Analyzing the proximity to cover in a landscape of fear: A new approach applied to fine - scale habitat use by rabbits facing feral cat predation on Kerguelen archipelago (#6979)

First revision

Important notes

Declarations

Please read the **Important notes** below, and the **Review guidance** on the next page. When ready **submit online**. The manuscript starts on page 3.

Editor Donald Kramer	
Files	1 Tracked changes manuscript(s) 1 Rebuttal letter(s) 4 Figure file(s) 3 Raw data file(s) 2 Other file(s) Please visit the overview page to download and review the files not included in this review pdf.

No notable declarations are present

Please in full read before you begin

How to review

When ready <u>submit your review online</u>. The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this **pdf** and upload it as part of your review

To finish, enter your editorial recommendation (accept, revise or reject) and submit.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to **PeerJ standard**, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (See <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within **Scope of** the journal.
- Research question well defined, relevant & meaningful. It is stated how research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Negative/inconclusive results accepted.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Conclusion well stated, linked to original research question & limited to supporting results.
- Speculation is welcome, but should be identified as such.

The above is the editorial criteria summary. To view in full visit https://peerj.com/about/editorial-criteria/

Analyzing the proximity to cover in a landscape of fear: A new approach applied to fine - scale habitat use by rabbits facing feral cat predation on Kerguelen archipelago

Pierrick Blanchard, Christine Lauzeral, Simon Chamaillé-Jammes, Nigel G Yoccoz, Dominique Pontier

Although proximity to cover has been routinely considered as an explanatory variable in studies investigating prey behavioral adjustments to predation pressure, the way it shapes risk perception still remains equivocal. This paradox arises from both the ambivalent nature of cover, making its impact on risk perception complex and context - dependent, and from the choice of the proxy used to measure cover in the field, which leads to a partial picture of the landscape of fear experienced by the prey. Here, we study a simple predator - prey - habitat system, i.e., rabbits Oryctolagus cuniculus facing feral cat Felis catus predation on Kerguelen archipelago. We assess how cover shapes risk perception in prey and develop an easily implementable and inexpensive field method to index proximity to cover. In contrast to protocols considering the "distance to the closest cover item", we focus on the overall "surface to the cover items". We show that rabbit' fine scale habitat use is clearly related to our measure, in accordance with our hypothesis of cover being a source of risk in this predator - prey - habitat system. In contrast, classical measures of proximity to cover are not retained in the final predictive models of habitat use. Hence, the use of this new simple approach, together with a more in - depth consideration of multiple scales and contrasting properties of cover, could help to better understand the role of this complex yet decisive parameter for prey ecology.

1	Analyzing the proximity to cover in a landscape of fear:
2	A new approach applied to fine scale habitat use by rabbits facing feral
3	cat predation on Kerguelen archipelago
4	
5	Pierrick Blanchard ¹ , Christine Lauzeral ¹ , Simon Chamaillé-Jammes ² , Nigel G. Yoccoz ³ and
6	Dominique Pontier ⁴
7	
8	
9	¹ Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, ENFA, UMR 5174 (Laboratoire Évolution et
LO	Diversité Biologique), F-31062 Toulouse, France
l1	² Centre d'Écologie Fonctionnelle et Évolutive, CNRS, UMR 5175, F-34293 Montpellier Cedex 5, France
12	³ Department of Arctic and Marine Biology, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
13	⁴ Université de Lyon, Université Lyon I Claude Bernard, CNRS, UMR 5558 LBBE (Laboratoire Biométrie et
L4	Biologie Evolutive), F-69622 Villeurbanne, France
15	
16	Corresponding author:
L7	Pierrick Blanchard
18	Université Paul Sabatier, 118, route de Narbonne, 31062 TOULOUSE Cedex 09, France
19	E-mail address: pierrick.blanchard@univ-tlse3.fr

Abstract

21	Although proximity to cover has been routinely considered as an explanatory variable in studies
22	investigating prey behavioral adjustments to predation pressure, the way it shapes risk perception
23	still remains equivocal. This paradox arises from both the ambivalent nature of cover, making its
24	impact on risk perception complex and context—dependent, and from the choice of the proxy
25	used to measure cover in the field, which leads to a partial picture the landscape of fear
26	experienced by the prey. Here, we study a simple predator—prey—habitat system, i.e., rabbits
27	Oryctolagus cuniculus facing feral cat Felis catus predation on Kerguelen archipelago. We
28	assess how cover shapes risk peption in prey and develop an easily implementable and
29	inexpensive field mend to index proximity to cover. In contrast to protocol misidering the
30	"distance to the closest cover item", focus on the overall "surface to the cover items". We
31	show that rabbit' fine – scale habitat use is clearly related to our measure, in accordance with our
32	hypothesis of cover being a source of risk in this predator—prey—habitat system. In contrast,
33	classica peasures of proximity to ver are not retained in the final preciove models of habitat
34	use. Hence, the use of this new simple approach, together with a more in depth consideration of
35	multiple scales and contrasting properties of cover, could help to better understand the role of
36	this complex yet decisive parameter for prey ecology.

Introduction

50	-0	x	≺
		_	•

39	Cover, hereafter defined as any tangible feature pe habitat that impairs the prey's
40	and/or the predator's ability to see and/or move (i.e., Mysterud and Østbye 1999's definition of
41	"structural cover", restricted to Laundré et al. 2010's "landscape of fear" context), has often been
42	considered as an explanatory variable in field studies investigating prey behavioral adjustments
43	to predation risk (Caro 5). Yet, the way cover shapes risk perception in prey species and their
44	subsequent anti – predator tactics still remains equivocal (e.g., Burger et al. 2000, Tchabovsky et
45	al. 2001, C 2005). In addition to (1) the ambiguity inherent to the use of a single word to refer
46	to multi – scales habitat items (e.g., a prey may have it sual field impaired by a tree line
47	hundreds of meters away and by a tuft of vegetation nearby its eyes when feeding he lown)
48	and (2) the paucity of studies considering simultaneously these different scales while they may
49	interact (e.g., Pays et al. 2012), two main reasons may explain why the role of this parameter
50	remains ambivalent.
51	First, cover is a (visual/physical) barrier for the focal individual prey but also for
52	predator(s). Hence, the ratio between its contrasting obstructive (i.e., pretos the prey to see or
53	escape from the predator) and protective (i.e., prevents the predator to see or attack the prey)
54	properties (Lazarus and Symonds 1992, Mysterud and Østbye 1999) (i.e., the overall risk
55	perception), is highly specific to a predator(s) – prey system. Obviously, this
56	obstructive/protective ratio depends on the intrinsic physical properties of the or itself (its
57	dimensions, opacity etc.), in relation to, among others, the physical characteristics (body size,
<mark>58</mark>	visual acuity etc.) and escape/hunting tactics of the focal prey and its predator(s) (e.g. Lima
59	1990, Murray et al. 1995, Newberry and Shackleton 1997). However, intra – specific variability

- is also further expected because individuals differ in physical characteristics and escape
- 61 tactics/skills but also in sex, reproductive status, previous predation experience and other
- 62 parameters (such as group size) that may determine risk perception in relation to a specific cover
- 63 type (e.g., Götmark and Hohlfält 1955 Bowyer et al. 1999, Stratmann and Taborsky 2014,
- Beauchamp 2014). Finally, time of the day (e.g., Moreno et al. 1996) or set (e.g., Bowyer et
- al. 1999) may affect the obstructive/prote ratio for a given cover and a given prey
- 66 individual. Hence, contrasting results in studies investigating the role of cover in shaping risk
- perception, including those performed on the same species and type of cover (e.g., Jaksic and
- 68 Soriguer 1981, Moreno et al. 1996), probably reflects at least in part natural heterogeneit
- The second reason why the role of cover for prey remains ambivalent arises from field
- 70 measurements. They are probably usually too basic to provide biologically relevant proxies of
- 71 risk perception. At any given time and for a given predator(s) prey system, the
- obstructive/protective ratio of a given cover item is expected to depend on its proximity to the
- point of interest (e.g., a focal animal, an index of presence, a birth site, a random point etc.). For
- 74 instance, a discontinuous cover (i.e., tree foliage provided by drooping branches) is expected to
- display a low obstructive/protective ratio if the prey stands close to it as it breaks its body shape
- 76 (i.e., protective properties against predator visual detection) but its own visual field may be
- unimpaired (depending on the exact position of the eye in respect to the branches and leaves) and
- 78 its movements unaffected in case of attack (i.e., no visual/physical obstructive properties). With
- 79 the distance between the focal point and the cover item increasing, the obstructive/protective
- ratio is expected to increase as the above rationale progressively shifts from the prey to the
- 81 predator side (in particular for stalk and ambush predators), as long as the cover item remains
- in the "domain of risk" of the prey, i.e., where the prey is at risk if the predator starts hunting

83	from the cover. Accordingly, field studies, and in particular those focusing on ground cover,
84	classically consider the "distance to cover" (when mentioned, typically the "closest" "principal"
85	cover item) as a routine measurement (Caro 2005). We speculate that part cover item) as a routine measurement (Caro 2005).
86	results of studies relating prey behavioral traits to "cover" is the consequence of the use of this
87	measure that may lead to a partial picture of the landscape of fear experienced by the prey. This
88	because:
89	(1) A distance" alone says nothing about a parameter as important as the dimension of
90	the cover the prey faces. Although the shortest distance to cover is of importance as this gives in
91	particular an indication of the shortest time lag before being predated/sheltered, it is only part of
92	the information: overall risk is no pected to be the same 10 meters away from a small patch of
93	trees or 10 meters away from tree line.
94	(2) The other cover items present in the surroundings are not considered in this appach.
95	Yet, risk perception is not expected to be the same 10 meters away from a shrub with no other
96	shrubs in the surroundings or 10 meters away from a shrub with another shrub 11 meters away.
97	There is thus a need for a measure of all distances between the focar patch and covers in
98	the surroundings (i.e., a 360° approphere). Metcalfe 1984 and Gómez rano and López -
99	López 2014), i.e., a need for a <i>surface</i> . We suggest that such a metric would provide a more
100	reliable measure of the "promity to cover" and thus, of risk perception, than the commonly
101	ed "distance to the closest cover item". In present paper, our aims were to (1) develop such
102	a method, from field measurements to its geometrical aspects and (2) use this metric to
103	investigate habitat use of rabbits (Oryctolagus cuniculus) facing predation threat by feral cats
104	(Felis catus L.) on the Kerguelen subantarctic archipelago. We also considered classical proxies
105	of "distance to cover" in order to allow comparisons.

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

Because of the complex nature of cover, one of the potential issues in studies relating animal behavior to cover is to infer cover property post hoc, i.e., from its effect on animal behavior. This might lead to circularity if this effect is seen as an adaptive response to the property of cover (Lazarus and Symonds 1992). Instead, cover properties, and thus the way it is expected to trigger risk perception in prey, should arise from the knowle of the system (attack/escape tactics of the predator/prey, physical properties of the cover). Hence, making a prediction requires assessing the risk perception (i.e., the obstructive/protective ratio) inherent to the different (types of) cover item(s), i.e., being able to relate the physical characters of the cover(s) (opacity, size) to the escape/hunting tactics of the prey/predator(s) involved. Yet, patch choice by prey is also shaped by foraging profitability (Lima and Dill 1990). This leads to complex situations as cover may be associated with food resources (e.g., Morgantini and Hudson 1985): cover may impact food resources characteristics (e.g., plants growth and composition impacted by the amount of shade or the presence of specific plants) or cover may be food (e.g., Mysterud and Østbye 1999, Dellafiore et al. 2014). In the present paper, we took advantage of a simple predator — prey — habitat system allowing us to hypothesize that predation threat was the main driving force of habitat use by rabbits. Given the specific characteristics of the system, we predicted that rabbits should avoid patches with high proximity to cover.

123

124

122

Materials and Methods

125

126

127

128

Study site

Introduced by sailors during the nineteenth century, rabbits are now widespread throughout the Kerguelen archipelago (Chapuis et al. 1994). Domestic cats were introduced in

129	1951 to control invasive rodents (Rattus rattus, Mus musculus) and rabbits at the research station
130	of Port – aux – Français. Rabbits and cats are now widely distributed over the main island
131	(Grande Terre), where the study took place (Pointe Morne area, 49°22'S, 70°26'E).
132	Our study wareformen tember 2 We focused on a ca. 70,000 m ² area
133	covered by mounds lower than 2m high, formed with earth and roots and covered by the
134	peremial herb Acaena magellanica (Rosaceae) (see Supplemental information file 1). The
135	remaining soil between the mounds was composed of Acaena magellanica, Poa annua and bare
136	ground/rocks. The study area is surrounded by open meadows with flat topography, covered with
137	dense sords of Acaena magelinica.
138	At the same period, we also censused active burrows in a 0.73 km ² area including the
139	patches used in this study. We found 51 burrows. Although we do not know the relationship
140	between the number of active burrows and the population re in this habitat, previous published
141	relationships led to about 22 rabbits (i.e., about 30 rabbits /km²) (Ballinger and Morgan 2002).
142	Fifteen more active burrows were present outside the 0.73 km ² area, 800 m away from the study
143	area.
144	
145	Predicting the effect of proximity to cover on habitat use by rabbits
146	The following characteristics of our system allowed us to confidently assess the role of
147	cover in ping risk perception in rabbits.
148	-Food resources. Voelected patos of a single propred plant species, <i>Poa annua</i>
149	(Chapuis et al. 1994). This is a highly nutritive alien grass which represents most of rabbit diet in
150	our study area (over 90% of the plant fragments found in penets at the time of the year our study
151	took place, Boussès et al. 1988). As the study area is relatively restricted, meteorological and

152	edaphic conditions are probably very s \bigcirc ar. Moreover, <i>Poa annua</i> was heavily grazed $(1-2)$
153	cm high) throughout the study area. Hence, because patches were likely to be similar in food
154	quality and quantity, the effect of cover was not confounded by foraging profitability. Finally,
155	rabbits face no interspecific competition for feeding resources in this habitat (in particular,
156	reindeer Rangifer tarandus have not been observed in the study area).
157	- Predators. Predation by subantarctic skua (Catharacta skua lönnbergi) on rabbits occurs
158	on the Kerguelen archipelago, but mostly on small islands (Chapuis et al. 1994) and on
159	young/sick rabbits (myxom is virus introduction) in 1950's to control populations). Given that
160	our study site was on the mainland and in a closed area (i.e., see below and Supplemental
161	information file 1), that no skuas nested around, that no rabbits were observed or killed (as part
162	of other protocols) with apparent signs of myxomatosis, that our study took place before the birth
163	period, that cats were observed daily in our study area and finally that rabbits are the primary
164	prey of cats in Kerguelen archipelago (Pontier et al. 2002), we believe that predation pressure
165	experienced by rabbits is habitat is mostly due to cats. This contrasts with other studies on
166	rabbits, and probably on other prey species, where predators are often diverse. Our field
167	observations of cats hunting bouts revealed that cats are stalk—and—ambush predators
168	rough they also visit burrows). A foraging rabbit is clearly at risk if surprised by t, while
169	an early visual detection of the cat allows escape, especially in open areas (i.e., with no physical)
170	barriers).
171	-Cover types. We focused on a habitat with a single type of cover: earth mounds (i.e.,
172	visually opaque and physically impenetrable, see Supplemental proportion file 1) and
173	considered as "cover item" any mound higher than 20 cm (i.e., hiding an ambushed cat to a
174	rabbit even in an upright posture; and hiding a rabbit, except in an upright posture, for a cat).

175	Yet, most of the mounds were taller than 1 m high. Cats may attack straight from a mound's
<mark>176</mark>	corner, but also from behind the mound (for smaller ones) or possibly from their top (for bigger
177	ones).
178	Altogether, the characteristics of this predator – prey – habitat system allowed us to
179	consider cover items as a source of risk for rabbits, i.e., far more obstructive (total opacity in a
180	context of stalk – and – ambush predator threat and complete physical barrier when escaping,
<mark>181</mark>	with no intrinsic refuge property – once potential burrows (see below) are statistically accounted
<mark>182</mark>	for) than protective (rabbits hidden from cats by the cover). Accordingly, the overall "surface to
<mark>183</mark>	the cover items", i.e., the (visually and physically) unobstructed area, was referred to as a
184	"domain of safety" (while it could be interpreted as a "domain of risk" in a case of a protective
185	cover). We thus predicted that rabbits should favor patches with large "domains of safety".
186	
187	"Patch" characterization and data collection
188	We defined a "patch" as a jular area with a 2m diameter, covered exclusively with <i>Poa</i>
189	annua, whose center was distant by at least 20 m from the center of another patch. The studied
190	area was fully ched for patches, which numbered 32.
191	In every patch, we made a one—time collection of all the faecal pellets, thereby assuming
192	that the disappearance time of pellets was not related to the variables considered. We also
193	kept the pellet collection time very short (2 days) to reduce extra droppings occurrences over the
194	study period. Pellets were subsequely dried for 4 days at 40°C – i.e., until their weight stopped
195	decreasing—and jghed. Pellet count is a reliable method to assess rabbit abundance at the
196	scale of the habitat (Palomares and Delibes 1997, Palomares 2001, Grera-Rodriguez 2006). At

198	We thus expected more pellets (i.e., higher values of total dry weight) for patches displaying	
<mark>199</mark>	larger "domains of safety", i.e., a larger surface without visual/physical barriers.	
200	In every patch, a single observer took the following measurements:	
201	- The Gloordinates. This allows us to subsequently statistically investigate the	
202	existence of a spatial structure in our depend variable, the pellet total dry weight.	
203	- The total number of burrows within a 20m diameter circle around the center of the patch.	
204	The was no fresh burrow (i.e., typically, with fresh pellets and/or clear evidence of	
<mark>205</mark>	passage) in the study area. Yet, we recorded these old burrows as they represent escape	
206	possibilities for the rabbit, as sometimes observed. The hypothem that fresh burrows	
<mark>207</mark>	outside our study site (whose localization was known as they were part of another	
<mark>208</mark>	protocol) may have impacted our results (namely, more rabbits closer to their inhabited	
209	burrows) was considered when we investigated the spatial structure of our dependent	
<mark>210</mark>	variable (see below). The number of burrows is classically part of rabbit habitat selection	ì
211	studies (e.g., Palomares and Delibes 1997).	
212	- The terrestrial distance (m) (i.e., bypassing a mound when applicable, in the way a rabbit	
<mark>213</mark>	would escape) to the closest burrow (as defined above).	
214	- The number of "contact points" with <i>Poa annua</i> around the focal patch. Contact points	
215	referred to position on the ground at 1, 3 and 5 m every 45° from the center of the focal	<u> </u>
<mark>216</mark>	patch (i.e., n=24 in total for each patch). A proxy of the isolation of the focal patch of	
217	Poa annua was then calculated as the frequency of "contact points" without Poa annua.	
218	We included this parameter because we hypohesized that the attraction of a patch could	
219	have been positively related to how it was isolated from other <i>Poa annua</i> spots or	
220	conversely, that patches surrounded by a high overall Poa annua/Acaena ratio could have	e

221	been more attractive for rabbits. Moreover, this measure anowed us to investigate the
222	hypothesis that risk perception would be increased in case of abundant <i>Acaena</i> around the
223	focal patch if this impaired a rabbit's visual field when feeding head down.
224	- The distants (m) from the center of the patch to the closest mound and to the
225	mound's corner, inside the "domain of safety" (calculated as explained below). In
226	dition to biological relevance (closest physical obstacle when escaping/closest
227	terrestrial point a cat may hide), it allows us to compare the predictive power of our
228	"domain of safety" with the one of the classical "distance to the closest cover" in
229	explaining spatial variability in the pellet total dry weight.
230	- The total number of mound corners inside the domain of safety and the mean distance
231	(m) to these corners.
232	Additionally, we recorded the "domain of safety" for each patch.
233	
234	Measuring the "domain of safety"
235	From the center of the patch, observer scanned exhaustively the 360° of the
236	surroundings using a rangefinder including angle displays (Vector 1500 GMD). Each time a
237	rectilinear mound (i.e., forming a straight line) started and stopped, the distance from the center
238	of the patch and the corresponding angle were recorded. When a mound did not appear
239	rectilinear, the measurements were recorded for each of its rectilinear segment. This gave us a set
240	of trianglerith an angle and the length of the two adjacent sides, allowing the calculation of
241	their surface. However, the sum of these surfaces would provide a poor proxy of the "domain of
242	safety" experienced by a rabbit as above a certain distance, mounds are not relevant proxies of

244	physical barrier when escaping). Further, considerably ing such distant mounds may considerably
245	increase the value of the "domain of safety", thereby potentially masking biologically relevant
246	differences between patches occurring at shorter distances. We thus calculated the "domain of
247	safety" instrue a theoretical circle. Considering such a circle further allowed us to deal with cases
248	where no cover occurs before the horizon (a single case in our study area). We set the circle
249	radius based on our field observation of hunting behavior by cats. Because the longest cat
250	course towards a feeding rabbit we observed was about 25 m, we first considered this distance.
251	Then, in order to identify the radius of the theoretical circle with the highest predictive power,
252	we computed the squared coefficient of correlation between the observed and the fitted values
253	for models built with values of "domain of safety" calculated for theoretical circles with radiuses
254	ranging from 1 to 150 m.
255	Depending on whether the mound fell entirely inside the circle, entirely outside the circle
256	or versecant in one or two points, we used different formulas to calculate the corresponding
257	surface, as explained Fig. 1A, B and C (see also the script used to compute the "domain of
258	safety", written in the R language and provided in Supplemental information file 2). The sum of
259	these surfaces provides the "domain of safety", ranging from 25.3 to 1646.1 m ² .
260	
261	Statistical analyses
262	Since the pellet total dry weight exhibited significant positive autocorrelation (Moran's I
<mark>263</mark>	= 0.111, p < 0.001, Fig. 2), we used generalized least squares (GLS) models to account for
<mark>264</mark>	spatial autocorrelation in model residuals (Selmi and Boulinier 2001). Different models of spatial
265	structure (assuming spherical, exponential and Gaussian structures) were fitted and the best

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

fitting model (exponential in all the cases) was defined using the Akaike information criterion (Selmi and Boulinier 2001, Diniz-Filho et al. 2003).

We log transformed the control let total dry weight to meet the assumptions of residuals constant variance and normality. To avoid collinearity issues, we only only isidered models including explanatory variables that were not significantly correlated (i.e., all p > 0.14). We did not include interactions one explanatory variables given the small sample size. For patches with no surrounding burrows (n=7), the variable "distance to closest burrow was missing." Hence, we first tested the effect of this variable on a sub – sample and then re –ran the models without "closest burrow" to avoid artificially reducing sample size when testing the other explanatory variables. We proceeded in the same way for "distance to closest corner" (n = 2patches with no corner inside the "domain of safety") and for "mean distance to corners" (same 2 patches). We selected the final model by fitting the complete model and removing each term successively. The significance of each term determined by assessing the change in deviance (i.e., Likelihood on Test – LRT) against a Chi² distribution with the appropriate degrees of freedom. For non significant variables considered in several models, we present the maximum LR value and the corresponding minimum p-value and estimates. Estimates were all computed on standardized variables (mean = 0, S.D. = 1) to allow comparisons of effect sizes not dependent on measurement scale (Gelman and Hill 2007). Analyses were performed in R 3.1.2 (R Core Team 2014) using the packages ape for spatial analyses and nlme for developing the models. The French Polar Research Institute approved this program (number 279).

286

Results

288

- The surface of the "domain of safety" in a 25 m radius circle around the patch positively
- 290 (impacted) the pellet total dry weight (df = \mathbb{R} = 9.264, p = 0.002; estimates: intercept = 1.41 ±
- 291 0.20 S.E., slope = 0.51 ± 0.16 S.E.; Fig. 3): when the "domain of safety" increased from 500 to
- 292 1000 m², the predicted pellet total dry weight increased from 3.38 to 7.02 g.
- The mean distance to mound corners and, to a lesser extent the distance to the closest
- corner were also positively related to the pellet total dry weight (df = 1, LR = 4.721, p = 0.030;
- estimates: intercept = 1.40 ± 0.23 S.E., slope = 0.39 ± 0.17 S.E. and df = 1, LR = 3.776, p =
- 296 0.052; estimates: intercept = 1.39 ± 0.24 S.E., slope = 0.35 ± 6 S.E., respectively). Finally, the
- total number of corners in the theoretical circle negatively impacted the pellet total dry weight
- 298 (df = 1, LR = 5.032, p = 0.025; estimates: intercept = 1.42 ± 0.27 S.E., slope = -0.37 ± 0.16
- 299 S.E.).
- The other explanatory variables, including the distance to the closest mound, were not
- 301 retained in the final models and had smaller effect sizes as measured by standardized regression
- 302 coefficients (distance to the closest mound: df = 1, LR = 2.156, p = 0.142; estimates: intercept =
- 303 1.44 ± 0.27 S.E., slope = 0.25 ± 0.17 S.E.; total number of burrows: df = 1, LR = 0.247, p =
- 304 0.619; estimates: intercept = 1.40 ± 0.19 S.E., slope = -0.08 ± 0.14 S.E.; distance to the closest
- 305 burrow: df = 1, LR = 1.847, p = 0.174; estimates: intercept = 1.27 ± 0.51 S.E., slope = -0.27 ± 0.05
- 306 0.18 S.E.; isolation: df = 1, LR = 1.014, p = 0.314; estimates: intercept = 1.41 ± 0.31 S.E., slope
- 307 = -0.15 ± 0.15 S.E.).
- Finally, biologically relevant distance for the radius of the theoretical circle ranged
- between 19 and 29 m, in line with our field observations of cat hunting behaviors (Fig. 4).

311

Discussion

We took advantage of a study area allowing us to consider patches composed of a single preferred plant species, displaying cover items of a single type (i.e., a single intrinsic obstructive/protective ratio) and where predation risk arose from only one species, feral cats. In this context, our results strongly suggest that cats shape fine—scale habitat use by rabbits in the Kerguelen archipelago. Fewer pellets were present in patches with smaller "domains of safety", i.e., with smaller visible area from the center of a 25 m radius theoretical circle around the patch, and so closer potential danger, and with greater proximity of physical barrier, and thus restrained escape possibilities.

The "domain of safety"

The consideration of the "domain of safety" helped to understand the role of the proximity to cover in fine—scale habitat use by rabbits. With classical approaches, i.e., with the distance to the "closest cover" (i.e., closest mourer corner and thus shortest time tag before being predated and shortest distance before being blocked/able to escape) as an explanatory variable, the conclusion of an absence of (or weak) differences between the patches in the amount of pellets according to the proximity of cover would have emerged (i.e., no or weak effect of closest mound or closest corner distance in our analyses, respectively). Yet, our results strongly suggested that cover shaped habitat use by rabbits inside this habitat. The use of a partial measure of the proximity to cover may explain the absence of significant results in studies investigating behavioral adjustments of prey in relation to cover while other studies in the same population report such an effect, depending on which particular cover item is conside (e.g., Pays et al. 2012, 2014). Investigating the predictive power of our proxy in these prey — predators

335	habitate systems including large scale covers such as tree lines may be informative
336	 habitats systems, including large – scale covers such as tree lines, may be informative. Moreover, our method requires no particular expertise – we provide a R-script to implement the
330	wiorcover, our method requires no particular expertise – we provide a K-script to implement the
337	formulas used to culate the surfaces (see Supplemental information 2). Although a
338	gefinder including angle displays may be expens this can be substituted by a basic model
339	(or even by a tape measure) and a basic compass. A limit of our method is the subjectivity of the
340	classification of a portion of the cover item as rectilinear or not. However, this subjectivity is
341	more pronounced when the cover is far, i.e., when the rabbit also faces visual limitations.
342	
343	Rabbits, cats and cover
344	Beside the unquestionable role dedation pressure as a driver of the pattern we report,
345	we cannot rule out the influence of non exclusive additional selective pressures. Reduced
346	visibility may also lead to decreased opportunity to monitor conspecifics while foraging.
347	Although this may again indirectly relate to predation risk (loss of information about
348	conspecifics' vigilance/escape behavior and decreased "confusion effect" as other prey
349	individuals are also less visible to an attacking predator), this is further expected to decrease
350	foraging and social opportunities (e.g., localization of high quality patches, scrounging, gathering
351	information about potential mates/competitors) (Beauchamp 2014 for a review, Monclús and
352	Rödel 2008 for rabbits). Finally, high values of "domain of safety" are also expected to
353	mechanistically lead to more foraging opportunities (i.e., an increased rall surface of edible
354	plants) and thus to an increased attractiveness, i.e., to an increased of overall time spent foraging.
355	Because grazed sward was of similar height all over the study area, patches probably
356	faced a similar level of foraging pressure by rabbits (although we cannot rule out the possibility
357	of fine – scale edaphic variations, leading for example to higher productivity in some patches,

358	and thus to higher foraging pressures despite similar height). Accordingly, in a context of no	
359	other herbivore species in the study area difference in pellet quantity between patches could	d
360	be explained by rabbits avoiding long feeding bouts in patches displaying low values of "doma"	in
361	of safety" (thereby decreasing dropping occurrence) in order to reduce (1) the probability of	
362	being spotted by a cat in these risky places and/or, if spotted, (2) the time available for a cat's	
363	stalking bout. Hence, the similar grazing pres among our focal patches would be the	
364	consequence of an increased number of shorter foraging bouts in patches displaying poor	
365	visibility/escape possibilities or of the same number of foraging bouts with an increased foraging	<mark>1</mark> 2
366	speed (through bite rate/size) and thus a decreased exposure time in these patches (Lima and Di	i11
367	1990). Moreover, additional activities such as grooming or playing may also occur in safer	
368	places (e.g., Cowlishaw 19 Blumstein 1998), leading to an increase in the overall amount of	•
369	time spent and thus in dropping probability. Further studies could also investigate the role of	
370	additional parameters in relation to the patch "domain of safety" values such as vigilance	
371	behavior in relation to the magnitude of its foraging costs or its social component (e.g., Fortin e	ŧ
372	al. 2004a,b, Blanchard and Fritz 2007, Monclús and Rödel 2008) or foraging time budget	
373	according to variation in predation pressure level (Lima and Dill 1990).	
374	Previous studies on habitat selection by rabbits in relation to cover reported contrasted	
375	results, echoing with the ambivalent properties of cover and with the large range of predators	
376	rabbits face in their w wide distribution (Courchamp et al. 2003). wile the protective	
377	function of cover in rabbits habitat selection patterns has been emphasized by several studies	
378	(Villafuerte and Moreno 1997, Dellafiore et al. 2014), leading to a greater use of patches farthe	r
379	away from cover when predation pressure is lower (Banks et al. 199 cover may also be	
380	avoided when it impairs visual field (Moreno et al. 1996). The heterogeneity among studies ma	ιy

381	further be explained by the use of the partial "distance to cover" to index proximity to cover,
382	widespread in this species also (e.g., Moreno et al. 1996, Villafuerte and Moreno 1997).
383	Moreover, the obstructive/protective ratio of a given cover for a given population may vary
384	according to the period of the day (Moreno et al. 1996): rabbits have been reported to
385	preferentially feed closer to cover during the day (hiding from birds of prey) than at night
386	(avoiding stalking carnivorous mammals).
387	A cover item displaying total visual and physical obstructions, as occurring in our study
388	area, is probably uncommon. Assessing the obstructive/protective ratio and thus the risk
389	perception associated to a cover item may generally require a measure isual and physical
390	obstruction (see below). Moreover, rabbits faced a single type of cover item in our study area,
391	which is probably also uncommon. The calculation of the "surface to the cover items" should
392	thus commonly be performed by item type. Cover items can all be of the same nature (e.g.,
393	overall protective/obstructive properties ratio > 1) but still differ in their intensity of protective
394	versus obstructive properties, or can be of opposite nature (e.g., some with an overall
395	protective/obstructive properties ratio > 1 and some others with a ratio < 1): for example, a
396	feeding patch for a mountain ungulate in the vicinity of a cliff and of several shrubs and rocks
397	may be characterized by a "domain of safety" (overall surface to the shrubs and rocks) and a
398	"domain of risk" (overall surface to the cliff) if the individuals face stalk—and—ambush
399	predators unable to reach their prey in a cliff.
400	
401	Further than proximity
402	Our study focused on how proximity to cover (e.g., a tree line) driver risk perception.
403	What happens if the focal point is inside the cover (e.g., behind the tree line, inside the forest)?

(1) Where finer—scale cover items are present around the focutation (e.g., trunks, bushes, rock and anything that may impair the prey and/or the predator ability to see and/or move), the same questions and method we developed here may be of interest. Still, analyses could include an additional explanatory variable, i.e., "habitat type", and investigate how risk perception is shaped by the "surface to the cover items", in relation to "habitat type" (with "closed" as a modality of the factor "habitat type" in our example — "habitat type" might also be computed as a covariate, see below). In this approach, "habitat type" may carry important large—scale information for the prey, that are not considered *per se* in our "surfaces to the cover items" approach, such as the probability of presence of whatever predator, which is a different aspect than the probability of "detection" of this predator.

(2) Where the focal point is surrounded by diffuse vegetation, such as thin and soft trunks in young forest, no cover items (i.e., individually impairing the prey and/or the predator ability to see and/or move) can be identified, so that no distance can be measured. In this case neither our method nor the classic "distance to the closest cover item" can be directly performed. In this context, studies typically quantified "visual obstruction", using several methods based on pole (Robel 1970) or cover board (Nudd 1977) approaches (Limb et al. 2007). Nevertheless, where a focal point is surrounded by sectors of diffuse vegetation of different visual obstruction levels as assessed by classical methods, a theoretical circle can still be defined and the corresponding area can still be computed following formulas given in Fig. 1B(1), leading to a more detailed picture of the "visual obstruction" in the surroundings of a focal point. Yet, while this approach would provide an interesting way for a more in—depth quantification of vegetation structure in such habitats, this would give a quite incomplete proxy of "cover" in a landscape of fear context. Risk perception is shaped by many different visual components of cover, so that a measure of an

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

overall "visual obstruction" of a given habitat, even with the refinement of a measure performed at the height of the prey, would be insufficient. The visual component of a cover in a predator(s) prev context also depends on the height of the predator(s) involved (e.g., a mouse may be preyed upon by predators of the height of a snake or a heron: the relevance of cover items as visual barriers for a given prey depends on the relative abundance of the predators involved in the system). Furthermore, "visual obstruction" also refers to the predator side (i.e., the visual protective property of cover from the prey perspective), so that the measure should also be performed for the size of the relevant predator(s), given the size of the prey, directed towards the focal patch. Only few studies have tried to decouple visual protective *versus* obstructive properties (i.e., concealment versus visibility) of cover (e.g., Camp et al. 2012). Finally, beside visual aspects, the obstructive properties of cover in a landscape of fear context also encompass physical obstruction (Schooley et al. 1996). Visual and physical obstructions are not necessary related (e.g., a dense patch of tall grasses and a patch of cactus of the same dimensions may have the same visual obstruction but contrasted physical obstructions). A metric of physical obstruction of a cover in respect to a particular predators — prev system is a clear technical challenge.

443

444

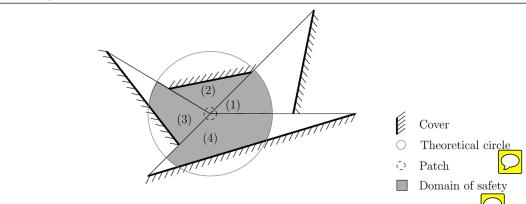
445

446

Acknowledgments

- We thank Fabien Egal, Johan Chervaux and Adrien Tavernier for field assistance and Gaël
- 447 Grenouillet for help with spatial analyses.

148	Fig.1
149	The different potential cases for cover items position in relation to the thorsetical circle around
450	the patch and the corresponding formulas for the calculation of the surfaces (S in (B)) between
451	the center of the patch and the item or the theoretical circle. The "domain of safety" is calculated
452	by summing all these surfaces (see also Supplemental information file 2). Cases number (1) to
453	(4) in (A) refer to the same cases number in (B). Dark grey for surfaces represented in (B) is for
<mark>454</mark>	sub – cases already represented in (A), light grey for other sub – cases of the four main cases.
455	Inequalities in (B) are not strict: for limiting cases, the dipent corresponding formulas can be
456	used and lead to the same results. All the angles are counter clockwise. R is the radius of the
157	theoretical circle. D, α , β_1 and β_2 are defined in (C). We set $r_1 \le r_2$. The only requested field
152	measurements are r. r. and H

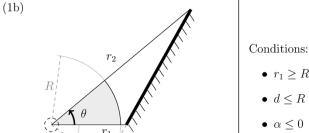


460 Fig.1 (continued)

(A) An overview of a theoretical patch with the four main cases for cover items position

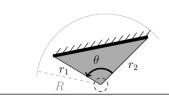
(B) The four main cases and the calculation of the surface for the ciated subcas

(1) The whole cover item falls outside the theoretical circle



Conditions:

- $r_1 \ge R$
- $d \ge R$



$$\mathcal{S} = \frac{R^2 \theta}{2}$$

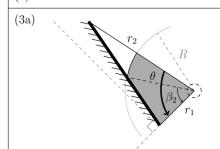
- $r_1 \ge R$
- $d \le R$
- $\alpha \leq 0$

(2) The whole cover item falls inside the theoretical circle

Conditions:

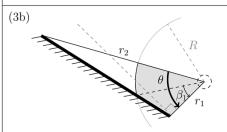
•
$$r_2 \le R$$

Surface:


$$\mathcal{S} = \frac{r_1 r_2 \sin \theta}{2}$$

462 Fig.1 (continued)

(-)							
(3) The cover	r item	intersects	the	theoretical	circle	in or	ne point

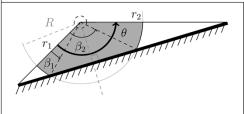


Conditions:

- $r_1 \leq R$
- $r_2 \ge R$
- $r_2 \cos \theta \le r_1$

Surface:

$$S = \frac{R^2(\theta - \beta_2)}{2} + \frac{Rr_1 \sin \beta_2}{2}$$


Conditions:

- $r_1 \leq R$
- $r_2 \ge R$
- $r_2 \cos \theta \ge r_1$

Surface:

$$S = \frac{R^2(\theta - \beta_1)}{2} + \frac{Rr_1 \sin \beta_1}{2}$$

(4) The cover item intersects the theoretical circle in two points

Conditions:

- $r_1 \ge R$
- $d \leq \frac{R}{R}$
- $\alpha \geq 0$

Surface:

$$S = \frac{R^2(\theta - \beta_2 + \beta_1)}{2} + \frac{R^2 \sin(\beta_2 - \beta_1)}{2}$$

(C) Notations and formulas

• Minimal distance (altitude length) between the center of the patch and the cover item:

$$d = r_1 r_2 \frac{|\sin \theta|}{\sqrt{r_1^2 + r_2^2 - 2r_1 r_2 \cos \theta}}$$

• Angle between the altitude and the border of the sector:

$$\alpha = \arctan \frac{r_1 - r_2 \cos \theta}{r_2 \sin \theta}$$

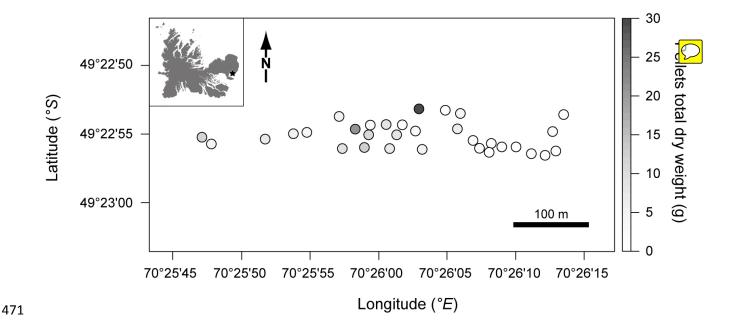
• Angle of the intersection between the cover item and the theoretical circle:

$$\beta_1 = \arccos \frac{r_1 r_2^2 \sin^2 \theta + \sqrt{(R^2 (r_1^2 + r_2^2 - 2r_1 r_2 \cos \theta) - r_1^2 r_2^2 \sin^2 \theta)(r_2 \cos \theta - r_1)^2}}{R(r_1^2 + r_2^2 - 2r_1 r_2 \cos \theta)}$$

$$\beta_2 = \arccos \frac{r_1 r_2^2 \sin^2 \theta - \sqrt{(R^2 (r_1^2 + r_2^2 - 2r_1 r_2 \cos \theta) - r_1^2 r_2^2 \sin^2 \theta)(r_2 \cos \theta - r_1)^2}}{R(r_1^2 + r_2^2 - 2r_1 r_2 \cos \theta)}$$

464 Fig. 2

465

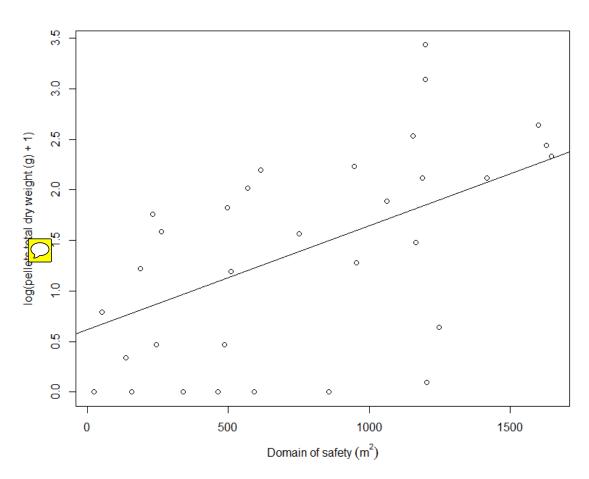

466

467

468

469

Pellet total dry weight (indexed by grey levels as mentioned on the right y axis) measured in the studied patches (dots) according to their spatial position (left y axis and x axis). The hypothesis that the proximity to fresh burrows partly explains the spatial patter reported here might be relevant as fresh burrows were localized at about 100 meters north – west from the boarder of the study area, i.e., on the side of the patches with higher values in pellet total dry weight.



472 Fig. 3

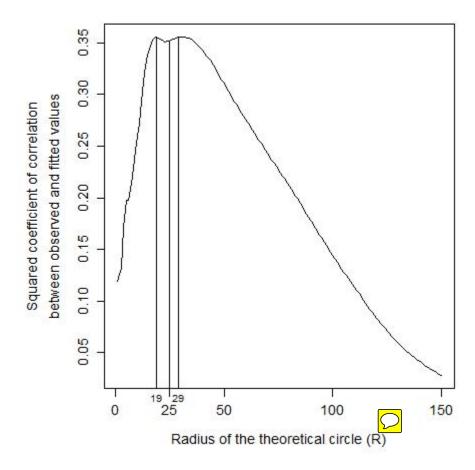
The positive relationship between the log(pellet total dry weight (g) + 1) and the "domain of

safety" (in m²) computed for a theoretical circle with a 25 m radius.

475

PeerJ

477 Fig. 4


478

479

480

481

Squared coefficients of correlation between the observed and the fitted values for models built with values of "domain of safety" calculated for theoretical circles of radiuses (R in Fig. 1, in m) ranging from 1 to 150 m and plotted on x axis. The biologically relevant distance ranges between 19 and 29 m, in line with our field observations of cats hunting bouts.

185	Bakker ES, Reiffers RC, Olff H, Gleichman JM. 2005. Experimental manipulation of predation
186	risk and food quality: effect on grazing behaviour in a central – place foraging herbivore
187	Oecologia 146 :157–167.
188	Ballinger A, Morgan, DG. 2002. Validating two methods for monitoring population size
189	of the European rabbit (Oryctolagus cuniculus). Wildl. Res. 29:431-437.
190	Banks PB, Hume ID, Crowe O. 1999. Behavioural, morphological and dietary response of
191	rabbits to predation risk from foxes. Oikos 85 :247–256.
192	Beauchamp, G. 2014. Social Predation. Elsevier.
193	Blanchard P, Fritz H. 2007. Induced or routine vigilance while foraging. Oikos 116:1603–
194	1608.
195	Blumstein DT. 1998. Quantifying predation risk for refuging animals: a case study with golden
196	marmots. Ethology 104 :501–516.
197	Bowyer RT, Van Ballenberghe V, Kie JG, Maier JAK. 1999. Birth-site selection by Alaskan
198	moose: maternal strategies for coping with a risky environment. J. Mammal. 80:1070–
199	1083.
500	Boussès P, Arthur CP, Chapuis JL. 1988. Rôle du facteur trophique sur la biologie des
501	populations de lapins (Oryctolagus cuniculus L.) des Iles Kerguelen. Terre Vie – Rev.
502	Ecol. A 43 :329–343.
503	Burger J, Safina C, Gochfeld M. 2000. Factors affecting vigilance in springbok: importance of
504	vegetative cover, location in herd, and herd size. Acta Ethol. 2:97-104.
505	Cabrera-Rodriguez F. 2006. Microhabitat selection of the European rabbit on La Palma, Canary
506	Islands, Spain. Acta Theriol. 51:435–442.

507	Camp M J, Rachlow JL, Woods BA, Johnson TR, Shipley LA. 2012. When to run and when to
508	hide: the influence of concealment, visibility, and proximity to refugia on perceptions of
509	risk. Ethology 118 :1010–1017.
510	Caro T. 2005. Antipredator defenses in birds and mammals. University of Chicago Press.
511	Chapuis JL, Boussès P, Barnaud G. 1994. Alien mammals, impact and management in the
512	French subantarctic islands. Biol. Conserv. 67:97–104.
513	Courchamp F, Chapuis JL, Pascal M. 2003. Mammal invaders on islands: impact, control and
514	control impact. Biol. Rev. 78:347–383.
515	Cowlishaw G. 1997. Refuge use and predation risk in a desert baboon population. Anim. Behav.
516	54 :241–253.
517	Dellafiore CM, Rouco C, Muñóz Vallés S, Gallego Fernández JB. 2014. Seasonal habitat use by
518	the European rabbit (Oryctolagus cuniculus) in a coastal dune system in SW Spain.
519	Anim. Biodiv. Conserv. 37 :233–242.
520	Diniz-Filho JAF, Bini LM, Hawkins BA. 2003. Spatial autocorrelation and red herrings in
521	geographical ecology. Global Ecol. Biogeogr. 12:53-64.
522	Fortin D, Boyce MS, Merrill EH, Fryxell JM. 2004a. Foraging costs of vigilance in large
523	mammalian herbivores. Oikos 107 :172–180.
524	Fortin D, Boyce MS, Merrill EH. 2004b. Multi – tasking by mammalian herbivores: overlapping
525	processes during foraging. Ecology 85 :2312–2322.
526	Gelman A, Hill J. 2007. Data analysis using regression and multilevel/hierarchical models.
527	Cambridge University Press.

528	Gomez-Serrano MA, Lopez-Lopez P. 2014. Nest site selection by Kentish Plover suggests a
529	trade – off between nest – crypsis and predator detection strategies. PLoS ONE
530	9 :e107121.
531	Götmark F, Hohlfält A. 1995. Bright male plumage and predation risk in passerine birds: are
532	males easier to detect than females? Oikos 74:475–484.
533	Jaksic FM, Soriguer RC. 1981. Predation upon the European rabbit (Oryctolagus cuniculus) in
534	Mediterranean habitats of Chile and Spain: a comparative analysis. J. Anim. Ecol.
535	50 :269–281.
536	Lazarus J, Symonds M. 1992. Contrasting effects of protective and obstructive cover on avian
537	vigilance. Anim. Behav. 43:519–521.
538	Laundré JW, Hernández L, Ripple WJ. 2010. The landscape of fear: ecological implications of
539	being afraid. Open Ecol. J. 3:1–7.
540	Lima SL. 1990. Protective cover and the use of space: different strategies in finches. Oikos
541	58 :151–158.
542	Lima SL, Dill LM. 1990. Behavioral decisions made under the risk of predation: a review and
543	prospectus. Can. J. Zool. 68 :619–640.
544	Limb RF, Hickman KR, Engle DM, Norland JE, Fuhlendorf SD. 2007. Digital photography:
545	reduced investigator variation in visual obstruction measurements for southern tallgrass
546	prairie. Rangeland Ecol. Manage. 60 :548–552.
547	Metcalfe NB. 1984. The effects of habitat on the vigilance of shorebirds: is visibility
548	important? Anim. Behav. 32 :981–985.

549	Monclús R, Rödel HG. 2008. Different forms of vigilance in response to the presence of
550	predators and conspecifics in a group living mammal, the European Rabbit. Ethology
551	114 :287–297.
552	Moreno S, Delibes M, Villafuerte R. 1996. Cover is safe during the day but dangerous at night:
553	the use of vegetation by European wild rabbits. Can. J. Zool. 74:1656–1660.
554	Morgantini LE, Hudson RJ. 1985. Changes in diets of wapiti during a hunting season. J. Range
555	Manage. 38 :77–79.
556	Murray DL, Boutin S, O'Donoghue M, Nams VO. 1995. Hunting behaviour of a sympatric felid
557	and canid in relation to vegetative cover. Anim. Behav. 50:1203–1210.
558	Mysterud A, Østbye E. 1999. Cover as a habitat element for temperate ungulates: effects on
559	habitat selection and demography. Wildlife Soc. B 27:385–394.
560	Newberry RC, Shackleton DM. 1997. Use of visual cover by domestic fowl: a Venetian blind
561	effect? Anim. Behav. 54 :387–395.
562	Nudds TD. 1977. Quantifying the vegetative structure of wildlife cover. Wildlife Soc. B 5: 113–
563	117.
564	Palomares F, Delibes M. 1997. Predation upon European rabbits and their use of open and closed
565	patches in Mediterranean habitats. Oikos 80 :407–410.
566	Palomares F. 2001. Comparison of 3 methods to estimate rabbit abundance in a Mediterranean
567	environment. Wildlife Soc. B 29 :578–585.
568	Pays O, Blanchard P, Valeix M, Chamaillé-Jammes S, Duncan P, Périquet S, Lombard M,
569	Ncube G, Tarakini T, Makuwe E, Fritz H. 2012. Detecting predators and locating
570	competitors while foraging: an experimental study of a medium - sized herbivore in an
571	African savanna. Oecologia 169 :419–430.

572	Pays O, Ekori A, Fritz H. 2014. On the advantages of mixed-species groups: impalas adjust their
573	vigilance when associated with larger prey herbivores. Ethology 120:1207–1216.
574	Pontier D, Say L, Debias F, Bried J, Thioulouse J, Micol T, Natoli E. 2002. The diet of feral cats
575	(Felis catus L.) at five sites on the Grande Terre, Kerguelen archipelago. Polar Biol.
576	25 :833–837.
577	R Core Team. 2014. R: A language and environment for statistical computing. R foundation for
578	Statistical Computing, Vienna, Austria. URL http://www.R-project.org/
579	Robel RJ, Briggs JN, Dayton AD, Hulbert LC. 1970. Relationships between visual obstruction
580	measurements and weight of grassland vegetation. J. Range Manage. 23:295–297.
581	Schooley RL, Sharpe PB, Van Horne B. 1996. Can shrub cover increase predation risk for a
582	desert rodent? Can. J. Zool. 74 :157–163.
583	Selmi S, Boulinier T. 2001. Ecological biogeography of Southern Ocean Islands: the importance
584	of considering spatial issues. Am. Nat. 158 :426–437.
585	Stratmann A, Taborsky B. 2014. Antipredator defences of young are independently determined
586	by genetic inheritance, maternal effects and own early experience in mouthbrooding
587	cichlids. Funct. Ecol. 28 :944–953.
588	Tchabovsky AV, Krasnov BR, Khokhlova IS, Shenbrot GI. 2001. The effect of vegetation cover
589	on vigilance and foraging tactics in the fat sand rat <i>Psammomys obesus</i> . J. Ethol. 19 :105–
590	113.
591	Villafuerte R, Moreno S. 1997. Predation risk, cover type, and group size in European rabbits in
592	Doñana (SW Spain). Acta Theriol. 42:225–230.