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ABSTRACT
Background. Machine learning classifiers are increasingly used to create predictive
models for pathological complete response (pCR) in breast cancer after neoadjuvant
therapy (NAT). Few studies have compared the effectiveness of different ML classifiers.
This study evaluated radiomics models based on pre- and post-contrast first-phase T1
weighted images (T1WI) in predicting breast cancer pCR after NAT and compared the
performance of ML classifiers.
Methods. This retrospective study enrolled 281 patients undergoing NAT from
the Duke-Breast-Cancer-MRI dataset. Radiomic features were extracted from pre-
and post-contrast first-phase T1WI images. The Synthetic Minority Oversampling
Technique (SMOTE) was applied, then the dataset was randomly divided into training
and validation groups (7:3). The radiomics model was built using selected optimal
features. Support vector machine (SVM), random forest (RF), decision tree (DT), k-
nearest neighbor (KNN), extreme gradient boosting (XGBoost), and light gradient
boostingmachine (LightGBM) were classifiers. Receiver operating characteristic curves
were used to assess predictive performance.
Results. LightGBM performed best in predicting pCR [area under the curve (AUC):
0.823, 95% confidence interval (CI) [0.743–0.902], accuracy 74.0%, sensitivity 85.0%,
specificity 67.2%]. During subgroup analysis, RF was most effective in pCR prediction
in luminal breast cancers (AUC: 0.914, 95% CI [0.847–0.981], accuracy 87.0%,
sensitivity 85.2%, specificity 88.1%). In triple-negative breast cancers, LightGBM
performed best (AUC: 0.836, 95% CI [0.708–0.965], accuracy 78.6%, sensitivity 68.2%,
specificity 90.0%).
Conclusion. The LightGBM-based radiomics model performed best in predicting pCR
in patients with breast cancer. RF and LightGBM showed promising results for luminal
and triple-negative breast cancers, respectively.
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BACKGROUND
As breast cancer treatment evolves, neoadjuvant therapy (NAT) has become the standard
of care for patients with large tumors, certain molecular subtypes, and locally advanced
tumors (Heil et al., 2020; Huang et al., 2020; Bitencourt et al., 2020). NAT is effective in
reducing tumor size and thus increasing the rate of breast-conserving surgery (Spring,
Bar & Isakoff, 2022). Additionally, it can decrease axillary lymph node burden, potentially
allowing for sentinel lymph node biopsy in place of axillary dissection (Spring, Bar &
Isakoff, 2022). Pathologic complete response (pCR) is a surrogate endpoint for assessing
the efficacy of NAT and is associated with improved clinical outcomes, such as prolonged
overall survival (OS) and disease-free survival (DFS) (Cho et al., 2014). In contrast, patients
who do not achieve pCR generally have a higher risk of relapse (Waks & Winer, 2019). In
clinical practice, pCR only occurs in a minority of patients, and pCR rates vary according
to molecular subtypes; 50–60% of patients achieve pCR in HER2-positive breast cancer
(Gianni et al., 2012), while only 5–20% achieve pCR in high-grade luminal cancer (Cortazar
et al., 2014; Sikov et al., 2015). Evaluation of pCR mainly relies on the histopathology of
postoperative specimens. Thus, the noninvasive and early prediction of pCR, especially
before NAT, can help clinicians optimize treatment strategies and avoid unnecessary drug
toxicity or disease progression.

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is the optimal
imaging modality for evaluating the efficacy of NAT and has the highest sensitivity
compared with mammography and ultrasound (US) (Mann et al., 2008; Fowler, Mankoff
& Joe, 2017). However, a major disadvantage of DCE-MRI in predicting pCR is the low
positive predictive value (PPV) (Kim et al., 2022). The commonly used DCE-MRI metrics
are qualitative morphology-based indicators, which show late-stage changes in tumor
microstructure. Quantitative assessment modalities could help improve the diagnostic
performance of DCE-MRI in identifying pCR status. Radiomic analysis is an emerging
method that has become increasingly popular for predicting pCR to NAT in breast cancer
(Bitencourt et al., 2020; Liu et al., 2019). By evaluating the gray level position and intensity of
pixels onmedical images and converting them into high-dimensional feature data, radiomic
analysis can quantitatively reflect the spatial heterogeneity and microenvironment of
tissues. This generates image-driven biomarkers. Radiomics models based on pretreatment
DCE-MRI have been shown to be accurate in predicting breast cancer pCR [area under the
curve (AUC) 0.707–0.858] (Yoshida et al., 2022; Caballo et al., 2023; Cain et al., 2019; Peng
et al., 2021). Cain et al. (2019) analyzed pre-NAT breast DCE-MRI images in 288 patients
with breast cancer, extracted 529 radiomics-based features per patient, and constructed
relevant models. The researchers then trained and validated the models using two machine
learning (ML) algorithms (logistic regression and support vector machine). Their findings
suggested that radiomics models based on pretreatment DCE-MRI can potentially predict
pCR in patients with triple-negative or HER2-positive breast cancer.

In recent years, the investigation of ML classifiers to determine the most effective
treatment strategies in oncology has gained significant momentum. This study aimed
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Figure 1 Workflow for the inclusion and exclusion of patients.
Full-size DOI: 10.7717/peerj.17683/fig-1

to build upon prior research that highlighted the predictive potential of pre-NAT DCE-
MRI-based radiomic signatures for pCR in breast cancer by evaluating six different ML
classifiers.

METHODS
Study population and data collection
We collected data for 1,150 consecutive patients with biopsy-proven invasive breast cancer
between 01 January 2000 and 23 March 2014, all with pre-treatment MRI data available,
from a publicly available dataset (Duke-Breast-Cancer-MRI) released in 2022 (Saha et al.,
2018) from The Cancer Imaging Archive (TCIA, https://www.cancerimagingarchive.net/).
Patients with a previous history of breast cancer or who had undergone surgery or NAT
before MRI acquisition were excluded, resulting in a study population of 922 patients.

Clinical features (e.g., patient age, menstrual status), MRI scanning parameters, tumor
characteristics, response to NAT, and imaging characteristics (529 radiomic features
extracted by in-house computer software from each of the 922 patients) were obtained
for the 922 patients. Data obtained from TCIA did not require ethical approval and
informed consent was waived since the TCIA dataset is comprised of de-identified patient
information.

After excluding patients who did not receive NAT or without sufficient information to
assess neoadjuvant efficacy (n= 629) and patients without available treatment response
data (n= 12), 281 patients were finally included in this study. Detailed inclusion and
exclusion procedures are shown in Fig. 1.

In this study, pCR was defined as the absence of residual invasive carcinoma (residual
ductal carcinoma in situ is acceptable; ypT0/isN0), in the complete excision of breast
specimen and ipsilateral sentinel lymph node or axillary lymph node dissection, after
completion of NAT. The patients were categorized into two groups: those who achieved
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(pCR) and those who did not (non-pCR). Subgroup analysis was mainly performed
for the luminal and triple-negative (TN) subtypes of breast cancer. The luminal
group includes luminal A (ER/PR positive, HER2 negative, and Ki-67 <14%) and
luminal B (ER/PR positive, HER2 negative, and Ki-67 ≥ 14%; ER/PR positive, HER2
overexpression/amplification, regardless of Ki-67 expression) breast cancers, whereas TN
breast cancer is defined as having a negative status for ER, PR, and HER2.

MRI acquisition information
Breast MRI images were acquired using a 1.5T or 3.0T scanner in prone positions and
consisted of a non-fat saturated T1-weighted sequence, a fat-saturated gradient-echo
T1-weighted precontrast, and 3–4 postcontrast series in the axial plane. Pre-treatment
DCE-MRI sequences were used for image analysis.

Image postprocessing
Image annotation, segmentation, and feature extraction were completed as detailed in a
previously published article (Saha et al., 2018).

Image annotation and segmentation
Images were annotated using a three-dimensional (3D) box by one of eight fellowship-
trained breast radiologists. One radiologist analyzed each case according to the pre-contrast,
first post-contrast images, and subtraction images of both. Subsequently, four masks of the
tumor, breast, and fibroglandular tissue (FGT) from pre-contrast and first post-contrast
T1 weighted image (T1WI) sequences were extracted for each patient. Tumor masks were
obtained from fuzzy C-means automated segmentation based on 3D annotations. Breast
and FGT masks were automatically extracted from N4-corrected pre-contrast and first
post-contrast T1WI sequences.

Radiomic feature extraction
For each patient, a total of 529 radiomic features were extracted. These features were
obtained from the literature and developed by the Duke-Breast-Cancer-MRI laboratory, all
of which have been shown to have effective predictive power. These features were divided
into 10 groups that covered various aspects of quantitative imaging, such as breast, tumor
(including size, shape, texture, and enhancement), and FGT. Further details are provided
in Fig. S1.

Feature selection and model building
The Synthetic Minority Oversampling Technique (SMOTE) was used to oversample the
minority data in the dataset of our study to eliminate the class imbalance of the original
dataset and ensure model stability. A stratified random sampling method was then used to
randomly assign the resulting dataset to training and validation groups at a ratio of 7:3. The
SMOTEand stratified randomsamplingmethodswere also applied in the subgroup analyses
of luminal breast cancer and TN breast cancer, respectively. All extracted radiomic features
were normalized using Z -scores and converted to new scores [mean 0, standard deviation
(SD) 1]. To eliminate redundant features and reduce overfitting or bias, it is necessary to
select the optimal predictive features and improve the accuracy of the established model.
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Figure 2 Flowchart of the model construction.
Full-size DOI: 10.7717/peerj.17683/fig-2

After normalization, Spearman correlation analysis was used to reduce dimensionality and
select features, and features with coefficients greater than 0.8 or p-values less than 0.05 in
the training group were removed. The minimal-redundancy-maximal-relevance (mRMR)
algorithm was then used to select the most relevant features for pCR prediction and to
reduce redundancy between these features. As a result, the 10 most relevant and least
redundant features were selected. The L1 regularization–based Least Absolute Shrinkage
and the Selection Operator (LASSO) algorithm was used to select optimal predictive
features and radiomic features with non-zero coefficients were selected for subsequent
analysis of ML classification.

Machine learning classifiers
We used six ML classifiers to establish radiomic models in the training group, which were
then confirmed in the validation group. These six classifiers were as follows: support vector
machine (SVM), random forest (RF), decision tree (DT), k-nearest neighbor (KNN),
extreme gradient boosting (XGBoost), and light gradient boosting machine (LightGBM).

All feature classifier algorithms were implemented using the ML Python package (i.e.,
Scikit-learn). The six classifiers were trained by grid search using ten-fold cross-validation
in the training group to optimize the hyperparameters, and their performance was then
tested in the validation group. The model-building process is presented in Fig. 2.

Statistical analysis
All statistical analyses were completed using SPSS (version. 23.0) and Python (version.
2.7.1) software. A p-value less than 0.05 was considered statistically significant.

The area under the receiver operating characteristic (ROC) curve (AUC) was used
to evaluate the performance of each classifier. The accuracy, sensitivity, and specificity
of the optimal cutoff value were also reported. In addition, 95% confidence intervals
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Table 1 Patient information.

Characteristics Total
patients
(n= 281)

Non-pCR
group
(n= 217)

pCR
group
(n= 64)

p-
value

Age 48.842± 10.880 49.395± 10.733 46.968± 11.250 0.117
Menopause (at diagnosis) 0.345
Premenopausal 161 (57.30%) 119 (54.84%) 42 (65.62%)
Postmenopausal 119 (42.35%) 97 (44.70%) 22 (34.38%)
NA 1 (0.36%) 1 (0.46%) 0 (0.00%)
ER 0.002
positive 164 (58.36%) 145 (60.42%) 38 (59.38%)
negative 117 (41.64%) 95 (39.58%) 26 (40.62%)
PR <0.001
positive 130 (46.26%) 116 (48.33%) 50 (78.12%)
negative 151 (53.74%) 124 (51.67%) 14 (21.88%)
HER2 0.009
positive 80 (28.47%) 64 (26.67%) 37 (57.81%)
negative 201 (71.53%) 176 (73.33%) 27 (42.19%)
Molecular subtype 0.004
Luminal 171 (60.85%) 152 (63.33%) 29 (45.31%)
HER2-positive 28 (9.96%) 23 (9.58%) 12 (18.75%)
Triple-negative 82 (29.18%) 65 (27.09%) 23 (35.94%)

Notes.
Data are represented as mean± standard deviation (SD) or number of patients, with percentages in parentheses. Bold p values
indicate statistical significance (p< 0.05).
ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; NA, not available.

(CI) were estimated using bootstrapping with 1,000 samples. Differences between groups
for continuous variables were assessed using the Mann–Whitney U test or Student’s
t -test. Differences between groups were assessed using the Chi-square test for categorical
variables.

RESULTS
Patient information and pathological features
A total of 281 patients with a mean age of 48.842 ± 10.880 years (range 24–77 years) were
analyzed and classified into pCR (n= 64) and non-pCR (n= 217) groups. The prevalence
of molecular subtypes (ER, PR, and HER2 status) was significantly different between the
pCR and non-pCR groups (all p < 0.009). Age (p = 0.117) and menstrual status (p =
0.345) were not significantly different between the pCR and non-PCR groups. Patient
characteristics are presented in Table 1.

Performance of the radiomic models with machine learning classifiers
Nine radiomic features [F1_DT_T1NFS (T11= 0.2,T12= 0.8), Grouping_based_variance
_of_washin_slope_3D_tissue_T1_Group_1, Enhancement Cluster Neighborhood
Similarity_Tumor, BEDR2_Tumor, SER_map_Autocorrelation_tissue_T1, Ratio_Tissue_
vol_enhancing_more_than_20percent_from_PostCon_to_Breast_Vol, Grouping_based_
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proportion_of_tumor_voxels_2D_tumorSlice_Group_1, Sum_variance__tissue_PostCon,
WashinRate_map_kurtosis_tumor] were used to construct the pCR predictionmodels. The
models were constructed with 6 ML classifiers after mRMR and L1 regularization–based
LASSO selection (Fig. 3A).
Table 2 summarizes the diagnostic performance of the radiomics models for predicting

pCR after NAT in the training and validation groups.
In the training group, the AUCs of SVM, RF, DT, KNN, XGBoost, and LightGBM were

0.778, 1, 0.867, 1, 0.964, and 0.773, respectively. In the validation group, AUC values ranged
from 0.767 to 0.823. The best performance was obtained using LightGBM (AUC 0.823,
95% CI [0.743–0.902], accuracy 74.0%, sensitivity 85.0%, specificity 67.2%), followed
by RF (AUC 0.816, 95% CI [0.731–0.902], accuracy 75.0%, sensitivity 65.0%, specificity
81.3%).

The ROC curves and variable importance of the LightGBM model are displayed in
Fig. 4A.

Subgroup analysis of radiomics model performance for predicting
pCR in TN and luminal breast cancer
Table 3 presents the diagnostic performance of the radiomics models in predicting pCR
after NAT in two subgroups.

Out of 171 cases of luminal breast cancer, 29 patients achieved pCR while 142 did not.
Analysis in the validation group revealed that the RF algorithm had the best performance in
predicting pCR after NAT with an AUC of 0.914 (95% CI [0.847–0.981]) (accuracy 87.0%,
sensitivity 85.2%, and specificity 88.1%; Fig. 4B). The final selected radiomic features for
luminal breast cancers are shown in Fig. 3B.

Among the 82 patients with TN breast cancer, 23 patients achieved pCR and 59 did not.
In the validation group, the LightGBM algorithm performed best in predicting pCR after
NAT with an AUC of 0.836 (95% CI [0.708–0.965]) (accuracy 78.6%, sensitivity 68.2%,
and specificity 90.0%; Fig. 4C). The final selected radiomic features for TN breast cancers
are shown in Fig. 3C.

DISCUSSION
In this study, we investigated the efficacy of noninvasive radiomics models that utilize the
N4-corrected pre-contrast and first post-contrast T1WI images taken before treatment
for predicting pCR in breast cancer. Our analysis demonstrates that prediction models
developed using LightGBM and RF algorithms yield excellent predictive performance, with
AUCs of 0.823 and 0.816 in the validation group, respectively. During subgroup analysis,
RF had higher AUC and accuracy than the other five classifiers in predicting pCR for
luminal breast cancer, while LightGBM yielded higher AUC and accuracy than the other
five classifiers in predicting pCR for TN breast cancer.

Recent studies have investigated the value of DCE-based radiomics models in predicting
pCR in patients before, during, and after NAT (Liu et al., 2019; O’Donnell et al., 2022).
NAT can improve breast-conservation rate, and meanwhile, patients who achieve pCR
have higher OS and DFS than those without (Cho et al., 2014). While NAT effectiveness can
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Figure 3 The final selected radiomic features for (A) all breast cancers, (B) luminal, and (C) triple-
negative breast cancers.

Full-size DOI: 10.7717/peerj.17683/fig-3
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Table 2 Diagnostic performance of radiomics models for six classifiers in training and test groups.

Models Training group Test group

AUC Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity

SVM 0.778 0.290 0.102 0.399 0.787 0.317 0.175 0.406
KNN 1 1 1 1 0.782 0.673 0.625 0.703
DT 0.867 0.809 0.728 0.859 0.767 0.730 0.630 0.810
RF 1 1 1 1 0.816 0.750 0.650 0.813
XGBoost 0.964 0.900 0.886 0.909 0.785 0.712 0.575 0.797
LightGBM 0.773 0.701 0.852 0.614 0.823 0.740 0.850 0.672

Notes.
AUC, the area under the receiver operating characteristic curve; SVM, support vector machine; RF, random forest; DT, decision tree; KNN, k-nearest neighbor.

be evaluated before surgery using RECIST version 1.1, confirmation of efficacy can only be
done postoperatively using the Miller-Payne grading system. Additionally, patients with
poor response to NAT are at risk of severe drug toxicity and delayed surgical treatment.
As such, the application of radiomics is crucial for accurate non-invasive prediction of the
response to NAT before therapy selection.

Several studies have employed ML classifiers to build radiomics models for predicting
pCR based on pre-treatment MRI (Liu et al., 2019; Li et al., 2021; Vicent et al., 2022; Chen
et al., 2020). However, findings are contradictory due to the use of different radiomic
features, ML classifiers, and prediction models. Li et al. (2021) used 23 ML classifiers to
construct radiomics models based on multi-phase DCE-MRI images for early prediction
of pCR after NAT in HER2-positive breast cancer patients and compared the performance
of the classifiers. They found that linear SVM based on multi-phase DCE (AUC = 0.84)
was superior to logistic regression models using first post-contrast T1WI images (AUC
= 0.69) (Li et al., 2021). However, the study lacked an independent validation group.
Vicent et al. (2022) used 10 ML classifiers to construct pCR prediction models for NAT
based on perfusion/diffusion imaging biomarkers and radiomic features extracted from
pre-treatment multiparametric MRI. In contrast, they found that quadratic discriminant
analysis (QDA) based on imaging features yielded the highest accuracy (87.5%) (Vicent et
al., 2022). Previous studies on radiomics for predicting pCR in breast cancer had smaller
sample sizes ranging from 58 to 158 patients (Vicent et al., 2022; Chen et al., 2020). Our
present study enrolled 281 patients, providing a larger sample size. This study aimed to
evaluate the performance of radiomics models based on pre-contrast and first post-contrast
T1WI images in predicting pCR before NAT. We compared the prediction performance
of six ML classifiers for pCR and selected the optimal classifier. In addition, the MRI
parameters used varied between publicly available datasets, so we used only one dataset. A
future prospective multicenter study with a larger sample should be considered.

This study extracted 529 radiomic features, which allowed for a comprehensive
quantification of breast, FGT, and tumor characteristics. The predictive performance
of these features was shown to be good (Cain et al., 2019; Saha et al., 2018). We included
nine radiomic features to build the model to predict pCR after NAT in breast cancer.
The nine features belong to the feature groups of tumor size and morphology, tumor
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Figure 4 ROC curves of six classifiers in the radiomics model for predicting pCR (A), including (B) lu-
minal, and (C) triple-negative breast cancer in the validation group.

Full-size DOI: 10.7717/peerj.17683/fig-4

enhancement variation, combining tumor and FGT enhancement, tumor enhancement
spatial heterogeneity, FGT enhancement texture, and variation. In building the model this
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Table 3 Diagnostic performance of radiomics models for luminal and triple-negative breast cancers.

Models Training group Test group

AUC Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity

Luminal type breast cancer
SVM 0.897 0.838 0.950 0.770 0.743 0.681 0.778 0.619
KNN 1 1 1 1 0.843 0.754 0.889 0.667
DT 0.919 0.888 0.850 0.910 0.626 0.594 0.484 0.684
RF 1 1 1 1 0.914 0.870 0.852 0.881
XGBoost 0.998 0.988 0.967 1 0.828 0.797 0.741 0.833
LightGBM 0.899 0.869 0.883 0.860 0.721 0.623 0.556 0.667

Triple negative breast cancer
SVM 0.917 0.079 0.125 0.051 0.756 0.381 0.546 0.200
KNN 1 1 1 1 0.759 0.738 0.773 0.700
DT 0.932 0.889 0.815 0.914 0.800 0.714 0.813 0.654
RF 1 1 1 1 0.794 0.738 0.682 0.800
XGBoost 0.989 0.968 0.958 0.974 0.755 0.691 0.636 0.750
LightGBM 0.910 0.825 0.875 0.795 0.836 0.786 0.682 0.900

Notes.
AUC, the area under the receiver operating characteristic curve; SVM, support vector machine; RF, random forest; DT, decision tree; KNN, k-nearest neighbor.

way, we confirmed the significance of pre-NAT tumor and FGT MRI features to assess
pCR.

LightGBM yielded the highest performance (AUC= 0.823) in predicting pCR after NAT
in breast cancer compared to the other five classifiers (AUC = 0.767–0.816). LightGBM is
a gradient-boosting algorithm developed to address the drawbacks of traditional gradient-
boosting methods, such as low efficiency and poor scalability (Ke et al., 2017). It is known
to have high accuracy, fast training, and good model stability, making it suitable for
processing large-scale data. It is considered an improved gradient-boosting algorithm
and has demonstrated excellent performance in various applications. A previous study
investigated the predictive efficacy of radiomics based on pre- and post-contrast T1WI for
pCR (Cain et al., 2019). However, only two ML algorithms (logistic regression and support
vector machine) were used, yielding AUCs of 0.658 and 0.593, respectively. This suggests
that LightGBM exhibits superior predictive ability and should be used in constructing
effective radiomics prediction models.

Subgroup analysis of luminal breast cancer showed that RF had the highest predictive
performance and accuracy, indicating its usefulness in predicting pCR for this type of cancer.
RF is a DT-based ensemble learning method capable of processing high-dimensional data
with higher accuracy than a single classifier and has proven valuable in predicting breast
cancer prognostic biomarkers and molecular subtypes. LightGBM had better predictive
ability and accuracy in the TN breast cancer subgroup analysis compared to the other
five classifiers. To our knowledge, few studies have compared the value of different ML
classifiers in predicting pCR in breast cancer, or in various subtypes of breast cancer.
Our results indicated that the choice of ML classifiers is essential for constructing pCR
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prediction models and that radiomics models based on pre- and post-contrast T1WI
images before treatment have potential value in predicting pCR in breast cancer treatment.

The pCR rate observed in this study was 22.8% (64/281), which is consistent with
previous literature (Precht et al., 2010; Sachelarie et al., 2006). The definition of pCR can
influence its reported rate, and the inclusion or exclusion of residual DCIS remains a topic
of debate. Osdoit et al. (2022) demonstrated no significant differences in 3-year event-free
survival, distant recurrence-free survival, or locoregional recurrence between pCR patients
with residual DCIS and those without. This study defined pCR as the absence of invasive
carcinoma following NAT, regardless of DCIS presence. This definition aligns with that
used in most studies (Spring, Bar & Isakoff, 2022).

Limitations
This is a retrospective study conducted at a single center, which may have introduced
selection bias and limited the generalizability of the results to other populations or settings.
Future studies usingmulti-center data and external validation sets are needed to validate the
generalization capabilities of the model. Further, only pre- and post-contrast T1-weighted
images were used. Due to the small number of HER2-positive breast cancers, only TN
and luminal breast cancers were included in the subgroup analysis. Additionally, the MR
images of 281 patients with breast cancer came from different MR scanners with distinct
imaging parameters. Finally, our study included different NAT treatment regimens,
including neoadjuvant chemotherapy, endocrine and anti-HER2/neu antibody therapy,
and subgroup analysis based on treatment regimens was not performed.

CONCLUSION
Our study indicates that the LightGBM model along with pre- and post-contrast T1WI
radiomic features can aid in predicting pCR after NAT for breast cancer and may have
clinical applications. RF and LightGBM are recommended for predicting pCR in luminal
and TNbreast cancers, respectively. Further studies are warranted to increase the robustness
of our findings.
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