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Belowground invertebrate communities are dominated by species-rich and very small
microarthropods that require long handling times and high taxonomic expertise for species
determination. Molecular based methods like metabarcoding circumvent the morphological
determination process by assigning taxa bioinformatically based on sequence information.
The potential to analyse diverse and cryptic communities in short time at high taxonomic
resolution is promising. However, metabarcoding studies revealed that taxonomic
assignment below family-level in Collembola (Hexapoda) and Oribatida (Acariformes) is
difficult and often fails. These are the most abundant and species-rich soil-living
microarthropods, and the application of molecular-based, automated species
determination would be most beneficial in these taxa. In this study, we analysed the
presence of a barcoding gap in the standard barcoding gene cytochrome oxidase | (COl) in
Collembola and Oribatida. The barcoding gap describes a significant difference between
intra- and interspecific genetic distances among taxa and is essential for bioinformatic
taxa assignment. We collected COI sequences of Collembola and Oribatida from BOLD and
NCBI and focused on species with a wide geographic sampling to capture the range of their
intraspecific variance. Our results show that intra- and interspecific genetic distances in
COl overlapped in most species, impeding accurate assignment. When a barcoding gap
was present, it exceeded the standard threshold of 3 % intraspecific distances and also
differed between species. Automatic specimen assignments also showed that most species
comprised of multiple genetic lineages that caused ambiguous taxon assignments in
distance-based methods. Character-based taxonomic assignment using phylogenetic trees
and monophyletic clades as eriterioR worked for some species of Oribatida but failed
completely for Collembola. Notably, parthenogenetic species showed lower genetic
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variance in COl and more accurate species assignment than sexual species. The different
patterns in genetic diversity among species suggest that the different degrees of genetic
variance result from deep evolutionary distances. This indicates that a single genetic
threshold, or a single standard gene, will probably not be sufficient for the molecular
species identification of many Collembola and Oribatida taxa. Our results also show that
haplotype diversity in some of the investigated taxa was not even nearly covered, but
coverage was better for Collembola than for Oribatida. Additional use of secondary
barcoding genes and long-read sequencing of marker genes can improve metabarcoding
studies. We also recommend the construction of pan-genomes and pan-barcodes of
species lacking a barcoding gap. This will allow both to identify species boundaries, and to
cover the full range of variability in the marker genes, making molecular identification also
possible for species with highly diverse barcode sequences.
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Background

Belowground invertebrate communities are dominated by species-rich and very small
microarthropods that require long handling times and high taxonomic expertise for species
determination. Molecular based methods like metabarcoding circumvent the morphological
determination process by assigning taxa bioinformatically based on sequence information. The
potential to analyse diverse and cryptic communities in short time at high taxonomic resolution is
promising. However, metabarcoding studies revealed that taxonomic assignment below family-
level in Collembola (Hexapoda) and Oribatida (Acariformes) is difficult and often fails. These are
the most abundant and species-rich soil-living microarthropods, and the application of molecular-
based, automated species determination would be most beneficial in these taxa. In this study, we
analysed the presence of a barcoding gap in the standard barcoding gene cytochrome oxidase 1
(COI) in Collembola and Oribatida. The barcoding gap describes a significant difference between
intra- and interspecific genetic distances among taxa and is essential for bioinformatic taxa
assignment. We collected COI sequences of Collembola and Oribatida from BOLD and NCBI and
focused on species with a wide geographic sampling to capture the range of their intraspecific
variance. Our results show that intra- and interspecific genetic distances in COI overlapped in most
species, impeding accurate assignment. When a barcoding gap was present, it exceeded the
standard threshold of 3 % intraspecific distances and also differed between species. Automatic
specimen assignments also showed that most species comprised of multiple genetic lineages that
caused ambiguous taxon assignments in distance-based methods. Character-based taxonomic
assignment using phylogenetic trees and monophyletic clades as criterion worked for some species
of Oribatida but failed completely for Collembola. Notably, parthenogenetic species showed lower
genetic variance in COI and more accurate species assignment than sexual species. The different
patterns in genetic diversity among species suggest that the different degrees of genetic variance
result from deep evolutionary distances. This indicates that a single genetic threshold, or a single
standard gene, will probably not be sufficient for the molecular species identification of many
Collembola and Oribatida taxa. Our results also show that haplotype diversity in some of the
investigated taxa was not even nearly covered, but coverage was better for Collembola than for
Oribatida. Additional use of secondary barcoding genes and long-read sequencing of marker genes
can improve metabarcoding studies. We also recommend the construction of pan-genomes and

pan-barcodes of species lacking a barcoding gap. This will allow both to identify species
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57 identification also possible for species with highly diverse barcode sequences.
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Introduction

Soils are among the most diverse habitats on earth, harbouring 25 % to 50 % of the biodiversity
on Earth (Decaéns et al., 2006, Decaéns, 2010; Anthony, Bender & van der Heijden, 2023). This
biodiversity drives essential processes for life on Earth and provides ecosystem services that
impact human wellbeing, such as the decomposition of dead organic material, recycling of
nutrients and carbon storage (Wardle et al., 2004; Lavelle et al., 2006; Bardgett & van der Putten,
2014). Characterizing and monitoring soil biodiversity therefore is of general interest to maintain
and preserve soil functions (Orgiazzi et al., 2015). However, this is a challenging and time-
consuming task due to the enormous taxonomic diversity and cryptic lifestyles of soil-organisms.
Molecular methodologies offer great advantages for soil biodiversity assessment in terms of time
and cost efficiency, and taxonomic resolution (Antil et al., 2012; Eisenhauer, Bonn & Guerra,

2019).

A large fraction of soil animal biodiversity is represented by microarthropods with body-sizes
between 0.1 and 2 mm. Collembola (Hexapoda) and Oribatida (Acari: Sarcoptiformes) are
dominant and omnipresent microarthropod taxa, and occur in all soil-related habitats where they
reach high abundances of up to 50,000 - 100,000 individuals per square meter (Bardgett & van der
Putten, 2014). Traditionally, Collembola and Oribatida have been described as decomposers,
microbivorous and fungivores, but studies using stable isotopes showed that they actually cover
several trophic levels, demonstrating trophic specialization and functional diversity within these
taxa (Schneider et al., 2004; Pollierer et al., 2009; Potapov et al., 2016; Maraun et al., 2023). These
microarthropods spend their entire life in the soil matrix or in the litter layer, which makes them
interesting candidates as bioindicators of soil quality in monitoring programs (Gulvik, 2007).
Collembola are typical r-strategists with fast reproduction cycles, whereas Oribatida are usually
considered K-strategists with long-life spans of 1-3 years and low fecundity, but species with
shorter life-cycles are also common (Maraun & Scheu, 2000; Pfingstl & Schatz, 2021). The general
differences in life-history traits and trophic diversity between Collembola and Oribatida could be
informative for monitoring programs. Collembola respond and recover more quickly to
disturbances (Ponge et al., 2003; Santorufo et al., 2012) than Oribatida, which have long recovery
times and therefore are more sensitive to environmental changes (Zaitsev et al., 2002; Gulvik,

2007; Pfingstl & Schatz, 2021). However, the wide range of functional and life-history traits
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among different species necessitates species level determination in order to better understand their
interactions in the soil system or to use them as bioindicators for changes in soil functions. About
9,000 species of Collembola and 11,000 species of Oribatida are described worldwide, but this
likely represents only about 20 % of the expected species (Potapov et al., 2020; Behan-Pelletier &
Lindo, 2023). Local species richness of these two taxa can be very high, reaching 60-100 species
in forest soils (Rusek, 1998; Schatz & Behan-Pelletier, 2008). High species richness and
abundance, and small body sizes, of both; Collembola and Oribatida, pose a significant challenge
for biodiversity assessments. Molecular applications, such as DNA barcoding and metabarcoding,
have great potential to aid specimen identification and biodiversity assessment (Valentini,
Pompanon & Taberlet, 2009). These methods utilize a standardized DNA fragment for taxonomic
assignment of specimens by matching DNA sequences of undetermined individuals to a reference
database (Hebert et al., 2003; Hebert & Gregory, 2005), This enables to automatically assign any
taxonomic level and even species names to undetermined individuals. It is applicable to mixed
samples of pooled specimens, which significantly reduces workload and costs. Further, molecular
identification tools are equally applicable to juveniles that often lack taxonomic characters
(Richard et al., 2010; Grzywacz et al., 2021). Automated handling of samples, simultaneous
identification of multiple individuals in a single reaction, and the scalability of molecular data to
any taxonomic level offers new opportunities for analysing spatial and temporal dynamics of soil-
living animals (Arribas et al., 2021; Decaéns, 2021), and thereby provide new perspectives for
monitoring of soil biodiversity. The method, however, relies on two preconditions: (1) a
representative reference database and (2) a marker (barcoding) gene that reliably separates species.
The most common databases are BOLD (“The Barcode of Life Data System”, Ratnasingham &
Hebert, 2007) and NCBI (https://ncbi.nlm.nih.gov/). The standard barcoding gene for Metazoa is
a 658 bp region of the mitochondrial cytochrome oxidase I gene (COI; Herbert et al., 2003; Hubert
et al., 2008). In general, a minimum of 500 bp of COI is required, but shorter fragments can also
be used for specimen identification and species discovery (Hajibabaei et al., 2006; Collins &

Cruickshank, 2012).

The success of species delineation based on genetic markers depends on the presence of a
barcoding gap, which implies that genetic distances within a species are smaller than genetic

variances to congeneric and other species (Meyer & Paulay, 2005). A global threshold of 2 %-3 %
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intraspecific sequence divergence, or 10x the mean intraspecific divergence, has been proposed to
reliably separate species (Hebert et al., 2004). Such a universal threshold is extremely helpful for
automated species assignment of genetic data in bioinformatic pipelines. This threshold seems to
be valid for a range of taxa (Hebert, Ratnasingham & deWaard, 2003; Hebert et al., 2004; Barrett
& Hebert, 2005), but its universal application has been questioned for other species (e.g., Burns et
al., 2007; Chapple & Ritchie, 2013; Elias et al., 2007; Meier et al., 2006; Meyer & Paulay, 2005;
Wiemers & Fiedler, 2007). In particular soil-living animals show high intraspecific divergences in
the COI gene that commonly exceed the standard barcoding threshold. Examples cover different
families of earthworms (King, Tibble & Symondson, 2008; Novo et al., 2009; Martinsson, Rhoden
& Erséus, 2016), Collembola (Porco et al., 2012a, Porco et al., 2012b; von Saltzwedel, Scheu &
Schaefer, 2016; Zhang et al., 2019) and Oribatida (Rosenberger et al., 2013; von Saltzwedel et al.,
2014). These studies question the general effectiveness of COI for specimen identification in these
taxa. Moreover, asexual reproduction occurs in 7-10 % of all species in several families of
Collembola and 10 % of all species of Oribatida (Charhataghi, Scheu & Ruess, 2006; Cianciolo &
Norton, 2006; Chernova et al. 2010, Bluhm, Scheu & Maraun, 2016), and asexual species can be
dominant in temperate forests (Maraun & Scheu, 2000). According to theory, asexual organisms
accumulate mutations over time, until they go extinct due to the accumulation of too many
deleterious mutations (Muller’s ratcher: Muller, 1964; Kondrashov’s hatchet: Kondrashov, 1988).
This suggests that present day populations of asexual species represent a range of COI haplotypes,
while populations of sexual species should represent discrete clusters of similar COI haplotypes,
standing for independently evolving lineages that interbreed (Barraclough, Birky & Burt, 2003).
In consequence, a barcoding gap should not be present in asexual species but rather a continuum
of slightly divergent individuals. Further, hybridization events are potential origins of asexual
species, and if followed by mitochondrial introgression the detection of a barcoding gap is difficult
(Mutanen et al., 2016; Dupont et al., 2016). Altogether, asexual reproduction could blur lines of

species identification, and a hybrid species could be wrongly identified as its maternal species.

The aim, of this study was to test; (i) if the standard barcoding marker gene COI meets the
precondition to reliably assign species in Collembola and Oribatida and; to-check (ii) the accuracy
of separating species based on a barcoding gap. Many species of these taxa have wide distribution
ranges, and European species often occur across palaearctic or holarctic regions. Geographic

coverage of samples provided in DNA barcode reference libraries can affect species assignment
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149  (Hebert et al., 2003). We therefore focused on species with a dense and broad geographic sampling
150 to cover the potential range of intra-specific haplotype variation of COI (Philipps, Gillis & Hanner,
151 2022). To assess intra- and interspecific genetic variance of these species, we downloaded
152 sequences of congeneric species that were represented in databases with a minimum of 3-5
153 sequences per species. We included parthenogenetic (asexual) species to test (iii) if the
154 reproductive mode affects the barcoding gap, because parthenogenetic species likely carry a
155 continuum of divergent haplotypes due to the accumulation of mutations and the absence of
156 homogenizing effects of mixis. Datasets were obtained by checking literature and public databases
157 (BOLD, NCBI). We selected five oribatid mite species (Rosenberger, 2011; Rosenberger et al.,
158 2013, von Saltzwedel, 2014) and two Collembola species (von Saltzwedel, Scheu & Schaefer,
159 2016) that were collected across several countries in Europe. Three of the five oribatid mite species
160 are parthenogenetic. We did not include the parthenogenetic Collembola Parisotoma notabilis in
161 our analyses, which is also represented with a Europe-wide sampling, because multiple genetic
162 lineages (cryptic species) have already been reported for this species (Porco et al., 2012a; von
163  Saltzwedel, Scheu & Schaefer, 2017). Isotomiella minor, another parthenogenetic Collembola
164 species, was excluded, because reference databases did not provide sequences of congeneric
165 species. The Collembola Lepidocyrtus was omitted, because this genus has been reported to be a
166 species complex (Cicconardi et al., 2010) with uncertain status of the species L. cyaneus, which
167 appears to be polyphyletic within L. lanuginosus (Zhang et al., 2018; Zhang et al., 2019). We
168 analysed the performance of COI for species delimitation using distance- and character-based
169 methods. We estimated optimal barcoding thresholds with the spider package in R. Afterwards,
170  we used the ASAP algorithm (Assemble Species by Automated Partitioning; Puillandre, Brouillet
171 & Achaz, 2021) to check the distribution of genetic distances and size of the barcoding gap. This
172 method is an improved version of the Automated Barcode Gap Discovery (ABGD; Puillandre et
173 al., 2012), which partitions single-locus datasets into hypothetical species by re-iteratively finding
174 the best partitions that separate nominal species in the dataset using genetic distances. Different
175 from ABGD, this version does not require a priori values and provides scores for each partition,
176  which helps users to identify the best partition. Additionally, we calculated a Maximum Likelihood
177 tree for the complete Collembola and Oribatida datasets, to check if a character-based method
178 accomplishes accurate species assignment. If the distance-based methods (threshold optimization

179 and ASAP) ignore important diagnostic characters in the datasets, this would be a meaningful
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alternative method (DeSalle, Egan & Siddal, 2005). We also performed a rarefaction analysis to

quantify the representativeness of the sample sizes for species haplotype diversity.

Materials & Methods

Taxa collection:

For Oribatida, BOLD delivered 12,252 records (search term: “Sarcoptiformes”) with species
names, which represent 710 species; NCBI delivered 29,047 records (search term: “Oribatida
COI”) with a sequence length between 500 and 800 base pairs. For Collembola (search term:
“Collembola”), BOLD delivered 62,681 records with species names, which represent 1,544
species, and NCBI (search term: “Collembola COI”’) had 51,684 sequences with a sequence length
between 500 and 800 base pairs. Many records in NCBI do not have a geographic reference, and
most sequences in BOLD are from various geographic regions, predominantly coming from North
America (Centre for Biodiversity Genomics). Analysing specimens from different continents
could generate confounding effects due to ancient geographic isolations. To obtain a comparable
dataset for all investigated species we therefore decided to restrict our analyses to sequences
published by Rosenberger, 2011; Rosenberger et al., 2013; von Saltzwedel et al., 2014; von
Saltzwedel, Scheu & Schaefer, 2016 (Table 1), which have a comparable sampling across Europe.
For both Collembola and one Oribatida species (Oppiella nova), sequences of the nuclear gene
28S rDNA of the same individuals were also available in NCBI (Supplemental Table S1) and used
for checking if genetic divergences are congruent between the mitochondrial and nuclear genes.
The dataset of Oppiella nova (Oppiidae) differs as it contains sequences from different habitats
collected only in Germany. Further, only a single congeneric sequence was available for this genus
(O. subpectinata), but several sequences from species of other genera in the family Oppiidae. We
decided to include this species into our analysis, but checked if a barcoding gap is present at genus
level. Oppiidae species are very small; their body size in general ranges from 130 to 300 pm
(except Oppia nitens, with a body size of >400 um), which makes species determination very
laborious and explains why this family commonly is not resolved to lower taxonomic levels in
community studies. Confirmation of a barcoding gap and accurate species delimitation at genus
level for this family would be helpful for future DNA-based biodiversity assessments, because

Oppiidae is a species rich and very common family across many habitats, reaching high
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abundances and even being the dominant taxon in many oribatid mite communities (Zaitsev et al.,

2002; Bluhm, Maraun & Scheu, 2016).

For Collembola, we selected geographically comparable datasets for two sexual species, Folsomia
quadrioculata and Ceratophysella denticulata. We had to omit the parthenogenetic species
Isotomiella minor because congeneric sequences were inadequate for this study (only two

sequences of Isotomiella sp. and one sequence of I. paraminor).

First, congeneric taxa were downloaded from BOLD and NCBI. Second, species assignment and
barcoding gap analyses were performed with two global datasets, including all Collembola and
Oribatida species, respectively. Third, for a more detailed analysis, the global datasets were

separated into local datasets, each comprising all sequences of a genus (family in Oppiidae).

Species delimitation—character—and distance-based

All sequences of a genus, and all sequences of Oppiidae were aligned separately in AliView v1.28
(Larssen, 2014) using default settings and trimmed to the approximately shortest sequence. For
the global dataset, all alignments of Collembola and Oribatida were combined in two separate files
and re-aligned using default settings. All alignments were gap-free and did not contain any stop-
codons. In total, we separately analysed two global datasets that contained all Oribatida and all
Collembola, respectively, and seven local datasets, one for each genus and one for the family

Oppiidae.

Barcoding thresholds were estimated within a range from 1 % to 20 % distance, at intervals of 1 %
for all datasets in R using the threshOpt( ) function in the spider package (Brown et al., 2012). The

potential number of partitions and the corresponding barcoding gap were estimated for each local

dataset using the ASAP web application (https://bioinfo.mnhn.fr/abi/public/asap/; Puillandre,
Brouillet & Achaz, 2021), providing the sequence alignment, selecting the K2P parameter as
model of sequence evolution and the remaining parameter as default settings. Intra- and
interspecific genetic distances (corrected with K2P) were plotted with ggplot2 (Wickham, 2016)
and gridExtra (Auguie, 2017) to visualize the barcoding gap. Two plots were generated for all
datasets, one using the species names (morphotype) for inter- and interspecific assignment and one
in which species names were replaced by the number of subsets estimated by ASAP, which equal
the number of hypothetical (cryptic) species. The two plots visualize the barcoding gap based on

morphological and genetic partitions, respectively. Alternative visualizations for analysing intra-
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and interspecific genetic distances are histograms (Supplemental Figs. S1-S2) and scatterplots
(Phillips, Gillis & Hanner, 2022; Supplemental Figs. S3-S4) and are provided in the
Supplementary;

For character-based analyses, all datasets were collapsed to haplotypes using FaBox Haplotype
Collapser (Villesen, 2007) to exclude identical sequences and to reduce the number of sequences
to informative taxa for the phylogenetic tree construction. Maximum Likelihood trees with 500
bootstrap replicates were calculated for the global Collembola and global Oribatida and the 28S
rDNA datasets (Oppiella, Ceratophysella, Folsomia) using the optim.pml( ) function of the
phangorn package (Schliep, 2011, Schliep et al., 2017)

Representativeness of haplotype diversity in datasets:

Rarefaction was conducted for all haplotypes for which we had geographic sampling information
(Collembola: C. denticulata, F. quadrioculata; Oribatida: 4. coleoptrata, N. silvestris, O. nova, P.
peltifer, S. magnus). Analysis was performed with the iNEXT package (Chao et al., 2014; Hsie,
Ma & Chao, 2022) in R with 1,000 bootstrap replicates, using species richness (q=0) and

exponential Shannon entropy (q=1) as measures of diversity.

Results

Datasets included 970 Oribatida and 612 Collembola sequences of COI, and alignments were
between 507 bp and 657 bp long (Table 2) and covered the standard barcoding region of COI.
Only a few sequences were below 500 bp long, predominantly in the oribatid mite genus

Steganacarus and the Collembola genus Folsomia.

Barcoding gap threshold detection for different genetic distances

The global datasets (all Oribatida, all Collembola) had relatively high cumulative errors (false
positives and false negatives, Fig. 1; Table 3). The optimized local barcoding threshold for the
local datasets differed among taxa (Fig. 1; Table 3). One dataset had a narrow threshold without
species mismatches (Achipteria, 15 %), others had large threshold ranges without mismatches
(Nothrus, Platyntohrus and Ceratophysella), and for the remaining datasets it was not possible to
define a barcoding threshold without any mismatches (Oppiidae, Steganacarus, Folsomia). The

optimal barcode thresholds at genus level exceeded the standard barcoding threshold of 2 %-3 %
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by 1 % (Platynothrus) and up to 6 % (Achipteria), except in the two genera Nothrus and
Ceratophysella.

Distance-based specimen assignment with ASAP

The ASAP algorithm provides scores for the ten most probable partitions. For all datasets, and in
all partitions, ASAP found more subsets than nominal species, i.e. the datasets likely contained
more (i.e., cryptic) species than were morphologically determined (Table 4). The ASAP partition
with the smallest number of subsets increased the number of morphological species to hypothetical
species (or genetic lineages) from five to seven (Nothrus, Platynothrus), from eleven to 21
(Ceratophysella), from three to 14 (Achipteria), from six to 25 (Steganacarus) and from nine to
43 (Folsomia). The highest numbers of hypothetical species, or additional genetic lineages, were
detected in species with the densest sampling, i.e. A. coleoptrata, S. magnus, C. denticulata and F.
quadrioculata (Table 1). Interestingly, in the two parthenogenetic genera Nothrus and
Platynothrus, only two additional hypothetical species were detected by ASAP, which is little

compared to the other genera.

Distance-based barcoding gap with ASAP

Idealfor, accurate specimen assignment, is a gap between the largest genetic distance within and
the smallest distance between species. We compared the distribution of intra- and interspecific
distances of nominal species with that of the genetic lineages inferred by ASAP (Fig. 2), selecting
the partitions with the least number of subsets. Our analysis consistently demonstrated that genetic
distances of COI within and between morphologically assigned species overlap, which makes
accurate species assignment impossible. The parthenogenetic oribatid mite genus Nothrus was a
single exception, which showed a clear barcoding gap for morphologically assigned species. When
genetic lineages (ASAP subsets) were considered, a barcoding gap between intra- and interspecific
distances was present. Overall, the assignment of genetic lineages to morphospecies reduced the
overlap of intra- and interspecific genetic distances considerably in all datasets, However, the
effect was much more pronounced in Collembola than Oribatida and generated a barcoding gap
that spanned a range of more than 10 % between intra- and interspecific genetic distances. Among
Oribatida, the effect of splitting morphotypes into genetic lineages was not that strong. However,
for two Oribatida datasets, Achipteria and Platynothrus, the choice of using the partition with the

lowest number of subsets was too conservative because the resulting barcoding gap was very
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narrow. The barcoding gap thresholds estimated for the partition with the lowest number of subsets
ranged in Oribatida from 6.9 % (Achipteria), 12.2 % (Nothrus), 15.0 % (Steganacarus,
Platynothrus, all Oribatida) and 15.8 % (Oppiidae); in Collembola from 8.0 % (Folsomia), 11.3 %
(all Collembola) and 13.8 % (Ceratophysella). Notably, the intraspecific distances of the genetic
lineages of Platynothrus show three clusters in distribution frequencies (< 3 %, at 3-8 %, 14-17 %)

that likely represent three genetic lineages in P. peltifer (Table 1).

The outliers, i.e. single datapoints scattered within the range of the barcoding gap, likely belong to
sequences that were considerably shorter than the average sequences. Both Collembola datasets
were more heterogeneous in sequence lengths than the Oribatida datasets. Only the datasets of
Steganacarus and Oppiidae also had very short sequences compared to the median sequence
lengths, and both also had outliers after splitting morphotypes into genetic lineages. A few outliers
remained for the genus Nothrus, which likely belonged to the species N. palustris and N. pratensis.
After splitting both species into two eenetic lineages as proposed by ASAP, the outliers
disappeared except for one, which likeiy velonged to one very short sequence (399 bp) of N.

anauniensis.

Character-based specimen assignment with Maximum Likelihood

Reliability of specimen assignment based on phylogenetic inference and therefore on molecular
characters was very poor in Collembola (Fig. 3). The two genera Ceratophysella and Folsomia
and the species within each genus were not monophyletic. Species clustered within clades of
different species several times. The topology of Oribatida supported monopehyly for most genera
(Fig. 4). The species in the genus Nothrus and Platynothrus were also monophyletic. Only Nothrus
pratensis separated into two highly supported, non-monophyletic clades. Within the genus
Steganacarus all species were monophyletic, except S. magnus which formed five clades, two with
100 % bootstrap support. The species S. carinatus was monophyletic, but separated into two highly
supported clades. One sequences of S. applicatus clustered within S. carinatus while the remaining
sequences were monophyletic with very high support. Possibly this single sequence represents a
misidentified individual. Most genera of Oppiidae were monophyletic, except for Disorrhina and
Oppia. The sequences assigned to Oppia sp. were sister to one clade of O. nitens with very high
bootstrap support. It is possible that these sequences belong to the species O. nitens. All remaining

species were monopohyletic with 100 % bootstrap support. The genus Achipteria was represented
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by only three species. The two species A. howardi and A. catskillensis were monophyletic, the

sequences of A. coleoptrata were non-monophyletic.

Nuclear gene

The uncorrected p-distances among 28S rDNA in C. denticulata were relatively high; across all
sequences the maximum genetic distances were 5.6 %, but the mean distances were only 0.16 %
(median 3.2 %). The different haplotypes corresponded very well with the seven genetic lineages
suggested by ASAP (Supplemental Table S2), i.e. each 28S rDNA haplotype included a single
ASAP lineage. However, the two datasets were not entirely congruent, i.e. seven specimens of the
28S rDNA dataset were not represented as COI sequences, and four specimens in the COI dataset
were not present in the 28S rDNA dataset. In F. quadrioculata, the 24 genetic lineages did not
reflect at all the 28S rDNA sequences. The nuclear gene represented only three haplotypes with
uncorrected p-distances below 1 % (max: 0.35 %, mean: 0.16 %, 0.18 %). These 28S rDNA
haplotypes comprised nine, three and one COI lineages that were identified by ASAP, respectively.
Notably, only 56 specimens of 28S rDNA were represented from the 166 specimens of the COI
nucleotide dataset. Among O. nova p-distances of 28S rDNA were also small, below 2 %
(maximum 1.98 %, mean 0.43 %, median 0.29 %). In contrast to the two species above, each of
the nine genetic lineages of O. nova supported by ASAP carried different 28S rDNA haplotypes,
e.g. in one common COI lineage that comprised 30 specimens (lineage 1; Supplemental Table

S2), individuals represented twelve (slightly) different 28S rDNA haplotypes.

Representativeness of sampling effort

Rarefaction curves (Fig. 5) showed that Oribatida species had more haplotypes than Collembola
and that sexual Oribatida species (4. coleoptrata, S. magnus) had more haplotypes than
parthenogenetic Oribatida (P. peltifer, N. silvestris). Further, Collembola reached saturation in
species diversity at a sampling size of less than 200 individuals (for COI and 28S rDNA), the
pattern was similar for the parthenogenetic Oribatida N. silvestris. However, the parthenogenetic
Oribatida P. peltifer and both sexual Oribatida species did not reach saturation at a sampling size

of more than 600 individuals and the expected diversity exceeded that of 200 haplotypes.

Discussion
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This study tested the validity of a barcoding gap and the applicability of the standard barcoding
gene COI for species assignment in two of the most species rich and abundant taxa of soil-living
invertebrates, Collembola and Oribatida. The analysed datasets comprised two genera of
Collembola with eleven and nine species, respectively. Oribatida datasets comprised four genera

with three to six species per genus, and one family-level dataset with ten species in six genera.

Our results showed that correct species assignment was possible within some genera, but not all.
However, both distance- and character-based methods were not able to assign species without
mismatches when all Collembola or all Oribatida were analysed together. This is likely due to the
different ranges of intraspecific genetic distances, demonstrating the absence of a general (global)
barcoding gap for COI in these taxa. The genetic divergence separating intra- and interspecific
distances differed among taxa and exceeded the standard species threshold of 3 % intraspecific
genetic distance in all but one species, indicating that taxa-specific thresholds should be applied
for correct specimen assignment (Phillips, Gillis & Hanner, 2022). Here, the application of
algorithms that dynamically adjust thresholds for sequence clusters, and therefore apply flexible
thresholds, could improve species assignment in soil invertebrates (James, Luczak & Girgis, 2018;
Chiu & Ong 2022).

Absence of a global barcoding gap in the COI gene seems to be particularly relevant for soil-living
animals and hampers the application of automated specimen assignments in DNA-based
biodiversity surveys such as metabarcoding. Absence of a global barcoding gap had also been
demonstrated for Annelida, among which earthworm taxa accounted for one third of interspecific
comparisons with 0 % genetic divergence (Kvist, 2016). In metabarcoding studies, Collembola
had a high failure rate and high numbers of false positives for species assignments based on public
databases and COI (Recuero, Etzler & Caterino, 2023). Among mites, specimen assignment is in
general correct at least to family and order level (Oliverio et al., 2018; Ustinova et al., 2021;
Young, deWaard & Hebert, 2021; Young & Hebert, 2022; Recuero, Etzler & Caterino 2023).
General explanations for failures in species assignments include the lack of completeness and
misidentified individuals in reference databases, geographic underrepresentation of species and a
neglect of assigning genetic lineage identities to sequences in reference databases (Kvist, 2016;
Martinsson, Rhoden & Erseus 2016; Young et al., 2019; Young, deWaard & Hebert, 2021;
Phillips, Gillis & Hanner, 2022; Recuero, Etzler & Caterino, 2023). The rarefaction analysis

demonstrated that genetic diversity is exceptionally high within morphospecies of soil-living
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invertebrates, and more genetic diversity is to be expected in additional samples. In particular,
rarefaction curves for Oribatida did not reach saturation without sampling hundreds of additional
individuals. For Collembola the number of expected COI haplotypes is lower as curves reached
saturation at an expected sampling size of about 200 individuals, indicating that required sampling

effort can be reached sooner than in Oribatida.

Results of this study provide an additional explanation why molecular species assignment often
fails in Collembola and Oribatida. The more detailed analysis of the individual datasets at genus
level showed that intra- and interspecific distances of taxa greatly overlapped, demonstrating the
absence of a barcoding gap between species for all taxa, except for the parthenogenetic Oribatida
genus Nothrus. The automated partitioning of datasets based on genetic distances (ASAP)
suggested that each morphospecies (except most species within Nothrus and Platynothrus) consists
of several genetic lineages, indicating the presence of putative or cryptic species. After assigning
individuals according to genetic lineages, a barcoding gap between intra- and interspecific
distances became apparent, but it still exceeded the standard threshold of 3 %. Alternative
partitions in the species assignment analyses also opted for smaller thresholds, but resulted in even
more genetic lineages. From a conservative approach, the two sexual Oribatida species A.
coleoptrata and S. magnus comprised twelve and 18 genetic lineages, respectively, with the
relatively high barcoding threshold estimates of 6.9 % (4. coleoptrata) and 15.0 % (S. magnus).
The Collembola species C. denticulata consisted of seven genetic lineages (barcoding gap of
13.8 %) and F. quadrioculata of 24 genetic lineages (barcoding threshold of 8.0 %). Notably, the
parthenogenetic Oribatida species O. nova separated only into nine genetic lineages, P. peltifer
into three and N. silvestris remained a single species which was consistent with morphological

assignments.

In contrast to our hypothesis, the detection of a barcoding gap and thus species delimitation worked
well for the parthenogenetic, but not for the sexual taxa. Species boundaries of Nothrus were clear
and unequivocal. However, intra- and interspecific distances among Platynothrus overlapped,
likely due the presence of three genetic lineages in P. peltifer. This is consistent with previous
studies that identified seven genetic lineages in P. peltifer based on a transcontinental sampling,
and demonstrated that lineages are consistent with species based on the 4X rule of parthenogenetic

speciation (Heethoff et al., 2007; Birky & Barraclough, 2009; Birky et al., 2010).
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Detection of deeply divergent genetic lineages in morphological consistent species is a common
phenomenon and detection rate of cryptic species accelerated with the application of molecular
identification tools (Bickford et al., 2007; Pfenninger & Schwenk, 2007; Skoracka et al., 2015;
Struck et al., 2018). However, it remains important to consider these putative species carefully
based on barcoding approaches, as delimitation is based only on a single genetic marker. The
putative genetic lineages were highly congruent with nuclear haplotype diversity in C. denticulata,
but not in F. quadrioculata and O. nova. Interestingly, genetic variance of nuclear and
mitochondrial genes was opposite in the two latter species. In F. quadrioculata a single nuclear
haplotype comprised many COI lineages, but in O. nova a single COI lineage comprised several
nuclear haplotypes. This suggests that different selective forces might act on mitochondrial and
nuclear genes in the two species. The higher mutation rate of mitochondrial compared to nuclear
genes explains the higher diversity in COI in F. quadrioculata, indicating relatively recent
divergence of lineages that had not yet been accompanied by variation in the nuclear gene. By
contrast, in O. nova the mitochondrial gene shows relatively little variation, which likely is related
to stronger purifying selection in parthenogenetic Oribatida (Brandt et al., 2017, Brandt et al.,
2021). The two other parthenogenetic species (N. silvestris and P. peltifer) also show very little

genetic variation, unfortunately, no additional genes were available for these taxa.

Our results demonstrate; that soil-living microarthropods comprise deeply divergent genetic
lineages. Barcoding or metabarcoding studies based on single genes will therefore likely result in
high numbers of unassigned reads or overestimate species numbers and consequently misrepresent
species richness in communities. Potential species status should therefore be corroborated with an
integrative taxonomic approach using multiple genetic markers and, if possible, re-examination of
morphotypes (Schéffer, Kerschbaumer & Koblmiiller 2019; Lienhard & Krisper, 2021). However,
morphological differences are often subtle, making traditional determination of soil
microarthropods even more challenging. The nuclear 28S rDNA gene has been proposed as
secondary barcoding marker for Oribatida (Lehmitz & Decker, 2017), but its applicability in a
wider geographic range and different habitats has not been tested. Alternatively, metagenomic
studies provide multiple genes per specimen which likely improves accuracy in specimen
assignment. However, similar to metabarcoding based on single genes such as COI and/or 28S
rDNA, successful application of metagenomics depends on representative reference databases.

Notably, single reference genomes, or one/few barcodes per species will not cover intraspecific
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variation. Species with high intraspecific genetic variance would require “pan-barcodes” i.e.,
multiple barcodes from individuals that were sequenced across the range of a species to cover the

extent of its intraspecific genetic variance.

The limited taxon sampling in this study demonstrates that even for the relatively intensive
sequenced COI gene, databases do not provide taxonomic breadth for reliable species delimitation
of Collembola and Oribatida. It is possible that species assignment will improve with a better
reference database, but it is also important to understand the mechanisms that explain the
barcoding gap, i.e., the substantial genetic divergence of COI sequences between closely related
Collembola and Oribatida taxa. It is unknown if genetic variance is neutral or adaptive, or if
mitonuclear or environmental interactions (Hill, 2020) generate the genetic structure in soil-living
microarthropods. Fixation of neutral variance is one likely mechanism in the investigated taxa.
The high numbers of haplotypes and nucleotide diversity suggest that COI is already highly
saturated in these species. Many Collembola and Oribatida species are very abundant in local
communities, suggesting high effective population sizes. This could enable the maintenance of
neutral allelic variation and blur a barcoding gap in order to maintain the highly conserved protein
sequence of COI. Repeated episodes of extreme population bottlenecks can also generate a
barcoding gap between species. However, this is unlikely because high genetic variance in general
argues against repeated population bottlenecks. However, the Oribatida species N. silvestris shows
exceptionally low genetic variance compared to the other taxa, and consists of a single genetic
lineage. It is possible that the low genetic variance resulted from a bottleneck this species
experienced during Quaternary glaciations (<2.6 mya). Molecular divergence times among genetic
lineages in the other species are several million years old, most date back to the Miocene (23-5
mya) and support the accumulation of neutral variance by genetic drift in Oribatida and founder
events in Collembola (Rosenberger et al., 2013; von Saltzwedel, Scheu & Schaefer, 2016).
Directional selection on mitochondrial genotypes and disrupted gene flow can lead to rapid
divergence among populations. Collembola and in particular Oribatida are poor active dispersers
due to their small body size, which reduces gene flow among populations and is a possible
explanation for mitochondrial lineages corresponding with nuclear 28S rDNA haplotypes and
sampling locations in C. denticulata (Porco et al., 2012b; von Saltzwedel, Scheu & Schaefer,
2016). However, reduced gene flow seems unlikely in F. quadrioculata due to the low genetic

variance in the nuclear 28S rDNA gene compared to the highly variable mitochondrial COI gene.
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Genetic distances among lineages suggest maintenance of relatively ancient divergences, which
argues against rapid divergence and disrupted gene flow. Further, this explanation does not apply
for parthenogenetic species. Apparently, different mechanisms seem to account for the genetic
variance in COI within species of Collembola and Oribatida. This is not surprising, considering
that the species in this study likely are separated by tens to hundreds of millions of years, each
having its own evolutionary trajectory (Schaefer et al., 2010; Schaefer & Caruso, 2019; Leo et al.,
2019; Katz, 2020; van Straalen, 2021).

This study showed that metabarcoding using the standard gene COI is problematic when
investigating biodiversity of soil invertebrates. Advances in second- and third-generation
sequencing technologies can significantly contribute to improve the reliability of barcodes for
genetically diverse and potentially cryptic species. Proposed as an alternative to small barcoding
fragments, low coverage shotgun sequencing and genome skimming offer increased species
discrimination by covering entire organellar genomes and ribosomal sequences (Coissac et al.,
2016). PacBio sequencing technology generates reads of approximately 3 kb with very low error
rates. This enables sequencing of nearly full-length marker genes and their flanking regions, which
improves taxonomic resolution and reduces spurious Operational Taxonomic Units (OTUs)
(Terdersoo & Anslan, 2019). Notably, genomes of Collembola and Oribatida typically range
between 350 and 500 Mb, enabling to obtain reasonable sequencing read depth at moderate prices.
Further, wet-lab protocols for genome sequencing of small, non-model invertebrates have been
developed (Collins et al., 2023) and the results underscore the importance of taking intragenomic
variance into account in order to integrate genetic and morphological species boundaries. We
propose that characterizing pan-genomes is crucial for identifying species in soil invertebrates.
(Tettelin et al., 2005). This approach will also contribute to develop informative barcoding genes
(pan-barcodes) in soil invertebrates that lack a distinct barcoding gap. A pan-genome includes the
complete set of genes shared by all individuals within a species and consists of conserved (core)
and variable (accessory) gene regions (Golicz et al., 2020). The core genome covers all genes that
are present in all individuals and the accessory genome includes the genomic regions that are
variable among species. This variance is often due to ecological, geographical or reproductive
boundaries (Reno et al., 2005). Accordingly, pan-genomes offer a holistic view of a species’
genome, allowing to identify both conserved and variable regions that are suitable for designing

robust barcoding markers, in particular in taxonomically challenging organisms.
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Conclusions

This study demonstrated that intra- and interspecific genetic divergences in the standard barcoding
gene COI overlap in several species of Collembola and Oribatida. This is violating the assumption
of a barcoding gap, which is a precondition for molecular species assignment and questions the
applicability of the standard barcoding gene COI for soil-living microarthropods. Further, the
presence of deeply divergent genetic lineages within morphologically consistent species
emphasizes that (meta-)barcoding results solely based on a single genetic marker should be
interpreted carefully. Based on COI, morphologically consistent species comprised numerous
cryptic species. Without additional genetic and morphological data, the taxonomic status of these
cryptic species is questionable. The assignment of genetic lineages to sequences in references
databases and application of flexible or species-specific thresholds could improve specimen
assignment. However, the strong discrepancy between morphological conservativeness and
genetic variance of many soil invertebrates calls for a more general approach. We are promoting
to develop barcoding approaches with alternative sequencing technologies that generate more
genetic data than metabarcoding, like low-coverage shotgun sequencing of genomes (e.g., genome
skimming and metagenomics) or long-read sequencing of marker genes using third generation
sequencing technologies. Further, we advocate the construction and analysis of pan-genomes to
understand genetic species boundaries and to develop reliable barcoding markers that cover the
whole range of genomic variance of species (pan-barcodes). Regardless of the approach taken, it
is essential for reference databases to cover the intraspecific variability of a species throughout its

geographic range.
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Figure legends

Figure 1. Summary of the barcoding threshold optimization of the global and local datasets.
Threshold between 1 % and 20 % genetic distances were analysed at intervals of 1 %. Light grey
bars indicate the number of false positive (no conspecific matches within threshold of query), dark
grey bars are false negatives (non-conspecific species match within threshold distance of query)
of the species assignments for the respective threshold (x-axis). Note the different scales of the y-

axis.

Figure 2. Distribution of intra- (red violins) and interspecific (yellow violins) genetic
distances in morphological and genetic entities in Collembola and oribatid mites. Distances
were calculated for each dataset based on the nominal species names (Morphotypes) and using the
same dataset but assigning sequences to genetic lineages (ASAP). The ASAP partition with the
smallest number of subsets was used to assign genetic lineages. Specimens that overlap in intra-
and interspecific distances cannot be assigned accurately to species based on COI. The splitting of
the dataset into genetic lineages created a barcoding gap that improved the accuracy of specimen
assignment. Solid blue lines indicate the 3 % genetic distances threshold, dashed lines represent
the genetic distances of the barcoding gap calculated with ASAP for the respective dataset
(Collembola: 11.3 %, Ceratophysella: 13.8 %, Folsomia: 8 %, Oribatida: 15 %, Achipteria: 6.9 %,
Steganacarus: 15 %, Oppiidae: 15.8 %, Nothrus: 12 %, Platynothrus: 15 %). Notice the different

scales of the y-axis.

Figure 3. Phylogenetic tree of all Collembola for character-based species assignment.
Likelihood tree based on 313 haplotypes of 612 COI sequences and 500 bootstrap replicates.
Monophyletic nodes were collapsed, bootstrap values >50 % are shown on nodes. The two genera
Ceratophysella and Folsomia are not monophyletic, and species within genera are also not

monophyletic.

Figure 4. Phylogenetic tree of all Oribatida for character-based species assignment.
Likelihood tree based on 514 haplotypes of 970 COI sequences and 500 bootstrap replicates.

Monophyletic nodes were collapsed, bootstrap values >50 % are shown on nodes. Grey circles on
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branches highlight monophyletic lineages. Red circles highlight non-monophyletic lineages,
indicating species for which character-based species assignment is problematic or equivocal. Grey
circles with red outlines indicate species that are monophyletic but split into at least two clades.
All genera but Achipteria, Dissorhina, Oppia and Oppiella are monophyletic. The single sequence
of Oppiella subpectinata was sister to Berniniella and potentially represents a misidentified

individual. A phylogenetic tree of 28S rDNA haplotypes is provided in Supplemental Figure S5.

Figure 5. Rarefaction of Collembola and Oribatida species. Only species with sampling site
information are included for quantifying the representatives of genetic diversity in the different
datasets. Collembola species reach soon saturation in haplotype diversity, while sexual Oribatida
species (4. coleoptrata, S. magnus) do not reach saturation. The parthenogenetic Oribatida species
P. peltifer also reaches saturation close to a sampling size of 600 individuals, but expected diversity
is lower with less than 200 haplotypes (note the different scales of the y-axis). The parthenogenetic
Oribatida species N. silvestris shows the lowest diversity and reaches soon saturation, indicating
that sampling size was almost representative for the expected haplotype diversity in this species.
Solid lines indicate the rarefaction, dotted lines the extrapolation. The tested diversity measures
using iINEXT were species richness (q=0, red lines) and Shannon diversity (q=1, blue lines).
Notably, the two indices are more similar in Collembola than in Oribatida. Rarefaction plots of

28S rDNA haplotypes are provided in Supplemental Figure S6.
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Summary of the barcoding threshold optimization of the global and local datasets.

Threshold between 1 % and 20 % genetic distances were analysed at intervals of 1%. Light

grey bars indicate the number of false positive (no conspecific matches within threshold of

query), dark grey bars are false negatives (non-conspecific species match within threshold

distance of query) of the species assignments for the respective threshold (x-axis). Note the

different scales of the y-axis.
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Figure 2

Figure 2. Distribution of intra- (red violins) and interspecific (yellow violins) genetic
distances in morphological and genetic entities in Collembola and oribatid mites.

Distances were calculated for each dataset based on the nominal species names
(Morphotypes) and using the same dataset but assigning sequences to genetic lineages
(ASAP). The ASAP partition with the smallest number of subsets was used to assign genetic
lineages. Specimens that overlap in intra- and interspecific distances cannot be assigned
accurately to species based on COl. The splitting of the dataset into genetic lineages created
a barcoding gap that improved the accuracy of specimen assignment. Solid blue lines
indicate the 3 % genetic distances threshold, dashed lines represent the genetic distances of
the barcoding gap calculated with ASAP for the respective dataset (Collembola: 11.3 %,
Ceratophysella: 13.8 %, Folsomia: 8 %, Oribatida: 15 %, Achipteria: 6.9 %, Steganacarus: 15
%, Oppiidae: 15.8 %, Nothrus: 12 %, Platynothrus: 15 %). Notice the different scales of the y-

axis.
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Figure 3

Phylogenetic tree of all Collembola for character-based species assignment.

Likelihood tree based on 313 haplotypes of 612 COI sequences and 500 bootstrap replicates.
Monophyletic nodes were collapsed, bootstrap values > 50 % are shown on nodes. The two
genera Ceratophysella and Folsomia are not monophyletic, and species within genera are

also not monophyletic.
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Figure 4

Phylogenetic tree of all Oribatida for character-based species assignment.

Likelihood tree based on 514 haplotypes of 970 COI sequences and 500 bootstrap replicates.
Monophyletic nodes were collapsed, bootstrap values > 50 % are shown on nodes. Grey
circles on branches highlight monophyletic lineages. Red circles highlight non-monophyletic
lineages, indicating species for which character-based species assignment is problematic or
equivocal. Grey circles with red outlines indicate species that are monophyletic but split into
at least two clades. All genera but Achipteria, Dissorhina, Oppia and Oppiella are
monophyletic. The single sequence of Oppiella subpectinata was sister to Berniniella and
potentially represents a misidentified individual. A phylogenetic tree of 28S rDNA haplotypes

is provided in Supplemental Figure S5.
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Figure 5

Rarefaction of Collembola and Oribatida species.

Only species with sampling site information are included for quantifying the representatives
of genetic diversity in the different datasets. Collembola species reach soon saturation in
haplotype diversity, while sexual Oribatida species (A. coleoptrata, S. magnus) do not reach
saturation. The parthenogenetic Oribatida species P. peltifer also reaches saturation close to
a sampling size of 600 individuals, but expected diversity is lower with less than 200
haplotypes (note the different scales of the y-axis). The parthenogenetic Oribatida species N.
silvestris shows the lowest diversity and reaches soon saturation, indicating that sampling
size was almost representative for the expected haplotype diversity in this species. Solid
lines indicate the rarefaction, dotted lines the extrapolation. The tested diversity measures
using iINEXT were species richness (q=0, red lines) and Shannon diversity (g=1, blue lines).
Notably, the two indices are more similar in Collembola than in Oribatida. Rarefaction plots of

28S rDNA haplotypes are provided in Supplemental Figure S6.
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Table 1(on next page)

Summary of oribatid mites and Collembola used in this study for identifying a barcoding
gap in soil-living invertebrates.

Bold taxa have the broadest and densest geographic sampling within the investigated genus
and sampling range is comparable among all genera, except for Oppiidae, which covered a
smaller sampling area. Accession numbers of specimens are provided in the alignments in
the supplementary material. The column ASAP refers to the number of genetic lineages
(subsets) for each species detected by the ASAP analysis (see Table 4). One or more
individuals of species marked with asterisk (*) were assigned to the same genetic lineage
(ASAP subset).
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Table 1. Summary of oribatid mites and Collembola used in this study for identifying a barcoding gap
in soil-living invertebrates. Bold taxa have the broadest and densest geographic sampling within the
investigated genus and sampling range is comparable among all genera, except for Oppiidae, which
covered a smaller sampling area. Accession numbers of specimens are provided in the alignments in the
supplementary material. The column ASAP refers to the number of genetic lineages (subsets) for each
species detected by the ASAP analysis (see Table 4). One or more individuals of species marked with
asterisk (*) were assigned to the same genetic lineage (ASAP subset).

no. no.
taxon congeneric inds. ASAP taxon congeneric inds. ASAP
all Oribatida 853 all Collembola 612
Achipteria A. catskillensis 11 1 Ceratophysella C. bengtssonii 20 1
A. coleoptrata 138 12 C. communis 31 2
A. howardi 4 1 C. comosa 7 1
total 153 14 C. denticulata 60 7
Nothrus N. anauniensis 20 1 C. granulata 7 2
N. borussicus 8 1 C. liguldorsi 12 2
N. palustris 10 2 C. longispina 59 1
N. pratensis 5 2 C. pseudarmata 44 2
N. silvestris 100 1 C. scotica 4 1
total 143 7 C. skarzynskii 17 1
Platynothrus P. capillatus 4 1 C. succinea 5 1
P. peltifer 160 3 total 266 21
P. thori 4 1 Folsomia F. bisetosa 15 *3
P. yamasakii 81 1 F. candida 47 3
total 249 6 F. ciliata 6 1
F. fimentaria (incl.
Oppiidae Aeroppia sp. 6 1 L1-L3) 28 5
Berniniella
hauseri 2 1 F. nivalis 39 1
Dissorhina ornata 11 2 F. octoculata 7 *3
Multioppia sp 6 1 F. peniculata 15 2
Oppia nitens 92 *3 F. quadrioculata 166 24
Oppia sp. 3 *2 F. sexoculata 23 2
Oppiella nova 110 9 total 346 43
Oppiella
subpectinata 1 1
Oppiella
uliginosa 3 1
Ramusella
insculpta 3 1
total 237 24
Steganacarus S. applicatus 14 *2
S. carinatus 8 *2
S. crassisetosus 6 1
S. magnus 140 18
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S. similis 5 1
S. spinosus 15 1
total 188 25
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Table 2(on next page)

Summary statistics of datasets.

(A) Information on number of genera and species per taxon, the minimum, maximum,
median and mean number of sequences used. Oppiidae were analysed on a higher
taxonomic level, i.e. at genus instead of species level. (B) Sequence information of datasets,
giving the number of sequences, the length of the alignment, the minimum, maximum,
median mean and median length of sequences and the number of sequences that were

below 500 bp per taxon.
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Table 2. Summary statistics of datasets. (A) Information on number of genera
and species per taxon, the minimum, maximum, median and mean number of
sequences used. Oppiidae were analysed on a higher taxonomic level, i.e. at
genus instead of species level. (B) Sequence information of datasets, giving the
number of sequences, the length of the alignment, the minimum, maximum,
median mean and median length of sequences and the number of sequences that
were below 500 bp per taxon.

(A) taxa information
genera species min max median mean
all Oribatida 10 28 1 160 8 35
Achipteria 1 4 138 11 51
Nothrus 1 5 100 10 29
Platynothrus 1 4 160 42 62
Steganacarus 1 6 5 140 11 31
all Collembola 2 20 4 166 18 31
Ceratophysella 1 11 4 60 17 24
Folsomia 1 9 6 166 23 38
families genera
Oppiidae 1 7 2 114 6 34
(B) alignment information (bp)
no. sequences length min  max mean median no. sequences <500 bp
all Oribatida 970 657 371 657 565 558 32
Achipteria 153 507 507 507 507 507
Nothrus 143 580 371 580 572 580 2
Platynothrus 249 558 417 558 544 558
Steganacarus 188 591 476 591 551 526 21
all Collembola 612 583 310 583 564 583 48
Ceratophysella 266 651 485 651 642 651 1
Folsomia 346 583 310 583 552 583 47
Oppiidae 237 657 459 657 632 657 1
1
2
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Table 3(on next page)
Range of barcoding gap thresholds and cumulative errors for all datasets.

The cumulative error is the sum of false positives and false negatives. Except for Nothrus and

Ceratophysella the barcoding gap is not present in the investigated species, or exceeds the

standard threshold of 2 % - 3 %.
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1
Table 3. Range of barcoding gap thresholds and cumulative errors for
all datasets. The cumulative error is the sum of false positives and false
negatives. Except for Nothrus and Ceratophysella the barcoding gap is
not present in the investigated species, or exceeds the standard
threshold of 2%-3%.

optimal barcoding gap threshold
cumulative error smallest cumulative
=0 error

all Oribatida - 1% (error: 26)
Achipteria 15% 9%-14 % (error: 1)
Steganacarus - 8%-15% (error: 8)
Nothrus 2%-17% 1%, 18% (error: 2)
Platynothrus > 4% 2%-3% (error: 1)
Oppiidae - 8%-15 % (error: 3)
all Collembola - 6%-11% (error: 9)
Ceratophysella 3%-11% 2% (error: 3)
Folsomia - 6%-14% (error: 9)

2

3
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Table 4(on next page)

Summary of the estimated number of genetic lineages for each local dataset.

The number of morphologically determined species (No. of species) is given for each dataset
together with the number of genetic lineages (No. of subsets) estimated by ASAP. For each
dataset, the partition with the lowest number of subsets and the highest ranks was selected.
The respective scores (including ranks) and statistic support are provided, along with the
estimated genetic distance threshold (Threshold distance) that separates the individual

subsets. For a detailed list of subsets per species refer to Table 1.
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Table 4. Summary of the estimated number of genetic lineages for each local dataset. The
number of morphologically determined species (No. of species) is given for each dataset
together with the number of genetic lineages (No. of subsets) estimated by ASAP. For each
dataset, the partition with the lowest number of subsets and the highest ranks was selected.
The respective scores (including ranks) and statistic support are provided, along with the
estimated genetic distance threshold (Threshold distance) that separates the individual subsets.
For a detailed list of subsets per species refer to Table 1.

No. of No. of ASAP- P-value Threshold
species subsets score (rank) W (rank) distance [%]

1.20e-04 8.12e-06

all Oribatida 28 69 25.0 (4) (46) 15.0
2.99e-02

Achipteria 3 14 5.5 (3) 7.13e-04 (8) 6.9
1.00e-05

Nothrus 5 7 2.0 (2) 5.53e-04 12.2
1.00e-05

Platynothrus 4 6 4.5 (1) 3.39e-05 (3) 15.0
1.60e-04

Steganacarus 6 25 3.5 (1) 1.79e-04 (6) 15.0
3.00e-04

Oppiidae 10 24 3.00 (1) 3.17e-04 (5) 15.8
1.00e-05 6.28e-05

all Collembola 20 64 12.5 (2) (23) 11.3
2.02e-03

Ceratophysella 11 21 5.5 (4) 3.93e-04 (7) 13.8
1.00e-05

Folsomia 9 43 4.5 (1) 1.70e-04 (8) 8.02
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