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ABSTRACT
Background. Esophageal squamous cell carcinoma (ESCC) is a deadly type of
esophageal cancer. Programmed cell death (PCD) is an important pathway of cellular
self-extermination and is closely involved in cancer progression. A detailed study of its
mechanism may contribute to ESCC treatment.
Methods. We obtained expression profiling data of ESCC patients from public
databases and genes related to 12 types of PCD from previous studies. Hub genes in
ESCC were screened from PCD-related genes applying differential expression analysis,
machine learning analysis, linear support vector machine (SVM), random forest and
Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis. In
addition, based on the HTFtarget and TargetScan databases, transcription factors (TFs)
and miRNAs interacting with the hub genes were selected. The relationship between
hub genes and immune cells were analyzed using the CIBERSORT algorithm. Finally,
to verify the potential impact of the screened hub genes on ESCC occurrence and
development, a series of in vitro cell experiments were conducted.
Results. We screened 149 PCD-related DEGs, of which five DEGs (INHBA, LRRK2,
HSP90AA1, HSPB8, and EIF2AK2) were identified as the hub genes of ESCC. The
area under the curve (AUC) of receiver operating characteristic (ROC) curve of the
integrated model developed using the hub genes reached 0.997, showing a noticeably
high diagnostic accuracy. The number of TFs andmiRNAs regulating hub geneswas 105
and 22, respectively. INHBA, HSP90AA1 and EIF2AK2 were overexpressed in cancer
tissues and cells of ESCC. Notably, INHBA knockdown suppressed ECSS cell migration
and invasion and altered the expression of important apoptotic and survival proteins.
Conclusion. This study identified significant molecules with promising accuracy for
the diagnosis of ESCC, which may provide a new perspective and experimental basis
for ESCC research.
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INTRODUCTION
In 2020, the world had around 604,000 new cases of esophageal cancer and 544,000
related deaths. It is expected that annual new case and death of esophageal cancer will
increase to 957,000 and 880,000 by 2040, respectively (Morgan et al., 2022; Zhan et al.,
2022). Adenocarcinoma and squamous cell carcinoma are two major histological subtypes
of esophageal cancer (Abnet, Arnold & Wei, 2018). Patients with localized esophageal
squamous cell carcinoma (ESCC) are normally treated by endoscopic resection or surgery,
while those metastatic ESCC are suitable for taking chemoradiotherapy (Codipilly & Wang,
2022). ESCC often has a dismal prognosis, especially for those diagnosed with advanced
cancer, due to incomplete understanding of the mechanisms of ESCC and a lack of effective
cancer diagnosis, patient prognosis, and treatment (Lee et al., 2018). In recent years, the
identification of biomarkers has improved the accuracy and availability of early screening
for ESCC (Li et al., 2020; Tsoneva et al., 2023). To elucidate the molecular mechanisms of
ESCC and help select targets for early treatment and diagnosis, some researchers screened
hub genes by integrating multiple databases and applying bioinformatics tools (Song et
al., 2021; Yang et al., 2019). However, the etiology and molecular mechanisms of ESCC
are still unclear, and new biomarkers and therapeutic candidate targets for ESCC should
be discovered. Programmed cell death (PCD) is a regulatory cell death and an important
terminal pathway that requires energy (Sun & Peng, 2009; Tower, 2015). Stressed, damaged,
malignant, or infected cells are lysed and efficiently eliminated via PCD (Liu et al., 2022).
Currently known types of PCD include, but are not limited to, apoptosis and necroptosis,
pyroptosis, autophagy-dependent cell death, cuproptosis, netotic cell death, ferroptosis,
entotic cell death, lysosome-dependent cell death, parthanatos, alkaliptosis, and oxeiptosis
(Peng et al., 2022; Dong et al., 2024; Kim, Kim & Lee, 2023). Aberrant regulation of PCD
is considered a key feature of carcinogenesis (Fuchs & Steller, 2011). PCD disorder is a
major molecular mechanism of each subroutine that could provide a range of possible
targets for cancer diagnosis and therapy (Ke et al., 2016). However, in the treatment of
ESCC patients, the specific roles of distinct regulated cell death (RCD) subroutines vary
in different patients and they may jointly determine the fate of cancer cells (Mishra et al.,
2018). Therefore, the simultaneous manipulation of multiple RCD signaling pathways by
dual-target or multi-target small molecules has greater potential in cancer therapy (Zhang
et al., 2023).

Artificial intelligence (AI) is a promising approach to reveal the mechanisms of ESCC
development and potential biomarkers by analyzing large amounts of data and identifying
complex patterns (Zhang et al., 2023). The present research employed three machine
learning methods to analyze 12 PCD-related genes, from which we identified the diagnostic
genes for ESCC and provided information for understanding their tumor immunology
and molecular mechanisms in ESCC.
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MATERIALS AND METHODS
PCD-related genes in 12 models were obtained from the article published by Zou et al.
(2022), including necroptosis, apoptosis, cuproptosis, pyroptosis, alkaliptosis, ferroptosis,
parthanatos, netotic cell death, autophagy-dependent cell death, lysosome-dependent cell
death, oxeiptosis, and entotic cell death (Table S1).

All data were retrieved from GSE53625 and GSE43732 (Gene Expression Omnibus,
GEO, https://www.ncbi.nlm.nih.gov/geo/). GSE53625 contained 179 normal samples and
179 ESCC samples. The sequence information and clinicopathological data of GPL18109
chip platform were obtained from GSE53625 dataset (Gao et al., 2021). For the initial
GPL18109 microarray platform sequence information of the dataset, the probe sequences
were re-annotated according to the latest alignment file in the GENCODE database
(https://www.gencodegenes.org/) (Frankish et al., 2021), and whenmultiple probes matched
to a gene, the mean value was calculated as the value of gene expression. The miRNA
matrix data files and clinicopathological data of 119 ESCC samples and normal samples
were obtained from GSE43732 dataset (Chen et al., 2014).

We obtained gene expression data and relevant clinical information of esophageal cancer
patients from The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) database to
validate the screened hub genes (The Cancer Genome Atlas Research Network, 2017). FPKM
values of gene expression data in TCGA were converted to transcripts per kilobase million
(TPM) and log2 transformed. ESCC samples were ultimately retained based on clinical
information, and a total of 80 ESCC samples and 11 normal control samples were included.

Screening of differentially expressed genes
The R package limma (version 3.42.2) (Ritchie et al., 2015) was used to analyze the
differential expression between the control and ESCC groups of GSE53625 dataset, with
179 samples in each group, and the threshold for the selection of differentially expressed
genes (DEGs) was adj. P < 0.05 and | log2FC |>1. Then the difference analysis results were
visualized into volcano map and heat map.

Functional enrichment analysis
The selected DEGs were the input to the R package clusterProfiler (version 0.4.6) (Wu et
al., 2021), and the internal enrichGO and enrichKEGG functions were used for GO and
KEGG functional enrichment analysis after reading the gene list file. GO was adopted to
explore the functional changes in terms of cell component (CC), molecular function (MF),
and biological process (BP) caused by DEGs. The effects on pathways were investigated
using KEGG analysis.

Machine learning analysis
Linear support vector machine (SVM), random-forest and Least Absolute Shrinkage and
Selection Operator (LASSO) regression analysis methods were the three machine learning
classifiers used for feature selection. The selection of genes for the Linear SVM method
was conducted using the ‘‘rfe’’ function in the R and run with 100-fold cross validation. As
a commonly used genomic data analysis, random forest is a classification and regression
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trees (CART) ensemble method that is trained on imported samples and randomly
selected features (Liu & Zhao, 2017). Decision trees have the advantages of easy use and
interpretation, outlier resistance, efficient handling of numerous predictor variables, and
built-in mechanism for processing missing data with relevant variables (Alderden et al.,
2018). To establish a random forest model, we employed the R package RandomForest
(version 4.6–14) (Liaw &Wiener, 2015). The number of variables for binary trees in a
specified node of the model (mtry) was determined according to the average model error
rate of out of bag (OOB) samples, while the number of decision trees contained in the
random forest (ntree) was determined according to the relationship between model error
and the number of decision trees. Based on the identified variables and the ranking of
important variables, a random forest model was established. LASSO regression analysis
was conducted in the R package ‘‘glmnet’’(version 4.1-2) (Engebretsen & Bohlin, 2019),
the cross-validated parameter was nfolds =10 and other parameter was set to family
=’binomial’.

Identification and performance evaluation of hub genes
Genes filtered by linear SVM, RandomForest and LASSO regression analysis were
compared, and those jointly selected by the three machines were defined as the hub
genes. The ‘‘pROC’’ package (Robin et al., 2011) served to evaluate the specificity and
sensitivity of genes for ESCC diagnosis by generating ROC curves for each gene and
calculating the AUC.

Molecular regulatory network analysis of the hub genes
The regulatory correlations between human TFs and their target genes were collected from
the HTFtarget database (http://bioinfo.life.hust.edu.cn/hTFtarget) (Zhang et al., 2020), and
the interactions between human miRNAs and their target genes were obtained from the
TargetScan database (http://www.targetscan.org) (Agarwal et al., 2015). Using these two
databases, we screened TFs and miRNAs that interacted with the hub genes, and then
cytoscape (http://cytoscape.org/, version 3.7.2) (Shannon et al., 2003) was employed to draw
the regulatory network for TFs-hub genes and miRNAs-hub genes.

Immune infiltration analysis
CIBERSORT is an immune infiltration analysis method on the basis of linear support
vector regression for deconvolution analysis (Newman et al., 2015). There are two files
for CIBERSORT (https://cibersort.stanford.edu/) input, one is the sequencing expression
matrix, the rows of which represent the expression value of a given gene, and the other
text file is the ‘‘signature matrix’’. Based on the score of obtained immune cell infiltration
in each sample, the correlation of immune cell infiltration and hub gene expression in a
sample could be explored using Spearman correlation analysis.

Acquisition of cells and transfection of siRNA
Human ESCC cell line KYSE-410 (product number: BNCC359845) and normal human
esophageal squamous epithelial cell line Het-1A (product number: BNCC342346) were
purchased from the official website of BNCC (Beijing, China). DMEM containing 10% fetal
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bovine serum (FBS, Gibco, Billings, MT, USA), penicillin (100 U/mL) and streptomycin
(100 µg/mL) (HyClone, USA) was used to culture all the cells and incubated together
with 5% CO2 at 37 ◦C. GenePharma (Shanghai, China) synthesized INHBA- targeted
siRNA (si-INHBA). According to the manufacturer’s transfection protocol, transfection
operations were performed using INTERFERin transfection reagent (Polyplus-transfection
SA, France). When the cells grew to 50–70% fusion, transfection was conducted in
antibiotic-free medium, which was replaced with fresh FBS-containing medium after
48h of transfection. Next, the culture was continued for subsequent experiments. The
siINHBA sequence (5′-CCAACAGGACCAGGACCAA-3′) and si-NC sequence (5′-
UUCUCCGAACGUGUCACGU-3′) were synthesized by Sangon, Shanghai, China.

Quantitative reverse transcription PCR
Total RNAwas extracted by adding Trizol (Invitrogen, USA) reagent and the concentration
and purity were determined by ultraviolet spectrophotometry (Thermo Fisher Scientific,
Waltham, MA, USA). RNA was reverse-transcribed into cDNA using NovoScript All-in-
one SuperMix (Novoprotein, China), and the results were analyzed on the 7500 Fast Real-
Time system (AB, USA) for qRT-PCR. Primer design was performed by Sangon Biotech
(Shanghai, China) and synthesized against EIF2AK2, HSP90AA1, and INHBA genes.
GAPDH was an internal reference gene. PCR reactions were performed with PowerUp™
SYBR™ Green Master Mix (Applied Biosystems, Waltham, MA, USA), according to the
manufacturer’s protocol, which consisted of a pre-denaturation step at 95 ◦C for 2 min
(min), followed by 40 cycles, with each cycle consisting of denaturation at 95 ◦C for 15 s (s)
and extension at 60 ◦C for 60 s. The final data were analyzed for relative quantification using
the 2−11Ct method (Livak & Schmittgen, 2001). The primer sequence used was synthesized
by Sangon, Shanghai, China (Table 1).

Transwell assay
To carry out migration and invasion assays, cell culture inserts (8 µM pore size, BD, USA)
and Matrigel invasion chambers (BD, Franklin Lakes, NJ, USA) were used, respectively.
After 24 h of si-INHBA interference on KYSE-410 cells, the cells were starved (cultured
for 24 h using serum-free medium) to synchronize the cell state. After the transfection
of serum-starved ESCC cells, approximately 2×104 cells were inoculated into the upper
chamber, while the lower chamber contained medium dissolved with 10% FBS. The cells
were stained with a concentration of 0.2% crystal violet and observed from four randomly
selected areas under a Zeiss AX10 inverted microscope (Carl Zeiss, Oberkochen, Germany)
to capture images.

Western blot assay
To detect the expression of cleaved caspase3, cell cycle proteins Bax and Bcl-2, we extracted
total proteins from the logarithmic growth phase human ESCC cell line KYSE-410 using
cellular protein extraction reagents. The BCA method was used to determine the protein
content. The proteinwas heated at 95 ◦C for 10min, followed by loading 20µg of the sample
onto a polyacrylamide gel for electrophoresis. Subsequently, the protein isolated from the
gel was moved onto the PVDF membrane. After being blocked with 5% skimmed milk
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Table 1 Primer sequences for qRT-PCR.

Gene Forward primer sequence (5′–3′) Reverse primer sequence (5′–3′)

EIF2AK2 GCCGCTAAACTTGCATATCTTCA TCACACGTAGTAGCAAAAGAACC
HSP90AA1 CATAACGATGATGAGCAGTACGC GACCCATAGGTTCACCTGTGT
INHBA CAACAGGACCAGGACCAAAGT GAGAGCAACAGTTCACTCCTC
GAPDH CTGGGCTACACTGAGCACC AAGTGGTCGTTGAGGGCAATG

for 2 h, the membrane was incubated with anti-caspase-3 (9662, 1:1000, Cell Signaling
Technology, Danvers, MA, USA), anti-Bax (2772, 1:1000, Cell Signaling Technology,
Danvers, MA, USA), anti-Bcl-2 (15071, 1:1000, Cell Signaling Technology, Danvers, MA,
USA), anti-GAPDH (sc-137179, 1:1000, Santa Cruz Biotechnology, Dallas, TX, USA) for
24 h at 4 ◦C. Next, Bio-Rad’s horseradish peroxidase-labeled secondary antibody (ab6721,
1:5000, Abcam, Cambridge, UK) was added for further incubation at room temperature
for 1 h. Then SuperSignal West Pico chemiluminescent substrate from Thermo Fisher
Scientific was used to treat the membrane and signal were detection using the Bio-Rad
Chemidoc XRS+ system. Data were quantified with Bio-Rad Image Lab software and
normalized to GAPDH.

Statistical analysis
All analyzed bioinformatics data were imported into R software (version 4.0.5) for
analysis. All the experiments were conducted at least three times. The normality of
the data distribution was assessed using the Shapiro–Wilk test. Student’s t -test and
Wilcoxon rank sum test were used to compare differences between tumor and normal
control samples and between ESCC cell lines and their normal controls, where data were
expressed as mean ± standard error of the mean (SEM). Venn diagrams were plotted
using the R ‘‘VennDiagram’’ package (Chen & Boutros, 2011). When defining the statistical
significance, the default p value <0.05 was considered statistically significant.

RESULTS
Functional characterization of DEGs between ESCC and normal
samples
By analyzing the difference of mRNA expression profile data between ESCC samples and
normal samples in GSE53625 (Fig. 1A), 2,606 DEGs were identified and 149 of them
were PCD-related genes. The expression heatmap of the 50 PCD-related DEGs with
the largest fold change in normal tissues and ESCC cancer tissues was shown in Fig.
1B. The 149 PCD-related DEGs significantly annotated by the necroptosis, ferroptosis
and immunomodulatory pathways (lysosome, tuberculosis, IL–17 signaling pathway,
rheumatoid arthritis, cytokine–cytokine receptor interaction, Influenza A) were selected by
performing the KEGG pathway annotation analysis (Fig. 1C). The BPs enriched with 149
PCD-related DEGs also all mediated the regulation of PCD (Fig. 1D). From the annotated
CC and MF terms, 149 PCD-related DEGs were significantly associated with extracellular
matrix, lumen related to secretory structure and protein transport, and secreted small
molecules, including cytokines and growth factors (Figs. 1E–1F).
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Figure 1 Functional characterization of DEGs between ESCC and normal samples. (A) Based on the
GSE53625 dataset, and 2606 differentially expressed genes were screened by the limma package (screen-
ing queues of adj. p < 0.05 and |log2FC | > 1). (B) Expression heatmap of 50 PCD-related DEGs with the
largest Fold change in ESCC cancer tissues and normal tissues. (C) Top 10 KEGG pathways annotated by
149 PCD-related DEGs. (D–F) Top 10 GO BPs, GO CC and GOMF enriched by 149 PCD-related DEGs.

Full-size DOI: 10.7717/peerj.17690/fig-1

Screening of PCD-related DEGs by machine learning algorithms
We used linear SVM to assess the performance of classifiers composed of different gene
combinations of 149 PCD-related DEGs and determine a classifier consisting of nine
PCD-related DEGs with the highest accuracy (Fig. 2A). Machine learning based on LASSO
regression analysis selected genes corresponding to the smallest binomial deviance, here,
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Figure 2 Screening of PCD related DEGs bymachine learning algorithms. (A) Accuracy corresponding
to the number of genes in the Linear SVM classifier. (B) LASSO regression analysis. (C) The mtry deter-
mined based on the mean error rate of the model for OOB samples. (D) Relationship between the num-
ber of model error and decision tree. (E) Importance ranking of 30 PCD-related DEGs based on mean de-
crease accuracy and mean decrease Gini output.

Full-size DOI: 10.7717/peerj.17690/fig-2

26 of 149 PCD-related DEGs were filtered (Fig. 2B). Based on the mean misjudgment rate
of the model for the OOB samples, we determined mtry = 24 (Fig. 2C). Then, according
to the correlation between the model error and the number of decision trees, the ntree was
determined to be 50, after which the estimated OOB error rate was quite stable (Fig. 2D).
The results of the random forest analysis output were arranged according to the importance
of the PCD-related DEGs in the ranking order, and the top 30 genes were shown (Fig. 2E).

Identification of hub genes and evaluation of their diagnostic efficacy
for ESCC
A total of five overlapping genes of PCD-related DEGs were jointly selected by the three
machine learning algorithms and they were considered as hub genes of ESCC (Fig. 3A).
Five hub genes were synthesized into a comprehensive model and the AUC of the ROC
curve of the model reached 0.997, meaning that the diagnostic specificity and sensitivity of
the model were high (Fig. 3B). All the hub genes were also differentially expressed between
ESCC cancer tissues and normal tissues. Particularly, the expression of INHBA,HSP90AA1
and EIF2AK2 in ESCC cancer tissues was significantly higher than that in normal tissues,
while the level of LRRK2 andHSPB8 in ESCC tissues was remarkably lower as compared to
the normal tissues (Fig. 3C). The expression level of the five hub genes and the diagnostic
effect of each hub gene was validated in the TCGA-ESCA dataset. Among them, INHBA,
HSP90AA1, and EIF2AK2 were significantly higher expressed in tumor samples than in
normal samples (Fig. S1A). We found that the validated model of INHBA had an AUC
value of 0.927 for the ROC curve, HSP90AA1 had an AUC value of 0.934, and ELF2AK2
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Figure 3 Identification of hub genes and evaluation of their diagnostic efficacy for ESCC. (A) The
Venn diagram shows the overlapping genes of PCD-related DEGs selected by three machine learning algo-
rithms. (B) Diagnostic ROC curves for comprehensive models fitted for the five hub genes and each hub.
(C) Wilcoxon rank sum test to be used to compare the difference in expression levels of the five hub genes
between ESCC tissues and normal tissues. **** represents p< 0.0001. Data were presented as median.

Full-size DOI: 10.7717/peerj.17690/fig-3

had an AUC value of 0.871, whereas the LRRK2 and HSPB8 models had lower AUC values
of the ROC curve (0.517 and 0.536, respectively) (Fig. S1B).These results suggest that the
hub genes we identified have a high potential for diagnostic efficacy in ESCC.

Upstream regulators of diagnostic hub genes in ESCC
Differential miRNA expression analysis between ESCC tissues and normal tissues in
GSE43732 cell line revealed 136 differentially expressed miRNAs. According to the
regulatory relationship between TF and its target genes provided by HTFtarget database
and the interaction between human miRNA and target genes predicted by TargetScan
database, the five hub genes of ESCC were regulated by 22 miRNAs, which also showed
potential indirect interactions with 105 potential TFs regulating the five hub genes (Fig. 4).

Prognosis and immune relevance of the hub gene
PCA revealed that immune cells had significant group-biased clustering and individual
differences between ESCC tumor tissues and normal tissues (Fig. 5A). CD8 T cells were
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Figure 4 Potential TF-hub gene-miRNA regulatory network of diagnostic hub genes in ESCC.
Full-size DOI: 10.7717/peerj.17690/fig-4

the main executors of anti-tumor immune responses. The high correlation of CD8 T
cells with monocytes, activated mast cells, naive CD4 T cells, M0 macrophages, resting
CD4 T memory cells, activated CD4 memory cells, follicular helper T cells, Tregs and M1
macrophages suggests their interplay in the tumor microenvironment (Fig. 5B). Compared
with the normal tissue of ESCC, the proportion of naive CD4 T cells, memory B cells, M0
andM1macrophage, activated CD4 Tmemory cells in tumor tissue increased significantly,
while the proportion of gamma delta T cells, CD8 T cells, Tregs, monocytes, activated NK
cells, resting CD4 T memory cells, resting and activated mast cells, and M2 macrophage
significantly reduced (Fig. 5C). As shown in Fig. 5D, INHBA correlated strongly with
macrophage M0 as well as T cells regulatory, with a Spearman correlation coefficient
close to 0.5. LRRK2 was weakly correlated with mast cells resting, HSP90AA1 with T
cells CD4 naive, HSPB8 with macrophage M2 and mast cells resting, and EIF2AK2 with
macrophage M1. Although these five hub genes are weakly correlated with immune cells,
they still provide some clues to the immunomodulatory role of these genes in ESCC. This
further implies that the effects of these hub genes in the ESCC tumor microenvironment
may be cell type specific. These results suggested that these hub genes had a potential
impact on the immune microenvironment in ESCC. Subsequently, the ESCC samples
from the GSE53625 dataset were divided into high and low expression groups according
to the optimal cutoff value of each gene expression. As shown in Fig. S2 , we observed
that patients with low expression of INHBA, HSP900AA1, HSPB8, and EIF2AK2 had a
significantly better prognosis than the high expression group.

Expression of the hub genes in ESCC cells
Human ESCC cell line KYSE-410 were used as experimental cells and human esophageal
epithelial cell Het-1A as control cells to analyze the mRNA levels of EIF2AK2, HSP90AA1
and INHBA. The mRNA levels of all these three molecules were significantly higher in
KYSE-410 cells than those in Het-1A cells (Figs. 6A–6C). After knockdown of INHBA
expression in KYSE-410 cells, cell migration and invasion were significantly suppressed
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Figure 5 Immune correlation of hub genes. (A) PCA cluster diagram of immune cell infiltration be-
tween tumor samples and control samples. (B) Heatmap of (continued on next page. . . )

Full-size DOI: 10.7717/peerj.17690/fig-5
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Figure 5 (. . .continued)
correlations between 22 immune cells. (C) The CIBERSORT algorithm was used to assess the extent of
immune cell infiltration between samples. The differences in the proportion of immune cell infiltration
between ESCC and normal samples were compared by the Wilcoxon rank sum test. (D) The Spearman
correlation analysis between each hub gene and the degree of immune cell infiltration. * represents p <
0.05, ** represents p < 0.01, *** represents p < 0.001, **** represents p < 0.0001, and ns represents no
difference. Data were presented as median.

(Figs. 6D, 6E). Thus, INHBA played a crucial role in the migration and invasion of ESCC
cells. Subsequently, to further analyze the role of INHBA in regulating the survival and
death of ESCC cells, wemeasured the expression of Bcl-2, caspase-3, and Bax usingWestern
blot analysis. A significant upregulation of Caspase-3 and Bax was observed after silencing
the expression of INHBA as compared to the control group, with a significantly lower
expression of Bcl-2 than in the si-NC group (Fig. 7). This revealed that gene silencing by
INHBA can alter the expression of apoptotic and survival proteins and may drive the PCD
of ESCC cancer cells. These results demonstrated that the hub genes we identified might
have a potential impact on the development of ESCC.

DISCUSSION
PCD escape is one of several critical early events during the transformation from normal
cellular homeostasis to malignancy (Chao, Majeti & Weissman, 2011), suggesting that
certain key effector molecules of PCD may have a strong potential in early diagnosis of
cancer (Gong et al., 2023). Research showed that different types of PCD share a coordinated
system (Liu et al., 2022). Based on these findings, if only targeting a single pathway of
regulated cell death (RCD) without considering other forms of RCD as a redundant fatal
backup function, the treatment may eventually fail because the boundaries between various
pathways of cell death are blur at the molecular level (Gong et al., 2023). Using single-cell
RNA transcriptome data, some researchers developed a 16-gene cell death index model
that can well predict the prognosis of ESCC patients by incorporating immunogenic cell
death and necrosis features (Cao et al., 2024). In this study, we obtained genes related to
12 types of PCD from previous studies and identified five key PCD effectors by differential
expression analysis and three machine learning analyses (linear SVM, RandomForest and
LASSO analysis). The roles of these genes as diagnostic variables of ESCC and the potential
mechanism of mediating their effects on ESCC were comprehensively analyzed.

Computer-assisted detection has been applied to identify early gastrointestinal lesions
(Hussein et al., 2022). Machine learning algorithms are the primary approach to computer
data analysis and predictive modeling (Freitas et al., 2023), and their use in clinical image
analysis and interpretation could provide valuable information for early detection of ESCC
(Hosseini et al., 2023). Although machine learning has been applied to predict clinical
outcomes in various environments (Fazzari et al., 2022), detection of ESCC depends largely
on the accuracy of the algorithm used by the type and data quality for training (Hosseini et
al., 2023). In this study, INHBA, LRRK2, HSP90AA1, HSPB8, EIF2AK2 were identified by
all three machine learning methods as hub genes of ESCC. More than 10 years ago, Seder
et al. (2009) found that INHBA is overexpressed in ESCC and inhibition of its expression
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Figure 6 Hub genes mediated the metastasis of ESCC cells. (A–C) Relative mRNA levels of EIF2AK2,
HSP90AA1, and INHB in KYSE-410 and Het-1A, respectively. (D–E) Effect of knockdown of INHBA on
migration and invasion of KYSE-410 cells. Student’s t-test was used to compare the differences in gene ex-
pression levels between the two groups. ** represents p< 0.01, **** represents p< 0.0001. Data were pre-
sented as mean + SEM.

Full-size DOI: 10.7717/peerj.17690/fig-6

suppresses the proliferative ability of cells. Furthermore, Lyu et al. (2018) showed that high
expression of the INHBA gene is significantly associated with lymph node metastasis and
poor prognosis in ESCC patients, therefore its overexpression is considered as a useful
predictor. LRRK2 is an autophagy-related protein kinase, and inhibition of LRRK2 kinase
activity stimulates macroautophagy (Manzoni et al., 2013). LRRK2 has been reported to
be associated with the risk of Crohn’s disease in gastrointestinal disorders (Foerster et
al., 2022). A pan-cancer analysis of LRRK2 revealed that LRRK2 increases the risk of
low-grade glioma but serves as a protective factor for survival of patients with cutaneous
melanoma (Yan et al., 2022). HSP90AA1 is also an important regulator of autophagy
that promotes autophagy by mediating the PI3K/Akt/mTOR cascade and inhibits cell
apoptosis through the JNK/P38 pathway in osteosarcoma (Xiao et al., 2018). HSP90AA1 is
a carcinogenic enhancer in ESCC, and inhibition of its activity significantly weakens cell
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Figure 7 Modulation of apoptotic protein expression by INHBA silencing in ESCC cells. (A) Western
blotting-based assay to determine the expression levels of apoptosis marker proteins Caspase-3, Bax, and
Bcl-2 after INHBA silencing. (B) Quantitative analysis of apoptotic protein expression changes upon IN-
HBA silencing. *** represents p< 0.001, **** represents p< 0.0001. Data were presented as mean + SEM.

Full-size DOI: 10.7717/peerj.17690/fig-7

proliferation and induces cell apoptosis, with a lower HSP90AA1 expression predicting
a better prognosis of ESCC (Ye et al., 2021). HSPB8 also is a small chaperone involved
in chaperone-assisted selective autophagy (Cristofani et al., 2021). Cristofani et al. (2022)
have shown that HSPB8-induced autophagy is a key event in the elimination of melanoma
cell growth. ProteinkinaseR encoded by EIF2AK2 gene is involved in autophagy and cell
pyroptosis induced by inflammatory bodies in nasopharyngeal carcinoma (Shen et al.,
2012; Jiang et al., 2020). In this study, we found the mRNA levels of EIF2AK2, HSP90AA1
and INHBA were significantly overexpressed in ESCC cells, and that knockdown of INHBA
expression suppressed ESCC cellmigration and invasion.Moreover, all the five PCD-related
genes had ROC values above 0.97 for the diagnosis of ESCC, particularly, the ROC of the
5-gene model even reached 0.997.

In addition, each gene also affected the infiltration of different immune cells in ESCC.
For example, INHBA is negatively correlated with B-cell infiltration and positively with
macrophages, neutrophils and dendritic cells in gastric cancer (Liu et al., 2023). KRRK2
is positively associated with macrophage recruitment in the immune microenvironment
of pancreatic cancer and its deficiency impairs macrophage function (Yan et al., 2022).
In addition, thermotherapy can promote macrophage M1 polarization in the immune
microenvironment of triple-negative breast cancer tumors through exosome-mediated
HSPB8 transfer (Xu et al., 2023). These studies were consistent with our results that these
five genes played an important role in regulating the tumor immune microenvironment,
especially in macrophage activation and recruitment, in ESCC.

Post-transcriptional regulation of gene expression is performed by miRNAs, whereas
TFs play a key role in transcriptional rate activation or repression in the pre-transcriptional
phase (Shaik et al., 2022). We identified the upstream regulators of five PCD-related
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genes, which were regulated by 22 miRNAs and 105 TFs. Among them, the interaction of
miR-150-3p with INHBA has been reported to inhibit the proinflammatory polarization
of alveolar macrophages in sepsis (Liang et al., 2023). Ba et al. (2021) found that miR-9-5p
binds to the 3′ UTR ofHSP90AA1mRNA and that miR-9-5p decreasedHSP90AA1 protein
expression. Furthermore, they indicated that knockdown of ZNRD1-AS inhibited gastric
cancer cell proliferation and metastasis by targeting the miR-9-5p/HSP90AA1 axis. The
regulation of these molecular mechanisms of the five PCD-related genes in ESCC still
needs further investigation. However, there were some limitations in this study. First, we
used data from a specific sample set, which may limit the generalizability of the results.
AI cannot replace the clinician’s understanding of the specific condition of patients and
it cannot fully replace biochemical validation in the laboratory. In particular, our study
is mainly based on bioinformatics tools to predict TFs and miRNAs. Therefore, further
experimental validation is needed to determine the accuracy of these results. Finally, the
use of specific machine learning models may lead to biased results, therefore our results
should be verified using multiple algorithms and cross-validation.

CONCLUSION
In general, this study successfully identified five ESCC-related key genes through the
integrated application of differential expression analysis and machine learning algorithms.
The 5-genemodel showed high specificity and sensitivity in ESCC diagnosis. These findings
provided new perspectives for understanding the molecular mechanisms of ESCC, but
further studies are needed to validate the specific roles of these genes in disease progression
and to strengthen the statistical reliability with larger sample size.
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