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ABSTRACT
Common hippopotamuses (hippos) are among the largest extant land mammals.
They thus offer potential further insight into how giant body size on land influences
locomotor patterns and abilities. Furthermore, as they have semi-aquatic habits and
unusual morphology, they prompt important questions about how locomotion
evolved in Hippopotamidae. However, basic information about how hippos move is
limited and sometimes contradictory. We aimed to test if hippos trot at all speeds and
if they ever use an aerial (suspended) phase, and to quantify how their locomotor
patterns (footfalls and stride parameters) change with approximate speed. We
surveyed videos available online and collected new video data from two zoo hippos in
order to calculate the data needed to achieve our aims; gathering a sample of 169
strides from 32 hippos. No hippos studied used other than trotting (or near-trotting)
footfall patterns, but at the fastest relative speeds hippos used brief aerial phases,
apparently a new discovery. Hippos exhibit relatively greater athletic capacity than
elephants in several ways, but perhaps not greater than rhinoceroses. Our data help
form a baseline for assessing if other hippos use normal locomotion; relevant to
clinical veterinary assessments of lameness; and for reconstructing the evolutionary
biomechanics of hippo lineages.
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INTRODUCTION
Common hippopotamus (Hippopotamus amphibius Linnaeus 1758) are the fifth heaviest
extant land mammals (vs. three species of elephants, and white rhinoceros) albeit close in
size to black rhinoceros (references); at ~1,500 kg adult body mass (Owen-Smith, 1988;
Silva & Downing, 1995), with the largest recorded individuals surpassing 3,800 kg (cited in
Garland, 1983). At such large sizes, they offer important comparative information on how
body size influences locomotor abilities on land. In general, mammals >100 kg are able to
move more slowly than medium-sized mammals, and at extreme sizes >1,000 kg, maximal
speed and even gait capacities decrease (Garland, 1983; Dick & Clemente, 2017;
Hutchinson, 2021). For example, elephants are well known to not move faster than about
7 ms−1 (25 kph), retaining a lateral sequence symmetrical footfall pattern (i.e., foot contact
sequence: left hind, left fore, right hind, right fore;Muybridge, 1887; Slijper, 1946; Cartmill,
Lemelin & Schmitt, 2002; Struble & Gibb, 2022) never with an aerial (suspended) phase
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(e.g., Gambaryan, 1974; Hutchinson et al., 2003, 2006). The largest extant rhinoceroses
might not move much faster than elephants, although reliable data are very scarce for
them–yet they can use an asymmetrical transverse galloping gait with an aerial phase
(Slijper, 1946; Dagg, 1973; Gambaryan, 1974; Hildebrand, 1977; Alexander & Pond, 1992;
Paul & Christiansen, 2000). Giraffes, which are substantially smaller (<1,300 kg), use a
lateral sequence walk and rotary gallop; not trotting (e.g., Hildebrand, 1965, 1980, Dagg,
1973, 1979; Gambaryan, 1974; Hildebrand, 1977; Basu, Wilson & Hutchinson, 2019;
Basu et al., 2019).

Similarly, there are few empirical data for terrestrial locomotion in the Common
hippopotamus or their relatives the pygmy hippopotamus (Choeropsis liberiensis or
Hexaprotodon liberiensis). Maximal speeds have not been reliably measured but have been
claimed (without empirical documentation) at up to ~8 ms−1 (~30 kph; Dagg, 1973;
Bakker, 1975; Garland, 1983; Kingdon, 1989; Nowak, 1999). Hildebrand (1989) provided
some footfall pattern data for the pygmy hippopotamus, indicating a lateral sequence walk,
but noted that Common hippopotamus (onwards here, simply “hippos”) will use a walking
trot (Hildebrand, 1962, 1965, 1967, 1976) and running trot (Hildebrand, 1980, 1989);
meaning a symmetrical gait with diagonally synchronised limbs. Dagg (1973; also Howell,
1944) gave a basic classification of gaits in hippos, listing them as using a typical (lateral
sequence) walk, but no indication of a ‘running walk’, and also as using a trot; but no
galloping gait (stating they “cannot hoist themselves into the air”). They commented that
prior studies such as Slijper (1946) classified a faster hippo gait as an ‘amble’ (lateral
sequence), but that this term was too “ambiguous”, implying it did not apply well to
hippos. Dagg (1979) followed up with analysis of video data for 29 strides of a hippo that
“did not use lateral supporting legs at all”, concluding that the wide body and relatively
short legs (e.g., Bakker, 1975) prevent balance on two ipsilateral legs (presumably due to
excessive rolling momentum). Other studies of slower walking locomotion in hippos have
observed lateral sequence footfall patterns (Niemitz, 2001; also see Coughlin & Fish, 2009),
albeit sometimes closer to diagonal sequence (e.g., Catavitello, Ivanenko & Lacquaniti,
2018). Usherwood & Self Davies (2017) obtained data for hippos using slow trotting,
suggesting that this pattern minimises mechanical and perhaps metabolic energy usage
(also see Smith & Usherwood, 2020). In contrast, Coughlin & Fish (2009) showed that
hippos can use asymmetrical “punting” locomotion underwater (also see Niemitz, 2001;
Bennett, Morse & Falkingham, 2014; Mazza, 2014; Van der Geer, Anastasakis & Lyras,
2015; contra Dagg, 1973). While hippos spend much time in the water or resting (~50%),
their locomotion on land must remain important because they still spend around
one-third of their time doing so, particularly at night (e.g., Owen-Smith, 1988; Timbuka,
2012; Mekonen & Hailemariam, 2016; Fernandez, Ramirez & Hawkes, 2020).

It has become at least tacitly accepted that hippos do not use gaits on land that are more
extreme than somewhat fast symmetrical trotting (i.e., no asymmetrical cantering or
galloping), but it is unclear if hippos use aerial (suspended) phases at any speeds or gaits
(e.g., Christiansen & Paul, 2001; Thomson, 2019;Hutchinson, 2021). Furthermore, even the
basic walking patterns of hippos are almost uncharacterised; do they only use slower lateral
sequence walking and then switch to faster trotting footfall patterns? Here, to address these
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uncertainties and to further understanding of hippo locomotion, we use video analysis to
quantify their footfall patterns and stride kinematics on land.

MATERIALS AND METHODS
We compiled basic kinematic data from videos of locomoting hippos from two sources:
first, from an internet search (not exhaustive, but particularly searching for faster
running-type behaviours), and second, from firsthand data collection. Each video was split
into one or more “trials”, with a trial defined as a cyclic sequence of one or more strides
from the same individual. The first source of data is listed in the Supplemental
Information. Empirical data for the second source were obtained at Flamingo Land Resort
(Kirby Misperton, North Yorkshire, UK), as follows. We had access to two adult hippos: a
19 year old male (hip height ~1.3 m) and 23 year old female (hip height ~1.2 m). Body
masses were not known for any subjects. At Flamingo Land Resort, a GoPro Hero 3+ (San
Mateo, CA, USA) camera was set on a tripod and positioned along the fence of the hippos’
yard. This placement ensured the hippos would walk roughly parallel to the camera’s field
of view. The camera was switched on (recording at 30 Hz, 1,920 × 1,080 pixel resolution)
and left running for when the hippos came out of the water and walked across the yard to
their stable. They were also encouraged to move freely in front of the camera by placing
food outside. A total of 16 h of footage across 2 days was recorded in this manner. It was
difficult to encourage the hippos to move, because it was not desirable to cause the hippos
any stress or use unethical stimuli to cause them to run. Thus we captured only the walking
data that they were willing to provide. Ethics approval was given by the Clinical Research
Ethical Review Board at the Royal Veterinary College; approval number CR2022-003-2.

GoPro light videos then were uploaded onto a laptop into GoPro Studio software
(GoPro, San Mateo, CA, USA), where “fisheye” effects were removed, and the videos were
converted to AVI format. All videos were inspected and trials which included obvious
non-steady locomotion such as acceleration, deceleration, turning, or slow grazing were
discarded. Each video was analysed frame by frame in VirtualDub software (https://
virtualdub.sourceforge.net/) and the times at which each foot hit and left the ground (as
long as feet approximately were visible) were estimated. “Foot-on” was defined as the
frame that the limb ceased travelling forward; “foot-off” was defined as the frame that the
limb began travelling forwards/upwards; see Fig. 1. These definitions helped to reduce
errors caused by blurriness, rough terrain, obscured feet, or feet brushing the ground.
Footfall patterns and other basic stride kinematics were determined from these timing
data, as follows.

We followed the standard approach of defining each limb’s phase as the fraction of a
stride relative to the left hind foot contact (=0.0). Biknevicius & Reilly (2006) suggested that
trotting can have (left fore and right hind) limb phases of between ~0.44 and 0.56 (0.50 ±
0.0625), encompassing potential variation; we initially employ that definition here (and
right fore phases should be ~0.94–1.0). Their set of footfall definitions encompasses eight
primary footfall patterns (trot, pace, lateral sequence and diagonal sequence; and two
couplet varieties each for the latter two; following the work of Hildebrand and others as per
the Introduction). However, they concluded that narrowing this definition to four
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(omitting couplets) primary patterns is more pragmatic. That re-definition would allow
phase variation to fall within ±0.125 of a stride, so we consider this issue in assessing how
our limb phase results compare with definitions of primary patterns. We also quantified
duty factor (DF = ground contact time; i.e., stance phase duration divided by stride
duration) and stride frequency (SF = 1/stride duration). Here we loosely term gaits with
DF ≥ 0.5 as walking and DF < 0.5 as running. As none of our videos had reliable scale
objects for calibrating distances, we could not calculate velocity-related parameters
including stride lengths. This was because distances were unknown in the internet videos,
and we were unable to place a scale object in the hippo enclosure during our filming.
However, it provided the advantage that we could obtain more trials because we did not
have to rely on strides and trials that were parallel to the camera’s field of view and in the
same plane as a scale object.

Our internet search for videos initially yielded 25 videos containing 34 trials used here.
Usherwood & Self Davies (2017) obtained kinematic data from five videos (one no longer
available; all obtained via www.youtube.com) for hippos. Similarly, Lees et al. (2016)

Figure 1 Footfall patterns and foot-on/foot-off definition examples for hippo locomotion data
analysis. Sequence from left to right, top to bottom is: left hind foot-on, right hind foot-on, left front
foot-on, left front foot-off, right front foot-on, right front foot-off. Here, the footfall pattern deviates
slightly from an ideal trot, but the foot contact sequence still is (left hind, right fore), (left fore, left hind).
Images captured and cropped from internet video at: https://www.youtube.com/watch?v=ej6DrFpnJrk.
Image credit: Victoria Wallace, Director, Zikomosafari. Full-size DOI: 10.7717/peerj.17675/fig-1
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measured (again from www.youtube.com; three videos but one redundant with our
sample) hippos walking. We reanalysed these seven videos here as part of our final sample
of 23 videos. Our data collection at Flamingo Land Resort provided 12 valid trials. All trials
were composed of between one and eight continuous strides that we used for final data
analyses; ultimately totalling 169 strides from the 46 trials for a total of 32 individual
hippos. Details on videos and trials can be found in Table S1.

Our study’s aims are descriptive, so we only used basic statistics. We plotted limb phases
(LF = left front; RF = right fore; RH = right hind) and stride frequencies (SF) against duty
factor (DF; which should be roughly inversely proportional to speed) using regressions in
GraphPad Prism 10 software (Boston, MA, USA). We also calculated stance and swing
phase durations. In analysing data, we took the mean values of each of these stride
parameters for each trial.

RESULTS
On average, the hippos we analysed were trotting: mean limb phases were RH = 0.51 ± SD
0.051, RF = 0.94 ± SD 0.040 and LF = 0.46 ± SD 0.050. No limb phases showed significant
changes with DF (Fig. 2: linear regressions: p values for RH, RF and LF = 0.0925, 0.155 and
0.153) and all phases had appreciable variation (R2 for RH, RF and LF = 0.063, 0.045,
0.046). This finding suggests that the hippos typically were demonstrating a ‘walking’ trot
at DF ≥ 0.5 and a ‘running’ trot at DF < 0.5. Some trials marginally varied into more lateral
or diagonal sequence patterns overall (Fig. 2; see Discussion). The Supplemental videos
(available at https://figshare.com/s/99e958f4094b1cc24e80; doi:10.6084/m9.figshare.
25027142) show trials for the two hippos at Flamingo Land Resort.

Stance durations ranged from 0.17–5.48 s (the latter a very slow value for a slowly
grazing hippo); and swing durations from 0.13–0.58 s (Fig. 3). SF decreased with DF, and
ranged from 0.17–3.2 (the highest values 2.8 and 3.2 Hz in fighting hippos) (Fig. 4). Mean
DF varied between 0.36–0.94. Forelimb vs. hindlimb DFs showed high variation (means
0.66 ± SD 0.18; 0.65 ± SD 0.17) but forelimbs had slightly (median 0.01) greater DFs than
hindlimbs (median 0.76 vs. 0.75; Wilcoxon matched-pairs signed rank test, two-tailed:
p = 0.0041, n = 46). Overall, it seems that during hippo locomotion studied, DF was
decreased by decreasing mean stance durations ~32 times and swing durations only ~4.5
times (Fig. 3), thereby increasing SF ~19x (Fig. 4) while DF decreased to approximately
one-third slow-walking values (i.e., roughly, speed is increased more by decreasing stance;
not so much swing; durations).

As the figures show (see also frequency distribution in Fig. S1), we obtained two main
clusters of data, corresponding to mean DF ~0.36–0.58 and ~0.75–0.94. This clustering
was largely caused by our sourcing of ‘running’ videos from the internet, and then walking
videos from our Flamingo Land sample plus some more videos from the internet. It is
unclear if the apparent gap between DF ~0.58–0.75 is artefactual based on this sample, or
reflective of either gait transition or preferred speeds.

Importantly, the 12 ‘running’ trot (mean DF < 0.5) videos obtained from the internet
appeared to (and in some cases, clearly showed) brief aerial phases (e.g., Fig. 5), although
some footfall patterns deviating slightly from an ideal trot seemed to prevent aerial
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phases. As per Hutchinson et al. (2006), an aerial phase would occur if the DF was less
than the greatest phase difference between two consecutive footfalls (always ipsilateral
limbs). This difference was a mean of 0.54 for LH vs. LF (= 1–0.46) and 0.43 for RF vs. RH
(= 0.94–0.51), which is roughly 0.5 overall, so trots with DF < 0.5 would be expected to
involve aerial phases, which they did.
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Figure 2 Hippos’ limb phases plotted vs. mean duty factor (DF). RH = right hind; RF = right front;
LF = left front. All phases are the fraction of a stride for foot contact timing vs. left hind’s.

Full-size DOI: 10.7717/peerj.17675/fig-2
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Figure 3 Hippos’ stance and swing phase durations plotted vs. mean duty factor (DF). Equations:
stance duration = 8.506 DF7.188 (R2 = 0.934); swing duration = 0.4817 DF0.7119 (R2 = 0.391); n = 46 and
df = 44. Full-size DOI: 10.7717/peerj.17675/fig-3
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Figure 4 Hippos’ stride frequency (SF) plotted vs. mean duty factor (DF). Equation: SF = −4.14 DF +
3.89; p < 0.0001; R2 = 0.763. Full-size DOI: 10.7717/peerj.17675/fig-4

Figure 5 Example of an aerial phase in a hippo. From internet video: https://www.shutterstock.com/
video/clip-1015076347-hippos-chasing-each-other-riverbed, used with permission. Image credit: Johan
Vermeulen. Full-size DOI: 10.7717/peerj.17675/fig-5
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DISCUSSION
Our most notable findings are that hippos normally trot (whether walking or running),
and do use an aerial phase when running quickly; the latter to our knowledge has not been
reported before. Interestingly, hippos studied did not normally change their footfall
pattern across gaits; instead they used one main spectrum spanning from a ‘walking’ trot to
a ‘running’ trot (Figs. 1, 2, 5). This is an unusual pattern for large terrestrial mammals:
elephant use lateral sequence gaits; rhinoceroses (as far as is known, for all extant species)
use a lateral sequence walk, true trot and transverse gallop; giraffes use a lateral sequence
walk and a rotary gallop (see Introduction). Compared with smaller mammals, the gait
repertoire of rhinos (and to a degree, giraffes) is more “normal” (and ancestral,
evolutionarily, for most mammals), raising the question of why hippos trot and never
gallop on land–but have not entirely lost the ability to use an aerial phase. Two not
mutually exclusive hypotheses are that hippos are too large; with low strength: weight
ratios; and too aquatically adapted for athletic locomotion on land. However, if hippos can
indeed obtain speeds of ~7 ms−1, they would match the performance of elephants, and
their lowest DF observed here (0.36) is almost identical to known DFs of elephants of any
size or species (minimal observed DF 0.37; Hutchinson et al., 2003, 2006). Intriguingly,
elephants also have evolved with some aquatic adaptations as members of the clade
Tethytheria (e.g., Gaeth, Short & Renfree, 1999), so the evolutionary and biomechanical
explanations for hippo and elephant maximal locomotor performance may be similar to
some degree. The maintenance of lateral sequence (not trotting) footfall patterns across all
DFs in elephants helps explain why, kinematically, they do not use aerial phases at DFs
similar to those of fast-running hippos, because that footfall pattern evenly spaces out
ground contacts whereas trotting involves (near-) synchronous limb pairs.

Our fastest hippos were using extreme behaviours (in the wild or in captivity) that may
be near-maximal performance: avoiding lions or rhinoceroses or aggressive behaviour
toward each other or humans and their vehicles. Maximal measured athletic capacities for
stride parameters for elephants vs. hippos are: in elephants, maximal SF 1.9 (hippos = 3.2)
and minimal stance and swing durations of 0.20 (hippos = 0.17) and 0.28 (hippos = 0.13) s
(Hutchinson et al., 2003, 2006). Unlike elephants, hippos appear to change speed mainly by
decreasing stance duration (and thus DF; and increasing SF) rather than swing duration.
Thus overall, while it remains unclear if hippos can achieve faster speeds than elephants
do, they clearly reach greater SFs and smaller DFs and swing durations (with slightly
smaller stance durations), and thus show relatively greater athleticism.

Figure 2 (see also Fig. 1; Table S1; Supplemental videos) shows some variation for some
limbs’ phases that does not correspond to ideal trotting patterns. We suspect that the
variation in RF and LF phases observed; which is similar to the variation for LH phases;
arises from the high prevalence of non-steady locomotion in our data, imposed by the
variety of the sources used and the substrates and other conditions of filming those
individuals. Indeed, if lateral or diagonal sequence walking patterns were common in
hippos, we would expect to see clusters of RF and LF phases that were both distinct from
RH ~0.50 and LH ~0.00. The variation we observed does not indicate distinct, consistent
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“singlefoot” lateral or diagonal sequence walking, although some trials or strides seem
close to having isolated lateral or diagonal couplets or “dirty trots” (sensu Biknevicius &
Reilly, 2006 and references therein). This issue is more of a concern if strictly using the
eight primary footfall pattern categories (separated by 0.0625 phase boundaries) rather
than the simpler four (separated by 0.125 phase boundaries) promoted by Biknevicius &
Reilly (2006). Considering the observed variation and the semantics of definitions, we see
the simplest message of our data is that hippos trot.

The absence of clear lateral sequence walks in our data, vs. several claims that these exist
in hippos (Slijper, 1946; Dagg, 1973; Niemitz, 2001; Coughlin & Fish, 2009; Catavitello,
Ivanenko & Lacquaniti, 2018), is perplexing, but strongly concurs with numerous prior
studies, including quantitative ones (see Introduction). Lateral sequences might be used for
some very slow walking (e.g., while grazing); as Hildebrand (1976) intimated; yet we did
not observe strong examples of that pattern in our slow walking trials. Compared with
Common hippopotamuses, pygmy hippopotamuses spend less time underwater and more
time on land (Walker, 2008). This might explain why Hildebrand (1989) found that they
used more lateral sequence walking, but the circumstances under which he collected both
species’ data remain unknown; the differences might purely be variation.Usherwood & Self
Davies (2017) analysed five videos of hippos using slow (DF 0.76) trotting (RH and LF limb
phases ~0.45), in agreement with our findings. Lees et al. (2016) studied three videos that
we also find to involve slow trotting, and with stance and swing durations of 1.12–1.48 and
0.41–0.52 s, DF 0.73–0.74 and SF 0.50–0.65; which our re-analyses of these data concur
with. Dagg (1979) studied hippos with DF ~0.79. All of these published data fit within
variation of our other trials (Figs. 2–4).

We found small (~0.01) differences in hippo forelimb and hindlimb DFs but we deem
these probably to not be of much biomechanical significance. However, the expectedly
greater antigravity supportive roles of the forelimbs (typical of quadrupedal mammals; e.g.,
Basu, Wilson & Hutchinson, 2019) would benefit from greater forelimb DFs to moderate
ground reaction forces. Considering the lowest mean DF of 0.36, we would expect one
forelimb ~DF 0.37 to involve a peak vertical ground reaction force of about 1.27 times
body weight (see Alexander & Pond, 1992 for example of this method applied to a rhino).
This is slightly greater than the force of 1.1 times body weight measured and extrapolated
for an elephant’s forelimb (Ren et al., 2010), but presumes an ideal half cosine cycle of
vertical force vs. time.

Our study was limited by inability to measure velocity-related parameters, which would
be particularly valuable to have for fast-moving hippos. Furthermore, no kinetic data exist
for hippos. Such data would reveal limb forces and mechanical energy fluctuations; the
latter being crucial for testing biomechanical gait transitions (i.e., vaulting to bouncing
gaits; see Biknevicius & Reilly, 2006; Struble & Gibb, 2022). Almost all of our data involved
25–30 Hz videos, which inevitably would introduce more imprecision and noise into the
fastest trials (e.g., one frame at 0.04 s is ~31% of swing phase duration at 0.13 s). Thus
surely some of the variation in our results is due to human error and resolution of
hardware; and absence of quantitative data on steady-state locomotion. Similarly, no
hippos were moving over ideally smooth, level terrain and few were moving in straight
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forward directions. However, some of these problems could be seen as benefits, too. Our
measurements are for hippos either in their natural environments (most of the internet
videos used) or else in fairly natural terrain in captivity. Thus the kinematic patterns we
measured should better reflect normal locomotion overall. Our study’s decent sample size
of 169 strides from 46 trials of 32 individual hippos, across a broad DF (or, qualitatively,
speed) range defends its value. Unfortunately all of our fastest (mean DF < 0.50) trials
had video footage involving extensive camera panning, zooming and/or direction of
motion out of the plane of the video, so it was not feasible to quantify maximal relative
speeds of hippos in body lengths per second (s−1) for comparative analysis (see Iriarte-
Díaz, 2002).

Our data and conclusions are relevant to clinical veterinary care of hippos, especially
detection of lameness via comparison of an animal’s gait to a “normal” patterns (e.g.,
Hilsberg-Merz, 2008; Ren et al., 2010; Dadone, 2018; Panagiotopoulou, Pataky &
Hutchinson, 2019; Turner et al., 2023). Flacke et al. (2016) analysed 43% of all pygmy
hippos that had died in captivity and concluded that musculoskeletal or neuromuscular
degenerative diseases (e.g.,Hittmair & Vielgrader, 2000; Regnault et al., 2013; Jones, Gasper
& Mitchell, 2018; Dadone et al., 2019) were common or the most common causes for
euthanasia of adult or geriatric individuals. These hippos likely would have presented with
clinical signs of lameness. Improved detection of lameness would aid identification and
monitoring of hippo foot/limb pathology and development of treatments such as
appropriate flooring of enclosures or ideal environments for encouraging exercise in
captive animals.

New information on hippo locomotion that we provide here is also useful for
understanding the evolution of locomotion, body size, habitat usage and ecology in
Hippopotamidae (e.g., Sondaar, 1977; Boisserie et al., 2011; Mazza, 2014; Van der Geer,
Anastasakis & Lyras, 2015; Rozzi et al., 2020; Houssaye et al., 2021; Georgitsis et al., 2022).
It is conspicuous that there is one recorded instance of a young pygmy hippopotamus at
Tampas Lowry Park Zoo (Florida) using a transverse gallop (https://www.youtube.com/
watch?v=nmsZwwWYJkE; includes an adult quickly trotting) which could have important
implications for the biomechanics of hippopotamuses across ontogeny and size variation,
and through evolution. A fascinating question is how (and when) hippos seem to have lost
their ability to use asymmetrical gaits and now only trot? Also, how tightly were changes in
athleticism linked to aquatic habitats, body size and morphology in different
hippopotamid lineages? This is an excellent example of where integration of biomechanics
and evolution could be powerful and exciting.
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