ambiguous taxon assignments in distance-based methods. Character-based taxonomic assignment using phylogenetic trees and monophyletic clades as criterion worked for some species of Oribatida but failed completely for Collembola. Notably, parthenogenetic species showed lower genetic variance in COI and more accurate species assignment than sexual species. The different patterns in genetic diversity among species suggest that the different degrees of genetic variance result from deep evolutionary distances. This indicates that a single genetic threshold, or a single standard gene, will probably not be sufficient for the molecular species identification of many Collembola and Oribatida taxa. Our results also show that haplotype diversity in some of the investigated taxa was not even nearly covered, but coverage was better for Collembola than for Oribatida. Additional use of secondary barcoding genes and long-read sequencing of marker genes can improve metabarcoding studies. We also recommend the construction of pan-genomes and pan-barcodes of species lacking a barcoding gap. This will allow both to identify species

PeerJ

- 56 boundaries, and to cover the full range of variability in the marker genes, making molecular
- 57 identification also possible for species with highly diverse barcode sequences.

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

Introduction

59 Soils are among the most diverse habitats on earth, harbouring 25 % to 50 % of the biodiversity 60 on Earth (Decaëns et al., 2006, Decaëns, 2010; Anthony, Bender & van der Heijden, 2023). This 61 biodiversity drives essential processes for life on Earth and provides ecosystem services that 62 impact human wellbeing, such as the decomposition of dead organic material, recycling of 63 nutrients and carbon storage (Wardle et al., 2004; Lavelle et al., 2006; Bardgett & van der Putten, 64 2014). Characterizing and monitoring soil biodiversity therefore is of general interest to maintain and preserve soil functions (Orgiazzi et al., 2015). However, this is a challenging and time-65 66 consuming task due to the enormous taxonomic diversity and cryptic lifestyles of soil-organisms. 67 Molecular methodologies offer great advantages for soil biodiversity assessment in terms of time 68 and cost efficiency, and taxonomic resolution (Antil et al., 2012; Eisenhauer, Bonn & Guerra, 69 2019).

A large fraction of soil animal biodiversity is represented by microarthropods with body-sizes between 0.1 and 2 mm. Collembola (Hexapoda) and Oribatida (Acari: Sarcoptiformes) are dominant and omnipresent microarthropod taxa, and occur in all soil-related habitats where they reach high abundances of up to 50,000 - 100,000 individuals per square meter (Bardgett & van der Putten, 2014). Traditionally, Collembola and Oribatida have been described as decomposers, microbivorous and fungivores, but studies using stable isotopes showed that they actually cover several trophic levels, demonstrating trophic specialization and functional diversity within these taxa (Schneider et al., 2004; Pollierer et al., 2009; Potapov et al., 2016; Maraun et al., 2023). These microarthropods spend their entire life in the soil matrix or in the litter layer, which makes them interesting candidates as bioindicators of soil quality in monitoring programs (Gulvik, 2007). Collembola are typical r-strategists with fast reproduction cycles, whereas Oribatida are usually considered K-strategists with long-life spans of 1-3 years and low fecundity, but species with shorter life-cycles are also common (Maraun & Scheu, 2000; Pfingstl & Schatz, 2021). The general differences in life-history traits and trophic diversity between Collembola and Oribatida could be informative for monitoring programs. Collembola respond and recover more quickly to disturbances (Ponge et al., 2003; Santorufo et al., 2012) than Oribatida, which have long recovery times and therefore are more sensitive to environmental changes (Zaitsev et al., 2002; Gulvik, 2007; Pfingstl & Schatz, 2021). However, the wide range of functional and life-history traits

88 among different species necessitates species level determination in order to better understand their 89 interactions in the soil system or to use them as bioindicators for changes in soil functions. About 90 9,000 species of Collembola and 11,000 species of Oribatida are described worldwide, but this 91 likely represents only about 20 % of the expected species (Potapov et al., 2020; Behan-Pelletier & 92 Lindo, 2023). Local species richness of these two taxa can be very high, reaching 60-100 species 93 in forest soils (Rusek, 1998; Schatz & Behan-Pelletier, 2008). High species richness and 94 abundance, and small body sizes of both, Collembola and Oribatida, pose a significant challenge 95 for biodiversity assessments. Molecular applications, such as DNA barcoding and metabarcoding, 96 have great potential to aid specimen identification and biodiversity assessment (Valentini, 97 Pompanon & Taberlet, 2009). These methods utilize a standardized DNA fragment for taxonomic 98 assignment of specimens by matching DNA sequences of undetermined individuals to a reference 99 database (Hebert et al., 2003; Hebert & Gregory, 2005), This enables to automatically assign any 100 taxonomic level and even species names to undetermined individuals. It is applicable to mixed 101 samples of pooled specimens, which significantly reduces workload and costs. Further, molecular identification tools are equally applicable to juveniles that often lack taxonomic characters 102 103 (Richard et al., 2010; Grzywacz et al., 2021). Automated handling of samples, simultaneous 104 identification of multiple individuals in a single reaction, and the scalability of molecular data to 105 any taxonomic level offers new opportunities for analysing spatial and temporal dynamics of soil-106 living animals (Arribas et al., 2021; Decaëns, 2021), and thereby provide new perspectives for 107 monitoring of soil biodiversity. The method, however, relies on two preconditions: (1) a 108 representative reference database and (2) a marker (barcoding) gene that reliably separates species. 109 The most common databases are BOLD ("The Barcode of Life Data System", Ratnasingham & 110 Hebert, 2007) and NCBI (https://ncbi.nlm.nih.gov/). The standard barcoding gene for Metazoa is 111 a 658 bp region of the mitochondrial cytochrome oxidase I gene (COI; Herbert et al., 2003; Hubert 112 et al., 2008). In general, a minimum of 500 bp of COI is required, but shorter fragments can also 113 be used for specimen identification and species discovery (Hajibabaei et al., 2006; Collins & Cruickshank, 2012). 114

The success of species delineation based on genetic markers depends on the presence of a barcoding gap, which implies that genetic distances within a species are smaller than genetic variances to congeneric and other species (Meyer & Paulay, 2005). A global threshold of 2 %-3 %

118 intraspecific sequence divergence, or 10x the mean intraspecific divergence, has been proposed to 119 reliably separate species (Hebert et al., 2004). Such a universal threshold is extremely helpful for 120 automated species assignment of genetic data in bioinformatic pipelines. This threshold seems to 121 be valid for a range of taxa (Hebert, Ratnasingham & deWaard, 2003; Hebert et al., 2004; Barrett 122 & Hebert, 2005), but its universal application has been questioned for other species (e.g., Burns et al., 2007; Chapple & Ritchie, 2013; Elias et al., 2007; Meier et al., 2006; Meyer & Paulay, 2005; 123 124 Wiemers & Fiedler, 2007). In particular soil-living animals show high intraspecific divergences in 125 the COI gene that commonly exceed the standard barcoding threshold. Examples cover different families of earthworms (King, Tibble & Symondson, 2008; Novo et al., 2009; Martinsson, Rhoden 126 127 & Erséus, 2016), Collembola (Porco et al., 2012a, Porco et al., 2012b; von Saltzwedel, Scheu & 128 Schaefer, 2016; Zhang et al., 2019) and Oribatida (Rosenberger et al., 2013; von Saltzwedel et al., 129 2014). These studies question the general effectiveness of COI for specimen identification in these 130 taxa. Moreover, asexual reproduction occurs in 7-10 % of all species in several families of 131 Collembola and 10 % of all species of Oribatida (Charhataghi, Scheu & Ruess, 2006; Cianciolo & Norton, 2006; Chernova et al. 2010, Bluhm, Scheu & Maraun, 2016), and asexual species can be 132 133 dominant in temperate forests (Maraun & Scheu, 2000). According to theory, asexual organisms 134 accumulate mutations over time, until they go extinct due to the accumulation of too many 135 deleterious mutations (Muller's ratcher: Muller, 1964; Kondrashov's hatchet: Kondrashov, 1988). 136 This suggests that present day populations of asexual species represent a range of COI haplotypes. 137 while populations of sexual species should represent discrete clusters of similar COI haplotypes, 138 standing for independently evolving lineages that interbreed (Barraclough, Birky & Burt, 2003). 139 In consequence, a barcoding gap should not be present in asexual species but rather a continuum of slightly divergent individuals. Further, hybridization events are potential origins of asexual 140 141 species, and if followed by mitochondrial introgression the detection of a barcoding gap is difficult (Mutanen et al., 2016; Dupont et al., 2016). Altogether, asexual reproduction could blur lines of 142 species identification, and a hybrid species could be wrongly identified as its maternal species. 143 144 The aim of this study was to test, (i) if the standard barcoding marker gene COI meets the 145 precondition to reliably assign species in Collembola and Oribatida and, to check (ii) the accuracy 146 of separating species based on a barcoding gap. Many species of these taxa have wide distribution ranges, and European species often occur across palaearctic or holarctic regions. Geographic 147 148 coverage of samples provided in DNA barcode reference libraries can affect species assignment

149 (Hebert et al., 2003). We therefore focused on species with a dense and broad geographic sampling 150 to cover the potential range of intra-specific haplotype variation of COI (Philipps, Gillis & Hanner, 151 2022). To assess intra- and interspecific genetic variance of these species, we downloaded 152 sequences of congeneric species that were represented in databases with a minimum of 3-5 153 sequences per species. We included parthenogenetic (asexual) species to test (iii) if the 154 reproductive mode affects the barcoding gap, because parthenogenetic species likely carry a continuum of divergent haplotypes due to the accumulation of mutations and the absence of 155 156 homogenizing effects of mixis. Datasets were obtained by checking literature and public databases 157 (BOLD, NCBI). We selected five oribatid mite species (Rosenberger, 2011; Rosenberger et al., 2013, von Saltzwedel, 2014) and two Collembola species (von Saltzwedel, Scheu & Schaefer, 158 159 2016) that were collected across several countries in Europe. Three of the five oribatid mite species 160 are parthenogenetic. We did not include the parthenogenetic Collembola Parisotoma notabilis in our analyses, which is also represented with a Europe-wide sampling, because multiple genetic 161 162 lineages (cryptic species) have already been reported for this species (Porco et al., 2012a; von Saltzwedel, Scheu & Schaefer, 2017). Isotomiella minor, another parthenogenetic Collembola 163 164 species, was excluded, because reference databases did not provide sequences of congeneric species. The Collembola *Lepidocyrtus* was omitted, because this genus has been reported to be a 165 166 species complex (Cicconardi et al., 2010) with uncertain status of the species L. cyaneus, which 167 appears to be polyphyletic within L. lanuginosus (Zhang et al., 2018; Zhang et al., 2019). We 168 analysed the performance of COI for species delimitation using distance- and character-based 169 methods. We estimated optimal barcoding thresholds with the *spider* package in R. Afterwards, 170 we used the ASAP algorithm (Assemble Species by Automated Partitioning; Puillandre, Brouillet & Achaz, 2021) to check the distribution of genetic distances and size of the barcoding gap. This 171 172 method is an improved version of the Automated Barcode Gap Discovery (ABGD; Puillandre et 173 al., 2012), which partitions single-locus datasets into hypothetical species by re-iteratively finding 174 the best partitions that separate nominal species in the dataset using genetic distances. Different from ABGD, this version does not require a priori values and provides scores for each partition, 175 which helps users to identify the best partition. Additionally, we calculated a Maximum Likelihood 176 177 tree for the complete Collembola and Oribatida datasets, to check if a character-based method 178 accomplishes accurate species assignment. If the distance-based methods (threshold optimization and ASAP) ignore important diagnostic characters in the datasets, this would be a meaningful 179

alternative method (DeSalle, Egan & Siddal, 2005). We also performed a rarefaction analysis to

quantify the representativeness of the sample sizes for species haplotype diversity.

182

183

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

Materials & Methods

184 *Taxa collection:*

For Oribatida, BOLD delivered 12,252 records (search term: "Sarcoptiformes") with species names, which represent 710 species; NCBI delivered 29,047 records (search term: "Oribatida COI") with a sequence length between 500 and 800 base pairs. For Collembola (search term: "Collembola"), BOLD delivered 62,681 records with species names, which represent 1,544 species, and NCBI (search term: "Collembola COI") had 51,684 sequences with a sequence length between 500 and 800 base pairs. Many records in NCBI do not have a geographic reference, and most sequences in BOLD are from various geographic regions, predominantly coming from North America (Centre for Biodiversity Genomics). Analysing specimens from different continents could generate confounding effects due to ancient geographic isolations. To obtain a comparable dataset for all investigated species we therefore decided to restrict our analyses to sequences published by Rosenberger, 2011; Rosenberger et al., 2013; von Saltzwedel et al., 2014; von Saltzwedel, Scheu & Schaefer, 2016 (Table 1), which have a comparable sampling across Europe. For both Collembola and one Oribatida species (Oppiella nova), sequences of the nuclear gene 28S rDNA of the same individuals were also available in NCBI (Supplemental Table S1) and used for checking if genetic divergences are congruent between the mitochondrial and nuclear genes. The dataset of *Oppiella nova* (Oppiidae) differs as it contains sequences from different habitats collected only in Germany. Further, only a single congeneric sequence was available for this genus (O. subpectinata), but several sequences from species of other genera in the family Oppiidae. We decided to include this species into our analysis, but checked if a barcoding gap is present at genus level. Oppiidae species are very small, their body size in general ranges from 130 to 300 µm (except Oppia nitens, with a body size of >400 μm), which makes species determination very laborious and explains why this family commonly is not resolved to lower taxonomic levels in community studies. Confirmation of a barcoding gap and accurate species delimitation at genus level for this family would be helpful for future DNA-based biodiversity assessments, because Oppiidae is a species rich and very common family across many habitats, reaching high

PeerJ

- abundances and even being the dominant taxon in many oribatid mite communities (Zaitsev et al.,
- 211 2002; Bluhm, Maraun & Scheu, 2016).
- 212 For Collembola, we selected geographically comparable datasets for two sexual species, *Folsomia*
- 213 quadrioculata and Ceratophysella denticulata. We had to omit the parthenogenetic species
- 214 Isotomiella minor because congeneric sequences were inadequate for this study (only two
- sequences of *Isotomiella* sp. and one sequence of *I. paraminor*).
- 216 First, congeneric taxa were downloaded from BOLD and NCBI. Second, species assignment and
- 217 barcoding gap analyses were performed with two global datasets, including all Collembola and
- 218 Oribatida species, respectively. Third, for a more detailed analysis, the global datasets were
- separated into local datasets, each comprising all sequences of a genus (family in Oppiidae).
- 220 Species delimitation, character- and distance-based
- All sequences of a genus, and all sequences of Oppiidae were aligned separately in AliView v1.28
- 222 (Larssen, 2014) using default settings and trimmed to the approximately shortest sequence. For
- 223 the global dataset, all alignments of Collembola and Oribatida were combined in two separate files
- and re-aligned using default settings. All alignments were gap-free and did not contain any stop-
- 225 codons. In total, we separately analysed two global datasets that contained all Oribatida and all
- 226 Collembola, respectively, and seven local datasets, one for each genus and one for the family
- 227 Oppiidae.
- Barcoding thresholds were estimated within a range from 1 % to 20 % distance, at intervals of 1 %
- for all datasets in R using the threshOpt() function in the *spider* package (Brown et al., 2012). The
- 230 potential number of partitions and the corresponding barcoding gap were estimated for each local
- dataset using the ASAP web application (https://bioinfo.mnhn.fr/abi/public/asap/; Puillandre,
- 232 Brouillet & Achaz, 2021), providing the sequence alignment, selecting the K2P parameter as
- 233 model of sequence evolution and the remaining parameter as default settings. Intra- and
- 234 interspecific genetic distances (corrected with K2P) were plotted with ggplot2 (Wickham, 2016)
- and gridExtra (Auguie, 2017) to visualize the barcoding gap. Two plots were generated for all
- datasets, one using the species names (morphotype) for inter- and interspecific assignment and one
- 237 in which species names were replaced by the number of subsets estimated by ASAP, which equal
- 238 the number of hypothetical (cryptic) species. The two plots visualize the barcoding gap based on
- 239 morphological and genetic partitions, respectively. Alternative visualizations for analysing intra-

- 240 and interspecific genetic distances are histograms (Supplemental Figs. S1-S2) and scatterplots
- 241 (Phillips, Gillis & Hanner, 2022; Supplemental Figs. S3-S4) and are provided in the
- 242 Supplementary
- 243 For character-based analyses, all datasets were collapsed to haplotypes using FaBox Haplotype
- 244 Collapser (Villesen, 2007) to exclude identical sequences and to reduce the number of sequences
- 245 to informative taxa for the phylogenetic tree construction. Maximum Likelihood trees with 500
- bootstrap replicates were calculated for the global Collembola and global Oribatida and the 28S
- 247 rDNA datasets (Oppiella, Ceratophysella, Folsomia) using the optim.pml() function of the
- 248 phangorn package (Schliep, 2011, Schliep et al., 2017)
- 249 Representativeness of haplotype diversity in datasets:
- 250 Rarefaction was conducted for all haplotypes for which we had geographic sampling information
- 251 (Collembola: C. denticulata, F. quadrioculata; Oribatida: A. coleoptrata, N. silvestris, O. nova, P.
- 252 peltifer, S. magnus). Analysis was performed with the iNEXT package (Chao et al., 2014; Hsie,
- 253 Ma & Chao, 2022) in R with 1,000 bootstrap replicates, using species richness (q=0) and
- 254 exponential Shannon entropy (q=1) as measures of diversity.

- Results
- 257 Datasets included 970 Oribatida and 612 Collembola sequences of COI, and alignments were
- between 507 bp and 657 bp long (Table 2) and covered the standard barcoding region of COI.
- 259 Only a few sequences were below 500 bp long, predominantly in the oribatid mite genus
- 260 Steganacarus and the Collembola genus Folsomia.
- 261 Barcoding gap threshold detection for different genetic distances
- The global datasets (all Oribatida, all Collembola) had relatively high cumulative errors (false
- 263 positives and false negatives, Fig. 1; Table 3). The optimized local barcoding threshold for the
- local datasets differed among taxa (Fig. 1; Table 3). One dataset had a narrow threshold without
- species mismatches (Achipteria, 15 %), others had large threshold ranges without mismatches
- 266 (Nothrus, Platyntohrus and Ceratophysella), and for the remaining datasets it was not possible to
- define a barcoding threshold without any mismatches (Oppiidae, Steganacarus, Folsomia). The
- optimal barcode thresholds at genus level exceeded the standard barcoding threshold of 2 %-3 %

- 269 by 1 % (Platynothrus) and up to 6 % (Achipteria), except in the two genera Nothrus and
- 270 Ceratophysella.
- 271 Distance-based specimen assignment with ASAP
- 272 The ASAP algorithm provides scores for the ten most probable partitions. For all datasets, and in
- 273 all partitions, ASAP found more subsets than nominal species, i.e. the datasets likely contained
- 274 more (i.e., cryptic) species than were morphologically determined (Table 4). The ASAP partition
- 275 with the smallest number of subsets increased the number of morphological species to hypothetical
- 276 species (or genetic lineages) from five to seven (Nothrus, Platynothrus), from eleven to 21
- 277 (Ceratophysella), from three to 14 (Achipteria), from six to 25 (Steganacarus) and from nine to
- 278 43 (Folsomia). The highest numbers of hypothetical species, or additional genetic lineages, were
- 279 detected in species with the densest sampling, i.e. A. coleoptrata, S. magnus, C. denticulata and F.
- 280 quadrioculata (Table 1). Interestingly, in the two parthenogenetic genera Nothrus and
- 281 Platynothrus, only two additional hypothetical species were detected by ASAP, which is little
- 282 compared to the other genera.

- 283 Distance-based barcoding gap with ASAP
- 284 Ideal for accurate specimen assignment is a gap between the largest genetic distance within and
- 285 the smallest distance between species. We compared the distribution of intra- and interspecific
- 286 distances of nominal species with that of the genetic lineages inferred by ASAP (Fig. 2), selecting
- the partitions with the least number of subsets. Our analysis consistently demonstrated that genetic 287
- 288 distances of COI within and between morphologically assigned species overlap, which makes
- 289 accurate species assignment impossible. The parthenogenetic oribatid mite genus Nothrus was a
- 290 single exception, which showed a clear barcoding gap for morphologically assigned species. When
- 291 genetic lineages (ASAP subsets) were considered, a barcoding gap between intra- and interspecific
- 292 distances was present. Overall, the assignment of genetic lineages to morphospecies reduced the
- 293 overlap of intra- and interspecific genetic distances considerably in all datasets, However, the
- 294 effect was much more pronounced in Collembola than Oribatida and generated a barcoding gap
- 295 that spanned a range of more than 10 % between intra- and interspecific genetic distances. Among

Oribatida, the effect of splitting morphotypes into genetic lineages was not that strong. However,

- 297 for two Oribatida datasets, Achipteria and Platynothrus, the choice of using the partition with the
- 298 lowest number of subsets was too conservative because the resulting barcoding gap was very

PeerJ

- 299 narrow. The barcoding gap thresholds estimated for the partition with the lowest number of subsets
- 300 ranged in Oribatida from 6.9 % (Achipteria), 12.2 % (Nothrus), 15.0 % (Steganacarus,
- 301 Platynothrus, all Oribatida) and 15.8 % (Oppiidae); in Collembola from 8.0 % (Folsomia), 11.3 %
- 302 (all Collembola) and 13.8 % (*Ceratophysella*). Notably, the intraspecific distances of the genetic
- 303 lineages of *Platynothrus* show three clusters in distribution frequencies (< 3 %, at 3-8 %, 14-17 %)
- that likely represent three genetic lineages in *P. peltifer* (Table 1).
- 305 The outliers, i.e. single datapoints scattered within the range of the barcoding gap, likely belong to
- sequences that were considerably shorter than the average sequences. Both Collembola datasets
- were more heterogeneous in sequence lengths than the Oribatida datasets. Only the datasets of
- 308 Steganacarus and Oppiidae also had very short sequences compared to the median sequence
- 309 lengths, and both also had outliers after splitting morphotypes into genetic lineages. A few outliers
- remained for the genus *Nothrus*, which likely belonged to the species *N. palustris* and *N. pratensis*.
- 311 After splitting both species into two genetic lineages as proposed by ASAP, the outliers
- disappeared except for one, which likely belonged to one very short sequence (399 bp) of N.
- 313 anauniensis.
- 314 <u>Character-based specimen assignment with Maximum Likelihood</u>
- 315 Reliability of specimen assignment based on phylogenetic inference and therefore on molecular
- 316 characters was very poor in Collembola (Fig. 3). The two genera Ceratophysella and Folsomia
- and the species within each genus were not monophyletic. Species clustered within clades of
- 318 different species several times. The topology of Oribatida supported monopohyly for most genera
- 319 (Fig. 4). The species in the genus Nothrus and Platynothrus were also monophyletic. Only Nothrus
- 320 pratensis separated into two highly supported, non-monophyletic clades. Within the genus
- 321 Steganacarus all species were monophyletic, except S. magnus which formed five clades, two with
- 322 100 % bootstrap support. The species S. carinatus was monophyletic, but separated into two highly
- 323 supported clades. One sequences of S. applicatus clustered within S. carinatus while the remaining
- 324 sequences were monophyletic with very high support. Possibly this single sequence represents a
- 325 misidentified individual. Most genera of Oppiidae were monophyletic, except for *Disorrhina* and
- 326 Oppia. The sequences assigned to Oppia sp. were sister to one clade of O. nitens with very high
- bootstrap support. It is possible that these sequences belong to the species O. nitens. All remaining
- 328 species were monopohyletic with 100 % bootstrap support. The genus Achipteria was represented

329	by only three	e species.	The two	species A .	howardi	and A .	catskillensis	were	monophyletic,	the

330 sequences of A. coleoptrata were non-monophyletic.

Nuclear gene

- 332 The uncorrected p-distances among 28S rDNA in C. denticulata were relatively high, across all 333 sequences the maximum genetic distances were 5.6 %, but the mean distances were only 0.16 % 334 (median 3.2 %). The different haplotypes corresponded very well with the seven genetic lineages 335 suggested by ASAP (Supplemental Table S2), i.e. each 28S rDNA haplotype included a single 336 ASAP lineage. However, the two datasets were not entirely congruent, i.e. seven specimens of the 337 28S rDNA dataset were not represented as COI sequences, and four specimens in the COI dataset 338 were not present in the 28S rDNA dataset. In F. quadrioculata, the 24 genetic lineages did not 339 reflect at all the 28S rDNA sequences. The nuclear gene represented only three haplotypes with 340 uncorrected p-distances below 1 % (max: 0.35 %, mean: 0.16 %, 0.18 %). These 28S rDNA haplotypes comprised nine, three and one COI lineages that were identified by ASAP, respectively. 341 342 Notably, only 56 specimens of 28S rDNA were represented from the 166 specimens of the COI 343 nucleotide dataset. Among O. nova p-distances of 28S rDNA were also small, below 2 % 344 (maximum 1.98 %, mean 0.43 %, median 0.29 %). In contrast to the two species above, each of 345 the nine genetic lineages of O. nova supported by ASAP carried different 28S rDNA haplotypes, 346 e.g. in one common COI lineage that comprised 30 specimens (lineage 1; Supplemental Table
- 348 Representativeness of sampling effort
- Rarefaction curves (Fig. 5) showed that Oribatida species had more haplotypes than Collembola and that sexual Oribatida species (*A. coleoptrata, S. magnus*) had more haplotypes than parthenogenetic Oribatida (*P. peltifer, N. silvestris*). Further, Collembola reached saturation in species diversity at a sampling size of less than 200 individuals (for COI and 28S rDNA), the pattern was similar for the parthenogenetic Oribatida *N. silvestris*. However, the parthenogenetic Oribatida *P. peltifer* and both sexual Oribatida species did not reach saturation at a sampling size of more than 600 individuals and the expected diversity exceeded that of 200 haplotypes.

S2), individuals represented twelve (slightly) different 28S rDNA haplotypes.

356

357

347

Discussion

358 This study tested the validity of a barcoding gap and the applicability of the standard barcoding 359 gene COI for species assignment in two of the most species rich and abundant taxa of soil-living 360 invertebrates, Collembola and Oribatida. The analysed datasets comprised two genera of 361 Collembola with eleven and nine species, respectively. Oribatida datasets comprised four genera with three to six species per genus, and one family-level dataset with ten species in six genera. 362 363 Our results showed that correct species assignment was possible within some genera, but not all. 364 However, both distance- and character-based methods were not able to assign species without 365 mismatches when all Collembola or all Oribatida were analysed together. This is likely due to the 366 different ranges of intraspecific genetic distances, demonstrating the absence of a general (global) 367 barcoding gap for COI in these taxa. The genetic divergence separating intra- and interspecific distances differed among taxa and exceeded the standard species threshold of 3 % intraspecific 368 369 genetic distance in all but one species, indicating that taxa-specific thresholds should be applied 370 for correct specimen assignment (Phillips, Gillis & Hanner, 2022). Here, the application of 371 algorithms that dynamically adjust thresholds for sequence clusters, and therefore apply flexible 372 thresholds, could improve species assignment in soil invertebrates (James, Luczak & Girgis, 2018; 373 Chiu & Ong 2022). 374 Absence of a global barcoding gap in the COI gene seems to be particularly relevant for soil-living 375 animals and hampers the application of automated specimen assignments in DNA-based 376 biodiversity surveys such as metabarcoding. Absence of a global barcoding gap had also been 377 demonstrated for Annelida, among which earthworm taxa accounted for one third of interspecific comparisons with 0 % genetic divergence (Kvist, 2016). In metabarcoding studies, Collembola 378 379 had a high failure rate and high numbers of false positives for species assignments based on public 380 databases and COI (Recuero, Etzler & Caterino, 2023). Among mites, specimen assignment is in 381 general correct at least to family and order level (Oliverio et al., 2018; Ustinova et al., 2021; Young, deWaard & Hebert, 2021; Young & Hebert, 2022; Recuero, Etzler & Caterino 2023). 382 383 General explanations for failures in species assignments include the lack of completeness and 384 misidentified individuals in reference databases, geographic underrepresentation of species and a 385 neglect of assigning genetic lineage identities to sequences in reference databases (Kvist, 2016; 386 Martinsson, Rhoden & Erseus 2016; Young et al., 2019; Young, deWaard & Hebert, 2021; Phillips, Gillis & Hanner, 2022; Recuero, Etzler & Caterino, 2023). The rarefaction analysis 387 388 demonstrated that genetic diversity is exceptionally high within morphospecies of soil-living

389 invertebrates, and more genetic diversity is to be expected in additional samples. In particular, 390 rarefaction curves for Oribatida did not reach saturation without sampling hundreds of additional 391 individuals. For Collembola the number of expected COI haplotypes is lower as curves reached 392 saturation at an expected sampling size of about 200 individuals, indicating that required sampling 393 effort can be reached sooner than in Oribatida. 394 Results of this study provide an additional explanation why molecular species assignment often 395 fails in Collembola and Oribatida. The more detailed analysis of the individual datasets at genus 396 level showed that intra- and interspecific distances of taxa greatly overlapped, demonstrating the 397 absence of a barcoding gap between species for all taxa, except for the parthenogenetic Oribatida 398 genus Nothrus. The automated partitioning of datasets based on genetic distances (ASAP) 399 suggested that each morphospecies (except most species within *Nothrus* and *Platynothrus*) consists 400 of several genetic lineages, indicating the presence of putative or cryptic species. After assigning 401 individuals according to genetic lineages, a barcoding gap between intra- and interspecific 402 distances became apparent, but it still exceeded the standard threshold of 3 %. Alternative 403 partitions in the species assignment analyses also opted for smaller thresholds, but resulted in even 404 more genetic lineages. From a conservative approach, the two sexual Oribatida species A. 405 coleoptrata and S. magnus comprised twelve and 18 genetic lineages, respectively, with the 406 relatively high barcoding threshold estimates of 6.9 % (A. coleoptrata) and 15.0 % (S. magnus). 407 The Collembola species C. denticulata consisted of seven genetic lineages (barcoding gap of 408 13.8 %) and F. quadrioculata of 24 genetic lineages (barcoding threshold of 8.0 %). Notably, the 409 parthenogenetic Oribatida species O. nova separated only into nine genetic lineages, P. peltifer 410 into three and N. silvestris remained a single species which was consistent with morphological 411 assignments. 412 In contrast to our hypothesis, the detection of a barcoding gap and thus species delimitation worked 413 well for the parthenogenetic, but not for the sexual taxa. Species boundaries of *Nothrus* were clear 414 and unequivocal. However, intra- and interspecific distances among *Platynothrus* overlapped, likely due the presence of three genetic lineages in P. peltifer. This is consistent with previous 415 416 studies that identified seven genetic lineages in P. peltifer based on a transcontinental sampling, 417 and demonstrated that lineages are consistent with species based on the 4X rule of parthenogenetic 418 speciation (Heethoff et al., 2007; Birky & Barraclough, 2009; Birky et al., 2010).

419 Detection of deeply divergent genetic lineages in morphological consistent species is a common 420 phenomenon and detection rate of cryptic species accelerated with the application of molecular 421 identification tools (Bickford et al., 2007; Pfenninger & Schwenk, 2007; Skoracka et al., 2015; 422 Struck et al., 2018). However, it remains important to consider these putative species carefully 423 based on barcoding approaches, as delimitation is based only on a single genetic marker. The 424 putative genetic lineages were highly congruent with nuclear haplotype diversity in C. denticulata, 425 but not in F. quadrioculata and O. nova. Interestingly, genetic variance of nuclear and 426 mitochondrial genes was opposite in the two latter species. In F. quadrioculata a single nuclear 427 haplotype comprised many COI lineages, but in O. nova a single COI lineage comprised several 428 nuclear haplotypes. This suggests that different selective forces might act on mitochondrial and 429 nuclear genes in the two species. The higher mutation rate of mitochondrial compared to nuclear genes explains the higher diversity in COI in F. quadrioculata, indicating relatively recent 430 431 divergence of lineages that had not yet been accompanied by variation in the nuclear gene. By 432 contrast, in O. nova the mitochondrial gene shows relatively little variation, which likely is related 433 to stronger purifying selection in parthenogenetic Oribatida (Brandt et al., 2017, Brandt et al., 434 2021). The two other parthenogenetic species (N. silvestris and P. peltifer) also show very little genetic variation, unfortunately, no additional genes were available for these taxa. 435 436 Our results demonstrate, that soil-living microarthropods comprise deeply divergent genetic 437 lineages. Barcoding or metabarcoding studies based on single genes will therefore likely result in 438 high numbers of unassigned reads or overestimate species numbers and consequently misrepresent species richness in communities. Potential species status should therefore be corroborated with an 439 integrative taxonomic approach using multiple genetic markers and, if possible, re-examination of 440 441 morphotypes (Schäffer, Kerschbaumer & Koblmüller 2019; Lienhard & Krisper, 2021). However, 442 morphological differences are often subtle, making traditional determination of soil 443 microarthropods even more challenging. The nuclear 28S rDNA gene has been proposed as 444 secondary barcoding marker for Oribatida (Lehmitz & Decker, 2017), but its applicability in a wider geographic range and different habitats has not been tested. Alternatively, metagenomic 445 446 studies provide multiple genes per specimen which likely improves accuracy in specimen 447 assignment. However, similar to metabarcoding based on single genes such as COI and/or 28S 448 rDNA, successful application of metagenomics depends on representative reference databases. 449 Notably, single reference genomes, or one/few barcodes per species will not cover intraspecific

450 variation. Species with high intraspecific genetic variance would require "pan-barcodes" i.e., 451 multiple barcodes from individuals that were sequenced across the range of a species to cover the 452 extent of its intraspecific genetic variance. 453 The limited taxon sampling in this study demonstrates that even for the relatively intensive 454 sequenced COI gene, databases do not provide taxonomic breadth for reliable species delimitation 455 of Collembola and Oribatida. It is possible that species assignment will improve with a better 456 reference database, but it is also important to understand the mechanisms that explain the barcoding gap, i.e., the substantial genetic divergence of COI sequences between closely related 457 458 Collembola and Oribatida taxa. It is unknown if genetic variance is neutral or adaptive, or if 459 mitonuclear or environmental interactions (Hill, 2020) generate the genetic structure in soil-living microarthropods. Fixation of neutral variance is one likely mechanism in the investigated taxa. 460 461 The high numbers of haplotypes and nucleotide diversity suggest that COI is already highly 462 saturated in these species. Many Collembola and Oribatida species are very abundant in local 463 communities, suggesting high effective population sizes. This could enable the maintenance of 464 neutral allelic variation and blur a barcoding gap in order to maintain the highly conserved protein sequence of COI. Repeated episodes of extreme population bottlenecks can also generate a 465 466 barcoding gap between species. However, this is unlikely because high genetic variance in general 467 argues against repeated population bottlenecks. However, the Oribatida species N. silvestris shows 468 exceptionally low genetic variance compared to the other taxa, and consists of a single genetic 469 lineage. It is possible that the low genetic variance resulted from a bottleneck this species experienced during Quaternary glaciations (<2.6 mya). Molecular divergence times among genetic 470 471 lineages in the other species are several million years old, most date back to the Miocene (23-5) 472 mya) and support the accumulation of neutral variance by genetic drift in Oribatida and founder 473 events in Collembola (Rosenberger et al., 2013; von Saltzwedel, Scheu & Schaefer, 2016). Directional selection on mitochondrial genotypes and disrupted gene flow can lead to rapid 474 475 divergence among populations. Collembola and in particular Oribatida are poor active dispersers due to their small body size, which reduces gene flow among populations and is a possible 476 477 explanation for mitochondrial lineages corresponding with nuclear 28S rDNA haplotypes and 478 sampling locations in C. denticulata (Porco et al., 2012b; von Saltzwedel, Scheu & Schaefer, 2016). However, reduced gene flow seems unlikely in F. quadrioculata due to the low genetic 479 480 variance in the nuclear 28S rDNA gene compared to the highly variable mitochondrial COI gene.

481 Genetic distances among lineages suggest maintenance of relatively ancient divergences, which 482 argues against rapid divergence and disrupted gene flow. Further, this explanation does not apply 483 for parthenogenetic species. Apparently, different mechanisms seem to account for the genetic 484 variance in COI within species of Collembola and Oribatida. This is not surprising, considering that the species in this study likely are separated by tens to hundreds of millions of years, each 485 486 having its own evolutionary trajectory (Schaefer et al., 2010; Schaefer & Caruso, 2019; Leo et al., 487 2019; Katz, 2020; van Straalen, 2021). 488 This study showed that metabarcoding using the standard gene COI is problematic when 489 investigating biodiversity of soil invertebrates. Advances in second- and third-generation 490 sequencing technologies can significantly contribute to improve the reliability of barcodes for 491 genetically diverse and potentially cryptic species. Proposed as an alternative to small barcoding 492 fragments, low coverage shotgun sequencing and genome skimming offer increased species 493 discrimination by covering entire organellar genomes and ribosomal sequences (Coissac et al., 494 2016). PacBio sequencing technology generates reads of approximately 3 kb with very low error 495 rates. This enables sequencing of nearly full-length marker genes and their flanking regions, which 496 improves taxonomic resolution and reduces spurious Operational Taxonomic Units (OTUs) 497 (Terdersoo & Anslan, 2019). Notably, genomes of Collembola and Oribatida typically range 498 between 350 and 500 Mb, enabling to obtain reasonable sequencing read depth at moderate prices. 499 Further, wet-lab protocols for genome sequencing of small, non-model invertebrates have been 500 developed (Collins et al., 2023) and the results underscore the importance of taking intragenomic 501 variance into account in order to integrate genetic and morphological species boundaries. We 502 propose that characterizing pan-genomes is crucial for identifying species in soil invertebrates. 503 (Tettelin et al., 2005). This approach will also contribute to develop informative barcoding genes 504 (pan-barcodes) in soil invertebrates that lack a distinct barcoding gap. A pan-genome includes the 505 complete set of genes shared by all individuals within a species and consists of conserved (core) 506 and variable (accessory) gene regions (Golicz et al., 2020). The core genome covers all genes that 507 are present in all individuals and the accessory genome includes the genomic regions that are 508 variable among species. This variance is often due to ecological, geographical or reproductive 509 boundaries (Reno et al., 2005). Accordingly, pan-genomes offer a holistic view of a species' 510 genome, allowing to identify both conserved and variable regions that are suitable for designing 511 robust barcoding markers, in particular in taxonomically challenging organisms.

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

Conclusions

This study demonstrated that intra- and interspecific genetic divergences in the standard barcoding gene COI overlap in several species of Collembola and Oribatida. This is violating the assumption of a barcoding gap, which is a precondition for molecular species assignment and questions the applicability of the standard barcoding gene COI for soil-living microarthropods. Further, the presence of deeply divergent genetic lineages within morphologically consistent species emphasizes that (meta-)barcoding results solely based on a single genetic marker should be interpreted carefully. Based on COI, morphologically consistent species comprised numerous cryptic species. Without additional genetic and morphological data, the taxonomic status of these cryptic species is questionable. The assignment of genetic lineages to sequences in references databases and application of flexible or species-specific thresholds could improve specimen assignment. However, the strong discrepancy between morphological conservativeness and genetic variance of many soil invertebrates calls for a more general approach. We are promoting to develop barcoding approaches with alternative sequencing technologies that generate more genetic data than metabarcoding, like low-coverage shotgun sequencing of genomes (e.g., genome skimming and metagenomics) or long-read sequencing of marker genes using third generation sequencing technologies. Further, we advocate the construction and analysis of pan-genomes to understand genetic species boundaries and to develop reliable barcoding markers that cover the whole range of genomic variance of species (pan-barcodes). Regardless of the approach taken, it is essential for reference databases to cover the intraspecific variability of a species throughout its geographic range.

543

544

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

- 535 References
- Anthony MM, Bender SF, van der Heijden MAG. 2023. Enumarating soil biodiversity.

 Proceedings of the National Academy Sciences of the United States of America
 120:e2304663120 DOI: 10.1073/pnas.2304663120.
- Antil S, Abraham J, Sripoona S, Maurya S, Daga J, Makhija S, Bhagat P, Gupta R, Sood U
 Lal R, Toteja R. 2022. DNA barcoding, an effective tool for species identification: a review.
 Molecular Biology Reports 50:761-778 DOI: 10.1007/s11033-022-08015-7.
 - **Arribas P, Andújar C, Salces-Castellano A, Emerson B, Vogler A. 2021.** The limited spatial scale of dispersal in soil arthropods revealed with whole-community haplotype-level metabarcoding. *Molecular Ecology* 30:48-61 DOI: 10.1111/mec.15591.
- Auguie B. 2017. gridExtra: miscellaneous functions for "grid" graphics. https://CRAN.R-project.org/package=gridExtra.
- 547 **Bardgett R, van der Putten W. 2014.** Belowground biodiversity and ecosystem functioning. *Nature* 515:505-511 DOI: 10.1038/nature13855.
- Barraclough TG, Birky CW jr, Burt A. 2003. Diversification in sexual and asexual organisms. *Evolution* 57:2166-2172.
- Barrett RDH, Hebert PDN. 2005. Identifying spiders through DNA barcodes. *Canadian Journal* of Zoology 83:481-491 DOI: 10.1139/z05-024.
- **Behan-Pelletier V, Lindo Z. 2023.** Oribatid Mites. Biodiversity, Taxonomy and Ecology. CRC Press DOI: 10.1201/9781003214649.
 - **Bickford D, Lohman D, Sodhi N, Ng P, Meier R, Winker K, Infram K, Das I. 2007**. Cryptic species as a window on diversity and conservation. *Trends Ecology and Evolution* 22:148-155 DOI: 10.1016/j.tree.2006.11.004.
 - **Birky WC, Barraclough TG. 2009.** Asexual speciation. In: Schoen I, Martens K, Dijk P, ed. *Lost Sex.* The Evolutionary Biology of Parthenogenesis. Berlin: Springer Verlag, 201-216.
 - **Birky WC, Adams J, Gemmel M, Perry J. 2010.** Using population genetic theory and DNA sequences for species detection and identification in asexual organisms. *PLoS One* 5.5:e10609 DOI: 10.1371/journal.pone.0010609.
 - **Bluhm C, Scheu S, Maraun M. 2016.** Temporal fluctuations in oribatid mites indicate that density-independent factors favour parthenogenetic reproduction. *Experimental and Applied Acarology* 68:387-407 DOI: 10.1007/s10493-015-0001-6.
 - Brandt A, Tran Van P, Bluhm C, Anselmetti Y, Dumas Z, Figuet E, Francois C, Galtier N, Heimburger B, Jaron K, Labédan M, Maraun M, Parker D, Robinson-Rechavi M, Schaefer I, Simion P, Scheu S, Schwander T, Bast J. 2021. Haplotype divergence supports long-term asexuality in the oribatid mite *Oppiella nova. Proceedings of the National Academy of Sciences of the United States of America* 118:e2101485118 DOI: 10.1073/pnas.2101485118
- 572 **Brandt A, Schaefer I, Glanz J, Schwander T, Maraun M, Scheu S, Bast J. 2017.** Effective purifying selection in ancnient asexual oribatid mites. *Nature Communications* 8: 873 DOI: 10.1038/s41467-017-01002-8
- Brown SDJ, Collins RA, Boyer S, Lefort M-C, Malumbres-Olarte J, Vink CJ, Cruickshank RH 2012. SPIDER: an R package for the analysis of species identify and evolution, with particular reference to DNA barcoding. *Molecular Ecology Resources* 12:562-565 DOI: 10.1111/j.1755-0998.2011.03108.x.
- Burns JM, Janzen DH, Hajibabaei M, Hallwachs W, Hebert PDN. 2007. DNA barcodes of closely related (but morphologically and ecologically distinct) species of skipper butterflies

600

601

602

603

604

- 581 (Hesperiidae) can differ by only one to three nucleotides. *Journal of the Lepidopterists'* 582 *Society* 61:138-153.
- Chao A, Gotelli NJ, Hsie TC, Sander EL, Ma KH, Colwell RK, Ellison AM .2014. Rarefaction
 and extrapolation with Hill numbers: a framework for sampling and estimation in species
 diversity studies. *Ecological Monographs* 84:45-67 DOI: 10.1890/13-0133.1.
- Chao A, Gotelli NJ, Hsie TC, Sander EL, Ma KH, Colwell RK, Ellison AM .2014. Rarefaction
 and extrapolation with Hill numbers: a framework for sampling and estimation in species
 diversity studies. *Ecological Monographs* 84:45-67 DOI: 10.1890/13-0133.1.
- Chahartaghi M, Scheu S, Ruess L. 2006. Sex ratio and mode of reproduction in Collembola of an oak-beech forest. *Pedobiologia* 50:331-340 DOI: 10.1016/j.pedobi.2006.06.001.
- 591 Chernova N, Potapov M, Savenkova Y, Bokova A. 2010. Ecological significance of parthenogenesis in Collembola. *Entomological Review* 90:23-38 DOI: 10.1134/S0013873810010033.
- 594 **Chiu J, Ong R. 2022.** Clustering biological sequences with dynamic sequence similarity threshold. *BMC Bioinformatics* 23:108 DOI: 10.1186/s12859-022-04643-9.
- 596 **Ciancolo J, Norton R. 2006.** The ecological distribution of reproductive mode in oribatid mites, as related to biological complexity. *Experimental and Applied Acarology* 40:1-25 DOI: 10.1007/s10493-006-9016-3.
 - Cicconardi F, Nardi F, Emerson B, Frati F, Fanciulli P. 2010. Deep phylogeographic divisions and long-term persistence of forest invertebrates (Hexapoda: Collembola) in the north-western Mediterranean basin. *Molecular Ecology* 19:386-400 DOI: 10.1111/j.1365-294X.2009.04457.x.
 - Coissac E, Hollingsworth P, Lavergne S, Taberlet P. 2016. From barcodes to genomes: extending the concept of DNA barcoding. *Molecular Ecology* 25:1423-1428 DOI: 10.1111/mec.13549.
- Collins G, Schneider C, Bostjancic LL, Ulrich B, Axel C, Decker P, Ebersberger I, Hohberg
 K, Lecompte O, Merges D, Muelbaier H, Juliane R, Römbke J, Rutz C, Schmelz R,
 Schmidt A, Theissinger K, Veres R, Lehmitz R, Pfenninger M, Bálint M. 2023. The
 MetaInvert soil invertebrate genome resource provides insights into below-ground
 biodiversity and evolution. Communications Biology 6:1241 DOI: 10.1038/s42003-023-05621-4.
- Collins R, Cruickshank R. 2013. The seven deadly sins of DNA barcoding. *Molecular Ecology Resources* 13:969-975 DOI: 10.1111/1755-0998.12046
- Decaëns T. 2021. DNA metabarcoding illuminates the black box of soil animal biodiversity.

 Molecular Ecology 30:33-36 DOI: 10.1111/mec.15761
- Decaëns T. 2010. Macroecological patterns in soil communities. *Global Ecology and Biogeography* 19:287-302 DOI: 10.1111/j.1466-8238.2009.00517.x.
- Decaëns T, Jiménez J, Goia C, Measeay G, Lavelle P. 2006. The values of soil animals for conservation biology. *European Journal of Soil Biology* 42:S23-S38 DOI: 10.1016/j.ejsobi.2006.07.001.
- DeSalle R, Egan MG, Siddal M. 2005. The unholy trinity: taxonomy, species delimitation and DNA barcoding. *Philosophical Transactions of the Royal Society London B* 360:1905-1916 DOI: 10.1098/rstb.2005.1722.
- Dupont L, Porco D, Symondson WOC, Roy V. 2016. Hybridization relics complicate barcode based identification of species in earthworms. Molecular Ecology Resources 16:883-894
 DOI: 10.1111/1755-0998.12517.

634

635 636

637

638

641 642

643

644

645

646

647

648

649

650 651

653

655

656

- 627 Eisenhauer N, Bonn AA, Guerra C. 2019. Recognizing the quiet extinction of invertebrates. 628 Nature Communications 50:10 DOI: 10.1038/s41467-018-07916-1.
- 629 Elias M, Hill RI, Willmott KR, Dasmahapatra KK, Brower V, Mallet J, Jiggins CD. 2007. 630 Limited performance of DNA barcoding in a diverse community of tropical butterflies. 631 Proceedings of the Royal Society London B 274:2881-2889 DOI: 10.1098/rspb.2007.1035.
 - Golicz AA, Bayer PE, Bhalla PL, Batley J, David E. 2020. Pangenomics comes of age: from bacteria to plant and animal applications. Trends in Genetics 36:132-145 DOI: 10.1016/j.tig.2019.11.006.
 - Grzywacz A, Jarmusz M, Walczak K, Skowronek R, Johnston NP, Szpila K. 2021. DNA barcoding identifies unknown females and larvae of Fannia R.-D. (Diptera: Fanniidae) from carrion succession experiment and case report. Insects 12:381 DOI: 10.3390/insects12050381.
- 639 Gulvik ME. 2007. Mites (Acari) as indicators of soil biodiversity and land use monitoring: a 640 review. Polish Journal of Ecology 55:415-440
 - Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN. 2006. DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America 103:968–971 DOI: 10.1073/pnas.0510466103.
 - Hebert PDN, Gregory TR. 2005. The promise of DNA barcoding for taxonomy. Systematic Biology 54:852–859 DOI: 10.1080/10635150500354886.
 - Hebert PDN, Cywinska A, Ball SL, deWaard JR, Jeremy R. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society London B 270:313-321 DOI: 10.1098/rspb.2002.2218.
 - Hebert PDN, Ratnasingham S, deWaard JR. 2003. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society London B 270:S96-S99 DOI: 10.1098/rsbl.2003.0025.
- 652 Hebert PDN, Stoeckle MY, Zemlak TS, and Francis CM, 2004. Identification of birds through DNA barcodes. PLoS Biology 2:e312 DOI: 10.1371/journal.pbio.0020312. 654
 - Heethoff M, Domes K, Laumann M, Maraun M, Norton RA, Scheu S. 2007. High genetic divergences indicate ancient separation of parthenogenetic lineages of the oribatid mite Platynothrus peltifer (Acari, Oribatida). Journal of Evolutionary Biology 20:392-402 DOI: 10.1111/j.1420-9101.2006.01183.x.
- 658 Hill G. 2020. Genetic hitchhiking, mitonuclear coadaptation, and the origins of mt DNA barcode 659 gaps. *Ecology and Evolution* 10:9048-9059 DOI: 10.1002/ece3.6640.
- 660 Hsie TC, Ma KH, Chao A. 2022. iNEXT: iNterpolation and EXTrapolation for species diversity. http://chao.stat.nthu.edu.tw/wordpress/software-download. 661
- Hubert N, Hanner R, Holm E, Mandrak E, Taylor E, Burridge M, Watkinson D, Dumont P, 662 Curry A, Bentzen P, Zhang J, April J, Bernatchez L. 2008. Identifying Canadian 663 **DNA** barcodes. *PLoSOne* 3:e2490 664 freshwater fishes through DOI: 665 10.1371/journal.pone.0002490.
- James B, Luczak B, Girgis H. 2018. MeShClust: an intelligent tool for clustering DNA 666 sequences. Nucleic Acids Research 46:e83 DOI: 10.1093/nar/gky315. 667
- 668 Katz AD. 2020. Inferring evolutionary timescales without independent timing information: an 669 assessment of "universal" insect rates to calibrate a Collembola (Hexapoda) molecular clock. 670 Genes 11:1172 DOI: :10.3390/genes11101172.

- King RA, Tibble AL, Symondson WOC. 2008. Opening a can of worms: unprecedented sympatric cryptic diversity within British lumbricid earthworms. *Molecular Ecology* 17:4684-4698 DOI: 10.1111/j.1365-294X.2008.03931.x.
- **Kondrashov AS. 1988.** Deleterious mutations and the evolution of sexual reproduction. *Nature* 336: 435-440.
- Kvist S. 2016. Does a global DNA barcoding gap exist in Annelida? *Mitochondrial DNA* 27:2241 2252 DOI: 10.3109/19401736.2014.984166.
- Larsson A. 2014. AliView: a fast and lightweigth alignment viewer and editor for large datasets. *Bioinformatics* 30:3276-3278 DOI: 10.1093/bioinformatics/btu531.
- Lavelle P, Decaëns T, Aubert M, Barot S, Blouin M, Bureaeu F, Margerie P, Mora P, Rossi
 J. 2006. Soil invertebrates and ecosystem services. *European Journal of Soil Biology* 42:S3S15 DOI: 10.1016/j.ejsobi.2006.10.002.
- 683 **Lehmitz R, Decker P. 2017.** The nuclear 28S gene fragment D3 as species marker in oribatid mites (Acari, Oribatida) from German peatlands. *Experimental and Applied Acarology* 71:259-276 DOI: 10.1007/s10493-017-0126-x.
- Leo C, Carapelli A, Cicconardi F, Frati F, Nardi F. 2019. Mitochondrial genome diversity in Collembola: phylogeny, dating and gene order. *Diversity* 11:169 DOI: 10.3390/d11090169.
- 688 **Lienhard A, Krisper G. 2021.** Hidden biodiversity in microarthropods (Acari, Oribatida, 689 Eremaeoidea, Caleremaeus). *Scientific Reports* 11:23123 DOI: 10.1038/s41598-021-02602-7.
- Maraun M, Scheu S. 2000. The structure of oribatid mite communities (Acari, Oribatida): patterns, mechanisms and implications for future research. *Ecography* 23:374-382 DOI: 10.1038/s41598-021-02602-7.
- Maraun M, Thomas T, Fast E, Treibert N, Caruso T, Schaefer I, Lu J, Scheu S. 2023. New 694 695 perspectives on soil animal trophic ecology through the lens of C and N stable isotope ratios 696 of oribatid mites. Soil Biology and **Biochemistry** 177:108890 DOI: 697 10.1016/j.soilbio.2022.108890.
- Martinsson S, Rhoden C, Erseus C. 2016. Barcoding gap, but no support for cryptic speciation in the earthworm *Aporrectodea longa* (Clitellata: Lumbricidae). *Mitochondrial DNA* 28:147-155 DOI: 10.3109/19401736.2015.1115487.
- Meier R, Shiyang K, Vaidya G, Ng P. 2006. DNA barcoding and taxonomy in Diptera: a tale of
 high intraspecific variability and low identification success. *Systematic Biology* 55: 715–728
 DOI: 10.1080/10635150600969864.
- Meyer C, Paulay G. 2005. DNA barcoding: error rates based on comprehensive sampling. PLoS Biology 3:e422 DOI: 10.1371/journal.pbio.0030422.
- 706 **Muller HJ. 1964.** The relation of recombination to mutational advance. *Mutation Research* 1:2-9 DOI: 10.1016/0027-5107(64)90047-8.
- Mutanen M, Kivelä SM, Vos RA, Doorenweerd C, Ratnasingham S, Hausmann A, Huemer
 P, Dincă V, van Nieukerken EJ, Lopez-Vaamonde C, Vila R, Aarvik L, Decaëns T,
 Efetov KA, Hebert PDN, Johnson A, Karsholt O, Pentinsaari M, Rougerie R, Segerer
 A, Tarmann G, Zahiri R, Godfray HCJ. 2016. Species-level para- and polyphyly in DNA
 barcode gene trees: strong operational bias in European Lepidoptera. Systematic Biology
 65:1024-1040 DOI: 10.1093/sysbio/syw044.
- Novo M, Almodóvar A, Fernández R, Trigo D, Díaz Cosín D. 2010. Cryptic speciation of homogastrid earthworms reveald by mitochondrial and nuclear data. *Molecular Phylogeny and Evolution* 56:507-512 DOI: 10.1016/j.ympev.2010.04.010.

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

- Oliverio A, Gan H, Wixkings K, Fierer N. 2018. A DNA metabarcoding approach to characterize soil arthropod communities. Soil Biology and Biochemistry 125:37-43 DOI: 10.1016/j.soilbio.2018.06.026.
- 720 **Orgiazzi A, Dunbar M, Panagos P, de Groot G, Lemanceau P. 2018.** Soil biodiversity and DNA barcodes: opportunities and challenges. *Soil Biology and Biochemistry* 80:244-250 DOI: 10.1016/j.soilbio.2014.10.014.
- Pfenninger M, Schwenk K. 2007. Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. *BMC Evolutionary Biology* 71:121 DOI: 10.1186/1471-2148-7-121.
- Pfingstl T, Schatz H. 2021. A survey of lifespans in Oribatida excluding Astigmata (Acari).
 Zoosymposia 20:007-027 DOI: 10.11646/zoosymposia.20.1.4.
 - **Phillips JD, Gillis DJ, Hanner RH. 2022.** Lack of statistical rigor in DNA barcoding likely invalidates the presence of a true species' barcode gap. *Frontiers in Ecology and Evolution* 10:859099 DOI: 10.3389/fevo.2022.859099.
 - **Pollierer M. Langel R, Scheu S, Maraun M 2009.** Compartmentalization of the soil animal food web as indicated by dual analysis of stable isotope ratios (15N/14N and 13C/12C). *Soil Biology and Biochemistry* 41:1221-1226 DOI: 10.1016/j.soilbio.2009.03.002.
 - **Ponge J, Gillet S, Dubs F, Fedoroff E, Haese L, Sousa J, Lavelle P. 2003.** Collembolan communities as bioindicators of land use intensification. *Soil Biology and Biochemistry* 35:813-826 DOI: 10.1016/S0038-0717(03)00108-1.
 - Porco D, Potapov M, Bedos A, Busmachiu G, Weiner W, Hamra-Kroua S, Deharveng L. 2012a. Cryptic diversity in the ubiquist species *Parisotoma notabilis* (Collembola, Isotomidae): a long-used chimeric species? *PLoS One* 7:e46056 DOI: 10.1371/journal.pone.0046056.
 - Porco D, Bedos A, Greenslade P, Janion C, Skarzynski D, Stevens M, Jansen van Vuuren B, Deharveng L. 2012b. Challenging species delimitation in Collembola-cryptic diversity among common springtails unveiled by DNA barcoding. *Invertebrate Systematics* 26:470 DOI: 10.1071/IS12026.
 - Potapov A, Semenina E, Korotkevich A, Kuznetsova N, Tiunov A. 2016. Connecting taxonomy and ecology: trophic niches of collembolans as related to taxonomic identity and life forms. *Soil Biology and Biochemistry* 101:20-31 DOI: 10.1016/j.soilbio.2016.07.002.
 - Potapov A, Bellini BC, Chown SL, Deharveng L, Janssens F, Kovac L, Kuznetsova N, Ponge J-F, Potapov M, Querner P, Russel D, Sun X, Zhang F, Berg MP. 2020. Towards a global synthesis of Collembola knowledge challenges and potential solutions. *Soil Organisms* 92:161-188 DOI: 10.25674/so92iss3pp161.
- Puillandre N, Lambert A, Brouillet S, Achaz G. 2012. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. *Molecular Ecology* 21:1864-1877 DOI: 10.1111/j.1365-294X.2011.05239.x.
- Puillandre N, Brouillet S, Achaz G 2021. ASAP: assemble species by automatic partitioning.

 Molecular Ecology Resource 21:609-620 DOI: 10.1111/1755-0998.13281.
- **Ratnasingham S, Hebert PD. 2013.** A DNA-based registry for all animal species: The barcode index number (BIN) system. *PLoS ONE* 8:e66213. DOI: 10.1371/journal.pone.0066213.
- Recuero E, Etzler F, Caterino M. 2023. Most soil and litter arthropods are unidentifiable based on current DNA barcode reference libraries. *Current Zoology* DOI: 10.1093/cz/zoad051.

777

778

779

780

781

782

783

784 785

786

787

788

789

790

791

792

793

794

- Reno M, Held N, Fields C, Burke P, Whitaker R. 2009. Biogeography of the Sulfolobus
 islandicus pan-genome. Proceedings of the National Academy of Sciences 106:8605-8610
 DOI: 10.1073/pnas.0808945106.
- Richard B, Decaëns T, Rougerie R, James S, Porco D, Hebert DP 2010. Re-integrating earthworm juveniles into soil biodiversity studies: species identification through DNA barcoding. *Molecular Ecology Resources* 10:606–14 DOI: 10.1111/j.1755-767 0998.2009.02822.x 10.1111/j.1755-0998.2009.02822.x.
- **Rosenberger M. 2011.** Phylogeography in sexual and parthenogenetic European Oribatida. *Doctoral thesis.* DOI: http://dx.doi.org/10.53846/goediss-3325.
- Rosenberger M, Maraun M, Scheu S, Schaefer I. 2013. Pre- and post-glacial diversifications
 shape genetic complexity of soil-living microarthropod species. *Pedobiologia* 56:79-87
 DOI: 10.1016/j.pedobi.2012.11.003.
- Rusek J. 1998. Biodiversity of Collembola and their functional role in the ecosystem. *Biodiversity* and Conservation 7:1207-1219
 - **Santorufo L, Van Gestel C, Rocco A, Maisto G. 2012.** Soil invertebrates as bioindicators of urban soil quality. *Environmtal Pollution* 161:57-63 DOI: 10.1016/j.envpol.2011.09.042.
 - **Schaefer I, Caruso T. 2019.** Oribatid mites show that soil food web complexity and close aboveground-belowground linkages emerged in the early Paleozoic. *Communications Biology* 2:387 DOI: 10.1038/s42003-019-0628-7.
 - **Schaefer I, Norton RA, Scheu S, Maraun M. 2010.** Arthropod colonization of land linking molecules and fossils in oribatid mites (Acari, Oribatida). *Molecular Phylogeny and Evolution* 57:113-121 DOI: 10.1016/j.ympev.2010.04.015.
 - **Schäffer S, Kerschbaumer M, Koblmüller S. 2019.** Multiple new species: cryptic diversity in the widespread mite species Cymbaeremaeus cymba (Oribatida, Cymbaeremaeidae). Mol Phyl Evol 135:185-192 DOI: 10.1016/j.ympev.2019.03.008.
 - **Schatz H, Behan-Pelletier V. 2008.** Global diversity of oribatids (Oribatida: Acari: Arachnida). *Hydrobiologia* 595:323-328 DOI: 10.1007/s10750-007-9027-z.
 - **Schliep KP. 2011.** Phangorn: phylogenetic analysis in R. *Bioinformatics* 27:592-593 DOI: 10.1093/bioinformatics/btq706.
 - Schliep KP, Potts AJ, Morrison DA, Grumm GW. 2017. Intertwining phylogenetic trees and networks. *Methods in Ecology and Evolution* 8:1212-1220 DOI: 10.1111/2041-210X.12760.
 - Schneider K, Migge S, Norton R, Scheu S, Langel R, Reineking A, Maraun M. 2004. Trophic niche differentiation in soil microarthropods (Oribatida, Acari): evidence from stable isotope ratios (15N/14N). *Soil Biology and Biochemistry* 36:1769-1774 DOI: 10.1016/j.soilbio.2004.04.033.
- 796 **Skoracka A, Magalhaes S, Rector B, Kuczynski L. 2018**. Cryptic speciation in the Acari: a function of species lifestyles or our ability to separate species? *Experimental and Applied Acarology* 67:165-182 DOI: 10.1007/s10493-015-9954-8.
- Struck T, Feder J, Bendiksby M, Birkeland S, Cerca J, Gusarov V, Kistenich S, Larsson K,
 Liow L, Nowak M, Stedje B, Bachmann L, Dimitrov D. 2018. Trends in Ecology and
 Evolution 33:153-163 DOI: 10.1016/j.tree.2017.11.007.
- Tedersoo L, Anslan S. 2019. Towards PacBio-based pan-eukaryote metabarcoding using full-length ITS sequences. *Environmental Microbiology Reports* 11:659-668.
- Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin AS, DeBoy RT, Davidsen TM, Mora M, Scarselli M, Margarit y Ros I, Peterson JD, Hauser CR, Sundaram JP, Nelson WC, Madupu R,

821

824

825

826

827

828

829

830 831

- Brinkac LM, Dodson RJ, Rosovitz MJ, Sullivan SA, Daugherty SC, Haft DH, Selengut J, Gwinn ML, Zhou L, Zafar N, Khouri H, Radune D, Dimitrov G, Watkins K, O'Connor KJB, Smith S, Utterback TR, White O, Rubens CE, Grandi G, Madoff LC, Kasper DL, Telford JL, Wessels MR, Rappuoli R, Fraser CM. 2005. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial "pan-genome". *Proceedings of the National Academy of Sciences* 102:13950-13955 DOI: 10.1073/pnas.0506758102.
- Ustinova E, Schepetov D, Lysenkov S, Tiunov A. 2021. Soil arthropod communities are not affected by invasive *Solidago gigantea* Aiton (Asteraceae), based on morphology and metabarcoding analyses. *Soil Biology and Biochemistry* 159:108288 DOI: 10.1016/j.soilbio.2021.108288.
- Valentini A, Pompanon F, Taberlet P. 2009. DNA barcoding for ecologists. *Trends in Ecology and Evolution* 24:110-117 DOI: 10.1016/j.tree.2008.09.011.
 - **van Straalen NM. 2021.** Evolutionary terrestrialization scenarios for soil invertebrates. *Pedobiologia* 87-88:150753 DOI: 10.1016/j.pedobi.2021.150753.
- Villensen P. 2007. FaBox: an online toolbox for FASTA sequences. *Molecular and Ecology Notes* 7:965-968 DOI: 10.1111/j.1471-8286.2007.01821.x.
 - **von Saltzwedel H, Maraun M, Scheu S, Schaefer I. 2014.** Evidence for frozen-niche variation in a cosmopolitan parthenogenetic soil mite species (Acari, Oribatida). *PLoS One* 9:e113268 DOI: 10.1371/journal.pone.0113268.
 - **von Saltzwedel H, Scheu S, Schaefer I. 2016.** Founder events and pre-glacial divergences shape the genetic structure of European Collembola species. *BMC Evolutionary Biology* 16:148 DOI: 10.1186/s12862-016-0719-8.
 - **von Saltzwedel H, Scheu S, Schaefer I. 2017.** Genetic structure and distribution of *Parisotoma notabilis* (Collembola) in Europe: cryptic diversity, split of lineages and colonization patterns. *PLoS One* 12:e0170909 DOI: 10.1371/journal.pone.0170909.
- Wardle D, Bardgett R, Klironomos J, Setälä H, van der Putten W, Wall D. 2004. Ecological linkages between aboveground and belowground biota. *Science* 304:1629-1633 DOI: 10.1126/science.1094875.
- Wickham H. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
- Wiemers M, Fiedler K. 2007. Does the DNA barcoding gap exist? a case study in blue butterflies (Lepidoptera: Lycaenidae). *Frontiers in Zoology* 4:8 DOI: 10.1186/1742-9994-4-839
- Young M, Proctor H, deWaard J, Hebert P. 2019. DNA barcodes expose unexpected diversity in Canadian mites. *Molecular Ecology* 28:5347-5359 DOI: 10.1111/mec.15292.
- Young M, deWaard J, Hebert P. 2021. DNA barcodes enable higher taxonomic assignments in the Acari. *Scientific Reports* 11:15922 DOI: 10.1038/s41598-021-95147-8.
- Young M, Hebert P. 2022. Unerathing soil arthropod diversity through DNA metabarcoding. *PeerJ* 10:e12845 DOI: 10.7717/peerj.12845.
- **Zaitsev AS, Chauvat M, Pflug A, Wolters V. 2002.** Oribatid mite diversity and community dynamics in a spruce chronosequence. *Soil Biology and Biochemistry* 34:1919-1927.
- **Zhang B, Chen T, Mateos E, Scheu S, Schaefer I .2018.** Cryptic species in *Lepidocyrtus* lanuginosus (Collembola: Entomobryidae) are sorted by habitat type. *Pedobiologia* 68:12-19 DOI: 10.1016/j.pedobi.2018.03.001.

851	Zhang B, Chen	T,	Mate	os E, Scheu	S, Schaefer I.	2019. DNA-ba	sed appro	oaches u	ncover cryptic
852	diversity	in	the	European	Lepidocyrtus	lanuginosus	species	group	(Collembola:
853	Entomobi	rvid	ae). <i>In</i>	nvertebrate	Systematics 33:	661-670 DOI:	10.1071/	IS18068	3.

855	Figure legends
856	Figure 1. Summary of the barcoding threshold optimization of the global and local datasets.
857	Threshold between 1 % and 20 % genetic distances were analysed at intervals of 1 %. Light grey
858	bars indicate the number of false positive (no conspecific matches within threshold of query), dark
859	grey bars are false negatives (non-conspecific species match within threshold distance of query)
860	of the species assignments for the respective threshold (x-axis). Note the different scales of the y-
861	axis.
862	
863	Figure 2. Distribution of intra- (red violins) and interspecific (yellow violins) genetic
864	distances in morphological and genetic entities in Collembola and oribatid mites. Distances
865	were calculated for each dataset based on the nominal species names (Morphotypes) and using the
866	same dataset but assigning sequences to genetic lineages (ASAP). The ASAP partition with the
867	smallest number of subsets was used to assign genetic lineages. Specimens that overlap in intra-
868	and interspecific distances cannot be assigned accurately to species based on COI. The splitting of
869	the dataset into genetic lineages created a barcoding gap that improved the accuracy of specimen
870	assignment. Solid blue lines indicate the 3 % genetic distances threshold, dashed lines represent
871	the genetic distances of the barcoding gap calculated with ASAP for the respective dataset
872	(Collembola: 11.3 %, Ceratophysella: 13.8 %, Folsomia: 8 %, Oribatida: 15 %, Achipteria: 6.9 %,
873	Steganacarus: 15 %, Oppiidae: 15.8 %, Nothrus: 12 %, Platynothrus: 15 %). Notice the different
874	scales of the y-axis.
875	
876	Figure 3. Phylogenetic tree of all Collembola for character-based species assignment.
877	Likelihood tree based on 313 haplotypes of 612 COI sequences and 500 bootstrap replicates.
878	Monophyletic nodes were collapsed, bootstrap values >50 % are shown on nodes. The two genera
879	Ceratophysella and Folsomia are not monophyletic, and species within genera are also not
880	monophyletic.
881	
882	Figure 4. Phylogenetic tree of all Oribatida for character-based species assignment.
883	Likelihood tree based on 514 haplotypes of 970 COI sequences and 500 bootstrap replicates.
884	Monophyletic nodes were collapsed, bootstrap values >50 % are shown on nodes. Grey circles on

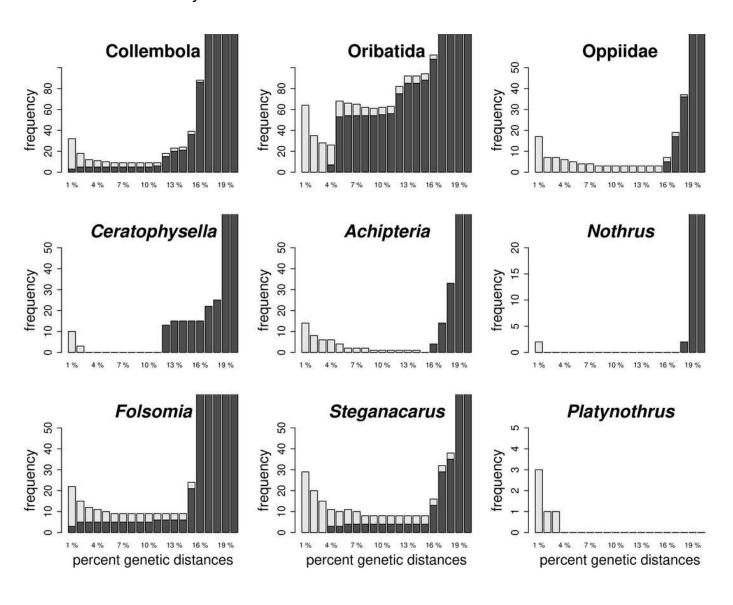

branches highlight monophyletic lineages. Red circles highlight non-monophyletic lineages,
indicating species for which character-based species assignment is problematic or equivocal. Grey
circles with red outlines indicate species that are monophyletic but split into at least two clades.
All genera but Achipteria, Dissorhina, Oppia and Oppiella are monophyletic. The single sequence
of Oppiella subpectinata was sister to Berniniella and potentially represents a misidentified
individual. A phylogenetic tree of 28S rDNA haplotypes is provided in Supplemental Figure S5.

Figure 5. Rarefaction of Collembola and Oribatida species. Only species with sampling site information are included for quantifying the representatives of genetic diversity in the different datasets. Collembola species reach soon saturation in haplotype diversity, while sexual Oribatida species (*A. coleoptrata*, *S. magnus*) do not reach saturation. The parthenogenetic Oribatida species *P. peltifer* also reaches saturation close to a sampling size of 600 individuals, but expected diversity is lower with less than 200 haplotypes (note the different scales of the y-axis). The parthenogenetic Oribatida species *N. silvestris* shows the lowest diversity and reaches soon saturation, indicating that sampling size was almost representative for the expected haplotype diversity in this species. Solid lines indicate the rarefaction, dotted lines the extrapolation. The tested diversity measures using *iNEXT* were species richness (q=0, red lines) and Shannon diversity (q=1, blue lines). Notably, the two indices are more similar in Collembola than in Oribatida. Rarefaction plots of 28S rDNA haplotypes are provided in Supplemental Figure S6.

Figure 1

Summary of the barcoding threshold optimization of the global and local datasets.

Threshold between 1 % and 20 % genetic distances were analysed at intervals of 1%. Light grey bars indicate the number of false positive (no conspecific matches within threshold of query), dark grey bars are false negatives (non-conspecific species match within threshold distance of query) of the species assignments for the respective threshold (x-axis). Note the different scales of the y-axis.

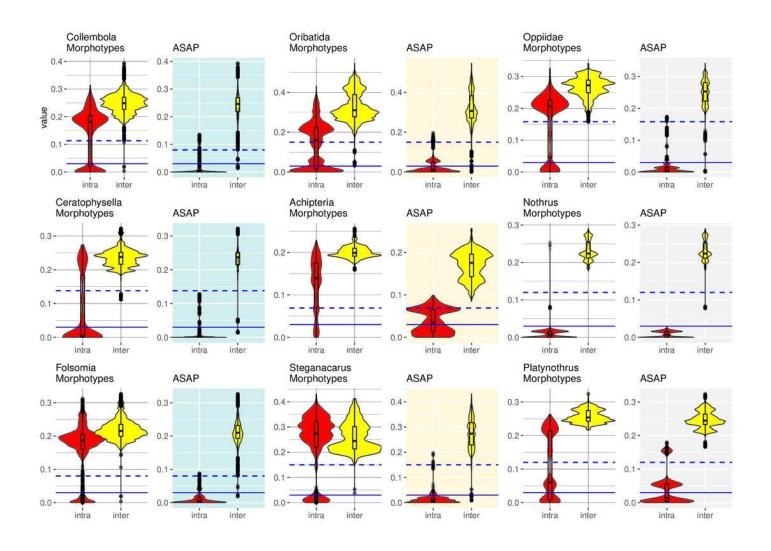


Figure 2

Figure 2. Distribution of intra- (red violins) and interspecific (yellow violins) genetic distances in morphological and genetic entities in Collembola and oribatid mites.

Distances were calculated for each dataset based on the nominal species names (Morphotypes) and using the same dataset but assigning sequences to genetic lineages (ASAP). The ASAP partition with the smallest number of subsets was used to assign genetic lineages. Specimens that overlap in intra- and interspecific distances cannot be assigned accurately to species based on COI. The splitting of the dataset into genetic lineages created a barcoding gap that improved the accuracy of specimen assignment. Solid blue lines indicate the 3 % genetic distances threshold, dashed lines represent the genetic distances of the barcoding gap calculated with ASAP for the respective dataset (Collembola: 11.3 %, *Ceratophysella*: 13.8 %, *Folsomia*: 8 %, Oribatida: 15 %, *Achipteria*: 6.9 %, *Steganacarus*: 15 %, Oppiidae: 15.8 %, *Nothrus*: 12 %, *Platynothrus*: 15 %). Notice the different scales of the y-axis.

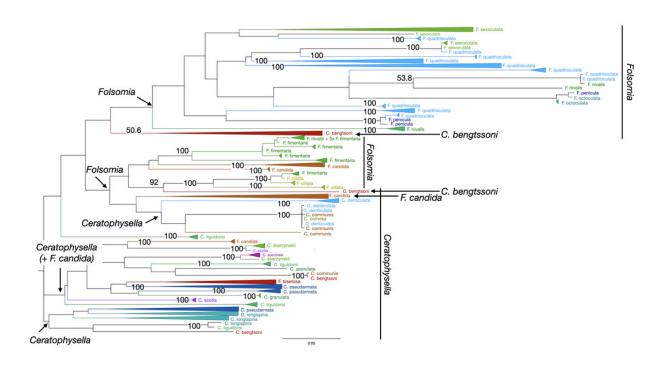


Figure 3

Phylogenetic tree of all Collembola for character-based species assignment.

Likelihood tree based on 313 haplotypes of 612 COI sequences and 500 bootstrap replicates. Monophyletic nodes were collapsed, bootstrap values > 50 % are shown on nodes. The two genera *Ceratophysella* and *Folsomia* are not monophyletic, and species within genera are also not monophyletic.

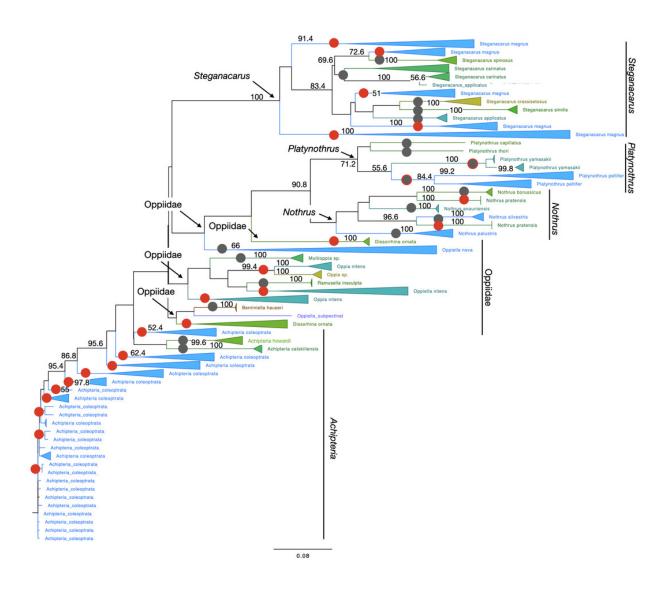


Figure 4

Phylogenetic tree of all Oribatida for character-based species assignment.

Likelihood tree based on 514 haplotypes of 970 COI sequences and 500 bootstrap replicates. Monophyletic nodes were collapsed, bootstrap values > 50 % are shown on nodes. Grey circles on branches highlight monophyletic lineages. Red circles highlight non-monophyletic lineages, indicating species for which character-based species assignment is problematic or equivocal. Grey circles with red outlines indicate species that are monophyletic but split into at least two clades. All genera but *Achipteria*, *Dissorhina*, *Oppia* and *Oppiella* are monophyletic. The single sequence of *Oppiella subpectinata* was sister to *Berniniella* and potentially represents a misidentified individual. A phylogenetic tree of 28S rDNA haplotypes is provided in Supplemental Figure S5.

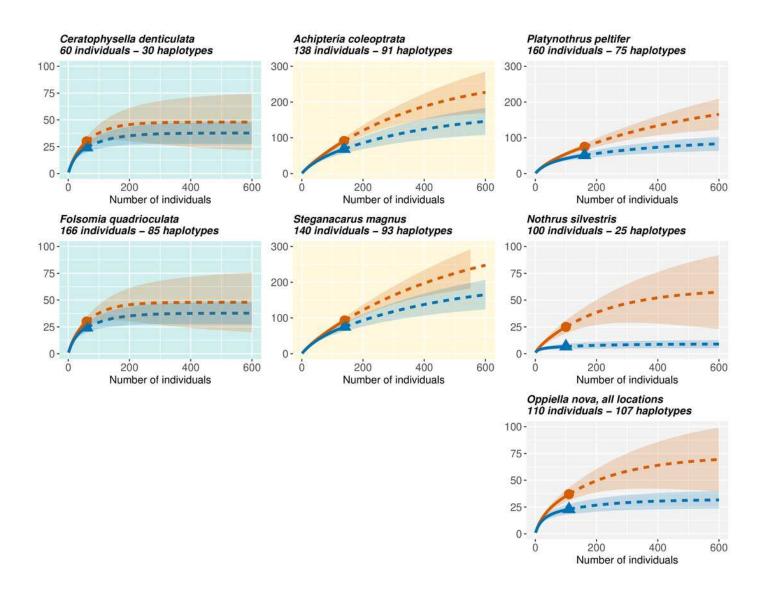


Figure 5

Rarefaction of Collembola and Oribatida species.

Only species with sampling site information are included for quantifying the representatives of genetic diversity in the different datasets. Collembola species reach soon saturation in haplotype diversity, while sexual Oribatida species ($A.\ coleoptrata,\ S.\ magnus$) do not reach saturation. The parthenogenetic Oribatida species $P.\ peltifer$ also reaches saturation close to a sampling size of 600 individuals, but expected diversity is lower with less than 200 haplotypes (note the different scales of the y-axis). The parthenogenetic Oribatida species $N.\ silvestris$ shows the lowest diversity and reaches soon saturation, indicating that sampling size was almost representative for the expected haplotype diversity in this species. Solid lines indicate the rarefaction, dotted lines the extrapolation. The tested diversity measures using iNEXT were species richness (q=0, red lines) and Shannon diversity (q=1, blue lines). Notably, the two indices are more similar in Collembola than in Oribatida. Rarefaction plots of 28S rDNA haplotypes are provided in Supplemental Figure S6.

Table 1(on next page)

Summary of oribatid mites and Collembola used in this study for identifying a barcoding gap in soil-living invertebrates.

Bold taxa have the broadest and densest geographic sampling within the investigated genus and sampling range is comparable among all genera, except for Oppiidae, which covered a smaller sampling area. Accession numbers of specimens are provided in the alignments in the supplementary material. The column ASAP refers to the number of genetic lineages (subsets) for each species detected by the ASAP analysis (see Table 4). One or more individuals of species marked with asterisk (*) were assigned to the same genetic lineage (ASAP subset).

Table 1. Summary of oribatid mites and Collembola used in this study for identifying a barcoding gap in soil-living invertebrates. Bold taxa have the broadest and densest geographic sampling within the investigated genus and sampling range is comparable among all genera, except for Oppiidae, which covered a smaller sampling area. Accession numbers of specimens are provided in the alignments in the supplementary material. The column ASAP refers to the number of genetic lineages (subsets) for each species detected by the ASAP analysis (see Table 4). One or more individuals of species marked with asterisk (*) were assigned to the same genetic lineage (ASAP subset).

		no.				no.	
taxon	congeneric	inds.	ASAP	taxon	congeneric	inds.	ASAP
all Oribatida		853		all Collembola		612	
Achipteria	A. catskillensis	11	1	Ceratophysella	C. bengtssonii	20	1
	A. coleoptrata	138	12		C. communis	31	2
	A. howardi	4	1	_	C. comosa	7	1
	total	153	14	_	C. denticulata	60	7
Nothrus	N. anauniensis	20	1		C. granulata	7	2
	N. borussicus	8	1		C. liguldorsi	12	2
	N. palustris	10	2		C. longispina	59	1
	N. pratensis	5	2		C. pseudarmata	44	2
	N. silvestris	100	1	_	C. scotica	4	1
	total	143	7	_	C. skarzynskii	17	1
Platynothrus	P. capillatus	4	1		C. succinea	5	1
	P. peltifer	160	3		total	266	21
	P. thori	4	1	Folsomia	F. bisetosa	15	*3
	P. yamasakii	81	1	_	F. candida	47	3
	total	249	6		F. ciliata	6	1
				-	F. fimentaria (incl.		
Oppiidae	Aeroppia sp.	6	1		L1-L3)	28	5
	Berniniella						
	hauseri	2	1		F. nivalis	39	1
	Dissorhina ornata	11	2		F. octoculata	7	*3
	Multioppia sp	6	1		F. peniculata	15	2
	Oppia nitens	92	*3		F. quadrioculata	166	24
	<i>Oppia</i> sp.	3	*2		F. sexoculata	23	2
	Oppiella nova	110	9		total	346	43
	Oppiella						
	subpectinata	1	1				
	Oppiella	2	1				
	uliginosa Ramusella	3	1				
	insculpta	3	1				
	total	237	24	-			
Steganacarus		14	*2	-			
etega.iacai as	S. carinatus	8	*2				
	S. crassisetosus	6	1				
	-		40				

S. magnus

140

PeerJ

S. similis	5	1
S. spinosus	15	1
total	188	25

Table 2(on next page)

Summary statistics of datasets.

(A) Information on number of genera and species per taxon, the minimum, maximum, median and mean number of sequences used. Oppiidae were analysed on a higher taxonomic level, i.e. at genus instead of species level. (B) Sequence information of datasets, giving the number of sequences, the length of the alignment, the minimum, maximum, median mean and median length of sequences and the number of sequences that were below 500 bp per taxon.

Table 2. Summary statistics of datasets. (A) Information on number of genera and species per taxon, the minimum, maximum, median and mean number of sequences used. Oppiidae were analysed on a higher taxonomic level, i.e. at genus instead of species level. (B) Sequence information of datasets, giving the number of sequences, the length of the alignment, the minimum, maximum, median mean and median length of sequences and the number of sequences that were below 500 bp per taxon.

(A)	taxa information						
	genera	species	min	max	median	mean	
all Oribatida	10	28	1	160	8	35	
Achipteria	1	3	4	138	11	51	
Nothrus	1	5	5	100	10	29	
Platynothrus	1	4	4	160	42	62	
Steganacarus	1	6	5	140	11	31	
all Collembola	2	20	4	166	18	31	
Ceratophysella	1	11	4	60	17	24	
Folsomia	1	9	6	166	23	38	
	families	genera					
Oppiidae	1	7	2	114	6	34	

(B)	alignment information (bp)						
	no. sequences	length	min	max	mean	median	no. sequences <500 bp
all Oribatida	970	657	371	657	565	558	32
Achipteria	153	507	507	507	507	507	0
Nothrus	143	580	371	580	572	580	2
Platynothrus	249	558	417	558	544	558	8
Steganacarus	188	591	476	591	551	526	21
all Collembola	612	583	310	583	564	583	48
Ceratophysella	266	651	485	651	642	651	1
Folsomia	346	583	310	583	552	583	47
Oppiidae	237	657	459	657	632	657	1

Table 3(on next page)

Range of barcoding gap thresholds and cumulative errors for all datasets.

The cumulative error is the sum of false positives and false negatives. Except for *Nothrus* and *Ceratophysella* the barcoding gap is not present in the investigated species, or exceeds the standard threshold of 2 % - 3 %.

1

Table 3. Range of barcoding gap thresholds and cumulative errors for all datasets. The cumulative error is the sum of false positives and false negatives. Except for *Nothrus* and *Ceratophysella* the barcoding gap is not present in the investigated species, or exceeds the standard threshold of 2%-3%.

optimal barcoding gap thres				
	cumulative error	smallest cumulative		
	= 0	error		
all Oribatida	-	4% (error: 26)		
Achipteria	15%	9%-14 % (error: 1)		
Steganacarus	-	8%-15% (error: 8)		
Nothrus	2%-17%	1%, 18% (error: 2)		
Platynothrus	> 4%	2%-3% (error: 1)		
Oppiidae	-	8%-15 % (error: 3)		
all Collembola	-	6%-11% (error: 9)		
Ceratophysella	3%-11%	2% (error: 3)		
Folsomia	-	6%-14% (error: 9)		

Table 4(on next page)

Summary of the estimated number of genetic lineages for each local dataset.

The number of morphologically determined species (No. of species) is given for each dataset together with the number of genetic lineages (No. of subsets) estimated by ASAP. For each dataset, the partition with the lowest number of subsets and the highest ranks was selected. The respective scores (including ranks) and statistic support are provided, along with the estimated genetic distance threshold (Threshold distance) that separates the individual subsets. For a detailed list of subsets per species refer to Table 1.

Table 4. Summary of the estimated number of genetic lineages for each local dataset. The number of morphologically determined species (No. of species) is given for each dataset together with the number of genetic lineages (No. of subsets) estimated by ASAP. For each dataset, the partition with the lowest number of subsets and the highest ranks was selected. The respective scores (including ranks) and statistic support are provided, along with the estimated genetic distance threshold (Threshold distance) that separates the individual subsets. For a detailed list of subsets per species refer to Table 1.

	No. of	No. of	ASAP-	P-value		Threshold
	species	subsets	score	(rank)	W (rank)	distance [%]
				1.20e-04	8.12e-06	
all Oribatida	28	69	25.0	(4)	(46)	15.0
				2.99e-02		
Achipteria	3	14	5.5	(3)	7.13e-04 (8)	6.9
				1.00e-05		
Nothrus	5	7	2.0	(2)	5.53e-04	12.2
				1.00e-05		
Platynothrus	4	6	4.5	(1)	3.39e-05 (3)	15.0
				1.60e-04		
Steganacarus	6	25	3.5	(1)	1.79e-04 (6)	15.0
				3.00e-04		
Oppiidae	10	24	3.00	(1)	3.17e-04 (5)	15.8
				1.00e-05	6.28e-05	
all Collembola	20	64	12.5	(2)	(23)	11.3
				2.02e-03		
Ceratophysella	11	21	5.5	(4)	3.93e-04 (7)	13.8
. ,				1.00e-05	, ,	
Folsomia	9	43	4.5	(1)	1.70e-04 (8)	8.02