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ABSTRACT
The impact of temperature on reptile physiology has been examined through two
main parameters: locomotor performance and metabolic rates. Among reptiles,
different species may respond to environmental temperatures in distinct ways,
depending on their thermal sensitivity. Such variation can be linked to the ecological
lifestyle of the species and needs to be taken into consideration when assessing the
thermal influence on physiology. This is particularly relevant for snakes, which are a
very functionally diverse group. In this study, our aim was to analyze the thermal
sensitivity of locomotor performance and resting metabolic rate (RMR) in three
snake species from central Mexico (Crotalus polystictus, Conopsis lineata, and
Thamnophis melanogaster), highlighting how it is influenced by their distinctive
behavioral and ecological traits. We tested both physiological parameters in five
thermal treatments: 15 �C, 25 �C, 30 �C, 33 �C, and 36 �C. Using the performance
data, we developed thermal performance curves (TPCs) for each species and analyzed
the RMR data using generalized linear mixed models. The optimal temperature for
locomotion of C. polystictus falls near its critical thermal maximum, suggesting that it
can maintain performance at high temperatures but with a narrow thermal safety
margin. T. melanogaster exhibited the fastest swimming speeds and the highest
mass-adjusted RMR. This aligns with our expectations since it is an active forager, a
high energy demand mode. The three species have a wide performance breadth,
which suggests that they are thermal generalists that can maintain performance over
a wide interval of temperatures. This can be beneficial to C. lineata in its cold habitat,
since such a characteristic has been found to allow some species to maintain adequate
performance levels in suboptimal temperatures. RMR increased along with
temperature, but the proportional surge was not uniform since thermal sensitivity
measured through Q10 increased at the low and high thermal treatments. High Q10 at
low temperatures could be an adaptation to maintain favorable performance in
suboptimal temperatures, whereas high Q10 at high temperatures could facilitate
physiological responses to heat stress. Overall, our results show different
physiological adaptations of the three species to the environments they inhabit. Their
different activity patterns and foraging habits are closely linked to these adaptations.
Further studies of other populations with different climatic conditions would provide
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valuable information to complement our current understanding of the effect of
environmental properties on snake physiology.

Subjects Ecology, Zoology
Keywords Ecophysiology, Metabolism, Performance breadth, Endemic species, Thermal tolerance

INTRODUCTION
Temperature affects the biology of ectotherms at all levels, from physiology to behavior,
and these animals have developed various adaptations to balance such effects (Abram
et al., 2017). In this sense, different species may respond to environmental temperatures in
distinct ways, depending on their sensitivity to environmental temperatures. The extent to
which temperature influences the physiological performance of an organism is called
thermal sensitivity, a continuum ranging from thermal specialists whose performance is
strongly influenced by temperature, to thermal generalists that perform well over a broad
range of temperatures (Angilletta, 2009). How sensitive a species is to temperature can be
linked to behavioral, ecological, and evolutionary aspects (Bars-Closel, Camacho &
Kohlsdorf, 2018; Senior et al., 2019). In this context, it is of particular interest to determine
the magnitude and consequences of the effects of temperature on physiology, and this has
been one of the focal points of research in non-avian reptiles (hereinafter “reptiles”).

The impact of temperature on physiology has been examined through two main
parameters: performance, primarily assessed through locomotion speed, and metabolic
rates, primarily evaluated by the rates of O2 consumption or CO2 production (see Bennett,
1990; Angilletta, Niewiarowski & Navas, 2002; de Andrade, 2016; Tomlinson, 2019). The
thermal sensitivity of performance is analyzed by developing thermal performance curves
(TPCs), which are continuous equations that describe how performance changes as a
function of body temperature (Taylor et al., 2021). TPCs have a distinctive shape, and they
follow a pattern in which performance increases along temperature up to an optimal level
beyond which it decreases rapidly (Angilletta, 2006; Tomlinson, 2019). Useful parameters
and information can be obtained after generating a TPC, such as the optimal temperature
at which performance is maximized (To) and performance breadth (B80), which is the
temperature interval in which favorable performance (usually specified as 80% of
maximum performance) can be maintained (Angilletta, Niewiarowski & Navas, 2002).
Furthermore, the development of TPCs also encompasses the determination of the thermal
tolerance breadth (TTB) of the organisms, which is delimited by the critical maximum and
minimum temperatures (CTmax and CTmin). These values represent the threshold beyond
which the physiological functioning of an organism is lost and mark the start and end
points of the TPCs, where performance drops to zero (Taylor et al., 2021). CTmax is also the
reference point for determining the thermal safety margin (TSM), a concept defined by
Sinclair et al. (2016) as the difference between To and CTmax. The TSM represents thus the
margin available to organisms to sustain their performance prior to reaching their thermal
threshold. In this way, TPCs provide valuable insights into the relationship between
temperature and physiological performance.
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Metabolic rate is also strongly influenced by temperature, and resting metabolic rate
(RMR) is one of the most commonly used measurements to assess this relation, as it
increases with body temperatures. Different environmental conditions can affect metabolic
rates distinctively, leading to variable energetic costs at different temperatures. For
instance, species living in arid environments present low metabolic rates, a strategy that
may decrease energetic costs and dehydration risk (Dupoué, Brischoux & Lourdais, 2017).
On the other hand, species that live in cold habitats often have a higher RMR than those
from temperate or warm environments (Žagar et al., 2018; Plasman et al., 2020), an
adaptation that enables them to maintain high activity levels in non-favorable
environments, where the conditions can impair locomotor performance (Stellatelli et al.,
2022). The thermal sensitivity of metabolic rates has often been represented through the
Q10 index. This index represents how much metabolic rates change with a 10 �C increase
in body temperature. A Q10 value of two, for example, represents that the metabolic rate
has doubled (Schmidt-Nielsen, 1997). In reptiles, the most common scenario is that species
present a Q10 within the range of 2–3 (Kinoshita et al., 2018). However, a wide range of
variation has been reported in the group (Frappell & Daniels, 1991; Brashears & Denardo,
2013; Arnall, Kuchling & Mitchell, 2014).

The physiology of reptiles and their relationship with environmental temperatures are
closely linked to the habits of a species. In a comparative study among squamates, Andrews
& Pough (1985) report that fossorial species are the ecological group with the lowest
metabolic rates, although some species do not follow this trend (Wang & Abe, 1994). As for
aquatic reptiles, there is no clear evidence of differences between their metabolic rates and
those of terrestrial reptiles (Christian et al., 1996; Wallace & Jones, 2008). However, being
highly thermally sensitive can be beneficial to aquatic species, like the yellow-lipped Sea
Kraits (Laticauda colubrina), whose metabolic rate increases on land, boosting processes
like digestion, and decreases in water, allowing them to spend less energy while
submerging and foraging (Dabruzzi, Sutton & Bennett, 2012). In the terrestrial snake
Storeria dekayi, performance level increases with higher temperatures, but the degree of
thermal sensitivity varies across different microhabitats and locomotion modes (Gerald &
Claussen, 2007). Furthermore, there are also metabolic differences regarding foraging
mode. Active foragers require more energy to pursue prey, which leads them to have
higher metabolic rates than ambush predators (Aubret, Tort & Sarraude, 2015; Dupoué,
Brischoux & Lourdais, 2017).

In this context, it is important to take into consideration the variation in ecological and
behavioral traits when assessing the effects of temperature on reptile physiology. This is of
particular relevance when working with snakes, which are a very diverse group, both in
species richness and functional diversity (Tingle, Garner & Astley, 2024). Despite the great
diversity present in Mexico (Flores-Villela & García-Vázquez, 2014; Ramírez-Bautista
et al., 2023), to our knowledge, there has been no study focusing on the thermal sensitivity
of physiological traits in Mexican snakes. Here, our aim was to analyze the thermal
sensitivity of locomotor performance and RMR in three snake species from central Mexico
(Crotalus polystictus, Conopsis lineata, and Thamnophis melanogaster), highlighting how it
is influenced by their distinct behavioral and ecological traits. We selected these species as
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they are distinctive representatives of the herpetofaunal communities in the region and are
among the most abundant species. Moreover, they encompass three prevalent lifestyles
commonly found within snake assemblages (Di Pietro et al., 2020): C. lineata is a small
fossorial ambush predator predominantly dwelling underground; C. polystictus is a
terrestrial ambush predator commonly found in grasslands and beneath rocks; and
T. melanogaster is a semiaquatic active forager, typically inhabiting lakeshores and streams.
We hypothesized that, since they have distinct lifestyles, the physiological thermal
responses would be different. We predicted that, considering it is an active forager that
spends considerable time in the open, T. melanogaster would be a thermal specialist and
present the highest levels of performance (higher To and B80) and RMR (after adjusting for
body mass). On the contrary, being a fossorial species with little mobility, we predicted
C. lineata to present the lowest levels of performance and RMR. Since it is an ambush
predator, albeit with more conspicuous habits than C. lineata, we expected C. polystictus to
have intermediate levels of performance and RMR relative to the other two species.

MATERIALS AND METHODS
Study species and sites
Crotalus polystictus is an endemic rattlesnake from central Mexico (Mociño-Deloya et al.,
2009). It is a diurnal, medium-sized viper with an average snout-vent length (SVL) of about
60 to 70 cm (Campbell & Lamar, 2004). It inhabits pine-oak forests, scrublands, and both
dry and humid grasslands between 1,450 and 2,739 m above sea level (Meik et al., 2012).
This terrestrial species spends considerable time under rocks, and it alternates between
shelters and the open for thermoregulation. It feeds mostly on small rodents as a sit-and-
wait predator (Mackessy et al., 2018). The study site is located in San Bartolo Morelos, on
the northwest side of Estado de México. The site is composed of a series of croplands
surrounded by grasslands and oak forest patches, and it is located at an elevation of
2,660 m. Climate is subhumid temperate with summer rains. Rocky areas between
croplands provide suitable shelters for the rattlesnakes.

Conopsis lineata is a small-sized fossorial snake with a mean SVL of around 18 cm. This
diurnal species spends most of its time within burrows or under rocks and logs, where it
feeds on larvae, insects, and other arthropods (Ramírez-Bautista et al., 2009; García-
Balderas et al., 2014). It inhabits pine-oak forests, montane cloud forests, xerophytic
shrubs, and fir forests in an altitude range from 1,700 to 3,100 m above sea level
(Goyenechea & Flores-Villela, 2006; Ramírez-Bautista et al., 2009). The study site is located
in Los Dinamos National Park, which is part of the forested and montane area in the
western part of Mexico City. Climate is subhumid semicold with annual rainfall of 900 to
1,300 mm and a mean annual temperature range of 9 �C to 15 �C (Kovács et al., 2021). The
study site is an open area used for shepherding and plum tree cultivation, located at an
elevation of 2,720 m.

Thamnophis melanogaster is a medium-sized, semiaquatic colubrid with an average SVL
of about 40 cm (Manjarrez, Macías Garcia & Drummond, 2017). It is distributed widely
throughout Mexico, and it inhabits riverbanks and lake shores (Ramírez-Bautista et al.,
2009). It uses shelters on land, near aquatic bodies, and forages actively underwater,
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feeding on aquatic prey such as tadpoles, fish, and invertebrates (Manjarrez, García &
Drummond, 2013). It is mostly a diurnal species but can also be active during particularly
warm nights (Rossman, Ford & Seigel, 1996). The study site is the ecotourism park Arcos
del Sitio, which is located within the Tepotzotlán mountain range in Estado de México, at
an elevation of 2,280 m. Climate is subhumid temperate with summer rains, with an
annual precipitation of 700–800 mm (Espinosa-Graciano & García-Collazo, 2017). The
dominant vegetation in the area is crasicaule shrubland, heavily fragmented by
shepherding areas. Gallery forest is present along the Arcos del Sitio River, where
individuals of T. melanogaster are mostly found in areas with reduced vegetation cover.

Field work and snake captivity
We visited each site every 2 months from April 2021 to July 2023, excluding the winter
period (December to February) when snakes are rarely found active. Furthermore, many
squamate species present a decrease in metabolic rates during winter as part of the
brumation process (Dubiner et al., 2023), which would have biased our measurements. For
C. polystictus and T. melanogaster, each visit lasted 3 days, during which a team of 2–4
people searched for the snakes in their preferred microhabitats from 10:00 to 18:00 h. As
the study site of C. lineata is considerably smaller, sampling occasions for this species were
shorter, lasting 1 or 2 days, with a sampling schedule from 10:00 to 14:00 h. For each snake
encountered, we registered the time of capture, body mass (g), SVL (mm), sex, and
geographic coordinates. We determined sex by cloacal probing; however, to avoid hurting
them, we did not use the technique on the small juveniles, whose size prevented the probe
from entering easily. We identified pregnant females by palpation, which were not
considered for the experiments. After capturing the snakes, we kept them inside cloth sacks
and transported them to the laboratory. We planned our field trips and experiments so that
all individuals spent a similar amount of time in captivity (between 5 and 8 days) before the
onset of the experiments, which lasted between 7 and 10 days. On average, the time
between capture and the end of the experiments was just over 2 weeks.

While in captivity, we maintained the snakes in either 40 × 30 × 30 cm terrariums
(C. polystictus and C. lineata) or in 50 × 40 × 30 cm fish tanks conditioned with a dry area
(T. melanogaster). We placed the enclosures in a room at ambient temperature with
natural light, under a natural photoperiod. We conditioned all enclosures with cardboard
boxes to serve as refuges and water bowls that we filled constantly. We placed heating mats
under one extreme of each enclosure so that snakes could have the opportunity to
thermoregulate. Using a digital timer, we set the heating mats to be on at a constant
schedule of 09:00 to 17:00 h. We did not feed the snakes prior to the experiments so that
digestion did not interfere with the tests, which is a safe procedure since snakes can spend
extended periods of time without eating (McCue, Lillywhite & Beaupre, 2012). After the
experiments were finished, we maintained the snakes in their enclosures and fed them once
every 2 weeks until the subsequent field trip, during which we liberated the organisms at
their respective study site. We fed C. lineata with crickets (Acheta domesticus),
C. polystictus with mice (Mus musculus), and T. melanogaster with small fish
(Chirostoma sp.).
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Permission to collect the animals was given by the Secretary of Environment and
Natural Resources (SEMARNAT) through the permits SGPA/DGVS/06935/21 and
SPARN/DGVS/00316/23. Experimental procedures were made under the approval of the
ethics committee of the Faculty of Higher Studies (FES) Iztacala of the National
Autonomous University of Mexico (UNAM) through the permit CE/FESI/022023/1578.

Thermal tolerance
To avoid subjecting a large number of animals to stressful experimentation, we decided to
perform the CTmin and CTmax trials with a subset of individuals. We utilized the snakes
collected in 2023: 10 individuals of C. polystictus (six females and four males), eight of
C. lineata (three females, two males, and three juveniles), and seven of T. melanogaster
(three females and four males). We followed the most commonly used procedure to
determine thermal tolerance in reptiles, which is to heat and cool the animals to the point
of losing the righting response (Taylor et al., 2021). To avoid confounding negative effects,
we made these experiments last after performance and RMR tests. To determine CTmin, we
placed the snakes in a 50 × 40 × 50 cm plastic container, of which the bottom was covered
with frozen refrigerant gel packs. With this procedure, snakes were cooled at a rate of
1 �C/min. After 15 min, using a pair of 30 cm metal tweezers, we started turning snakes on
their backs every minute. At the moment in which the snakes were unable to right
themselves, we terminated the experiment and recorded their body temperature with a
contact thermometer (Fluke model 52-II, ± 0.1 �C), whose sensor was inserted 0.5–1 cm
into the cloaca, and recorded it as the CTmin. To measure CTmax, we placed a 200 W heat
lamp 50 cm above a plastic bucket (30 cm in diameter and 40 cm high), in which we placed
the snakes. With these conditions, we were able to heat the snakes steadily at a rate of
1.5 �C/min. When the snakes recurred to panting as a cooling strategy, we started turning
them on their backs every 30 s. When they were unable to right themselves up, we recorded
that temperature as CTmax, in the same way as we did with CTmin. Right after each CTmin

or CTmax test ended, we placed the snakes in direct contact with water at ambient
temperature (1 cm deep) inside a 60 × 40 × 50 cm plastic container and allowed them to
recover. To avoid subjecting the snakes to consecutive stressful experiments, we first
performed the CTmin tests and let the snakes recover for 24 h before the CTmax tests. With
these data, we determined TTB as the distance in �C between CTmax and CTmin (Stellatelli
et al., 2022; Valdez Ovallez et al., 2022).

Thermal treatments preparation
We ran both the performance and RMR trials on a set of thermal treatments that, without
exceeding the TTB limits, encompasses temperatures below, within, and over their set
point temperature range (Tset). This range represents the target body temperatures that
organisms attempt to achieve (Hertz, Huey & Stevenson, 1993), and we calculated it for the
three species in another study focused on their thermal ecology (R. Figueroa-Huitron et al.,
2023, unpublished data). We found that, while their overall thermoregulation strategies are
different, their Tset and field body temperatures are similar. This allowed us to make a
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generalization to determine five ecologically relevant temperatures for the three species:
15 �C, 25 �C, 30 �C, 33 �C, and 36 �C. Approximately, 15 �C is the lowest body temperature
we registered on the field, 25 �C is near the mean Tset, 30 �C is the upper limit of Tset, and
33 �C is the maximum body temperature registered in the field. Though it was not
considered at first, we included the 36 �C treatment subsequently to observe the response
of the snakes above voluntarily maintained body temperatures in natural conditions and to
better adjust the thermal performance curves over a wide temperature range (Taylor et al.,
2021).

Before the onset of each test, we set the snakes to acclimatize to the target temperature
for at least 30 min. To achieve this, we put the individuals in hermetically closed chambers
placed in a darkened incubator. Depending on the size of each individual, we used 50 ml
centrifuge tubes or plastic containers of 300 or 900 ml, which allowed the snakes to adopt a
coiled resting position but not move freely. In both experimental procedures, we
randomized the sequence of thermal treatments for each individual so that none passed
through the treatments in direct ascending or descending order. Since metabolic rates
change during rest hours (Dubiner et al., 2023), all tests were performed between 9:00 and
18:00 h, within the observed activity period of the snakes in the field, so that our data
accurately represent RMR. Individuals performed only one experimental trial per day to
reduce possible confounding effects derived from acute stress.

Locomotor performance
We evaluated locomotor performance through swimming speed. We decided to use
swimming speed over crawling speed because in terrestrial conditions snakes frequently
adopt defensive behaviors, such as coiling and biting, which would interfere with the
locomotion trials. Swimming forward is a reflex behavior of snakes in water; thereby,
swimming speed is an adequate measurement to assess the locomotor capacity of both
semiaquatic and terrestrial snakes (Aïdam, Michel & Bonnet, 2013). To carry out the
swimming speed trials, we designed a rectangular lane made from wood, covered with
impermeable resin. The lane was 350 cm long, 30 cm wide, and 40 cm high. Along the lane,
we placed marks every 30 cm to serve as a reference for the determination of the distance
covered by the snakes. For each thermal treatment, we filled the lane with water up to a
level of 15 cm and either heated or cooled the water up to the targeted trial temperature
using refrigerated gel packs and electric water heaters.

On each trial, we placed the snake at one end of the lane and followed it as it went down
the lane. If a snake stopped, we stimulated it to continue swimming forward by gently
touching it with a herpetological hook. We made sure that snakes advanced at least
through five marks (150 cm) throughout the trials, which lasted a maximum of 2 min. We
filmed trials from an overhead view with a digital video camera (Akaso EK7000) at the
highest frame rate: 60 frames per second (fps). We analyzed the resulting videos in the
video editing program Shotcut (Version 21.05.18), in which we determined the number of
frames it took for the snakes to move through each 30 cm segment. We then divided each
value by 60 to get time in seconds, and with that information, we calculated swimming
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speed for each segment. We chose the highest value as the maximum swimming speed at
the given temperature (Table S1).

Resting metabolic rate
To measure RMR, we used the rate of CO2, since it is a reliable measure of basic
maintenance in a steady state (Holden et al., 2022). We used an open flow respirometry
system, following the protocol of Plasman et al. (2020). Incurrent air was scrubbed with
Drierite (calcium sulfate for water vapor) and Ascarite (sodium hydroxide for CO2) so that
dry, CO2-free air was pumped into the chambers at a rate of 100 ml·min−1. Water vapor
was also removed from the excurrent air sample, and the proportion of CO2 in the
excurrent gas was analyzed using a Foxbox O2/CO2 analyzer (Sable Systems International).
After the acclimation period, the trials ran over 30 min, unless more time was required for
the CO2 levels to stabilize. Due to logistical difficulties, we did not perform trials for the
33 �C treatment with the animals collected in 2023 (10 C. polystictus, eight C. lineata, and
seven T. melanogaster). We utilized the Expedata software (Sable Systems International,
North Las Vegas, NV, USA) to visualize the CO2 curves and to make the calculation of the
lowest average levels of CO2 during 100 continuous seconds. From the data obtained, we
calculated RMR in terms of rates of carbon dioxide production (VCO2; ml CO2/min) using
the following equation (Lighton, 2008),

VCO2 ¼ FRi FeCO2 � FiCO2ð Þ
where FRi is the incurrent air flow rate in ml/min, and FeCO2 and FiCO2 are the fractional
concentrations of CO2 in the excurrent and incurrent gas samples, respectively. Finally, we
calculated the thermal sensitivity through the Q10 index. We calculated Q10 both over the
entire thermal interval of the experiments and between subsequent thermal treatments
using the following equation:

Q10 ¼ RMR2=RMR1ð Þ 10= T2�T1ð Þ½ �

Statistical analyses
To assess the thermal sensitivity of locomotor performance, we constructed TPCs. For
each species, we utilized the average swimming speed of all individuals at each of the five
thermal trials as the base data on which the curves were fitted. The boundaries of the
curves, where the performance value is zero, were set at the mean CTmin and CTmax.
Following common practice in the field (see Angilletta, 2006; Taylor et al., 2021), we fitted a
set of curve equations and obtained their R2 values and the Akaike information criterion
adjusted for small samples (AICc, our sample size was 33 for C. polystictus, 31 for C. lineata
and 38 for T. melanogaster). To fit the curves, we utilized the software TableCurve 2D
(Systat Software Inc., version 5.01). From the pool of fitted curves, we filtered the ones with
the highest R2 (over 0.9) and selected the best curve according to the lowest AICc
(Table S2) as their TPC. We then calculated maximum swimming speed (Vmax), To, TSMs,
and B80 from the TPC of each species.
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We analyzed the data on resting metabolic rates using generalized linear mixed models
(GLMMs), which allow for study designs with repeated measures. We log10 transformed
RMR and body mass to normalize the data and account for the non-linearity of their
relationship (Glazier, 2021). We set thermal treatment, body mass, and sex as fixed
predictors and snake identification as the random factor. We tested seven models with
combinations of these predictors, including the interaction of temperature and body mass
(Table S3). The best model was selected based on the lowest AICc.

To account for body mass while testing for differences in RMR between species, we ran a
GLM with species set as a fixed factor and tested the effect of the species � body mass
interaction. We then calculated the estimated marginal means and performed marginal
contrasts analysis. To test for differences in swimming speeds, direct RMR among species,
and overall Q10, we used the Kruskal-Wallis and Dunn tests. We tested normality with the
Shapiro-Wilk test and homoscedasticity with the Bartlett test. Analyses were made in R
version 4.3.2 (R Core Team, 2023) using the following packages: AICcmodavg (Mazerolle,
2023) for computing AICc values; FSA (Ogle et al., 2023) for performing the
Kruskal-Wallis and Dunn tests; lme4 (Bates et al., 2015) for fitting GLMMs; and
modelbased (Makowski et al., 2020) for estimating and comparing marginal means. We
used ggplot2 (Wickham, 2016) to generate the figures.

RESULTS
Locomotor performance and thermal tolerance
We examined the effect of temperature on performance on 33 C. polystictus (12 males, 14
females, and seven unsexed juveniles), 31 C. lineata (16 males, 15 females), and 38
T. melanogaster (12 males, 15 females, and 11 juveniles). The curves that best fit the
performance data were an exponentially modified Gaussian for C. polystictus (R2 = 0.92,
Table S2), an asymmetric logistic for C. lineata (R2 = 0.94, Table S2), and an extreme value
distribution for T. melanogaster (R2 = 0.93, Table S2). The TPCs of the three species are
represented in Fig. 1. Overall, T. melanogaster reached the highest swimming speeds,
whereas C. lineata presented the lowest (X2 = 176.02, P < 0.001). C. polystictus presents the
highest To, followed by T. melanogaster and then C. lineata (Table 1). The TTB of
C. polystictus is 37.2 �C, ranging from 5.9 �C to 43.1 �C (Table 1). The To (36.7 �C) and the
upper limit of the B80 (39.2 �C) of this species are close to the CTmax, which resulted in the
lowest TSM among the three species (Fig. 1, Table 1). The TTB of C. lineata is 31.9 �C,
ranging from 9.3 to 41.2 �C, whereas that of T. melanogaster is 33.1 �C, ranging from
8.5 �C to 41.6 �C (Table 1). These two species present similar values of To (27.8 �C,
28.6 �C) and B80 (20.1–34.3 �C, 20.7–34.9 �C, Table 1).

Resting metabolic rate
We calculated the RMR of 41 C. polystictus (15 males, 19 females, and seven unsexed
juveniles), 26 C. lineata (11 males, 13 females, and two juveniles), and 36 T. melanogaster
(13 males, 15 females, and eight juveniles). The bigger species had higher absolute values of
RMR, with C. polystictus presenting the highest values of RMR (X2 = 149.18, P < 0.001;
Figs. 2, 3; Table S4). However, after variable transformation and taking body mass into
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consideration, T. melanogaster had a higher estimated marginal mean (t = −2.56, P < 0.05).
No significant differences were found between C. polystictus and C. lineata.

For all three species, the GLMM that best explained RMR included the additive effect of
temperature and body mass (RMR~Temperature + Body mass. Conditional R2 = 0.96 for
C. polystictus, 0.85 for C. lineata, and 0.92 for T. melanogaster). The coefficients of the best
models for the three species are presented in Table 2, whereas all tested models with their
AICc values are presented in Table S3. In all three species, the thermal treatments affected
RMR positively, and this effect increased along with temperature (Table 2). Body mass also
had a positive, significant effect on RMR in the three species.

Conopsis lineata and T. melanogaster had very similar values of overall Q10 (2.20, 2.11,
Table 3), but C. polystictus had a significantly lower Q10 than the other two species (1.62,
X2 = 28.447, P < 0.001; post-hoc Dunn test: P < 0.001 in both cases). The variation of Q10

across the thermal treatments was also similar in C. lineata and T. melanogaster. In both
species, Q10 progressively decreased from 15 �C to 33 �C but increased abruptly in the
33 �C to 36 �C interval (Table 3). On the other hand, Q10 of C. polystictus increased slightly
from 15 �C to 33 �C but also experienced a noticeable increment between 33 �C and 36 �C
(Table 3).

Figure 1 Thermal performance curves of the three study species. Vertical lines indicate the inferior
and superior limits of B80, and the shapes point to To. Solid lines and a triangle, in orange, represent
Crotalus polystictus. Dot-dashed lines and a square, in green, represent Conopsis lineata. Dashed lines and
a diamond, in blue, represent Thamnophis melanogaster. Full-size DOI: 10.7717/peerj.17705/fig-1

Table 1 Performance characteristics.

CTmin (�C) CTmax (�C) TTB (�C) To (�C) TSM (�C) Vmax (cm/s) B80 (�C)

Crotalus polystictus 5.9 ± 0.27 43.1 ± 0.92 37.2 ± 0.83 36.7 6.4 42.0 26.3–39.2

Conopsis lineata 9.3 ± 1.67 41.2 ± 1.42 31.9 ± 2.19 27.8 13.4 29.3 20.1–34.3

Thamnophis melanogaster 8.5 ± 1.14 41.6 ± 1.34 33.1 ± 1.60 28.6 13 71.7 20.7–34.9

Note:
Relevant performance characteristics of the study species. CTmin and CTmax values presented ± SD.
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Figure 2 Resting metabolic rates for the studied species. RMR per thermal treatment of the three study
species. Orange triangles represent Crotalus polystictus, green circles represent Conopsis lineata, and blue
squares represent Thamnophis melanogaster. Horizontal lines above and below each point represent ±1
SE. Full-size DOI: 10.7717/peerj.17705/fig-2

Figure 3 Relation between resting metabolic rate and body mass. Relation of RMR with body mass at each thermal treatment for the three study
species: (A) Crotalus polystictus, (B) Conopsis lineata, and (C) Thamnophis melanogaster. Visual representation of the thermal treatments is as
follows (from bottom to top): 15 �C: dot-dashed line and crosses in dark blue. 25 �C: dashed line and squares in light blue. 30 �C: long-dashed line
and triangles in yellow. 33 �C: solid line and diamonds in orange. 36 �C: unevenly dashed line with circles in red. Shaded areas around each line
represent 95% CI. Photographs credits: L. E. Bucio-Jiménez. Full-size DOI: 10.7717/peerj.17705/fig-3

Figueroa-Huitrón et al. (2024), PeerJ, DOI 10.7717/peerj.17705 11/23

http://dx.doi.org/10.7717/peerj.17705/fig-2
http://dx.doi.org/10.7717/peerj.17705/fig-3
http://dx.doi.org/10.7717/peerj.17705
https://peerj.com/


DISCUSSION
In this work, we analyzed the thermal sensitivity of performance and RMR of three
Mexican snake species with distinct lifestyles. Our results support our hypothesis that
thermal physiology is influenced by the distinct lifestyles of the species. According to our
predictions, we found that the active forager semiaquatic T. melanogaster showed the
highest levels of performance and mass-adjusted RMR. We expected T. melanogaster to be
a thermal specialist, but the results show that it can maintain performance over a wide
range of temperatures. The fossorial ambush forager C. lineata had the lowest levels of
performance, as expected, but it also had a relatively wide B80, and its mass-adjusted RMR
did not differ from that of C. polystictus, which is also an ambush forager, but is a more
conspicuous terrestrial species. C. lineata seems to be well adapted to the thermally
challenging environment that it inhabits. C. polystictus exhibited the most resistance to
high temperatures, having the highest To and B80.

It is noteworthy that the upper limit of B80 of C. polystictus and its To fall very near its
CTmax (Fig. 1). This results in a low TSM, considerably lower than those of C. lineata and
T. melanogaster (Table 1). Having a small TSM can be risky, since being active near the
CTmax increases overheating risk (Sinclair et al., 2016). In such a scenario, behavioral
thermoregulation strategies such as retreat site selection, can be key adjustments to buffer
the effect of high temperatures (Sunday et al., 2014; Muñoz & Losos, 2018; Vicenzi et al.,
2019). In this sense, the activity pattern of C. polystictus as a sit-and-wait predator is very
beneficial, since much of the time it dedicates to foraging activities happens within shelters

Table 2 Resting metabolic rate models.

Crotalus polystictus Conopsis lineata Thamnophis melanogaster

RMR~Temperature + Body mass RMR ~ Temperature + Body Mass RMR~Temperature + Body mass

Fixed effects Estimate ± SE df t value P value Estimate ± SE df t value P value Estimate ± SE df t value P value

Intercept −0.944 ± 0.055 45.121 −17.294 <0.001 −0.931 ± 0.076 27.475 −12.233 <0.001 −0.965 ± 0.043 50.309 −22.497 <0.001

Tb 25 �C 0.182 ± 0.019 126.803 9.323 <0.001 0.399 ± 0.035 76.930 11.375 <0.001 0.358 ± 0.031 113.520 11.439 <0.001

Tb 30 �C 0.252 ± 0.019 126.803 12.926 <0.001 0.536 ± 0.035 76.930 15.276 <0.001 0.581 ± 0.032 114.221 18.388 <0.001

Tb 33 �C 0.371 ± 0.023 130.764 16.347 <0.001 0.608 ± 0.037 77.950 16.472 <0.001 0.659 ± 0.034 117.084 19.490 <0.001

Tb 36 �C 0.381 ± 0.024 130.492 16.061 <0.001 0.709 ± 0.053 81.626 13.280 <0.001 0.774 ± 0.038 121.942 20.518 <0.001

Body mass 0.760 ± 0.029 41.18 25.976 <0.001 0.610 ± 0.105 23.099 5.800 <0.001 0.674 ± 0.030 32.223 22.657 <0.001

Note:
The GLMMs that best explain RMR for the study species. Estimates are presented ± SE.

Table 3 Q10 values for the species across thermal treatments.

Q10 (15–25 �C) Q10 (25–30 �C) Q10 (30–33 �C) Q10 (33–36 �C) Overall Q10

(15–36 �C)

Crotalus polystictus 1.44 1.52 1.68 2.54 1.62

Conopsis lineata 2.36 1.85 1.05 3.42 2.20

Thamnophis melanogaster 2.3 1.82 1.16 4.09 2.11
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and not exposed in the open. This result suggests that C. polystictus would need to actively
thermoregulate at suboptimal temperatures to avoid overheating, which aligns with the
results we obtained in a thermal ecology study made with the same population, as its To

and B80 (36.7 �C) are higher than its Tset (23.4–31.4 �C, R. Figueroa-Huitron et al., 2023,
unpublished data). This, however, is a pattern that is present in other ectotherms. Martin
& Huey (2008) developed a model that shows that, since performance drops rapidly at
higher temperatures due to the form of TPCs, the optimum body temperature at which
ectotherms operate should be at a lower temperature than the To that theoretically
maximizes fitness. Considering that B80 and Tset of C. polystictus are relatively wide, it has
the capacity to avoid overheating risk while maintaining adequate levels of performance at
high temperatures.

The B80 of the three species (Table 1) is wider than the reported values for several
species of snakes and lizards (Huey & Bennett, 1987; Tanaka, 2008; Lelièvre et al., 2010;
Bonino et al., 2015; Romero-Báez et al., 2020), which suggests that they are thermal
generalists that can maintain performance over a wide interval of temperatures. Having a
wide B80 can be beneficial to the performance of C. lineata in the cold site of Los Dinamos,
since such a characteristic has been found to allow some species to maintain adequate
performance levels in suboptimal temperatures (Gómez-Alés et al., 2018; Valdez Ovallez
et al., 2022). For T. melanogaster, its wide B80 could be a factor contributing to its wide
distribution, the widest among our three species, ranging from central to northwestern
Mexico. Wide performance breadths have been associated with species with widespread
distributions that can inhabit variable environments (Bonino et al., 2015; Dematteis et al.,
2022).

Higher levels of locomotor performance can be linked to foraging mode and type of
habit in snakes, with active foragers being distinctively faster than ambush predators
(Whitaker & Shine, 2002; Lelièvre et al., 2010). T. melanogaster is an active forager that
feeds on aquatic prey in the open and, accordingly, had the fastest swimming speeds in our
tests (Fig. 1). On the other hand, C. polystictus and C. lineata are ambush foraging species
(Meik et al., 2012; Raya-García, Alvarado-Díaz & Suazo-Ortuño, 2020) who require to
strike fast but do not require high speeds to chase their prey. Furthermore, active foragers
like T. melanogaster can be exposed to higher predation risk since they are more active in
the open (Secor, 1995). Higher locomotion speeds can help counteract this problem and
evade potential predators. A positive relationship between locomotor capacity and survival
has been reported for T. sirtalis and some juvenile lizards (Jayne & Bennett, 1990; Miles,
2004;Husak, 2006). It is important to note that T. melanogaster is the only one of our study
species that is ecologically adapted to the semiaquatic lifestyle. In this sense, having the
highest swimming speed may also be attributed to morphological adaptations. Body shape
is an important adaptation for aquatic and semiaquatic snakes (Brischoux & Shine, 2011),
with a dorso-ventrally elongated body being more efficient to swim. Another adaptation
found in the semiaquatic colubrid Nerodia sipedon is the ability to laterally compress the
posterior half of the body when swimming (Pattishall & Cundall, 2008). This allows
N. sipedon to boost swimming speed without reducing locomotor performance on land,
where, like T. melanogaster, it thermoregulates and finds cover. Surprisingly, there are no
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in-depth studies with T. melanogaster focusing on morphological adaptations to the
semiaquatic lifestyle (except for eyesight, Schaeffel & De Queiroz, 1990), so more research
in this regard is necessary to better understand the locomotor capacities of this species.

All three species in this study presented TTB’s above 30 �C, which are similar to those
reported for other snakes (Jacobson & Whitford, 1970, 1971; Huang et al., 2007; Tanaka,
2008). In particular, C. polystictus had the widest TTB (37.15 �C) and the highest CTmax

(43.1 �C). This suggests that this species is more resistant to high temperatures.
Furthermore, a wide TTB is often linked to species that experience high climatic variability
(Cruz et al., 2005; Gutiérrez-Pesquera et al., 2016). This relation has been studied in the
context of species with wide distributions that encompass different environments, and
C. polystictus can fit into this category. Further studies made at sites with different
conditions are desired to corroborate if C. polystictus follows this pattern; however, local
seasonal variation can give us a hint in this direction. The study site of C. polystictus, San
Bartolo Morelos, has noticeable thermal seasonality, and the wide TTB of this species can
allow it to thrive during winter and the hottest period of the year, in late spring and early
summer.

The GLMMs that best represented our RMR data show that it is positively influenced by
both temperature and body mass (Fig. 2, Tables 2 and S4). After adjusting for body mass,
we found that T. melanogaster had the highest proportional values of RMR. This result
aligns with our expectations, given the lifestyles of the three species. T. melanogaster chases
prey actively, a strategy that demands more energy than ambush foraging and results in
higher metabolic rates. This is a trend documented extensively in several snake species
(Secor & Nagy, 1994; Dupoué, Brischoux & Lourdais, 2017; Stuginski et al., 2018). RMR
increased along with temperature; however, the Q10 values calculated for each thermal
treatment transition show that the proportional increase was not uniform (Table 3). Some
studies with squamates have reported a pattern similar to what we found, in which the Q10

values are relatively stable at medium temperatures but show a significant increase in
metabolic thermal sensitivity at both extreme ends of its temperature range (Jacobson &
Whitford, 1971; Davies & Bennett, 1981; Watson & Burggren, 2016). High Q10 at lower
temperatures could be an adaptation to maintain favorable levels of physiological
performance in suboptimal temperatures (Zaidan, 2003; Plasman et al., 2020) and a
mechanism to rapidly transition from an inactive to an active state (Davies & Bennett,
1981). On the other extreme of the spectrum, high Q10 could facilitate the physiological
responses to heat stress. A study with the garter snake Thamnophis elegans showed that by
increasing their metabolic rates, it ensures the delivery of the required oxygen to their
tissues to maintain metabolic and physiological competence when acutely exposed to
near-lethal temperatures (Gangloff et al., 2016).

The thermal sensitivity of RMR across the whole experiment was more pronounced in
C. lineata and T. melanogaster than in C. polystictus, a result not only clear in the Q10

values but also in raw data visualized by thermal treatment (Fig. 3). The overall Q10 of
C. lineata and T. melanogaster (2.37 and 2.32) are similar to the values reported for
T. elegans and other snakes (Finkler & Claussen, 1999; McCue & Lillywhite, 2002;
Zaidan, 2003; Holden et al., 2022). On the other hand, the overall Q10 of C. polystictus
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(1.67) is lower than the mentioned species and the reported values for other species of the
Crotalus genus (Beaupre, 1993; Beaupre & Duvall, 1998; Beaupre & Zaidan, 2001; Dorcas,
Hopkins & Roe, 2004). Having a low Q10 can provide some advantages for C. polystictus,
since having a metabolism with low thermal sensitivity can provide a buffer effect to
seasonal changes. In the context of climate change, if its metabolism is not greatly affected
by rising temperatures, then its maintenance energy requirements may remain relatively
stable. Maintaining regular levels of energy requirements is an important factor in
buffering the effects of climate change (Crowell et al., 2021).

Overall, our results show different physiological adaptations of the three species to the
environments they inhabit. Their different activity patterns and foraging habits are closely
linked to these adaptations. It is important to note, though, that we studied only one
species from each lifestyle. Further studies with more species are necessary to assess the
generality of our interpretations. Also, the three species we studied have relatively wide
distributions in which climatic conditions can be very variable. Among squamates, there is
evidence that thermal acclimation and geographic variation have considerable effects on
the thermal physiology of species (Angilletta, 2001; Bruton, Cramp & Franklin, 2012; Sun
et al., 2014; Wu et al., 2018). Follow-up studies of other populations of these species with
different climatic conditions would provide valuable information to complement our
study. Continuing investigation with other species would help us better understand the
effect of environmental properties on snake physiology in a more holistic way. Finally, we
consider that, at a time in which the need for forecasts of the effect of climate change on
ectotherms is continually growing, studies like this one can serve as stepping-stones
towards generating more robust assessments, complemented with valuable physiological
information.
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