Genetic variability and Population structure of two

sympatric cownose rays Rhinoptera

(Myliobatiformes, Rhinopteridae) in the Western

4 Atlantic Ocean

5 6

3

Paola Palacios-Barreto^{1,2}, Veronica Mendoza-Portillo¹, Douglas H. Adams³, Vanessa P.
 Cruz⁴, Fausto Foresti⁴ & Píndaro Díaz-Jaimes⁵

9

- 10 Laboratorio de Genética de Organismos Acuáticos, Instituto de Ciencias del Mar y
- 11 Limnología, Universidad Nacional Autónoma de México, Ciudad de México, México.
- 12 ² Fundación colombiana para la Investigación y Conservación de Tiburones y Rayas,
- 13 SQUALUS, Cali, Colombia.
- 14 ³ Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute,
- 15 Indian River Field Laboratory, Melbourne, Florida, USA.
- 16 Laboratório de Biologia e Genética de Peixes, Universidade Estadual Paulista, Botucatu,
- 17 São Paulo, Brazil.
- 18 ⁵ Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y
- 19 Limnología, Universidad Nacional Autónoma de México, Ciudad de México, México.
- 20 pindaro@cmarl.unam.mx

21

- 22 Corresponding Author:
- 23 Píndaro Díaz-Jaimes⁵
- 24 Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México,
- 25 Ciudad de México, 04510. México.
- 26 Email address: pindaro@cmarl.unam.mx

27 28

29

30 31

32

33

34

35

36

37

38

39

Abstract

Cownose rays *Rhinoptera bonasus* and *R. brasiliensis*, are species distributed along the coastal waters from eastern United States, Gulf of Mexico to Brazil. This study represents the most extensive evaluation to date of the genetic diversity and population genetic structure of *R. bonasus* across its distribution, and it is the first to investigate the population genetics of *R. brasiliensis*. We analyzed sequences of *COI* and *Cytb* genes for *Rhinoptera bonasus* (*COI*: 230, *Cytb*: 108) and *R. brasiliensis* (*COI*: 181, *Cytb*: 105) to investigate the genetic diversity and their relationship with environmental variables, genetic structure, as well as demographic parameters. We found that benthic temperature and current velocity were the most important variables in genetic diversity. The global population structure reveals the presence of significant population genetic structure in both species. Bayesian clusters in BAPS were consistent with the segregation pattern observed for haplotype

Biçimlendirdi: Portekizce (Brezilya)

networks based on *COI* and *Cytb* markers for both species, which may respond to philopatry and temperature. These results will further improve management and conservation efforts for species of ecological and economic interest.

Introduction

Despite increased genetic studies over the past decade, only approximately 10% of elasmobranchs have had their population genetic structure, genetic diversity, and demographic history examined Despite increased genetic studies over the past decade, only approximately 10% of shark and ray species have been examined for their population genetic structure, genetic diversity, and demographic history (Domingues et al., 2018a). These investigations reveal that populations for most species are genetically distinct entities globally, acquiring relevance in delineating the levels of genetic diversity (Keeney et al., 2005; Karl et al., 2011; Clarke et al., 2015; Fields et al., 2016; Richards et al., 2019). Therefore, it is important to manage each population separately for these species to reduce the risk of depletion of their genetic resources. However, effective implementation of genetic data into management plans for cartilaginous fish remains a challenging task, Consequently, for these species managing each discrete population separately becomes essential to consume the risk of depleting their genetic resources. Despite this understanding, effectively applying genetic data to management plans for numerous marine species, such as sharks and rays, remains challenging (Kenchington et al., 2003; Pearce et al., 2021).

Cownose rays *Rhinoptera bonasus* and *R. brasiliensis*, are myliobatoid species distributed along the eastern United States coast to Brazil, including the Gulf of Mexico (Last et al., 2016; Jones et al., 2017; Palacios-Barreto et al., 2017; Weber et al., 2021). Even though cownose rays are often observed near the surface, either individually or in large groups (with larger groups numbering in the tens of thousands of rays), their feeding habits are primarily benthic (Rogers et al., 1990; Blaylock, 1993). Cownose rays are highly migratory, and transient, with seasonal residence in bays, estuaries, and the mouth of coastal rivers (Smith & Merriner, 1987; Blaylock, 1993; Grusha, 2005). Massive aggregations of these species are believed to correspond to large-scale migrations, due to seasonal changes in water temperature, salinity, or feeding patterns (Schwartz, 1964; 1990; Smith & Merriner, 1987; Blaylock, 1993; Peterson et al., 2001; Goodman et al., 2011; Bangley et al., 2021).

As a \(\text{As a \(\text{As a \(\text{Cownose rays} \) exhibit seasonal variations in habitat use, with distinct areas dedicated to breeding during the summer and feeding in the winter. The breeding cycle is either annual, as observed in studies by Fisher (2010) and Ajemian & Powers (2016), or biennial, as suggested by Pérez-Jiménez (2011). Pregnant females migrate to nursery areas to give birth, usually estuaries or small bays. Although some of these areas have been

identified for several populations in the northern hemisphere (Neer & Thompson, 2005; Collins et al., 2008; Fisher et al., 2013; Ajemian & Powers, 2016), information on potential nursery areas or biology of *R. bonasus* and *R. brasiliensis* in the southern hemisphere is limited (Rangel et al., 2018).

Differences in life history and migratory behavior between *R. bonasus* populations in the western Atlantic and the Gulf of Mexico suggest a pattern of population isolation related to the spatial separation of populations (Smith & Merriner, 1986; Neer & Thompson, 2005; Perez-Jimenez, 2011). Using mitochondrial sequences, Carney et al. (2017) revealed that the structure identified in *R. bonasus* was consistent with the separation between the Atlantic and Gulf of Mexico populations. Additionally, Souza et al. (2021), using microsatellite markers, detected significant genetic differentiation along the coast of Brazil. However, for *R. brasiliensis* very little is known about the habitat and ecology of this species and its impact on the species' genetic diversity (Carlson et al., 2020).

Understanding the distribution of genetic diversity of two species of cownose rays across geographical space allows us to examine patterns of concordance in the Western Atlantic and identify key geographic regions that are important reservoirs of genetic diversity. Our study evaluates the genetic diversity, population structure, and genetic connectivity of cownose rays (*Rhinoptera bonasus* and *R. brasiliensis*) from the Western North Atlantic to South America, including the Gulf of Mexico. Our main objective is to provide a comprehensive description of genetic patterns among different groups of individuals and as well as to exploreinvestigate the distribution of genetic variation within and among between populations and its relationship with environmental variables. Additionally, we aim to expand the genetic data and compare it with previous studies to cover a broader range along the distribution of both species.

Understanding the distribution of genetic diversity of two species of cownose rays across geographical space allows us to examine patterns of concordance in the Western Atlantic and identify key geographic regions that are important reservoirs of genetic diversity. These findings are essential to inform and strengthen conservation efforts, enabling more effective planning based on robust data.

Materials & Methods

Sample collection and DNA extraction

We acquired tissue samples from specimens collected (as bycatch by artisanal fisheries and researchers' donations) at different localities from the western Atlantic Ocean coast to southeastern Brazil. We analyzed samples of a total of 208 cownose ray individuals, of which 103 were identified as *R. bonasus* (Fig. 1), collected from the Tropical Northwest

Açıklamalı [au1]: IUCN status of these species should be given here.

- Atlantic (TNA): IR, Indian River Lagoon (n = 13); CH, Charlotte Harbor (n = 6); TB, 121
- 122 Tampa Bay (n = 21); Colombia: Co, Manaure (n = 13); Warm Temperate Northwest
- 123 Atlantic (WTNA): CK, Cedar Key (n = 14); AB, Apalachicola Bay (n = 8), and Warm
- 124 Temperate Southwestern Atlantic (WTSA): SP, Bertioga (n = 28). The remaining 105
- specimens were representative of R. brasiliensis (Fig. 1), which were obtained from the 125
- 126 Warm Temperate Northwest Atlantic (WTNA): Tampa Bay (n = 1) Tropical Northwest
- 127 Atlantic (TNA): CC, Cape Canaveral (n = 10); IR, Indian River Lagoon (n = 2); TT,
- Tampico (n = 2); TV, Tamiahua (n = 8); CV, Chachalacas (n = 29); CS, Seybaplaya (n = 128
- 129 32); Q, Chiquilá (n = 9); Colombia: Co, Ciénaga (n = 2), and Warm Temperate
- 130 Southwestern Atlantic (WTSA): SP, Bertioga (n = 10). All tissue samples were conserved
- 131 in 95% ethanol until extraction. Additionally, the mtDNA COI dataset was complemented
- with 100 sequences of R. bonasus from five locations (IR, CH, TB, CK, and AB) and 12 132
- sequences of R. brasiliensis from two locations (IR and MK), obtained in previous studies 133
- 134 (unpublished data, unless noted). In addition, we included mitochondrial COI, and Cytb
- 135 genes available in GenBank (Table S1). Whole-genome DNA (gDNA) was isolated using
- 136 the traditional phenol:chloroform: isoamyl alcohol (25:24:1 v/v) protocol (Sambrook et al.,
- 137 1989). The DNA was resuspended in 50 µL TE buffer 1X (pH 8) and stored at 4 °C for
- 138 posterior procedures. Field species identification was confirmed using mitochondrial
 - sequence data of mitochondrial cytochrome c oxidase subunit I (COI) subunit I (Ward et
- 140 al., 2005).

141

142

157

Mitochondrial DNA sequencing

- 143 We amplified partial sequences of two mitochondrial (mtDNA) genes; cytochrome oxidase
- subunit I (COI) and cytochrome b (Cytb) were amplified by Polymerase Chain Reactions 144
- 145 (PCR) using the primers: FishF1 (5' - TCAACCAACCACAAAGACATTGGCAC - 3'),
- 146 FishR1 (5' - TAGACTTCTGGGTGGCCAAAGAATCA - 3') (Ward et al., 2005) for COI
- whereas the primers described by McDowell & Fisher (2013); the RbCytbF (5' -147
- 148 GGCCTHTTYCTRGCTATACACTACACAC - 3'), RbCytbR (5' -
- 149 AGGGRTGGAATGGRATTTT - 3'), were for Cytb. The PCR occurred in 15 μL of the
- 150 final volume containing 1.5 mM of MgCl2, 0.2 mM of each dNTP, 10 pm/µL of each
- 151 primer, and 1 U Taq DNA polymerase and 1 µL of DNA template (20 ng/µL). For the
- mitochondrial COI gene, we set thermal profiles as follows: initial denaturation of 95 °C 152
- for 2 min, 35 cycles at 94 °C for 30 s, 54 °C for 1 min, 72 °C for 1 min, and a final 153
- 154 extension at 72 °C for 10 min. For the Cytb gene, the conditions were: initial denaturation
- 155 of 94 °C for 3 min, 35 cycles at 94 °C for 1 min, 56 °C for 1 min, 72 °C for 1 min, and a
- 156 final extension at 72 °C for 7 min. We visualized all PCR products by 1.5% agarose gel
- electrophoresis, then were sequenced (including amplicon purification) by MacroGen 158 (MacroGen Inc.). GenBank accession numbers for each COI and Cytb haplotypes are listed
- 159 in supporting information (Table S2; accession numbers OR710910 - OR710922). All
- sequences were analyzed and edited in BioEdit v7.0.5.3 (Hall, 1999) and then aligned using 160
- 161 the MUSCLE algorithm (Edgar, 2004) in Mega 6.0.

Genetic clustering

164 We use BAPS v. 5.4 (Corander et al., 2008), an implemented in Bayesian Analysis of

Population Structure, to identify distinct mitochondrial genetic clusters by assigning 165

individuals to populations. For that, we used a clustering mixture analysis with linked loci,

K=1-5 with 20 replicates and 100 iterations for each run (Corander & Marttinen, 2006;

168 Corander et al., 2008).

169 170

171

174

176

180

187

166 167

162 163

Genetic Diversity and Spatial Distribution

The indices of genetic diversity, such as the number of polymorphic sites (S), number of

172 haplotypes (H), haplotype diversity (hd) and nucleotide diversity (π) , were estimated for

173 each locality separately, then all were estimated considering the grouping determined by

BAPS (Table S3), and subsequently for the entire set of individuals of each species, using

175 DnaSP v.5.1 (Librado & Rozas, 2009). For each molecular marker we constructed the

haplotype networks through the median-joining method (Bandelt et al., 1999) included in

177 PopART (Leigh & Bryant, 2015). To better predict the pattern of genetic diversity

178 distribution of each genetic group identified with BAPS, we applied the hypothesis of

179 continuous population spreading by interpolating haplotype diversity (hd) data from each

locality to adjacent areas along their known geographic distribution. The hd values of each

genetic group were interpolated by the Kriging method (geostatistical interpolation method 181

that creates a smooth surface even when sampling is spatially unequally, Oliver & Webster, 182

1990) in the QGIS® v.3.22 software then, surface maps of the interpolated hd for each 183

group were made, representing the spatial patterns of the genetic groups inferred by BAPS. 184

185 186 **Population Structure Analyses**

The population differentiation through an analog of Wright's pairwise FST fixation index

(Φ ST), and the Analysis of Molecular Variance (AMOVA) (Excoffier et al., 1992) were

188 189 conducted to examine the null hypothesis of panmixia, these analyses were evaluated

190 among all sampling sites and BAPS clustering results using Arlequin 3.5 (Excoffier &

Lischer, 2010) with 10,000 permutations and $\alpha = 0.05$. For *R. bonasus* three grouping 191

scenarios were considered: (1) by biogeographic bioregionalization of Coastal and Shelf

192

Areas proposed by Spalding et al. (2007) (Fig. 1) which, five of six provinces were 193

represented (Cold Temperate Northwest Atlantic [CTNA], Warm Temperate Northwest 194

195 Atlantic [WTNA], Tropical Northwestern Atlantic [TNA], North Brazil Shelf [NBS] and

196 Warm Temperate Southwestern Atlantic [WTSA]). (2) Previous genetic groups identified

in the Northwest Atlantic x Northern Gulf of Mexico by Carney et al. (2017) and (3)

198 considering the clustering determined by BAPS. For R. brasiliensis only sceneries

199 corresponding to Spalding bioregionalization and results from BAPS were considered

(sceneries 1 and 3, respectively). 200

201 202

197

Environmental association analyses

203 To assess the correlation between oceanic landscape features with the genetic diversity of 204 cownose rays, the environmental variables, maximum and minimum benthic (B) and 205 surface (S) values of temperature (BTmax, BTmin, STmax, STmin), salinity (BSmax, 206 BSmin, SSmax, SSmin), dissolved oxygen (BOmax, BOmin, SOmax, SOmin), current 207 velocity (BCVmax, BCVmin, SCVmax, SCVmin) and bathymetry (BAT) were 208 downloaded from the Bio-ORACLE database (https://www.bio-oracle.org). Spearman 209 correlations were run to avoid autocorrelation among them (Table S4). We used a statistical 210 framework based on canonical correspondence analysis (CCA) to combine genetic and oceanographic data under ecological modeling (Jombart et al., 2009), for that, the 211 haplotypic (hd) and nucleotidic (π) diversity of each genetic group identified was calculated 212 213 and associate with non-correlated oceanic variables with 'cca' function in vegan package 214 (Oksanen et al., 2022) in R, both genetic and environmental measures were scaled.

215 216 217

218

219

220

221

222

Historical Demography Analyses

The demographic history of cownose rays was inferred from several approaches: mismatch distribution analysis, neutrality tests Fu's Fs (Fu, 1996) and Ramos-Onsis and Roza's R2 (Ramos-Onsins & Rozas, 2002) implemented in DNAsp v.5.1 (Librado & Rozas, 2009). The goodness of fit between the observed data and the expected mismatch distribution under each demographic scenario was evaluated with Harpending's raggedness (r) index (Harpending, 1994) in ARLEQUIN (Rogers & Harpending, 1992) assesses. Each demographic scenario, was run- with 10,000 bootstrap replicates.

223 224 225

Results

226

Mitochondrial DNA sequencing

227 228 We analyzed COI sequences of 551 base pairs (bp) from a total of 230 sequences of Rhinoptera bonasus and 181 sequences of R. brasiliensis (GenBank accession numbers 229 230 OR710910- OR710922). Additionally, we obtained a fragment of 423 bp from the Cytb 231 locus, including 108 sequences from R. bonasus and 105 sequences from R. brasiliensis. 232 The concatenated databases (COI+Cvtb) reduced the number of individuals and the number 233 of locations of R. bonasus and R. brasiliensis, rendering the information inconclusive. 234 Consequently, the results of subsequent analyses are not presented.

235 236

Genetic clustering

- 237 The clustering analysis conducted by BAPS revealed several coexisting genetic groups, 238 indicative of well-differentiated groups within the same locality, for both genes and species (Fig. 2A, 2B, 2E, 2F). For R. bonasus, five groups were identified with COI: three 239 240 overlapping groups among the Cold, Warm, and Tropical biogeographic provinces of the
- 241 Northwestern Atlantic, including Chesapeake Bay (BCh), Indian River Lagoon (IR),
- 242 Charlotte Harbor (CH), Tampa Bay (TB), Cedar Key (CK), and Apalachicola Bay (AB);

- 243 the fourth group encompassed localities in Colombia and northern Brazil (Tropical
- 244 Northwestern Atlantic and North Brazil Shelf), while the fifth group corresponded to the
- 245 São Paulo locality in the Warm Temperate Southwestern Atlantic biogeographic province
- 246 (Fig. 2A, 3; Table S3). Cytb results indicated a similar pattern to COI: two geographically
- 247 overlapping genetic groups in the Northwest Atlantic, from Chesapeake Bay to
- 248 Apalachicola Bay, and one group in the Tropical Southwest Atlantic encompassing
- 249 localities in Colombia and São Paulo (Fig. 2B, 4, S1).

- 251 For R. brasiliensis, coexisting genetic group patterns were observed at broader scales than
- 252 for R. bonasus. With COI, a group was identified spanning from Cape Canaveral
- 253 (northernmost locality) to São Paulo (southernmost locality), the second extending from
- 254 Indian River Lagoon (Florida) to Pará (Brazil), the third comprising only individuals from
- 255 Pará (North Brazil Shelf biogeographic province), and two groups from São Paulo (Fig. 2E,
- 256 4, Table S3). Clustering obtained with Cytb did not exhibit a clear geographic pattern, as
- 257 several coexisting groups were found, primarily in Gulf of Mexico localities; however, one
- 258 group from the São Paulo locality was well-differentiated, although some individuals
- 259 exhibited 100% similarity with individuals from the north (Fig. 2F, 4).

261 **Genetic Diversity**

Haplotype diversity (hd) and nucleotide diversity (π) values were higher in R. bonasus as compared to R. brasiliensis for both genes.

263 264 265

260

262

- Rhinoptera bonasus. The COI dataset exhibited 19 polymorphic sites, resulting in 11
- haplotypes whereas the Cytb gene exhibited 11 polymorphic sites and 12 haplotypes (Table 266
- 267 1). Haplotype diversity (hd) was highest when assessed among localities, whereas, within
- 268 the genetic groups generated by BAPS (Table S3), lower variation was observed among
- overlapping localities. The overall haplotype diversity (hd) among localities was 269
- 270 0.780±0.016 for the COI gene and 0.735±0.026 for the Cytb gene. Regarding nucleotide
- 271 diversity (π), the overall value was 0.0140 \pm 0.016 for the COI gene and 0.00848 \pm 0.00030
- 272
- for the Cytb gene (Table 1).
- The spatial relation of mitochondrial haplotypes from both loci revealed two primary 273
- 274 phylogroups. Notably, there were exclusive haplotypes for Colombia and Brazil, which
- 275 were separated from the CTNA, WTNA, and TNA biogeographic provinces by eight
- 276 mutational steps in the COI gene and interestingly, there were shared haplotypes between
- 277 Colombia and Brazil (Fig. 2A). In contrast, the separation occurred with only three
- 278 mutational steps in the Cytb gene (Fig. 2B).

- 280 The interpolation of haplotype diversity (ihd) allowed us to visualize the geographical
- patterns of the genetic groups detected by BAPS. For COI, the genetic group with the 281
- 282 highest ihd was group 4 (Colombia and northern Brazil, ihd = 0.28, Fig. 3B), for the
- 283 overlapping groups in the northwest Atlantic (from Chesapeake to Apalachicola Bays) it

was group 3 (ihd=0.22, Fig. 3), while group 5 (Brazil) obtained low ihd values (ihd=0.0005, Fig. 3D). For Cytb, the two overlapped genetic groups in the Northwest Atlantic showed similar values of ihd (ihd=0,22 and ihd= 0.23, respectively, Fig. S1) for the group that includes Colombia and São Paulo had the highest ihd (ihd= 0.687, Fig. S1). *Rhinoptera brasiliensis*. The COI sequences from 181 individuals revealed the presence of eight polymorphic sites, resulting in 10 haplotypes. In contrast, the fragment from the Cytb locus displayed six polymorphic sites, corresponding to eight haplotypes (Table 1). Like *R. bonasus* in *R. brasiliensis*, a higher haplotype diversity (hd) was observed across localities (Table S3), compared to the genetic groups generated in BAPS when clustering with overlapping localities. Considering the overall dataset, both markers exhibited low haplotype (hd $COI = 0.518\pm0.031$; hd $Cytb = 0.404\pm0.057$) and nucleotide diversities ($\pi COI = 0.0011\pm0.0000$; $\pi Cytb = 0.0010\pm0.0001$).

In general, the mtDNA haplotype network showed limited haplotype exchange between distant locations and a close relationship among haplotypes within the same localities or areas. Analysis of haplotype networks based on the *COI* gene (Fig. 2G) revealed the presence of two major haplotypes, encompassing all sampled localities. Conversely, the haplotype network constructed using the *Cytb* gene exhibited a dominant haplotype encompassing most localities, except for the Tampa and Tampico localities (Fig. 2H).

 The ihd of COI, for overlapped groups on a broad scale (from the US to Brazil), ranged from ihd = 0.0001 (group 1, Fig. 4B), to ihd = 0.247 (group 2, Fig. 4C). In São Paulo were identified two overlapped groups whose ihd was contrasting (group 4: ihd = 0.33 and group 5: ihd= 0.00003, Fig. 4C, 4D). Finally, the third group located in Pará, (Brazil) had the lowest idh (ihd= 0.00003, Fig. 4D). For Cytb, the broadly overlapped genetic groups range from ihd = 0.0001 (groups 1 and 4, Fig. S2) to ihd= 0.22 (group 2, Fig. S2). However, the presence of one group mainly inside the Gulf of Mexico (group 3) had the highest ihd (ihd = 0.98, Fig. S1) while the most southern group (group 5 in São Paulo) had ihd = 0.22 (Fig. S2C).

Population Structure

The global population structure reveals the presence of significant population genetic structure in both species. Bayesian clusters in BAPS were consistent with the segregation pattern observed for haplotype networks based on *COI* and *Cytb* markers for both species.

The optimal scenario from this Bayesian clustering analysis defined K = 5 genetic groups for the *COI* gene, while for the *Cytb* gene, the best scenario was K = 3 for *R. bonasus* (Fig. 2A, 2B). In contrast, in *R. brasiliensis*, it defined a K = 5 for both genes (Fig. 2E, 2F).

For R. bonasus, the pairwise Φ ST analysis revealed significant genetic differentiation primarily between the southeastern ecoregion, with the various groups from the Northern

Gulf of Mexico and the Western North Atlantic region. However, a high genetic differentiation can be observed even between closely sampled regions (Table 2). When assessing divergence between regions, the pairwise ΦST estimates resulted in highly significant differences among these five biogeographic provinces (Table S4). The hierarchical AMOVA revealed a statistically significant population structure for all scenarios tested for both markers. The highest percentage of variation was recorded among populations within groups when scenarios 1 and 2 grouped by biogeographic provinces (scenario 1) and separation of the Northwest Atlantic from the Northern Gulf of Mexico proposed by Carney et al., 2007 (scenario 2). Conversely, scenario 3 (groups detected by BAPS) showed the highest percentage of variation among groups for both genes (Table 3).

For *R. brasiliensis*, pairwise ΦST values show several significant differences among closely located populations for each gene (Table 4). However, when evaluating divergence between biogeographic provinces, samples from the WTSA province differ significantly from all other provinces, as observed with the COI gene (Table S4).

Out of the two scenarios tested in the hierarchical AMOVA, only scenario 1, where groups were generated based on biogeographic provinces, obtained the highest percentage of variation among populations within groups, while scenario 2 (groups determined by BAPS) exhibited the highest percentage of variation in among groups (Table 3).

Environmental association analyses

A total of 19 oceanic variables corresponding to benthic and surface environments were consulted, of which eight variables were excluded due to their high autocorrelation (S4). The relationship of genetic diversity (hd and π , of each gene for both species) with the 11 uncorrelated environmental variables evaluated with the canonical correspondence analysis (CCA) indicated that for *R. bonasus* a strong relationship (98% explained variance) of the hd *Cytb* with latitude (Lat) and π *Cytb* with minimum surface salinity and longitude (SSMIN, Long). For hd and π of *COI* showed a strong correlation with the maximum values of maximum benthic temperature (BTMAX) and minimum benthic current velocity (BCVMIN, Fig. 5A). For *R. brasiliensis* the 99% of explained variance in CCA biplots indicated that surface and benthic current velocity (SCVMAX, BCVMIN, and BCVMAX, Fig. 5A) are the main variables that explain the hd and π in for *Cytb* and *COI*.

Demographic Analysis

The demographic analysis, considering all samples or groups, did not reveal evidence of a sudden population expansion. Tajima's neutrality tests yielded significant values only in the biogeographic province NBS: Tajima's D COI = -1.593 (p < 0.043) for R. bonasus, while the Roza R2 tests were significant only in WTSA (R2 COI = 0.058, p < 0.000). For R. brasiliensis, Tajima's neutrality values were significant only in the biogeographic province WTSA (D COI = -1.701, p < 0.012). However, Fu's Fs statistic was significant in WTSA

(Fs = -5.019, p < 0.001), and for all samples (Fs = -6.223, p < 0.008) for *COI*, while for *Cytb* it was significant in TNA (Fs = -2.868, p < 0.039), and for all samples (Fs = -5.489, p < 0.008) (Table S7). The mismatch distribution plot showed an unimodal distribution for both species and both mitochondrial DNA marker fragments (Fig. 4, S3, S4, S5, S6).

Discussion

β78

This study represents the most extensive evaluation to date of the genetic diversity and population genetic structure of *R. bonasus* across its distribution, and it is the first to investigate the population genetics of *R. brasiliensis*. The recent increase in the distribution of *R. brasiliensis* has led to greater overlap with the ranges of *R. bonasus* (Jones et al., 2017; Palacios-Barreto et al., 2017; Weber et al., 2020), emphasizing the importance of fostering greater interest in the population genetics research of this species complex given its ecological and economic significance.

Genetic clustering

Bayesian assignment algorithms have recently emerged as a tool for inferring genetic structuring (Corander et al., 2007). These algorithms assign individuals to populations (without assuming predefined populations) only through genetic information, which is a significant advantage compared to methods requiring a priori-defined groups. Through this analysis, we identified a mixture of individuals among locations within the CTNA, WTNA, and TNA biogeographic provinces. Dispersal patterns in elasmobranchs are determined by habitat and life history traits in combination with marine landscape characteristics and biogeography (Phillips et al., 2021). This is evidenced by the genetic clustering found with BAPS and the diverse outcomes obtained, which will be further discussed later.

Genetic Diversity

Similar to the previous analysis conducted by Carney et al. (2017) on *R. bonasus*, where they utilized the same molecular markers, we observed similarities in the moderate levels of haplotype diversity between locations for both studies. However, *R. bonasus* in the São Paulo locality exhibited very low values of genetic diversity in both genes. The occurrence of zero values in certain locations within the groups identified by BAPS may be attributed to an artifact resulting from the small sample size and low variation within this mixture of subgroups from the locations.

All studied locations of cownose rays showed low nucleotide diversities for both mitochondrial fragments, highlighting the limited number of polymorphic sites present in the sequences. However, when comparing levels of genetic diversity with other ray species, *R. brasiliensis* exhibits one of the lowest nucleotide diversities recorded (Domingues et al., 2018a; Kottillil et al., 2023), besides, extremely low values were also found in Mediterranean electric rays (Melis et al., 2023), showed nucleotide diversity of 0.001.

Açıklamalı [au2]: A general evaluation of the prominent findings should be made here.

Despite this, genetic diversity estimates of cownose rays fall within the average range estimated for rays in general. Additionally, the low genetic diversity of elasmobranchs has previously been associated with bottlenecks, and it is known that the slow rates of evolution of elasmobranch mitochondrial genes are lower compared to other vertebrates (Martin et al., 1992). As a result, genetic diversity accumulates slowly in populations (Domingues et al., 2018a).

Population Structure

In this study, we incorporated samples covering locations representing the majority of the distribution of both species, compared to previous studies. We found that in *R. bonasus* in the Northwestern Atlantic, there are coexisting genetic groups, with discrete differences observed between the two biogeographic provinces of the Northwest Atlantic and Northern Gulf of Mexico, resembling findings reported by Carney et al. (2017). The significant genetic differences observed among mtDNA lineages may also arise from a potential geographic or ecological barrier restricting gene flow between populations in the Gulf of Mexico and the North Atlantic, or from a combination of factors including philopatry or site fidelity.

The matrilineal population structure of R. bonasus in this region could potentially be interpreted as a signature of biparental reproductive philopatry, where males also return to the same area for mating purposes (Phillips et al., 2021). R. bonasus is known to exhibit biparental philopatry in the northwest Atlantic, where males and females travel to the Chesapeake Bay every summer to give birth and then mate (Fisher et al., 2013). This shows that, in some species, males who devote their efforts to reproductive philopatry may gain more from increased fitness than previously believed. This could be due to the need to optimize the number of opportunities for mating with reproductive females (Phillips et al., 2021). As demonstrated by Benavides et al. (2011) and Chapman et al. (2015), philopatry can produce population structure in elasmobranchs and prevent reproductive mixing even in cases of significant migration. According to Feldheim et al. (2014), species whose distributions are significantly fragmented or patchy due to the scarcity of nursery environments may experience specialized natal philopatry. This phenomenon have been reported in species with affinity to riverine sites, which function as nurseries (e.g. Carcharhinus leucas, Laurrabaquio et al., 2019) and largetooth sawfish Pristis pristis (Phillips et al., 2011; Feutry et al., 2015) use coastal rivers and associated estuarine habitats as their breeding grounds. As with cownose rays, this could explain the presence of different haplotypes where multiple shared haplotypes exist, including the most abundant ones, but with different frequencies (see Figures 3, 4).

Migratory species connect physically dispersed habitats, making understanding their migrations crucial for management and conservation. *Rhinoptera bonasus*, despite its widespread range, has been researched mostly along the Atlantic coast of the United States,

where individuals venture into estuaries for feeding, pupping, and mating purposes (Fisher et al., 2013). The temperature is one of the most important factors for migrations to take place since it was found that the temperature tolerance range of *R. bonasus* is 15 to 31 °C (Bangley et al., 2021; Goodman, et al., 2011). During the spring and summer, these rays occupy estuaries in the northern part of their range, but as fall and winter arrive, they migrate southward (Last et al., 2016). Notably, research conducted by Ogburn et al. (2018) has reported resident, ranging, and migratory behavioral states, even in those individulas generally classified as non-migratory (resident and ranging) in summer and winter, and migratory (migratory) in spring and fall, exhibit consistent site fidelity to their summer habitats, indicating a potential philopatric tendency as these estuaries serve as crucial nurseries. This philopatric migration pattern may contribute to the population structure observed here in the Northwestern Atlantic (Flowers et al., 2016; Carney et al., 2017; Souza et al., 2021).

Haline and thermal barriers, as well as ocean currents, play a crucial role in dispersal and gene flow at various spatial scales (Santos et al., 2006). In the North West Atlantic, there are areas with diverse environmental conditions, mainly in temperature, since two biogeographic provinces converge: the Cold Temperate (CTNA) and Warm Temperate Northwest Atlantic (WTNA, Fig. 1) as well the geographic barrier such as the Florida Peninsula, in particular, serves as a distinctive example of a barrier influenced by a combination geographical and hydrological factors. This extensive landmass effectively separates the Gulf of Mexico from the Atlantic Ocean, transitioning from temperate to subtropical waters. This geographical feature is further accentuated by a narrow continental shelf along the Atlantic coast, coupled with the influence of strong currents streaming through the Florida Straits and into the Atlantic, as noted by Avise (1992) and Gold & Richardson (1998). In this zone, we found a notable difference between the minimum and maximum benthic temperature ranges in North Atlantic and Gulf of Mexico localities (Fig. S5), from Chesapeake Bay (BCh: BTMAX = 27.83 °C, BTMIN = 3.25 °C), Cedar Key (CK: BTMAX = 31.03 °C, BTMIN = 14.93 °C) to Mississippi (MM: BTMAX = 30.86 °C, BTMIN = 14.51 °C, Table S7), sites where the greatest genetic diversity was found at the locality level (BCh: hd \geq 0.69, $\pi \geq$ 0.023; CK: hd \geq 0.143; $\pi \leq$ 0.020, Table S3) and where two genetic groups of R. bonasus overlap (Fig. 3).

Ecological barriers among the three regions where divergent lineages were observed seem to be the most plausible explanation as it has been supported in earlier studies on various elasmobranchs species, for example the blacktip shark *Carcharhinus limbatus* (Keeney et al., 2005), the bonnethead shark *Sphyrna tiburo* (Escatel-Luna et al., 2015; Portnoy et al., 2015; Fields et al., 2016), the whitespotted eagle ray *Aetobatus narinari* (Sellas et al., 2015), and the southern stingray *Hypanus americanus* (Richards et al., 2019), indicating limited gene flow between these areas. Even among large coastal shark species, genetic differences at larger spatial scales between western North Atlantic and western South

Atlantic populations have been reported using mitochondrial markers for example scalloped 488 hammerhead (Sphyrna lewini, Chapman et al., 2009; Pinhal et al., 2020), bull shark 489 490 (Carcharhinus leucas, Karl et al., 2011), Caribbean sharpnose shark, (Rhizoprionodon 491 porosus, Mendonca et al., 2011), nurse shark (Ginglymostoma cirratum, Karl et al., 2012), 492 Brazilian sharpnose shark (Rhizoprionodon lalandii, Mendonca et al., 2013), silky shark 493 (C. falciformis, Clarke et al., 2015; Domingues et al., 2018b), and lemon shark (Negaprion 494 brevirostris, Ashe et al., 2015). The genetic population structure discovered for several 495 species of elasmobranchs in the western Atlantic Ocean is consistent with their philopatric reproductive habits or coastal dependence. In line with these previous findings, our study 496 also supports the presence of genetic divergence in our comparisons of mtDNA sequences 497 498 from cownose rays in the Northwestern Atlantic and Brazil, but also although not 499 consistently, within major regions as is the case of locations in the US waters of the Northwestern Atlantic probably related to philopatry. 500

501 502

503

504

505

506

507 508

509

510

511

512

513

514 515

516

In contrast, our findings for R. brasiliensis, despite significant FST and Φ ST values suggesting the presence of structure, reveal shared haplotypes implying some extent of genetic exchange. Gene flow between the Gulf of Mexico and Caribbean locations appears to be high, as no significant differentiation was detected for any of the mtDNA markers examined, which seems to be due to the great vagility and migration patterns of this species. However, there is a noteworthy genetic differentiation between the two most distant sites (Cape Canaveral (CC) and Brazil (Br), located at the northern and southern extremes of the species' distribution range. Indeed, both Rhinoptera species show genetic differentiation with individuals from Brazil compared to the most northerly distant locations. This genetic heterogeneity within cownose rays reflects their biological characteristics, such as a preference for shallow-coastal habitats, resulting in low or any migration movements between widely geographical areas. Omori & Fisher, (2017) observed the overall trajectory revealed reasonable large-scale movement patterns, allowing for the potential that some rays may venture beyond the continental shelf briefly. However, prolonged stays in deeper waters appear improbable due to the rays' strong affinity for the benthic substrate where they primarily feed.

517518519

520 521

522

523

524

525

526

527

528

For example, in the case of the populations of Brazil, the discharge of the Amazon River, which stretches thousands of kilometers across the Atlantic Ocean, may serve as an effective barrier between Brazil and other areas (Floeter et al., 2008; Pinhal et al., 2020), it is the one of the most important barriers between the Caribbean and Brazilian coasts that driving the differentiation of several species (Rocha, 2003), because of the Amazon River discharge that drastically alters the conditions (mainly- in salinity and organic suspended matter, Phillips et al., 2021). However, information about the migratory patterns of the Brazilian cownose ray (*Rhinoptera brasiliensis*) is currently lacking. Although these environmental factors could be influencing the matrilineal population structure of these cownose ray species, factors such as migratory behavior and habitat use patterns (e.g., the

preference for specific habitats for reproduction) should be considered, which can also reduce genetic connectivity, even without the presence of physical barriers (or in combination when they exist, Avise et al., 1992; Pearce, 2007)

533 Souza et al. (2021), based on nuclear DNA markers, fo-und significant genetic 534 differentiation in the cownose ray R. bonasus between the Amazonian and southeastern 535 ecoregions (Rio de Janeiro, São Paulo, and Santa Catarina), attributing this differentiation 536 to reproductive philopatry. Additionally, a pattern of genetic structure related to isolation 537 by distance was observed, suggesting that individuals may not disperse through long 538 distances, similar to what has been observed in some shark species in the Atlantic Ocean. 539 However, for us, this cannot be conclusively attributed exclusively to philopatric behavior 540 but also to a phylogeographic pattern. Furthermore, Rangel et al. (2018), in Bertioga, São Paulo, identified the nursery area for both cownose ray species, because of the presence of 541 542 pregnant females and neonates. Thus, reproductive behavior can significantly influence

genetic patterns among active dispersal capabilities such as cownose rays. Therefore, its

impact on connectivity in relation towith dispersal capacity, environmental tolerance, and

Environmental association analyses.

the presence of physical barriers, remains a challenge.

529

530

531

532

543

544

545

546 547

548

549

550 551

552

553

554

555

556 557

558

559

560

561 562

563

564

565

566

567

568 569 Understanding the environmental parameters that drive habitat delimitation as well as genetic diversity patterns is essential for species, especially in the context of climate change and the definition of conservation units. In this study, we found that benthic temperature and current velocity are the most important environmental variables in genetic diversity. In the Northwest Atlantic, where two contrasted biogeographic provinces (Cold Temperate and Warm Temperate), it has been documented that temperature is often the main driver of climatic migrations of fish and, therefore, of temporal changes in community structure and gene flow between populations (Peterson et al., 2023), in this area partial migration occurs when temperatures remain above 15 °C (Bangley et al., 2021;), we find that in the most northern localities such as Chesapeake Bay, the temperature range oscillates between 3.25 °C and 27.83 °C, so it is feasible that the individuals migrate south towards locations of Cedar Key and Apalachicola Bay, sites with temperatures higher than 14 °C, areas where two populations of R. bonasus coexist, this southward migration pattern has been reported by satellite tags (Omori & Fisher, 2017), where individuals migrate from the Chesapeake Bay along the coast to Florida during the fall, and although these authors agree with McDowell & Fisher (2013) in that the cownose rays in the Atlantic correspond to separate stock from the Gulf of Mexico, our results indicate that a connection to the Atlantic individuals does exist, as we included a geographically broader genetic sampling than reported by McDowell & Fisher (2013) and greater number of individuals sampled than the seven tags recovered by Omori & Fisher (2017), so it is important to evaluate migration patterns into and out of the Gulf of Mexico.

Demographic Analysis

571 The distribution of pairwise sequence differences (mismatch) for populations of cownose 572 rays Rhinoptera bonasus and R. brasiliensis for both fragments was unimodal, which could 573 indicate recent demographic expansion or range expansion events (Rogers & Harpending, 574 1992). In this case, this information is analyzed alongside the values of the Fs test, 575 indicating population expansion by the presence of excess of rare variants. Additionally, the 576 values of the raggedness index were not significant to support the hypothesis of expanding 577 populations. Other evidence of population expansion for R. brasiliensis included the significant negative values of the Fu's Fs test for the entire sample set (Tajima, 1989) and 578 the star-like topology in the haplotype network. 579

580 581

570

Conclusions

582 Our results offer new insights about cownose rays' genetic diversity, population structure, 583 and genetic connectivity indicating several coexisting genetic groups, indicative of well-584 differentiated groups within the same locality, for both genes and species. For as philopatry 585 in the Northwestern Atlantic, there are coexisting genetic groups, with discrete differences 586 observed between the two biogeographic provinces of the Northwest Atlantic and Northern Gulf of Mexico. The significant genetic differences observed among mtDNA lineages may 587 588 be due to ecological aspects (such as temperature changes throughout the year) or 589 behavioral aspects such as philopatry or site fidelity contributing to the population structure 590 observed in the Northwestern Atlantic. In contrast, our findings for R. brasiliensis, despite 591 significant FST and ΦST values suggesting the presence of structure, reveal shared 592 haplotypes implying some extent of genetic exchange. Gene flow between the Gulf of 593 Mexico and Caribbean locations appears to be high, as no significant differentiation was 594 detected for any of the mtDNA markers examined, which seems to be due to the great 595 vagility and migration patterns of this species. However, there is a noteworthy genetic 596 differentiation between the two most distant sites (Cape Canaveral (CC) and Brazil (Br), 597 located at the northern and southern extremes of the species' distribution range. Indeed, 598 both Rhinoptera species show genetic differentiation with individuals from Brazil 599 compared to the most northerly distant locations. Although the mtDNA markers have been 600 useful for assessing genetic structure in a variety of widely distributed fishes and 601 Elasmobranch, the use of nuclear markers with higher mutation rates (e.g., microsatellites 602 or SNPs) can uncover genetic structure that this genetic marker was unable to find. 603 According to our results, it is necessary to reinforce cownose rays conservation strategies to 604 maintain and safeguard the genetic diversity of populations distributed on the western 605 Atlantic coasts.

Acknowledgements

- We thank the dedicated scientists of the Florida Fish and Wildlife Conservation
 Commission's Fish and Wildlife Research Institute Fisheries-Independent Monitoring
- 609 program and E. Reyier (NASA-KSC Ecological Program) for sample collection from

- 610 Florida waters. We are grateful to Seifu Seyoum of FWC-FWRI Genetics Lab for for 611 analyzing and providing additional sequences for this manuscript. Andrea Ramirez and 612 Arturo Ronquillo for their assistance with fieldwork. Laura Cera and Citlalli del Valle assist 613 with laboratory protocols, Jonathan de la Cruz who edited the BAPS figure. We thank the reviewers who helped improve our manuscript. 614 615 References 616 617 Ajemian MJ, Powers SP. 2016. Seasonality and ontogenetic habitat partitioning of cownose 618 rays in the northern Gulf of Mexico. Estuaries and Coasts, 39, 1234-1248. 619 620 Ashe JL, Feldheim KA, Fields AT, Revier EA, Brooks EJ, O'Connell MTO, Skomal G, Gruber SH, Chapman DD. 2015. Local population structure and context-dependent 621 622 isolation by distance in a large coastal shark. Mar Ecol Prog Ser 520:203-216 623 624 Avise JC. 1992. Molecular population structure and the biogeographic history of a regional 625 fauna: a case history with lessons for conservation biology. Oikos, 62-76. 626 627 Avise JC, Alisauskas RT, Nelson WS, Ankney CD. 1992. Matriarchal population genetic 628 structure in an avian species with female natal philopatry. Evolution, 46, 1084. https://doi.org/10.1111/j.1558-5646.1992.tb00621.x 629 630 631 Bandelt HJ, Forster P, Röhl A. 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular biology and evolution, 16(1), 37-48. 632 633 634 Bangley CW, Edwards ML, Mueller C, Fisher RA, Aguilar R, Heggie K, Richie K, Ahr BJ,
- 635
- Ogburn MB. 2021. Environmental associations of cownose ray (Rhinoptera bonasus)
- seasonal presence along the U.S. Atlantic Coast. Ecosphere 12 (9): 636
- 637 e03743. 10.1002/ecs2.3743

643

- 639 Benavides MT, Horn RL, Feldheim KA, Shivji MS, Clarke SC, Wintner S, Chapman DD.
- 640 2011. Global phylogeography of the dusky shark Carcharhinus obscurus: implications for
- 641 fisheries management and monitoring the shark fin trade. Endangered Species
- 642 Research, 14(1), 13-22.
- 644 Blaylock RA. 1993. Distribution and abundance of the cownose ray, Rhinoptera bonasus,
- in lower Chesapeake Bay. Estuaries and Coasts 16:255-263. 645
- 647 Carlson J, Charvet P, Avalos C, Blanco-Parra MP, Briones Bell-lloch A, Cardenosa D,
- 648 Crysler Z, Derrick D, Espinoza E, Morales-Saldaña JM, Naranjo-Elizondo B, Pacoureau N,
- Pérez Jiménez JC, Schneider EVC, Simpson NJ, Dulvy NK. 2020. Rhinoptera 649

650 brasiliensis. The IUCN Red List of Threatened Species 2020: 651 e.T44595A2997621. https://dx.doi.org/10.2305/IUCN.UK.2020-652 3.RLTS.T44595A2997621.en. Accessed on 31 January 2024. 653 654 Carney SL, McVeigh DM, Moss JB, Ferrier MD, Morrissey JF. 2017. Insights on 655 mitochondrial genetic variation in Chesapeake Bay summer-resident cownose 656 rays. Transactions of the American Fisheries Society, 146(3), 478-484. 657 Chapman DD, Feldheim KA, Papastamatiou YP, Hueter RE. 2015. There and back again: a 658 review of residency and return migrations in sharks, with implications for population 659 660 structure and management. Annu Rev Mar Sci 7:547-570 661 662 Chapman DD, Pinhal D, Shivji MS. 2009. Tracking the fin trade: genetic stock 663 identification in western Atlantic scalloped hammerhead sharks Sphyrna 664 lewini. Endangered Species Research, 9(3), 221-228. 665 Clarke CR, Karl SA, Horn RL, Bernard AM, Lea JS, Hazin FH, Prodöhl PA, Shivji MS. 666 2015. Global mitochondrial DNA phylogeography and population structure of the silky 667 668 shark, Carcharhinus falciformis. Mar Biol 162:945-955 669 670 Collins AB, Huepel MR, Simpfendorfer CA. 2008. Spatial distribution and long-term 671 movement patterns of cownose rays Rhinoptera bonasus within an estuarine river. Estuar 672 Coasts 31:1174-1183 673 674 Cockerham CC, Weir BS. 1993. Estimation of gene flow from F-statitics. Evolution 675 47:855-863 676 Corander, J., Marttinen, P., Sirén, J., & Tang, J. (2008). Enhanced Bayesian modelling in 677 678 BAPS software for learning genetic structures of populations. BMC bioinformatics, 9, 1-14. 679 680 Corander J, Tang J. 2007. Bayesian analysis of population structure based on linked molecular information. Mathematical biosciences, 205(1), 19-31. 681 682 683 Corander J, Marttinen P. 2006. Bayesian identification of admixture events using multilocus molecular markers. Molecular ecology, 15(10), 2833-2843. 684 685 Domingues RR, Hilsdorf AWS, Gadig OBF. 2018a. The importance of considering genetic 686 687 diversity in shark and ray conservation policies. Conservation Genetics, 19, 501-525. 688

Domingues RR, Hilsdorf AW, Shivji MM, Hazin FV, Gadig OB. 2018b. Effects of the

Pleistocene on the mitochondrial population genetic structure and demographic history of

689

691 692 693	the silky shark (Carcharhinus falciformis) in the western Atlantic Ocean. Reviews in Fish Biology and Fisheries, 28, 213-227. https://doi.org/10.1007/s11160-020-09607-x	
694 695 696	Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Research 32(5):1792-971792-7. https://doi: 10.1093/nar/gkh340	
697	Escatel-Luna E, Adams DH, Uribe-Alcocer M, Islas-Villanueva V, Díaz-Jaimes P. 2015.	
698	Population genetic structure of the bonnethead shark Sphyrna tiburo from the Western	
699	North Atlantic Ocean based on mtDNA sequences. J Hered 106(4):355–365.	
700	https://doi.org/10.1093/jhered/esv030	
701		
702	Excoffier L, Smouse PE, Quattro JM. 1992. Analysis of molecular variance inferred from	
703	metric distances among DNA haplotypes: application to human mitochondrial DNA	
704	restriction data. Genetics 131:479–491. https://doi.org/10.1007/s00424-009-0730-7	
705		
706	Excoffier L, Lischer H. 2010. Arlequin suite ver 35: a new series of programs to perform	
707	population genetics analyses under Linux and Windows. Mol Ecol Resour 10(3):564–567.	
708	https://doi.org/10.1111/j.1755-0998.2010.02847.x	
709		
710	Feldheim KA, Gruber SH, Dibattista JD, Babcock EA, Kessel ST, Hendry AP, Pikitch EK,	
711	Ashley MV, Chapman DD. 2014. Two decades of genetic profiling yields first evidence of	
712	natal philopatry and long-term fidelity to parturition sites in sharks. Mol Ecol 23:110-117	
713		
714	Feutry P, Kyne PM, Pillans RD, Chen X, Marthick JR, Morgan DL, Grewe PM. 2015.	
715	Whole mitogenome sequencing refines population structure of the Critically Endangered	
716	sawfish Pristis pristis. Mar Ecol Prog Ser 533:237–244	
717		
718	Fields AK, Feldheim A, Gelsleichter J, Pfoertner C, Chapman, DD. 2016. Population	
719	structure and cryptic speciation in bonnethead sharks Sphyrna tiburo in the south-eastern	
720	USA and Caribbean. Journal of Fish Biology, 89(5), 2219-2233.doi:10.1111/jfb.13025	
721		
722	Fisher RA. 2010. Life history, trophic ecology & prey handling by cownose	
723	ray, Rhinoptera bonasus, from Chesapeake Bay. NOAA final report (NA07NMF4570324)	
724	Grant No. 713031. VIMS Marine Resource Report No. 2010-20, VSG-10-25	
725		
726	Fisher RA, Call GC, Grubbs RD. 2013. Age, growth, and reproductive biology of cownose	
727	rays in Chesapeake Bay. Mar Coast Fish: Dyn Manage Ecosyst Sci 5:224–235	
728		
729	Flowers KI, Ajemian MJ, Bassos-Hull K, Feldheim KA, Hueter RE, Papastamatiou YP,	
730	Chapman DD. 2016. A review of batoid philopatry, with implications for future research	

and population management. Mar Ecol Prog Ser 562:251–261

731

Biçimlendirdi: İngilizce (ABD)

Biçimlendirdi: İngilizce (ABD)

733 Floeter SR, Rocha LA, Robertson DR. 2008. Atlantic reef fish biogeography and evolution. 734 J Biogeogr 35:22-47 735 736 Fu YX. 1996. Estimating the age of the common ancestor of a DNA sample using the number of segregating sites. Genetics 144:829-838 737 738 739 Gold JR, Richardson LR. 1998. Mitochondrial DNA diversification and population structure in fishes from the Gulf of Mexico and western Atlantic. Journal of 740 Heredity, 89, 404–414. https://doi.org/10.1093/jhered/89.5.404 741 742 743 Goodman MA, Conn PB, Fitzpatrick E. 2011. Seasonal occurrence of Cownose rays 744 (Rhinoptera bonasus) in North Carolina's estuarine and coastal waters. Estuar Coasts 34:640-651 745 746 747 Grusha DS. 2005. Investigations into the life history of the Cownose ray, Rhinoptera bonasus, (Mitchill, 1815). Master's thesis. Virginia Institute of Marine Science, College of 748 749 William and Mary, Gloucester Point 750 Hall T. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis 751 program for Windows 95/98/NT. Nucl Acids Symp Ser.;41:95-8 752 753 754 Harpending HC. 1994. Signature of ancient population growth in a low-resolution 755 mitochondrial DNA mismatch distribution. Human biology, 591-600. 756 757 Jones CM, Hoffmayer ER, Hendon JM, Quattro JM, Lewandowski J, Roberts MA, 758 Márquez-Farías JF. 2017. Morphological conservation of rays in the genus Rhinoptera 759 (Elasmobranchii, Rhinopteridae) conceals the occurrence of a large batoid, Rhinoptera 760 brasiliensis Müller, in the northern Gulf of Mexico. Zootaxa, 4286, 499-514. 761 Jombart T, Pontier D, Dufour AB. 2009. Genetic markers in the playground of multivariate 762 763 analysis. Heredity, 102(4), 330-341. 764 765 Karl SA, Castro ALF, Lopez JA, Charvet P, Burgess GH. 2011. Phylogeography and conservation of the bull shark (Carcharhinus leucas) inferred from mitochondrial and 766 767 microsatellite DNA. Conserv Genet 12:371-382 768 769 Karl SA, Castro AL, Garla RC. 2012. Population genetics of the nurse shark (Ginglymostoma cirratum) in the western Atlantic. Marine Biology, 159(3), 489-498. 770

732

- Keeney DB, Heupel MR, Hueter RE, Heist EJ. 2005. Microsatellite and mitochondrial 772
- 773 DNA analyses of the genetic structure of blacktip shark (Carcharhinus limbatus) nurseries
- 774 in the northwestern Atlantic, Gulf of Mexico, and Caribbean Sea. Mol Ecol 14:1911-1923

- 776 Kenchington EL. 2003. 14 The Effects of Fishing on Species and Genetic
- 777 Diversity. Responsible fisheries in the marine ecosystem, 235.

778

- 779 Kottillil S, Rao C, Bowen BW, Shanker K. 2023. Phylogeography of sharks and rays: a global review based on life history traits and biogeographic partitions. PeerJ, 11, e15396. 780

781

782 Last PR, White W, de Carvalho MR, Séret B, Stehmann M, Naylor G. 2016. Rays of the 783 world. CSIRO Publishing, Clayton North, 790 pp.

784

- 785 Laurrabaquio-A NS, Islas-Villanueva V, Adams DH, Uribe-Alcocer M, Alvarado-Bremer
- 786 JR, Díaz-Jaimes P. 2019. Genetic evidence for regional philopatry of the Bull Shark
- 787 (Carcharhinus leucas), to nursery areas in estuaries of the Gulf of Mexico and western
- 788 North Atlantic Ocean. Fisheries Research, 209, 67-74.

789

- 790 Leigh JW, Bryant D. 2015. POPART: full-feature software for haplotype network
 - construction. Methods in ecology and evolution, 6(9), 1110-1116.

791 792

- 793 Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA
- 794 polymorphism data. Bioinformatics 25:1451–1452

795

- 796 Martin AP, Naylor GJP, Palumbi SR. 1992. Rates of mitochondrial DNA evolution in
- 797 sharks are slow compared with mammals. Nature 357, 153-155.

798

- 799 McDowell JR, Fisher RA. 2013. Discrimination of cownose ray, Rhinoptera bonasus,
- 800 stocks based on microsatellite DNA markers. NOAA final report (NA11NMF4570215),
- VIMS Marine Resource Report No. 2013-8 801

802

- 803 Melis R, Di Crescenzo S, Cariani A, Ferrari A, Crobe V, Bellodi A, Cannas R. 2023. I Like
- 804 This New Me: Unraveling Population Structure of Mediterranean Electric Rays and
- 805 Taxonomic Uncertainties within Torpediniformes. Animals, 13(18), 2899.

806

- 807 Mendonça FF, Oliveira C, Gadig OBF. 2011. Phylogeography and genetic population
- structure of Caribbean sharpnose shark Rhizoprionodon porosus . Rev Fish Biol 808
- 809 Fisheries 21, 799–814 (). https://doi.org/10.1007/s11160-011-9210-1

811 Mendonça FF, Oliveira C, Gadig OBF, Foresti F. 2013. Diversity and genetic population 812 structure of the Brazilian sharpnose shark Rhizoprionodon lalandii. Aquatic Conservation: 813 Marine and Freshwater Ecosystems, 23(6), 850-857. 814 815 Neer JA, Thompson BA. 2005. Life history of the Cownose Ray, Rhinoptera bonasus, in 816 the northern Gulf of Mexico, with comments on geographic variability in life history traits. 817 Environmental Biology of Fishes 73:321–331. 818 819 Oksanen J, Blanchet F, Kindt R, Legendre P, Minchin P. 2022. vegan: Community Ecology Package. R package version 20–8: http://CRAN.R-project.org/package=vegan. 820 821 822 Oliver MA, Webster R. 1990. Kriging: a method of interpolation for geographical 823 information systems. International Journal of Geographical Information System, 4(3), 313-824 332. 825 826 Ogburn MB, Bangley CW, Aguilar R, Fisher RA, Curran MC, Webb SF, Hines AH. 2018. 827 Migratory connectivity and philopatry of cownose rays Rhinoptera bonasus along the 828 Atlantic coast, USA. Marine Ecology Progress Series, 602, 197-211. 829 Omori KL, Fisher RA. 2017. Summer and fall movement of cownose ray, Rhinoptera 830 831 bonasus, along the east coast of United States observed with pop-up satellite tags. Environ 832 Biol Fish 100, 1435–1449 https://doi.org/10.1007/s10641-017-0654-6 833 834 Palacios-Barreto P, Cruz VP, Foresti F, Rangel BS, Uribe-Alcocer M, Díaz-Jaimes P. 2017. 835 Molecular evidence supporting the expansion of the geographical distribution of the 836 Brazilian cownose ray Rhinoptera brasiliensis (Myliobatiformes: Rhinopteridae) in the 837 western Atlantic. Zootaxa, 4341, 593-600 838 839 Pearce JM. 2007. Philopatry: A return to origins. The 840 Auk, 124, 1085. https://doi.org/10.1093/auk/124.3.1085.

Pearce J, Fraser MW, Sequeira AM, Kaur P. 2021. State of shark and ray genomics in an

Pérez-Jiménez JC. 2011. Reproductive biology of the cownose ray Rhinoptera bonasus

(Elasmobranchii) in the Southeastern Gulf of Mexico. Hidrobiológica, 21(2), 159-167.

Peterson CH, Fodrie JF, Summerson HC, Powers SP. 2001. Site-specific and density-

dependent extinction of prey by schooling rays: generation of a population sink in top-

era of extinction. Frontiers in Marine Science, 8, 744986.

quality habitat for bay scallops. Oecologia, 129, 349-356.

841

842

843844845

846

847 848

849

850 851 **Biçimlendirdi:** Portekizce (Brezilya)

Biçimlendirdi: Portekizce (Brezilya)

- 852 Peterson CT, Grubbs RD. 2023. Temporal community structure and seasonal climatic
- 853 migration of coastal sharks and large teleost fishes in the northeast Gulf of Mexico.
- 854 Canadian Journal of Fisheries and Aquatic Sciences.

- 856 Phillips NM, Chaplin JA, Morgan DL, Peverell SC. 2011. Population genetic structure and
- 857 genetic diversity of three critically endangered Pristis sawfishes in Australian waters. Mar
- 858 Biol 158:903-915

859

- 860 Phillips NM, Devloo-Delva F, McCall C. 2021. Reviewing the genetic evidence for sex-
- biased dispersal in elasmobranchs. Rev Fish Biol Fisheries 31, 821–841.
- 862 https://doi.org/10.1007/s11160-021-09673-9

863

- 864 Pinhal D, Domingues RR, Bruels CC, Ferrette BL, Gadig OB, Shivji MS, Martins C. 2020.
- 865 Restricted connectivity and population genetic fragility in a globally endangered
- Hammerhead Shark. *Reviews in Fish Biology and Fisheries*, 30(3), 501-517.

867

- Portnoy DS, Puritz JB, Hollenbeck CM, Gelsleichter J, Chapman D, Gold JR. 2015.
- 869 Selection and sex-biased dispersal in a coastal shark: the influence of philopatry on
- adaptive variation. Mol Ecol 24:5877–5885

871

- 872 Ramos-Onsins SE, Rozas J. 2002. Statistical properties of new neutrality tests against
- population growth. *Molecular biology and evolution*, 19(12), 2092-2100.

874

- 875 Rangel BS, Rodrigues A, Moreira RG. 2018. Use of a nursery area by cownose rays
- 876 (Rhinopteridae) in southeastern Brazil. Neotropical Ichthyology, 16.

877

- 878 Richards VP, DeBiasse MB, Shivji M. 2019. Deep mitochondrial lineage divergence
- among populations of the southern stingray (Hypanus americanus (Hildebrand &
- 880 Schroeder, 1928)) throughout the Southeastern United States and Caribbean. Marine
- 881 Biodiversity, 49, 1627-1634.

882

- 883 Rocha LA. 2003. Patterns of distribution and processes of speciation in Brazilian reef
- 884 fishes. Journal of Biogeography, 30, 1161–1171. https://doi.org/10.1046/j.1365-
- 885 2699.2003.00900.x

886

- 887 Rogers C, Roden C, Lohoefener R, Mullin K, Hoggard W. 1990. Behavior, distribution,
- 888 and relative abundance of cownose ray schools Rhinoptera bonasus in the northern Gulf of
- 889 Mexico. Gulf of Mexico Science, 11(1), 8.

- 891 Rogers AR, Harpending H. 1992. Population growth makes waves in the distribution of
- pairwise genetic differences. *Molecular biology and evolution*, 9(3), 552-569.

894 Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning: a laboratory manual (2nd ed.). New York, NY: Cold Spring Harbor Laboratory. 895 896 897 Santos S, Hrbek T, Farias IP, Schneider H, Sampaio I. 2006. Population genetic structuring 898 of the king weakfish, Macrodon ancylodon (Sciaenidae), in Atlantic coastal waters of South 899 America: Deep genetic divergence without morphological change. *Molecular* 900 Ecology, 15, 4361–4373.). 901 902 Schwartz FJ. 1990. Mass migratory congregations and movements of several species of 903 cownose rays, Genus Rhinoptera: a world-wide review. Journal of the Elisha Mitchell 904 Scientific Society 106:10-13. 905 906 Schwartz FJ. 1964. Effects of winter water conditions on fifteen species of captive marine 907 fishes. American Midland Naturalist 1964: 434-444. 908 Sellas AB, Bassos-Hull K, Pérez-Jiménez JC, Angulo-Valdés JA, Bernal MA, Hueter HE. 909 910 2015. Population structure and seasonal migration of the spotted eagle ray, Aetobatus narinari. Journal of Heredity, 106(3), 266-275. 911 912 Smith JW, Merriner JV. 1986. Observations on the reproductive biology of the cownose 913 ray, Rhinoptera bonasus, in Chesapeake Bay. U.S. NMFS Fish Bull 84:871-877 914 915 916 Smith JW, Merriner JV. 1987. Age and growth, movements and distribution of the 917 Cownose ray, Rhinoptera bonasus, in Chesapeake Bay. Estuaries 10:153-164 918 Souza BC, Cruz VP, Almeida TR, Sales JBL, Rodrigues-Filho LFS, Vianna M, Foresti F. 919 920 2021. Genetic diversity assessment for the vulnerable migratory cownose ray Rhinoptera 921 bonasus (Myliobatiformes: Rhinopteridae) from the southwestern Atlantic 922 Ocean. Neotropical Ichthyology, 19, e210077. 923 Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson MAX, Robertson J. 924 2007. Marine ecoregions of the world: a bioregionalization of coastal and shelf 925 926 areas. BioScience, 57(7), 573-583. 927 928 Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA 929 polymorphism. *Genetics*, 123(3), 585-595. 930 Ward R, Zemlak TS, Innes B, Last P, Hebert P. 2005. DNA barcoding Australia's fish 931 species. Philos T Roy Soc B 360:1847–1857. https://doi.org/10.1098/rstb.2005.1716 932 933

- 934 Weber HK, Jones CM, Ajemian MJ, McCallister MP, Winner BL, Poulakis GR, Bethea
- 935 DM, Hollensead LD, Zapf D, Swenson JD, Hendon JM, Daly-Engel TS, Phillips NM.
- 936 2021. Genetic evidence supports a range extension for the Brazilian cownose ray
- 937 Rhinoptera brasiliensis in the western North Atlantic. J Fish Biol; 98:577–582.
- 938 https://doi.org/10.1111/jfb.14582.