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ABSTRACT
Rocky intertidal habitats occur worldwide and are mainly characterized by primary
space holders such as seaweeds and sessile invertebrates. Some of these organisms
are foundation species, as they can form structurally complex stands that host many
small invertebrates. The abundance of primary space holders is known to vary along
coastlines driven directly or indirectly by environmental variation. However, it is less
clear if the invertebrate assemblages associated to a foundation species may remain
relatively unchanged along coastlines, as similar stands of a foundation species can
generate similar microclimates. We examined this question using abundance data for
invertebrate species found inmussel stands of a similar structure in wave-exposed rocky
habitats at mid-intertidal elevations along the Atlantic coast of Nova Scotia (Canada).
While the most abundant invertebrate species were found at three locations spanning
315 km of coastline, species composition (a combined measure of species identity and
their relative abundance) differed significantly among the locations. One of the species
explaining the highest amount of variation among locations (a barnacle) exhibited
potential signs of bottom-up regulation involving pelagic food supply, suggesting
benthic–pelagic coupling. The abundance of the species that explained the highest
amount of variation (an oligochaete) was positively related to the abundance of their
predators (mites), further suggesting bottom-up forcing in these communities. Overall,
we conclude that species assemblages associated to structurally similar stands of a
foundation species can show clear changes in species composition at a regional scale.

Subjects Biodiversity, Biogeography, Marine Biology
Keywords Intertidal, Mussel, Foundation species, Invertebrate

INTRODUCTION
Biogeographic regions are characterized by particular species pools that result from unique
evolutionary histories (Carstensen et al., 2013; Cox, Moore & Ladle, 2016). Within regions,
the relative abundance of species often changes across locations in response to various
ecological factors (Vellend, 2016). Rocky intertidal systems, which are those delimited by
the highest and lowest tides on marine rocky shores, are no exception. These habitats occur
all over the world and host unique biotas owing to the daily alternation of submergence and
emersion periods due to tides. The organisms that dominate these systems are primary space

How to cite this article Scrosati RA, Ellrich JA. 2024. Changes in the composition of invertebrate assemblages from wave-exposed inter-
tidal mussel stands along the Nova Scotia coast, Canada. PeerJ 12:e17697 http://doi.org/10.7717/peerj.17697

https://peerj.com
mailto:rscrosat@stfx.ca
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.17697
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj.17697


holders such as seaweeds and sessile invertebrates, followed by their motile consumers.
Variation in the relative abundance of these species along coastlines has been documented
for several biogeographic regions, many studies exploring the underlying ecological drivers
(Bustamante, Branch & Eekhout, 1997; Broitman et al., 2011; Bryson, Trussell & Ewanchuk,
2014; Griffiths & Waller, 2016; Hawkins et al., 2019; Ibanez-Erquiaga et al., 2018; Menge et
al., 2019; Palomo et al., 2019; Ishida et al., 2021; Thyrring et al., 2021; Scrosati et al., 2022;
Trott, 2022; Gilson & McQuaid, 2023; Pardal et al., 2023).

Rocky intertidal systems also host many small invertebrate species that often remain
undetected because of their size and the places where they occur. Such is the case of the
invertebrates that live in stands of intertidal foundation species (Lafferty & Suchanek,
2016). Foundation species are primary space holders whose body structures create complex
habitats that provide shelter from abiotic and biotic stresses (Stachowicz, 2001; Altieri &
van de Koppel, 2014; Ellison, 2019). In rocky intertidal systems, common foundation species
are seaweeds, tunicates, vermetid snails, and mussels. Dense stands of these organisms limit
thermal and desiccation stress during low tides and hydrodynamic stress during high tides,
so they often host tens of small invertebrate species (Cerda & Castilla, 2001; Borthagaray
& Carranza, 2007; Silliman et al., 2011; Donnarumma et al., 2018; Catalán et al., 2021;
Catalán et al., 2023). As these invertebrate assemblages can enrich intertidal biodiversity
considerably, efforts to understand their ecology are increasing.

A fundamental question is how geographically variable the composition of species
assemblages associated to a foundation species can be. It is well known that, through
environmental filtering and influences on interspecific interactions, abiotic variation along
rocky coastlines affects the relative abundance of primary space holders (Menge & Branch,
2001; Sanford, 2014). However, depending on their structural and functional properties,
foundation species create specific conditions within their stands that favour particular sets
of associated species (Cameron, Scrosati & Valdivia, 2024a). In theory, then, the species
assemblages living in stands of a particular foundation species might depend little on
external factors as long as stands of that foundation species remain similar along coastlines.
This notion has been supported by a study done on the NE Pacific coast that showed that
the thermal buffering conferred by dense intertidal stands of mussels and seaweeds during
low tides can be more important for associated species than latitudinal thermal changes
(Jurgens & Gaylord, 2018). Consideration of overall environmental variation, however, has
yielded opposite results, as large-scale environmental changes along the South African coast
influence the fauna living in stands of a mussel species more than mussel stand structure
(Cole & McQuaid, 2011). Intermediate results have been obtained for other systems, as
communities associated to macroalgal foundation species on the SW Pacific coast depend
on characteristics of the algal stands as well as on external environmental conditions (Lloyd
et al., 2020). Clearly, relative to primary space holders, there is much to learn about the
drivers that structure the communities associated to rocky-intertidal foundation species
along coastlines.

In this study, we examine this issue using data on the abundance of invertebrates found
in mussel stands from wave-exposed rocky intertidal habitats along the Atlantic coast of
Nova Scotia, Canada. The overall spatial coverage of mussel beds in such habitats varies
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Figure 1 Wave-exposed intertidal mussel stands. Typical mussel stands from wave-exposed rocky inter-
tidal habitats photographed at low tide on the (A) southern and (B) central open Atlantic coast of main-
land Nova Scotia, Canada. The inner frame of the sampling quadrats shown in these photographs mea-
sures 10 cm x 10 cm. Photo credits: Ricardo A. Scrosati.

Full-size DOI: 10.7717/peerj.17697/fig-1

along this coast in relation to alongshore changes in environmental conditions (Scrosati
& Ellrich, 2018; Scrosati, Freeman & Ellrich, 2020; Scrosati et al., 2022). However, in these
wave-exposed habitats, mussels consistently occur as predominantly monolayered stands
of densely packed small individuals (Tam & Scrosati, 2011; Tam & Scrosati, 2014; Fig.
1). Thus, we surveyed mussel patches of an equal area from those habitats to test if the
associated invertebrate communities are similar along the coast or if they vary possibly in
relation to external environmental conditions.

MATERIAL AND METHODS
To address this goal, we used data that were originally collected to describe the invertebrate
assemblages occurring in rocky-intertidal mussel stands in Nova Scotia (Arribas et al.,
2014). The full dataset is available from an associated data paper (Scrosati, Arribas &
Donnarumma, 2020). For the present study, we used the data collected only in wave-
exposed habitats because of their convenient spatial coverage for our goals. The following
paragraph summarizes the sampling design.

Between early September and earlyOctober 2012, threewave-exposed locations spanning
315 km of the Atlantic coast of Nova Scotia (Fig. 2) were sampled during low tides. These
are cold-temperate locations located in the same hydrographic subregion (Nova Scotia)
of the NW Atlantic cold-temperate biogeographic region (Mathieson, Penniman & Harris,
1991; Spalding et al., 2007). The surveyed habitats were middle intertidal elevations, have
bedrock as a substrate, and face the open ocean directly. The locations were, from north
to south, Tor Bay Provincial Park (45.182894, -61.353258; TB hereafter), Crystal Crescent
Beach (44.447372, -63.622214; CC), and Kejimkujik National Park (43.818614, -64.834747;
KE). Values of daily maximumwater velocity (a proxy for wave exposure) in wave-exposed
rocky intertidal habitats on this coast average 8 m s−1 (Scrosati & Heaven, 2007), with
peaks of 12 m s−1 (Hunt & Scheibling, 2001). Two species of blue mussel (Mytilus edulis
and M. trossulus) form extensive stands in wave-exposed rocky intertidal habitats on
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Figure 2 Map of the Nova Scotia coast. This map indicates the wave-exposed rocky intertidal locations
that were surveyed for this study. Map source credit: Scrosati & Ellrich (2020).

Full-size DOI: 10.7717/peerj.17697/fig-2

this coast. Both species are morphologically similar (Innes & Bates, 1999) and occur in
mixed stands in these habitats, with a predominance of M. trossulus (80–85%) over M.
edulis according to genetic analyses (Hunt & Scheibling, 1996; Tam & Scrosati, 2011). In
these wave-exposed habitats, mussels are consistently small (mean length <1 cm (Tam &
Scrosati, 2011; Tam & Scrosati, 2014)) due to wave-imposed size limits (Carrington et al.,
2009) and form predominantly monolayered stands with high densities of individuals (Fig.
1). At each studied location, on wave-exposed areas of the substrate that were fully covered
by mussels (Fig. 1), the mussels and all associated invertebrates were collected from 15
random patches measuring 100 cm2 in area. The associated invertebrates were identified
to the lowest possible taxonomic level and their abundance was measured for each patch.

Using those data, we tested if the composition of the associated communities (combined
measure of species identity and their relative abundance) differed among locations through
a permutational multivariate analysis of variance (PERMANOVA) based on Bray-Curtis
distances between patches and 9,999 permutations for significance testing. To visualize the
compositional differences between locations, we generated a nonmetric multidimensional
scaling (NMDS) ordination of patches based on Bray-Curtis similarity scores. To identify
the species that contributed the most to the differences in composition between locations,
we ran analyses of similarity percentages (SIMPER). We did these analyses with PRIMER
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6.1.18 plus PERMANOVA+ 1.0.8 software (Anderson, Gorley & Clarke, 2008; Clarke et al.,
2014).

As species composition in mussel beds differed among locations and barnacle
(Semibalanus balanoides) abundance explained much of that variation (see Results),
we investigated if coastal food supply for barnacles was related to such biogeographic
patterns. Barnacles are sessile organisms and a key step in their life cycle is recruitment (the
appearance of new organisms on a substrate after larval settlement and metamorphosis).
On our coast, barnacle recruitment occurs in the spring and is a good predictor of adult
abundances later in the year (Scrosati & Ellrich, 2018). As data on barnacle recruitment
within mussel stands were unavailable, we searched for differences among our locations
in known important drivers of barnacle recruitment. One of such drivers is food supply
for the larvae, which is related to larval performance and ultimately recruitment (Vargas,
Manríquez & Navarrete, 2006). Barnacle larvae are pelagic and, before reaching the last
(settling) stage, go over various nauplius stages that feed on phytoplankton for some
weeks (5 to 6 for S. balanoides; Bousfield, 1954; Bouchard & Aiken, 2012). A proxy for
phytoplankton abundance is the concentration of chlorophyll-a (chl-a hereafter) in
seawater, which is regularly measured across the globe by satellites (Mazzuco et al., 2015;
Lara et al., 2016). As most barnacle recruits appear by mid-May starting after the first week
of May on our coast (Scrosati & Holt, 2021), most nauplius larvae are inferred to be in the
water in April and the first half of May. Therefore, we looked for chl-a data for April and
the first half of May 2012. Specifically, we obtained MODIS-Aqua satellite data on chl-a
for the 4-km-×-4-km cells that include our three study locations, retrieving the data from
the Ocean Color website of the National Aeronautics and Space Administration (NASA,
2024a) using their SeaDAS software (NASA, 2024b).

RESULTS
A total of 36 invertebrate taxa were identified in mussel stands from wave-exposed rocky
habitats at mid-intertidal elevations on the Atlantic coast of Nova Scotia (Table 1).
Twenty-four of these taxa were identified at the species level, while each of the 12 taxa
identified above the species level likely represented one species, as indicated by consistent
morphologies across the encountered individuals. Thus, we describe the findings of this
study in terms of species metrics.

Sixteen species were found at all three studied locations, 13 of which were the species
with the highest mean overall abundance (Table 1). Despite this commonality, the species
composition of the invertebrate assemblages differed significantly among the locations
(PERMANOVA’s pseudo- F = 7.199, p <0.0001; Fig. 3). Pairwise differences between
locations were also significant, as the p value was 0.0003 for the KE vs. TB comparison,
0.0001 for the KE vs. CC comparison, and 0.0018 for the TB vs. CC comparison. The
variation in species composition explained by locations in the full model amounted to
nearly a third of the total observed variation. The differences in species composition
among locations were explained by abundance differences in the abundant species that
were common to all three locations and by species with low average abundances being
present only at certain subsets of locations (Table 1).
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Table 1 List of invertebrate taxa found in intertidal mussel stands fromNova Scotia ordered by their overall mean abundance (individuals
dm−2). The table also provides values of mean abundance for each of the three surveyed locations (TB, CC, and KE) and the percent contribution of
each species to the dissimilarity in species composition between locations according to SIMPER tests.

Scientific name Common name Overall
mean
abundance

Mean
abundance
at TB

Mean
abundance
at CC

Mean
abundance
at KE

% contribution
KE vs. CC

% contribution
KE vs. TB

% contribution
CC vs. TB

Tubificidae (one species) Oligochaete 84.27 96 87.73 69.07 31.1 36.1 42.0

Semibalanus balanoides Barnacle 19.82 14 3.67 41.8 29.7 20.2 8.6

Nematoda (one species) Nematode worm 6.73 4.53 14.13 1.53 9.9 3.4 9.3

Halacaridae (species 1) Mite 6.24 15.13 0.8 2.8 2.7 9.1 9.8

Littorina saxatilis Periwinkle 4.96 3.53 3.53 7.8 4.8 3.8 2.3

Lasaea adansoni Bivalve mollusc 4 8.33 1.07 2.6 2.0 5.9 5.8

Amphiporus angulatus Nemertean worm 4 6.53 2.67 2.8 2.7 3.8 3.7

Chironomidae (one species) Fly (larvae) 2.78 4.8 1.33 2.2 1.7 2.8 3.2

Littorina obtusata Periwinkle 2.78 0.67 1.13 6.53 4.7 4.3 0.9

Halacaridae (species 2) Mite 2.58 3.07 1.33 3.33 2.2 2.1 1.9

Nucella lapillus Dogwhelk 2.18 0.67 5.33 0.53 4.1 0.6 4.0

Apohyale prevostii Amphipod 1.53 3.73 0.6 0.27 0.6 2.7 2.9

Copepoda (one species) Copepods 0.47 0.2 1.07 0.13 0.9 0.2 0.9

Hiatella arctica Bivalve mollusc 0.47 1 0.4 – 0.3 0.8 1.0

Jaera albifrons Isopod 0.33 0.73 0.13 0.13 0.2 0.5 0.6

Tetrastemma candidum Nemertean worm 0.31 – – 0.93 0.7 0.6 <0.1

Foviella affinis Flatworm 0.31 0.13 0.13 0.67 0.6 0.5 0.2

Testudinalia testudinalis Limpet 0.29 0.87 – – <0.1 0.8 0.9

Nemertea (one species) Nemertean worm 0.24 0.2 0.53 – 0.5 0.1 0.5

Dynamena pumila Hydrozoan 0.18 0.33 0.13 0.07 0.1 0.3 0.4

Eulalia viridis Polychaete 0.16 0.33 0.13 – 0.1 0.3 0.4

Unciola serrata Amphipod 0.09 0.27 – – <0.1 0.2 0.2

Phyllodoce sp. Polychaete 0.07 0.13 0.07 – <0.1 0.1 0.1

Onoba aculeus Snail 0.07 0.07 – 0.13 0.1 0.1 <0.1

Monoophorum sp. Flatworm 0.07 – – 0.2 0.2 0.2 <0.1

Laomedea sp. Hydrozoan 0.04 – 0.07 0.07 0.1 <0.1 <0.1

Anomia simplex Bivalve mollusc 0.04 0.13 – – <0.1 0.1 0.1

Littorina littorea Periwinkle 0.04 – – 0.13 0.1 0.1 <0.1

Coronadena mutabilis Flatworm 0.04 0.13 – – <0.1 0.1 0.1

Cirratulus cirratus Polychaete 0.02 – 0.07 – <0.1 <0.1 <0.1

Fabricia stellaris Polychaete 0.02 – – 0.07 0.1 0.1 <0.1

Lepidonotus squamatus Polychaete 0.02 0.07 – – <0.1 0.1 0.1

Nereis sp. Polychaete 0.02 0.07 – – <0.1 0.1 0.1

Cerapus tubularis Amphipod 0.02 – 0.07 – 0.1 <0.1 0.1

Hexacorallia (one species) Anthozoans 0.02 0.07 – – <0.1 <0.1 <0.1

Sertularia cupressina Hydrozoan 0.02 – 0.07 – <0.1 <0.1 <0.1

Themost abundant species was an oligochaete (Tubificidae) that, although it contributed
the most to explaining compositional differences between locations, was broadly abundant
at all three locations (Table 1). The next most abundant species was the barnacle
Semibalanus balanoides, but its abundance differed more markedly among locations,
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Figure 3 Nonmetric multidimensional scaling (NMDS) ordination.NMDS ordination of the mus-
sel patches collected at three wave-exposed intertidal locations along the Nova Scotia coast based on the
species composition of the associated invertebrate assemblages.

Full-size DOI: 10.7717/peerj.17697/fig-3

as it increased by nearly 200% from TB to KE and by nearly 1040% from CC to KE, on
average (Table 1). All other species contributed considerably less to the compositional
differences among locations, especially between KE and the two locations to the north.
During April and the first half of May 2012 (the period most relevant for larvae explaining
barnacle recruitment; see ‘‘Materials and methods’’), chl-a in coastal waters was more than
twice as high at KE (2.8 mg m−3) than at TB (1.3 mg m−3) and CC (1.1 mg m−3).

DISCUSSION
This study shows that invertebrate assemblages frommussel stands with a similar structure
vary in species composition along the Nova Scotia coast. This is an important finding
because it suggests that, while internal properties of mussel stands may remain relatively
invariant along coastlines (Jurgens & Gaylord, 2018), the changes in external conditions
that typically occur along coastlines (Sanford, 2014) might indeed influence the associated
communities. These results thus align with those obtained for communities associated to
other intertidal foundation species from other coasts (Cole & McQuaid, 2011; Lloyd et al.,
2020).
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Within biogeographic regions, community structure varies because of abiotic changes
influencing species performance (environmental filtering), changes in interspecific
interactions, and changes in food supply and recruitment (Menge & Sutherland, 1987;
Bruno, Stachowicz & Bertness, 2003; Vellend, 2016). For rocky-intertidal communities of
primary space holders and their consumers, there is a good understanding of how the
above factors influence community structure for several coasts around the world (Bertness,
2007; Benedetti-Cecchi & Trussell, 2014; Hawkins et al., 2019; Menge et al., 2019). However,
for the communities of small invertebrates living in stands of rocky-intertidal foundation
species, an equivalent understanding is largely lacking. Knowledge gaps exist at almost all
levels, from species physiological tolerances, to interspecific interactions, to recruitment
within such stands. In addition, snapshot abundance data of the species composing a
community often cannot unequivocally reveal the underlying interaction web (Thurman
et al., 2019; Blanchet, Cazelles & Gravel, 2020), as interaction webs are shaped by direct and
indirect interspecific interactions that are often unpredictable without experimentation
(Menge, 1995). Therefore, below we briefly discuss possible reasons for the main observed
patterns to orient future research (Underwood, Chapman & Connell, 2000).

After an oligochaete that was abundant at all three locations, barnacles were the second
largest contributors to compositional differences among locations, peaking markedly in
abundance at the southernmost location (KE). In 2014 (two years after these surveys),
summer barnacle abundance on wave-exposed intertidal substrates outside of mussel
stands was higher at two locations near KE than at TB and a location near CC. Summer
barnacle abundance was then positively correlated to spring recruitment, which was in turn
positively correlated to chl-a during the main larval period (Scrosati & Ellrich, 2018). Thus,
it is possible that the higher chl-a recorded in spring 2012 at KE compared with TB and CC
may have determined through increased recruitment the higher barnacle abundance found
in mussel stands at KE in 2012. This suggests that benthic–pelagic coupling might influence
the abundance of organisms living in stands of foundation species, a phenomenon that
is already known to affect the abundance of primary space holders (Navarrete et al., 2005;
Menge et al., 2019). Benthic–pelagic coupling might also have influenced the abundance of
periwinkles in Nova Scotia’s mussel stands. The two main encountered species, Littorina
saxatilis and L. obtusata, showed their highest abundance also at KE (Table 1). During
the growth period before the abundance measurements (March-August 2012), chl-a in
coastal waters was twice as high at KE (4.4 mg m−3) than at TB and CC (2.2 mg m−3

at both locations). While chl-a reflects phytoplankton abundance, it also suggests that
inorganic nutrients were likely in higher concentration at KE, which may have fueled a
higher productivity of benthic microalgae that small periwinkles (those found in mussel
stands) feed on. This possibility is supported by data indicating that upwelling (the upsurge
of nutrient-rich waters) is more prevalent on southern shores in Nova Scotia during
the growth season (Scrosati & Ellrich, 2020). Finally, there is also evidence suggesting
that predator abundance might have been enhanced by prey abundance. For instance,
oligochaetes were most abundant in mussel stands at the northernmost location (TB),
which coincides with the highest combined abundance of the two recognized mite species
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(Table 1). This pattern could reveal a case of bottom-up forcing (Menge, 2000) because
intertidal mites are known to prey on oligochaetes (Pugh & King, 1985).

A side comment applies to species abundance in relation to species occurrence. While
the species with the highest mean overall abundances occurred at all three studied locations,
the species with low abundances typically occurred only at a subset of locations (Table 1).
These patterns reflect basic abundance–occupancy patterns that are known for biological
communities across landscapes and seascapes (Blackburn, Cassey & Gaston, 2006; Barnes,
2022; van Genne & Scrosati, 2022).

Overall, it is becoming clear that, like primary space holders, the small species associated
to a given foundation species also vary in relative abundance along marine rocky shores.
This study used species abundance data from mussel stands of the same structure (dense
monolayered stands of small mussels from wave-exposed, mid-intertidal habitats) to
exclude beforehand effects of stand structure on the associated communities. However,
differences in intertidal elevation andwave exposure can alter structural properties of stands
of foundation species, such as the density, size, and spatial arrangement of the individuals
forming the stands (Hammond & Griffiths, 2004; Tam & Scrosati, 2014; Vozzo et al., 2021;
Wilbur, Küpper & Louca, 2024). These changes, in turn, can alter the microclimates that
affect the associated species (McAfee et al., 2018; Veiga et al., 2022). Thus, unraveling the
drivers of overall alongshore changes in the communities of small species living in stands
of foundation species will need to consider direct external influences on these associated
species as well as possible structural changes in mussel stands that may influence local
microclimates. This approach has recently been recognized as key to understand, in a
broader context, the many contributions that communities associated to foundation
species have to ecosystem stability and functioning (De Frenne et al., 2021).

It is worth noting that mussel stands are common in temperate rocky-intertidal habitats
around the world and that, despite regional taxonomic differences rooted in biogeographic
history, they host a core set of functional groups (Cameron et al., 2024b). Therefore, mussels
are particularly relevant for the ecology of the coastal environments they inhabit. Intertidal
stands of mussels, however, are increasingly being lost in relation to the ongoing climatic
and oceanographic change (Sorte et al., 2017; Seuront et al., 2019;Mendez et al., 2021; Fields
& Silbiger, 2022; Raymond et al., 2022; Cameron & Scrosati, 2023; Scrosati, 2023). This is,
in fact, a trend seen also in other marine foundation species such as corals, seaweeds,
seagrasses, salt marsh plants, mangroves, and other bivalves (Wernberg et al., 2024). For
these reasons, knowledge that can be applicable to the conservation and restoration of these
systems (e.g., Clausing et al., 2023; Toone et al., 2023; Benjamin et al., 2024) is increasingly
necessary.
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