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ABSTRACT
Background. Breeding programs for nutrient-efficient tea plant varieties could be
advanced by the combination of genotyping and phenotyping technologies. This study
was aimed to search functional SNPs in key genes related to the nitrogen-assimilation in
the collection of tea plantCamellia sinensis (L.) Kuntze. In addition, the objective of this
study was to reveal efficient vegetation indices for phenotyping of nitrogen deficiency
response in tea collection.
Methods. The study was conducted on the tea plant collection of Camellia sinensis (L.)
Kuntze of Western Caucasus grown without nitrogen fertilizers. Phenotypic data was
collected by measuring the spectral reflectance of leaves in the 350–1100 nm range
calculated as vegetation indices by the portable hyperspectral spectrometer Ci710s.
Single nucleotide polymorphisms were identified in 30 key genes related to nitrogen
assimilation and tea quality. For this, pooled amplicon sequencing, SNPs annotation
and effect predictionwith SnpEFF tool were used. Further, a linear regressionmodel was
applied to reveal associations between the functional SNPs and the efficient vegetation
indices.
Results. PCA and regression analysis revealed significant vegetation indices with high
R2 values (more than 0.5) and the most reliable indices to select ND-tolerant genotypes
were established: ZMI, CNDVI, RENDVI, VREI1, GM2, GM1, PRI, and Ctr2, VREI3,
VREI2. The largest SNPs frequency was observed in several genes, namely F3’5’Hb,
UFGTa, UFGTb, 4Cl, and AMT1.2. SNPs in NRT2.4, PIP, AlaDC, DFRa, and GS1.2
were inherent in ND-susceptible genotypes. Additionally, SNPs in AlaAT1, MYB4,
and WRKY57, were led to alterations in protein structure and were observed in ND-
susceptible tea genotypes. Associations were revealed between flavanol reflectance index
(FRI) and SNPs in ASNb and PIP, that change the amino acids. In addition, two SNPs
in 4Cl were associated with water band index (WBI).
Conclusions. The results will be useful to identify tolerant and susceptible tea genotypes
under nitrogen deficiency. Revealed missense SNPs and associations with vegetation
indices improve our understanding of nitrogen effect on tea quality. The findings in
our study would provide new insights into the genetic basis of tea quality variation
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under the N-deficiency and facilitate the identification of elite genes to enhance tea
quality.

Subjects Agricultural Science, Biochemistry, Bioinformatics, Genetics, Plant Science
Keywords Camellia sinensis, Flavonoid biosynthesis, L-theanine, Nitrogen deficiency, Tea quality,
SNP, Vegetation indices, Phenotyping

INTRODUCTION
Tea, derived from the perennial evergreen woody plant Camellia sinensis (L.) O. Kuntze,
stands as one of the world’s most consumed beverages, prized for its aromatic flavor
and potential health benefits (Samanta, 2020; Sánchez et al., 2020). Tea has demonstrated
numerous pharmacological properties, including antioxidant and anticancer effects, as
well as the ability to reduce metabolic issues and prevent cardiovascular diseases (Chan
et al., 2011; Filippini et al., 2020; Brimson et al., 2023). The secondary metabolites that
determine the tea quality, such as theanine, caffeine, flavonoids, and amino acids, enhance
the beneficial biological activities and taste of tea plants (Gai et al., 2019). The metabolism
of these plant compounds, and hence the tea quality, is dependent on a variety of factors,
including nitrogen supply (Yang et al., 2018).

Nitrogen (N), a crucial component for plant development, is frequently supplied via
fertilizers to guarantee optimal growth. However, excess N inhibits the formation of
flavonol glycosides, whereas decreasing N availability reduces amino acid and caffeine
concentrations in mature tea leaves (Li et al., 2016; Dong et al., 2019). In addition, long-
term nitrogen fertilization is not only expensive, but it also causes an array of environmental
issues, including greenhouse gas emissions, soil pH changes, eutrophication, and microbial
community disruption (Gao & Cabrera Serrenho, 2023;Kamran et al., 2023; Liu et al., 2023;
Tang et al., 2023). Use of tea cultivars with high NUE (nitrogen uptake efficiency) and high
quality is necessary to preserve environmental pollution and promote productivity.

Nitrogen-efficient varieties are likely to have polymorphisms in the genes that control
nitrogenmetabolism and determine the tea quality (Li et al., 2017a; Li et al., 2017b; Li et al.,
2017c; Yang et al., 2020; Xie et al., 2023). Genes involved in N uptake (aquaporin PIP-type-
like PIP, lysine histidine transporter 1-like LHT1), transport (ammonium transporter 1
member 2-like AMT1.2, high affinity nitrate transporter 2.4-like NRT2.4) and assimilation
(alanine aminotransferase 2-like AlaAT1, glutamate dehydrogenase A GDHa, glutamate
dehydrogenase 2 GDH2, glutamine synthetase nodule isozyme-like GS1.2) were identified
as well as genes that regulate secondary metabolites which expression changes depending
on the nitrogen level (Wang et al., 2021b; Li et al., 2021; Xie et al., 2023;Wang et al., 2021a;
Tang et al., 2021; Chen et al., 2023; Zhang et al., 2023). Genes transcription factor MYB7-
like and MYB4-like (MYB7, MYB4), tryptophan-aspartic acid repeat protein repeat-
containing protein HOS15-like (WD40), transcription factor bHLH35-like (HLH35),
transcription factor bHLH36-like (HLH36), UDP-glycosyltransferase 71K2-like (UFGTa),
anthocyanidin 3-O-glucosyltransferase 2-like (UFGTb), dihydroflavonol-4-reductase
(DFRa), flavonoid 3′,5′-hydroxylase (F3′5′Hb) and flavonoid 3′,5′-hydroxylase 2-like
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(F3′5′Ha) are involved in the flavonoid pathway, whereas serine decarboxylase-like
(AlaDC) controls the theanine synthesis (Huang et al., 2018; Liu et al., 2018; Dong et
al., 2019; Guo et al., 2019; Wang et al., 2021b; Ye et al., 2021; Li et al., 2023). Gene Camellia
sinensis 4-coumarate–CoA ligase-like 9 (4Cl)mediates phenylpropanoidmetabolism, beta-
glucosidase BoGH3B-like (bG) is critical for tea aroma generation, anthocyanidin reductase
((2S)-flavan-3-ol-forming)-like (ANRb-ANR1), leucoanthocyanidin dioxygenase-like
(ANSa and ANSb), and leucoanthocyanidin reductase-like (LAR) regulate the catechin
pathway, and WRKY transcription factor 57 (WRKY57) modulates stress responses
(Chen et al., 2009; Liu et al., 2015; Wani et al., 2021; Li et al., 2022; Zhao et al., 2022a). In a
previous work, we described 20 tea genotypes fromNorthwest Caucasia that are susceptible
or tolerant to nitrogen deficit. A number of polymorphisms in the tea quality genes and their
relationships with certain phenotypic traits as biochemical measurements were revealed in
the tea collection (Samarina et al., 2023).

SNPs markers and numerous metabolic profile approaches could be utilized for
identifying nitrogen-efficient cultivars (Hazra et al., 2018). The remote sensing technology
provides a non-destructive and rapid approach to gauge plant health and development,
offering insights into the metabolism change of tea plant response to nitrogen deficiency
(Cao et al., 2022). The changes in plant chemical composition could be described by
reflectance light-based indices or vegetation indices (VIs) developed based on the reflectance
data (Kior, Sukhov & Sukhova, 2021). Combinations of spectral bands could be utilized
for generating vegetation indices because pigments have the ability to absorb light in
certain bands. Vegetation indices such as the water band index (WBI), photosynthetic rate
index (PRI), normalized difference vegetation index (NDVI), transformed chlorophyll
absorption in reflectance index (TCARI), triangular vegetation index (TVI), Zarco-Tejada
&Miller Index (ZMI), flavanol reflectance index (FRI), and Anthocyanin Reflectance Index
(ARI1, ARI2) provide information regarding plant water status, photosynthetic factors, and
secondary metabolism, respectively (Frels et al., 2018; Prey, Hu & Schmidhalter, 2020). The
use of vegetation indices to determine insect, cold, drought and nitrogen shortage stress
enable the selection of the best growing conditions for tea plants (Chen et al., 2021a; Chen
et al., 2021b; Chen et al., 2021c; Zhao et al., 2022b; Mao et al., 2023). Few research using
unidentified aerial vehicles (UAVs) were conducted on the quality of tea and nitrogen
deficiency (Luo et al., 2022). However, handled spectrometry was not tested to reveal the
most efficient VIs for tea phenotyping, while experiments with potted plants rather than
field studies are relevant for QTL and association mapping (Hazra et al., 2018).

In this study, we evaluate the efficiency of 31 VIs collected by a handheld spectrometer
to reveal their efficiency for distinguishing ND-tolerant and ND-susceptible tea genotypes.
We analyzed SNPs in 30 key genes related to N-assimilation and quality in the collection
of 34 genotypes of tea plants in the Western Caucasus. We aimed to identify relationships
between genotype and phenotype traits in ND-tolerant and ND-susceptible tea cultivars.
The findings of the study could be used asmarkers for screening ND-tolerant tea genotypes.
This research may advance precise breeding strategies aimed to enhance yield quality of
Camellia sinensis (L.) O. Kuntze under ND by defining the genetic determinants and
chemical composition linked to ND-response.
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MATERIALS & METHODS
Plant material
The plant materials were obtained from the field gene bank of the Russian Academy of
Sciences’ Federal ResearchCenter’s Subtropical Scientific Center (FRCSSCRAS) (Samarina
et al., 2022). This study comprised mutant forms obtained between 1970 and 1980 from
seeds (mostly cultivars ‘‘Kolkhida’’ and ‘‘Qimen’’) exposed to γ -irradiation. Each genotype
of plants was clonally reproduced using 30–60 replicates, and they were cultivated on acid
soil from a brown forest (pH 5.5) with 30 mg kg−1 of nitrogen (as opposed to the ideal
80 mg kg−1 N for tea plantations). For the past 27 years, no fertilizers have been added to
the experimental plot.

Library preparation and amplicon sequencing
The library preparation and sequencing procedure for the following 14 genotypes of tea
plants is explained; our earlier research on gene selection and primer design, long-range
polymerase chain reaction, and sequencing for the remaining 20 variations can be reviewed
in Samarina et al. (2023).

Using theNEBNextUltra II DNAReagent Kit Library PrepKit for Illumina and following
the manufacturer’s instructions, fragment DNA libraries were created equimolarly from
the mixed PCR results. The libraries were subjected to a qualitative assessment with High
Sensitivity D5000 ScreenTape and High kits Sensitivity D5000 Reagents (Agilent, Santa
Clara, CA, USA) on an Agilent bioanalyzer TapeStation 4150. Using the KAPA Library
Quantification Kit (KAPA Biosystems, Wilmington, MA, USA), a real-time PCR was used
to provide a quantitative assessment of the products.

The DNA library fragments were mixed equimolarly into a pool and sequenced on the
Illumina MiSeq using pair-end reads 76+76 bp and single-end reads 151 bp. Using the
default settings of the bcl2fastq v2.20.0.422 software, sequencing data were demultiplexed
by index sequences. For each DNA library, a total of 184,000–392,000 pairs of reads were
collected. The FastQC v0.11.2 program was used to carry out the first quality evaluation
of the deep sequencing data. Low-quality sequences and adapters were eliminated using
AdapterRemoval v2 programs (with settings trimqualities, minquality 20, minlength 50).
Following filtering, 94.34% of the read pairs were retained.

Data that had been filtered were mapped against the tea plant’s reference genome
(GCF_004153795.1). The BWA programs package’s bwa mem function was utilized
for mapping. Duplicates were eliminated using the MarkDuplicates function of the
Picard tools v2.22.2 (Picard toolkit) software package. Samtools v1.9, a software
application, was used to assess the alignments’ quality. Using the COVERAGE_CAP
= 10,000 option, the CollectWgsMetrics function of the Picard-tools software package
(https://broadinstitute.github.io/picard/, accessed on March 2, 2024) was used to measure
the depth coverage of the target genomic regions. 96.44% of reads on average were mapped
to the genome of tea. On average, we were able to get 261-fold coverage of the target
genomic areas of tea for each sample.

The raw data are deposited in the NCBI SRA database under accession numbers
PRJNA1015448 and PRJNA977584.
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Genotype analysis
Using BWA-MEM (version 0.7.12), the clean reads were aligned to the reference genome
‘‘Shuchazao’’ (Xia et al., 2020), and SAMtools (version 1.16.1) was used for sorting and
combination of paired-end and single-end reads into a single-bam file. The GATK
software (version 4.2) was used to add read groups. Variant calling was done using
the GATK-HaplotypeCaller method, with default parameters for diploid/unknown ploidy
varieties and sample-ploidy 3 and sample-ploidy 4 for tetraploids and known triploids,
respectively. The following parameters were utilized by the GATK software to select and
filter SNPs/InDels: ‘QD <2.0||FS >60.0||MQ <40.0||SOR_filter||SOR >4.0||DP <261’ and
‘QD <2.0||FS >200.0||SOR >10.0||DP <261’, respectively.

SnpEFF (version 5.0) was used to build the database for the reference genome
‘‘Shuchazao’’, and it then served to annotate the remaining variants. High, moderate,
low, or modifier effect impact classifications were obtained via the SnpEff tool variation
annotation. These genetic differences known as impact variations are expected to have an
indirect, mild, moderate, or severe effect on the protein.

In order to facilitate further study, the discovered SNP data of the 14 tea varieties were
combined with published data on 20 tea sorts (Data S1). The formula for SNP density
was mean SNP per gene divided by the gene’s fragment length in kb. We normalized the
SNP frequency in each gene to get a summary of the SNP distribution and potential SNP
enrichments for the genes. Each SNP gene frequency was determined using the following
formula:

SNP_freq= (SNP_count/per_gene)/gene length× 10 3̂, where gene_length is the length
of the gene and SNP_count/per_gene is the number of SNPs found in a particular gene.
To make a fair comparison more straightforward, the SNP_Freq values were leveraged by
applying factor 10 3̂ to the denominator.

Phenotypic analysis
In this work the efficiency of 31 different VIs was evaluated to phenotype ND-response
in tea collection. Using a Ci-710s Miniature Leaf Spectrometer (CID Bio-Science, Camas,
WA, USA), the leaf spectral reflectance in the 350–1100 nm region was measured and 31
VIs were calculated. Five technical replications of each 33 genotypes were used to measure
the reflectance in the middle of each leaf, next to the primary vehicle between 11:00 and
14:00. Data were statistically analyzed using the XLSTAT program (free trial version). To
identify significant changes between the genotypes, one-way ANOVA, Fisher’s and Tukey
tests were performed. In addition, the study employed Pearson (n) PCA. The measured
values of each VI as well as the results of statistical testing can be found in Data S2.

Genotype and phenotype association analysis
For the association analysis, we combined SNP data from 20 and 14 different tea varieties.
Locations of SNPs with moderate and high effect were mapped based on the alternative
homozygous and heterozygous states of each allele (Data S3). Only 26 types were subjected
to a further study since phenotype data were available for a portion of the genotypes that had
been sequenced. To determine the relationships between SNPs and the phenotypes, a linear
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regression model was combined with a statistical test adjusted for multiple comparisons
(Bonferroni and false discovery rate (FDR)). Significant associations were identified at
Bonferroni- and FDR-corrected p-values <0.05. Statistical analysis and visualization were
performed using R package (version 4.2.3; R Core Team, 2023).

RESULTS
Phenotypic characterization
To reveal efficient VIs for phenotyping of ND- response, tea genotypes were classified as
tolerant or susceptible to ND based on their leaf quality and leaf N-content. Eight genotypes
were assigned as tolerant of ND, whereas the other ten were assigned as susceptible. Other
fourteen genotypes did not exhibit any clear response to ND and were classified as
non-responsive.

To illustrate the correspondence of genotypes, phenotypic traits and vegetation indices
PCA biplot was used (Fig. 1). The first two PCs displayed a cumulative variation of
approximately 73.03%. Both the ND-susceptible and ND-tolerant genotypes were clearly
separated in the biplot. Most of the vectors of VIs were distributed with high loading on the
positive side of PC1 and the negative side of PC2. The highest loading was observed in the
following VIs: ZMI, VREI1, RENDVI, CNDVI, PRI, PSRI, GM2, GM1, and CRI2, NDVI,
SIPI, and CRI1 indicating their positive correlation. The majority of the ND-tolerant
genotypes were distributed close to these VI, suggesting positive correlation between these
indices and ND-tolerance. In contrast, genotypes with no clear response to ND were placed
on the negative side of PC2. The vectors of TCARI, Ctr2, VREI2, VREI3, andMDATT were
positioned on the negative side of PC1, while Lic2, SRPI, and MRESRI –on the positive
side of PC2. The majority of ND-susceptible genotypes were placed closely to them, having
greater values of these VIs as compared to ND-tolerant ones. Finally, few ND-tolerant
accessions were placed in different PCA-sides.

Those VIs which showed coefficients of determination R2 > 0.5 and p values < 0.0001
were assigned as efficient for selection of ND-tolerant tea accessions (Table 1). Based
on Tukey’s multiple comparisons the following VIs showed greater values into tolerant
genotypes as compared to susceptible ones: ZMI, CNDVI, RENDVI, VREI1, GM2, GM1,
PRI, PSRI, PRI, ARI2, ARI1, WBI, NDVI, SIPI, Lic1, and WBI. On the contrary, ND-
susceptible genotypes displayed higher values for MDATT, Ctr2, TCARI, MCARI1, VREI3,
and VREI2 as compared to tolerant ones. According to the prediction analysis, the greatest
distance between susceptible and tolerant groups was observed by ZMI, RENDI and
CNDVI (Fig. 2). Tolerant genotypes showed ZMI values above 1.9, while susceptible-
1.7. RENDVI and CNDVI were below 1.35 for susceptible, and above 1.40 for tolerant
genotypes. Additionally, the remarkable differences were observed by PRI, GM1, GM2
and VREI1, and tolerant genotypes displayed greater values. In contrast, ND-susceptible
genotypes showed larger values of VREI3, VREI2, and Ctr2, which were above −0.07,
−0.07 and 0.25, respectively.
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Figure 1 Principal component analysis of 31 vegetation indices in 33 tea genotypes with different re-
sponses to nitrogen deficit. PCA biplot illustrates the related traits and correlations between vegetation
indices and genotypes. The first two PCs exhibited a cumulative variation of approximately 73.03%. Both
the ND-susceptible and ND-tolerant genotypes were clearly separated in the biplot. Most of the vectors of
VIs were distributed with high loading on the positive side of PC1 and the negative side of PC2. The high-
est loading was observed in the following VIs: ZMI, VRE1, RENDVI, CNDVI, PRI, PSRI, GM2, GM1, and
CRI2, NDVI, SIPI, and CRI1.

Full-size DOI: 10.7717/peerj.17689/fig-1

Identification of SNPs in tea quality genes and their associations with
phenotypes
Among 34 tea accessions, 4CL, AMT1,2, and F3′5′Hb showed the highest SNPs densities
(1.0–2.0) in exon regions, while AlaAT1, GDH2, LAR, WD40, bG, and bHLH35 showed the
lowest densities (Table 2). The highest SNPs-densities in introns (5.0–6.0) was found in
4CL and GS1,2. There were no SNPs found in MYB7 or bHLH36. The largest percentage
of polymorphisms in exon per gene (more than 45%) were detected for bG, F3′5′Hb, and
DFRa.

The high-effect-SNPs were observed in the following accessions: #619, #2697, #536,
#1385 and #3986 (Fig. 3). Low-effect SNPs were found to have the highest percentages in
#582, #157, and cv. Karatum, ranging from 4.0 to 25.0% across all genotypes. In cv. Sochi,
#35, and #1292,moderate-effect SNPs have the highest rate, varying from5.0 to 15.9%across
all genotypes. The highest percentages of SNPs with modifying effects were detected in
#321, #619, and #3509, and ranged from 63.0 to 86.7% across all genotypes.

The intron variants were the most frequent SNPs (8.9–57.14%) across all genotypes with
the highest rate in ND-susceptible genotypes #551, #507, and #1467 –(Fig. 3, Data S4).
The highest percentage of intragenic variations SNPs (56–67%) was observed in #321, #35,
while the lowest (1.5–4.5%) in showed #619, #1385 The highest values of intergenic region
SNPs (9–11%) were detected in #321 and #3823, while the lowest (0.5–0.8%) in cv. Sochi
and #837. Generally, the lowest SNP-frequencies were observed for 3′-UTR (0.6–8.0%),
5′-UTR (0.5–6.38%), and splice region or accepter variations (0.2–2.13%). The highest
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Table 1 Determination coefficients of vegetation indices at p value <0.05 and determination coeffi-
cient R2> 0.5.

VI R2 F Pr >F

CNDVI 0.728 11.487 <0.0001
RENDVI 0.728 11.487 <0.0001
SIPI 0.479 3.928 <0.0001
NDVI 0.528 4.792 <0.0001
MDATT 0.624 7.102 <0.0001
Lic1 0.528 4.792 <0.0001
Ctr2 0.683 9.224 <0.0001
ARI2 0.652 8.022 <0.0001
TCARI 0.635 7.451 <0.0001
MCARI1 0.548 5.198 <0.0001
WBI 0.624 7.115 <0.0001
ZMI 0.744 12.437 <0.0001
VREI1 0.759 13.501 <0.0001
GM2 0.695 9.757 <0.0001
GM1 0.674 8.849 <0.0001
PSRI 0.603 6.508 <0.0001
PRI 0.674 8.864 <0.0001
VREI3 0.770 14.357 <0.0001
VREI2 0.771 14.333 <0.0001
ARI2 0.625 7.136 <0.0001

Figure 2 Data points distributions and prediction in the tea genotypes with different responses to ni-
trogen deficit.Green, tolerant genotypes; blue, susceptible genotypes; gray, non-responsive.

Full-size DOI: 10.7717/peerj.17689/fig-2
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Table 2 The distribution of SNPs in 34 distinct varieties of tea in the exon and intron regions of the
target genes (N = 20).

Gene Fragment
Length, bp

Mean SNPs
Number in
Introns

Mean SNPs
Number in
Exons

SNPDensity
in Introns

SNPDensity
in Exons

SNP%
in Exons

4CL 5264 32.94 9.17 6.26 1.74 21.78
AMT1,2 2643 5.40 4.29 2.04 1.62 44.25
AlaAT1 8058 1.06 0.03 0.13 0.00 2.63
AlaDC 7227 6.83 2.97 0.94 0.41 30.32
DFRa 6600 2.54 2.49 0.39 0.38 49.43
F3′5′H_a 5118 6.57 1.86 1.28 0.36 22.03
F3′5′Hb 4435 3.66 4.54 0.82 1.02 55.40
GDH2 4915 2.57 0.11 0.52 0.02 4.26
GS1,2 6202 33.11 2.77 5.34 0.45 7.72
LAR 8600 0.31 0.06 0.04 0.01 15.38
LHT1 5107 2.00 0.80 0.39 0.16 28.57
MYB4 5342 5.00 0.60 0.94 0.11 10.71
MYB7 3376 0.03 0.00 0.01 0.00 0.00
NRT2,4 3060 6.03 2.37 1.97 0.77 28.23
PIP 2006 1.37 0.83 0.68 0.41 37.66
WD40 3844 2.34 0.34 0.61 0.09 12.77
WRKY57 11214 23.91 2.46 2.13 0.22 9.32
bG 8605 0.11 0.37 0.01 0.04 76.47
bHLH35 5743 1.91 0.03 0.33 0.00 1.47
bHLH36 2953 24.23 0.00 8.20 0.00 0.00

rates of 5′-UTR SNPs were observed in #582, cv. Karatum, and #551, while the lowest were
observed in #Sochi and #4605. On the other hand, the highest percentage of 3′-UTR SNPs
was detected in #1292, #1385, while the lowest was detected in cv. Karatum, #1476, #837.
Splice areas and splice acceptor variations were rare observed in #3986 and #619 and are
predominantly occurring in cv. Karatum, #582, and #3823. The downstream and upstream
gene variations were ranged as 5.6–21.38% and 0.5–18%, respectively. The greatest values
were detected in #619, #3180, #855,#257, and #501, while the lowest were in #551, #3823,
and #527.

The highest exon SNPs frequency was observed in UFGTa, 4Cl, UFGTb, and AMT1.2,
while the lowest was in GDH2, WD40, bHLH35, AlaAT1, LAR, GDHa. The hierarchical
clustering indicated no clear separation of genotypes by ND-tolerance, each branch
combined both tolerant and susceptible accessions (Fig. 4). The first branch consisted
of four tea genotypes with the highest SNP-frequencies in UFGTa: #507, #1476, #1484
and #Sochi. Among them, ND-susceptible #507 displayed the lowest leaf N-content,
#1476 was ND-tolerant with high leaf N-content, and #1484 and #Sochi showed an uncer-
tain reaction to ND. The second branch consisted of the two sub-branches. The first sub-
branch combined the ND-susceptible genotypes with the low leaf nitrogen content, namely
#1385, #3986, #1467, #582, #527, #1877, and #536. In addition, ND- tolerant genotype #619
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Figure 3 SNPs effect on the phenotypes of 34 tea genotypes. (A) SNPs effect on the phenotypes of 34 tea
genotypes. (B) SNPs impact on the phenotypes of 34 tea genotype.

Full-size DOI: 10.7717/peerj.17689/fig-3

and the high nitrogen-content genotypes #316, #212, and #1405 were joined to this sub-
branch. All these tea plant genotypes displayed significant SNP frequencies inNRT2.4, PIP,
AlaDC, DFRa, GS1.2, F3′5′Hb, UFGTa, UFGTb, 4Cl, and AMT1.2. The second sub-branch
combined ND-susceptible genotypes (#501, #551), ND-tolerant genotypes (#157, #2697,
#3609, #4605) and non-responsive to ND.

Totally, 109 SNPs were classified as missense variations causing amino acid changes
with a moderate effect (Data S5). A single SNP in WRKY57 with a significant effect was
identified as a splice acceptor and intron variant in ND-susceptible genotypes #3986 and
#1385, as well as ND-tolerant genotypes #619, #2697, and #536. The most frequent amino
acid alterations were revealled in 4CL, F3′5′Hb, F3′5′Ha and ANRb-ANR1. A number of
SNPs specific for ND-susceptible genotypes and genotypes with low N content (#855,
#3574, and #536) was revealed. These mutations lead to amino acid changes in AlaAT1,
MYB4, andWRKY57.

Finally, four significant associations (p value < 0.05) were revealed between the SNPs
and vegetation indices (Table 3). Two SNPs in 4Cl were associated with the water band
index (WBI), with a significant coefficient of determination (R2 = 0.624). Both SNPs
of the 4Cl were occurred in #1292 and the ND-susceptible genotype #507. Additionally,
associations between FRI (R2 = 0.211) and SNPs that alter the amino acid composition of
PIP and ANSb were found. The SNP in ANSb was observed in #619, #157 (ND-tolerant
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Figure 4 Heatmap of exon SNPs frequencies. The columns represent the tea genotypes, and the rows
represent the different genes. Green frames indicate ND-tolerant genotypes, blue frames indicate ND-
susceptible genotypes.

Full-size DOI: 10.7717/peerj.17689/fig-4

Table 3 Significant associations between SNPs and the phenotypes at p value <0.05.

Gene Position N
(REF/ALT)

VI Amino
(REF/ALT)

Property
(REF/ALT)

Test
Statistics

DF Exact
P-value

Adj.
P-value

4CL 2130421 A/T WBI p.Thr16Ser Neutral/Neutral 4.188505 23 0.0003519712 0.03554909
4CL 2132938 A/G WBI p.Ile417Val Hydrophobic/Hydrophobic 4.188505 23 0.0003519712 0.03554909
PIP 220018 A/T FRI p.Val182Glu Hydrophobic/Charged_acidic −7.629861 14 2.366524e−06 0.0002390189
ANSb 805981 A/G FRI p.Phe39Leu Aromatic/Hydrophobic −7.32134 13 5.820357e−06 0.000587856

Notes.
N (REF/ALT), nucleotide change (reference/alternative); VI, vegetation indice; DF, Degrees of Freedom; Adj. P-value, Bonferroni-corrected P-value.

genotypes), #582, #1385 and #536 (ND-susceptible genotypes). The mutation in the PIP
gene was found in #157 (ND-susceptible) and #212 (ND-tolerant) genotypes.

DISCUSSION
This study was aimed to search functional SNPs and efficient vegetation indices in the
collection of tea plant Camellia sinensis (L.) Kuntze. We used the field tea gene bank
of Western Caucasus grown without nitrogen fertilizers. Our earlier study reported the
significant level of genetic diversity in the studied tea collection (Samarina et al., 2022).
Controlled hybridization, γ -irradiation, and clonal selection were used to create this tea
gene bank characterized by number of valuable horticultural traits.

This study was the first to employ portable spectrometry to reveal efficient vegetation
indices (VIs) for phenotyping of ND-tolerant tea plants. A total of 20 of 31 VIs showed
to be efficient for ND-response phenotyping. Also, prediction analysis indicated the
greatest gap for ZMI, RENDI, CNDVI, PRI, GM1, GM2, VREI1 (tolerant genotypes
have higher values) and VREI3, VREI2, Ctr2 (susceptible genotypes have higher values),

Kuzmina et al. (2024), PeerJ, DOI 10.7717/peerj.17689 11/23

https://peerj.com
https://doi.org/10.7717/peerj.17689/fig-4
http://dx.doi.org/10.7717/peerj.17689


suggesting that these are the most reliable VIs for ND-response phenotyping. These VIs are
sensitive to chlorophyll concentration and nitrogen stress (Penuelas, Baret & Filella, 1995;
Lichtenthaler et al., 1996; Haboudane et al., 2004; Jain et al., 2007; Sun et al., 2013; Burns et
al., 2022; Vogelmann, Rock & Moss, 1993). One of the main traits of tea plant adaptability
is the amount of chlorophyll in the leaves, which rises directly with the amount of nitrogen
applied (Qiu et al., 2024). Chlorophyll preservation strategies could be efficient strategy
to developND- tolerant genotypes to. Nitrate levels correspond to VIs that are sensitive
to chlorophyll concentration, such as Ctr2, NDVI, RENDVI, and TCARI (Katsoulas
et al., 2016; Ihuoma & Madramootoo, 2020). PRI, which was higher in ND-tolerant tea
genotypes, describes the intensity of photosynthesis based on the amount of chlorophyll
(Xiao et al., 2018). Additionally, the carotenoid pigment-sensitive indicator PSRI and the
anthocyanin reflectance indices ARI1/ARI2 indicate plant senescence or active growth and
were efficient to select ND-tolerant tea genotypes (Merzlyak et al., 1999; Gitelson, Merzlyak
& Chivkunova, 2001; Foster et al., 2012; Tayade et al., 2022).

This corresponds with the suggestion that genotypes withelevated N content also
characterized byelevated levels of polyphenols, specifically flavonols, which can be
detected using PSRI and ARI1/ARI2. Long-term N fertilization increases carotenoid
concentration in tea leaves, while ND promotes oxidative stress in plants (Chen et al.,
2021b). Furthermore, it was shown that anthocyanins and carotenoids are accumulated
under weak stresses and promote the antioxidant process (Stahl & Sies, 2003; Xiang et al.,
2022). Thus, it can be suggested that oxidative stress-protective mechanisms are triggered
in ND-tolerant tea genotypes (Peñuelas et al., 1994; Badzmierowski, McCall & Evanylo,
2019). Some researchers demonstrated a significant increase in water use efficiency with
increasing leaf N content (Katsoulas et al., 2016). This corresponds with our findings on
correlation of photosynthetic efficiency, biomass, nitrogen and water content related
indices in ND-tolerant genotypes. Thus, these VIs can be used for selection of ND-tolerant
tea genotypes. Other VIs showed no difference between ND-susceptible and ND-tolerant
genotypes.

Association analysis revealed four SNPs causing amino changes in the N-metabolism
related genes. The WBI was associated with two SNPs in 4Cl, encoding 4-coumarate:CoA
ligase and involved in the phenylpropanoid biosynthesis pathway (Li et al., 2022). In
addition, SNP in 4Cl was associated with the antioxidant polyphenol theaflavin. Flavonoids
and polyphenols are known for their role in defense against biotic and abiotic stressors
including water stress. Water stress has been shown to be a cause of phenolic compound
formation, and a decrease in soil water content lowers the phenols content in tea (Cheruiyot
et al., 2007; Hodaei et al., 2018). Consequently, WBI has the potential to be used as an
indirect indicator of phenylpropanoid leaf content. Changes of water and polyphenol
contents in leaves could be better understood by investigating how ND-efficient tea
genotypes react to water stress. In addition, two SNPs change amino acids with similar
properties (Thr to Ser and Ile to Val), which could have a minor impact on the enzyme
structure and functions. SNPs in the ANSb and PIP showed positive association with FRI
(flavonol reflectance index) (Merzlyak et al., 2005). Anthocyanins are phenolic compounds
synthesized and accumulated by anthocyanidin synthase, which is encoded by ANSb
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(Anggraini et al., 2019; Huang et al., 2022). Moreover, the anthocyanin content is affected
by the increased production of ROS by plasma membrane intrinsic proteins (PIPs), which
also participates in N uptake (Li et al., 2017a; Zhang et al., 2020a; Maritim et al., 2021a).
Despite the fact, that FRI showed lowR2, yet the association between SNP and FRI is
evident. In our study, the phenotypic data was available for a portion of the genotypes
only, whereas the SNPs-data was obtained from the two combined studies. This could have
caused some gaps in the data and affected the findings of the association study.

According to the SNPs- analysis, the genes controlling ammonium transport (AMT1.2)
and flavonoid pathways (UFGTa, UFGTb, 4Cl, F3′5′Hb, ANRb-ANR1) showed the highest
SNP frequencies across all genotypes. Other studies reported that, SNPs in 4Cl, F3′5′H,DFR,
LAR, ANS, and ANR in cultivars ‘Shuchazao’ and ‘Yunkang 10’ affected catechin/caffeine
contents (Liu et al., 2019;Zhang et al., 2020b), however we revealed no relationship between
the amount of N and the total catechin content. This is in accordance to the study, which
showed no relationship between the amount of N and the quantity of catechins, synthesized
by ANR and 4Cl in tea leaves (Zhang et al., 2020b). However, a strong positive association
was found between the leaf N-content and flavanols content, specifically theaflavins, and
thearubigins, as well as tannins like gallic acid. In recent study, SNPs related to the synthesis
of phenylpropanoid/flavonoid were found in the ANR1, LAR, F3′5′Hb, 4Cl, UFGTa, and
UFGTb genes across multiple genotypes; however, their relationship with ND was not
studied (Maritim et al., 2021b). Jiang et al. (2020) showed that SNP within the chalcone
synthase (CHS) gene was shown to be functionally associated with catechin content.
Recently we revealed that one SNP in 4Cl was significantly associated with Theaflavin
content (Samarina et al., 2023). Fang et al. (2021) revealed 17 SNPs that were significantly
or extremely significantly associated with specific metabolite levels.

Earlier research has also demonstrated that the accumulation of flavonoids by ND-
tea plants positively correlated with increased expression of F3H, FNS, UFGT, bHLH35,
and bHLH36 (Huang et al., 2018). Additionally, increased expression of dihydroflavonol
4-reductase (DFR), anthocyanidin synthase (ANS), anthocyanidin reductase 1 (ANR1),
and 3′,5′-hydroxylase (F3′5′H ) were revealed under N excess as compared to ND (Dong
et al., 2019). Further research using high-performance liquid chromatography is required
to demonstrate the leaf content of proanthocyanidins and how it relates to N content. A
group of ND-susceptible genotypes and several ND-tolerant genotypes have more SNPs
in NRT2.4, PIP, AlaDC, DFRa, and GS1.2. Nitrogen accumulation and NRT2.4 SNPs were
positively correlated in the study of tea germplasms from Shandong Province (Fan et al.,
2022). The aquaporin gene (PIP) is also responsible for effective N uptake, while Alanine
decarboxylase (AlaDC) is crucial for nitrogen storage participating in theanine synthesis
(Wang et al., 2021b; Xie et al., 2023; Bai et al., 2019; Bai et al., 2021). L-theanine pathway
and ammonium assimilation are facilitated by glutamine synthetase (GS1.2) (Zhang
et al., 2023). For instance, SNPs connected to theanine biosynthesis were discovered
in GS1.2 in the Indian tea collection (Maritim et al., 2021b). Recently, the preliminary
association analysis showed that two SNPs (CsSNP07 and CsSNP11) within CsNRT2.4
were significantly associated with nitrogen accumulation (Fan et al., 2022). In their study,
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35 tea genotypes were analyzed and 46 SNPs were revealed within genes involved in
nitrogen uptake, assimilation, and allocation.

Recently, Guo et al. (2023) revealed two alleles of CsGS (CsGS-L and CsGS-H) which
overexpression enhanced the contents of glutamate and arginine in transgenic plants.
They found SNP1054 which is important for CsGS catalyzing glutamate into glutamine.
Furthermore, CsGS-L and CsGS-H differentially regulated the accumulation of glutamine.
In our study, SNPs in the abovementioned genes probably involved in significant variations
in the chemical contents in leaves; #316 showed the highest theanine and nitrogen content,
whereas #1467, #1877, #527, #536, and #507 showed the lowest. SNPs that change amino
acids in the AlaAT1 and MYB4 were specific to ND-susceptible tea genotypes and those
characterized by the low leaf N-content. Alanine aminotransferase AlaAT plays a role in the
biosynthesis and accumulation of L-theanine as well as the efficiency of nitrogen use (Wang
et al., 2021a; Zhang et al., 2022). Thus, we suggest that this alteration in the structure of the
enzyme result in L-theanine decrease in #3986 and #1467. The low leaf N-content, were
positively correlated with flavan-3-ols and other phenolic compounds whose accumulation
is inhibited by MYB4 (Li et al., 2017b; Ye et al., 2021). Finally, a single SNP in WRKY57
was identified in ND-susceptible genotypes. This transcription factor participates in
ABA-mediated stress responses, (Jiang et al., 2014; Chen et al., 2019; Chen et al., 2021c).
However, the role of WRKY57 in nitrogen stress has yet to be investigated. Combining
datasets under different experimental settings presents data integration challenges that
could impair accuracy and result in missing values in SNPs positions (Dergilev et al., 2021;
Chao et al., 2023). Further phenotype studies and Sanger sequencing has to be applied
to validate the results. Another limitation of this study is the small sample size, which
does not allow to calculate linkage disequilibrium (LD). Further characterization of tea
varieties cultivated under ND-conditions, as well as the validation using sequencing and
metabolic techniques, could improve the accuracy of detecting genotypes that are tolerant
or susceptible to ND.

CONCLUSIONS
We identified efficient vegetation indices to distinguishND-tolerant andND-susceptible tea
genotypes: ZMI, RENDI, CNDVI, PRI, GM1, GM2, VRI1, VRE3, VRE2, Ctr2. Numerous
SNPs that could be exploited for genotyping were discovered. Among them, mutations
in NRT2.4, PIP, AlaDC, DFRa, GS1.2, AlaAT1, MYB4, and WRKY57 were specific for
ND-susceptible tea genotypes. Four associations between the SNPs and vegetation indices
were identified. Particularly, water band index (WBI) and flavonol reflectance index (FRI)
were associated with SNPs in the flavonoid regulators 4Cl, ANSb, and PIP. The phenotypic
and genetic data obtained in this study could be used in breeding programs aimed at
developing nitrogen-efficient tea cultivars.
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