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ABSTRACT
Leaf mustard (Brassica juncea L. Czern & Coss), an important vegetable crop, expe-
riences pronounced adversity due to seasonal drought stress, particularly at the seed
germination stage. Although there is partial comprehension of drought-responsive
genes, the role of long non-coding RNAs (lncRNAs) in adjusting mustard’s drought
stress response is largely unexplored. In this study, we showed that the drought-tolerant
cultivar ‘Weiliang’ manifested a markedly lower base water potential (−1.073 MPa vs
−0.437 MPa) and higher germination percentage (41.2% vs 0%) than the drought-
susceptible cultivar ‘Shuidong’ under drought conditions. High throughput RNA
sequencing techniques revealed a significant repertoire of lncRNAs from both cultivars
during germination under drought stress, resulting in the identification of 2,087
differentially expressed lncRNAs (DELs) and their correspondingly linked 12,433
target genes. It was noted that 84 genes targeted by DEL exhibited enrichment in the
photosynthesis pathway. Gene network construction showed that MSTRG.150397, a
regulatory lncRNA, was inferred to potentially modulate key photosynthetic genes
(Psb27, PetC, PetH, and PsbW ), whilst MSTRG.107159 was indicated as an inhibitory
regulator of six drought-responsive PIP genes. Further, weighted gene co-expression
network analysis (WGCNA) corroborated the involvement of light intensity and stress
response genes targeted by the identified DELs. The precision and regulatory impact
of lncRNA were verified through qPCR. This study extends our knowledge of the
regulatory mechanisms governing drought stress responses in mustard, which will help
strategies to augment drought tolerance in this crop.

Subjects Agricultural Science, Bioinformatics, Plant Science
Keywords Mustard, Long non-coding RNAs, Seed germination, Drought stress

INTRODUCTION
Leaf mustard (Brassica juncea L. Czern & Coss) is an important vegetable crop cultivated in
various regions including China (Thakur et al., 2020).Mustard exhibits a high susceptibility
to abiotic stresses, which can have a detrimental impact on its yield (Saha et al., 2016).
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For instance, it is susceptible to seasonal drought during germination, which can affect
subsequent seedling emergence and seedling survival (Chauhan et al., 2007; Aneja et al.,
2015; Saini et al., 2019; Alamri et al., 2020).

Plants employ a plethora of mechanisms to alleviate drought stress during seed
germination and subsequent development, including the upregulation of photosynthesis
and its associated pathways, which are crucial components of the plant’s response to
abiotic stress (Meng, Wen & Zhang, 2022; Zhou et al., 2023). Light acts as a fundamental
environmental cue that initiates the morphogenesis of plant seedlings. RNA-seq technology
serves as a powerful tool for gaining insights into how plants modulate their physiological
pathways in response to environmental signals. For example, an RNA-seq analysis of
soybean seed germination at 18 h revealed a substantial induction of the photosynthesis
pathway, underscoring its significance in the early phases of seed germination (Hu et
al., 2021). The adaptive response of photosynthesis to drought stress primarily aims to
uphold carbon assimilation and tissue metabolic activities, enabling cells to reestablish
equilibrium and endure challenging environmental conditions (Chaves, Flexas & Pinheiro,
2009). Nonetheless, the understanding of photosynthesis-related mechanisms in mustard’s
response to drought stress during seed germination is lacking.

While gene families such as myeloblastosis (MYB), WUSCHEL-related homeobox
(WOX), superoxide dismutase (SOD), and ascorbate peroxidase (APX) have been shown
to significantly impact the growth, development, and responses to abiotic stress in mustard
(Verma, Lakhanpal & Singh, 2019; Verma, Upadhyay & Singh, 2022; Xie et al., 2023a; Xie et
al., 2023b; Yang et al., 2023), the Aquaporin gene family and Late Embryogenesis Abundant
(LEA) gene family, crucial for regulating seed germination and stress response, have not
been studied in mustard, limiting our understanding of drought-tolerant breeding in this
crop. Aquaporins, as transmembrane proteins forming water channels, play a vital role
in water absorption during seed germination (Chen, Fessehaie & Arora, 2013; Chaumont
& Tyerman, 2014; Hoai et al., 2020), closely associated with drought stress and essential
for regulating germination timing, necessary base water potential, and maintaining cell
osmotic pressure (Singh et al., 2022). Similarly, LEA proteins, which are low molecular
weight proteins synthesized in the late stages of seed development, are crucial for plant
adaptation to environmental stresses, particularly drought stress (Shao, Liang & Shao,
2005; Liang et al., 2016). Overall, research on the mechanisms of drought tolerance in
mustard remains limited, particularly regarding the transcriptional regulatory mechanisms
during the seed germination phase under drought stress.

The gene families and individual genes implicated in stress response mechanisms are
subject to diverse regulatory processes in plants, including control by non-coding RNAs
and epigenetic modifications (Bashir et al., 2019). Long non-coding RNAs (lncRNAs)
are particularly noteworthy for their critical roles in various biological processes, such
as development and stress responses (Yu et al., 2019). These lncRNAs, characterized by
RNA molecules exceeding 200 nucleotides that do not encode proteins, contribute to
abiotic stress responses by modulating mRNA expression levels (Qin et al., 2017). While
some lncRNAs responsive to drought stress have been identified in mustard using limited
sample sizes (Bhatia et al., 2020), a comprehensive regulatory framework is yet to be
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elucidated. Research in rapeseed has shown that specific lncRNAs regulate drought stress
by modulating plant hormone signaling pathways (Tan et al., 2020). Similarly, in Chinese
cabbage (B. rapa ssp. chinensis), it was observed that lncRNAs and miRNAs regulate heat
stress responses through pathways associated with plant hormones (Wang et al., 2019).
Using publicly available RNA-seq data, exploring lncRNAs and their regulatory networks
in plants has become a feasible strategy (Chen, Zhong & Qi, 2021; Kumar et al., 2023; Xie
et al., 2023a; Xie et al., 2023b). For instance, under drought stress conditions, Chen et al.
(2021) identified a set of upregulated lncRNAs involved in regulating genes related to
carbon fixation, chlorine metabolism, and fatty acid synthesis.

In our previous study, we employed RNA-seq analysis to probe into the mechanisms
governing drought stress during mustard seed germination under both control and
drought-stressed conditions at various time points (Wei et al., 2023). While this
investigation enabled the identification of numerous protein-coding genes, the exploration
of non-coding genes, such as lncRNAs, was lacking. Building upon these earlier insights, the
present research capitalizes on the RNA-seq data from our prior work to further investigate
the expression patterns of lncRNAs during mustard seed germination. This study not
only advances our understanding of the complex transcriptional regulatory mechanisms
involved in mustard’s response to drought stress but also lays the groundwork for future
endeavors aimed at enhancing drought tolerance in this economically significant crop.

MATERIALS AND METHODS
Plant materials and germination experiment
In a prior investigation, we have identified a leaf mustard cultivar (‘WeiLiang’, WL)
demonstrating drought tolerance, along with a drought-sensitive one (‘ShuiDong’, SD),
specifically during the germination phase (Wei et al., 2023). For this study, fresh seeds with
high viability from WL and SD were selected as the plant materials. Seeds underwent an
initial sterilization process with 75% ethanol for 3 min, followed by a triple wash with
ddH2O, and subsequent drying using absorbent paper. These seeds were then placed
on double-layer filter paper within 10 × 10 cm plastic germination boxes (Wantong
Medical Device company, Taixing, China), which were moistened with seven mL of
ddH2O (control, 0 Mpa) or polyethylene glycol 8000 (PEG8000) solution adjusted to
achieve different osmotic potentials mimicking moderate (−0.5 MPa) or severe (−1.0
MPa) drought stress. PEG8000, chosen for its ability to influence osmotic pressure while
being too large to be absorbed by plants, was first prepared according to Michel’s formula
(Michel, 1983) and then adjusted based on the true water potential determined at 25 ◦C
using a Dew Point Microvolt meter HR-33T (Wescor, Logan, Utah, USA). Germination
experiments were conducted for 7 d in plastic boxes within an artificial climate chamber
(Model DLRX-350D-LED, Jinmin Instrument Equipment Company, Shanghai, China)
maintained at 25 ◦C under a 12-h light/12-h dark photoperiod with a light intensity of 120
µmol m−2 s−1. Three biological replicates were performed for each treatment per cultivar.
All plastic germination boxes were randomly positioned within the climate chamber, and
to minimize micro-environmental effects, the positions of the boxes were rotated among
shelves and locations within shelves daily following seed germination assessments.
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Hydrotime modeling and statistical analysis
The daily collected germination data from two mustard cultivars under different drought
conditions in the aforementioned experiment were subsequently analyzed using a
hydrotime model (Bradford, 2005). This model posits that the fixed constant, θH, is
determined by the product of the difference between the actual water potential (9) and
the base water potential [9b(g)], and the requisite germination time (tg), mathematically
expressed as:

θH= [9−9b(g)]tg. (1)

This equation implies a direct proportionality between the germination rate of seeds
and the water potential, indicating accelerated seed germination with increasing water
potential. Given the seed germination curve’s close resemblance to a normal distribution,
it can be linearized using a probit transformation, facilitating more convenient parameter
estimation:

Probit(g)= [9−θH/tg−9b(50)]/σ. (2)

In this equation,9b(g) adheres to a normal distribution, where the mean value corresponds
to 9b(50)—the base water potential associated with a seed germination rate of 50%—and
the standard deviation is represented by σ .

RNA-Seq
A total of 42 samples were obtained from two leaf mustard cultivars (WL and SD) at various
time points during germination: 0 h (start of the experiment), 12 h, 24 h, and 36 h, under
both control (0 MPa) and drought stress (−1.0 MPa) conditions. Each time point and
condition included three biological replicates for total RNA extraction, utilizing the RNeasy
Plant Mini Kit (Qiagen, Hilden, Germany). The quality and quantity of the extracted total
RNA were assessed using an Agilent 2100 Bioanalyzer (Agilent, Palo Alto, CA, USA).
Next, M-MuLV Reverse Transcriptase and DNA Polymerase I were utilized to synthesize
the first- and second-strand of cDNA, respectively, as per the methodology outlined by
Agarwal et al. (2015). The double-stranded cDNA underwent end-repair, followed by the
enrichment of cDNA fragments within the 370 bp to 420 bp range utilizing the AMPure XP
system (Beckman Coulter Life Sciences, Brea, CA, USA). Subsequently, PCR amplification
was carried out, and the resulting PCR products were purified to assemble the final
library for sequencing, following the standard methodology. The concentration of the
constructed library was precisely quantified using both a Fluorometer (Qubit 3.0, Thermo
Fisher, Waltham, MA, USA) and qRT-PCR, following the procedures detailed by Griffith
et al. (2015). Subsequently, the library underwent paired-end sequencing on the Illumina
NovaSeq 6000 platform (Novogene, Tianjin, China). The RNA-seq data generated have
been deposited in the China National GeneBank DataBase (CNGBdb) under the reference
number CNP0004113.

Gene expression and functional analysis
The raw sequencing data underwent quality filtering using Fastp to eliminate low-
quality sequences, followed by alignment of the filtered data to the mustard reference
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genome sequence (http://brassicadb.cn/#/) using Hisat2 (Chen et al., 2018; Kim et al.,
2019). Read counts were obtained through featureCounts (Liao, Smyth & Shi, 2014).
Differential expression analysis was conducted using DEseq2 (Love, Huber & Anders,
2014), with the criteria for selecting differentially expressed genes set at FDR < 0.05
and |log2(FoldChange)| > 2 (Liao, Smyth & Shi, 2014). Expression levels were quantified
by calculating Fragments Per Kilobase of exon model per million mapped fragments
(FPKM) values. Pfam annotations were acquired using hmmsearch and the Pfam database
(http://pfam.xfam.org/). Furthermore, protein sequences were compared against the NCBI
non-redundant protein sequences (NR), NCBI non-redundant nucleotide sequences (NT),
and SWISS-PROT protein sequence databases using blastx and blastp. Gene Ontology
(GO, http://geneontology.org/) and Kyoto Encyclopedia of Genes and Genomes (KEGG,
https://www.kegg.jp/) annotations were obtained by mapping the database IDs.

Identification of drought-responsive gene families
In the present study, two drought-responsive gene families, Aquaporin and LEA, were iden-
tified from the mustard reference genome utilizing HMMER3 (https://hmmer.janelia.org/)
(Mistry et al., 2013). Aquaporin was characterized by the presence of a specific structural
domain known as Major Intrinsic Protein (MIP) (PF00230). The LEA family was further
classified into eight subfamilies: LEA_1 (PF03760), LEA_2 (PF03168), LEA_3 (PF03242),
LEA_4 (PF02987), LEA_5 (PF00477), LEA_6 (PF10714), Dehydrin (PF00257), and SMP
(PF04927). The Pfam-A dataset was obtained from PFAM (https://pfam.janelia.org/) using
the online tool hmmscan (https://www.ebi.ac.uk/Tools/hmmer/search/hmmscan). Initially,
the gene family was scanned using the domain file as the primary template and genes
with an E-value below 1e−10 were retained. The filtered genes then served as secondary
templates for a subsequent round of scanning. Genes from this second phase were similarly
filtered with an E-value below 1e−10. Ultimately, the putative genes within the gene family
were identified.

LncRNA identification and differential expression analysis
The StringTie (Pertea et al., 2015) software was utilized to assemble the mustard
transcriptome. Transcripts that overlapped with mRNA, rRNA, tRNA, snoRNA, and
snRNA were excluded from further analysis. Additionally, transcripts shorter than 200 bp,
with fewer than two exons, and showing low expression levels (<3 reads) were also excluded
based on the exclusion criteria proposed by previous reports (Derrien et al., 2012;Novikova,
Hennelly & Sanbonmatsu, 2012; Dou et al., 2021; Ren et al., 2022; Zhang et al., 2022). After
filtering transcripts based on sequence length and read count, their coding potential was
evaluated using two tools: the coding potential assessment tool (CPAT) (Wang et al., 2013)
and the coding potential calculator (CPC) (Kong et al., 2007). The online tool Pfamscan
(https://www.ebi.ac.uk/Tools/pfa/pfamscan/) was subsequently employed to search for
potential protein domains within the candidate lncRNA transcripts, utilizing the HMM
library. Transcripts that did not exhibit protein-coding ability were categorized as lncRNAs.
The final set of lncRNAs identified in this studywere those consistently predicted by all three
methods. The analysis of differentially expressed lncRNAs (DEL) followed a methodology
akin to that used for mRNA analysis (Wei et al., 2023).
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Target gene prediction and function enrichment analysis
The expression correlation between all mRNAs and lncRNAs was established based on the
Pearson correlation coefficient. The Benjamini–Hochberg method was utilized to adjust
the significance of P-values. LncRNA-mRNA pairs possessing an absolute correlation
coefficient value exceeding 0.9 and a Q value less than 0.05 were then selected. Following
this, the ASSA algorithm was employed to assess the potential of direct base pairing, either
co-transcriptional or post-transcriptional, between the identified lncRNAs and mRNAs for
functional interactions (Antonov et al., 2018). The ASSA results were further filtered based
on the threshold of FDR < 0.05 to obtain the final list of target genes. For the identification
of DEL target genes, GO, KEGG and Pfam enrichment analyses were conducted using the
clusterProfiler package, adopting a P-adjusted value of 0.05 as the significance enrichment
threshold (Yu et al., 2012).

Weighted gene co-expression network analysis
The weighted gene co-expression network analysis (WGCNA) package was employed for
co-expression network analysis of all lncRNAs, with the soft-thresholding parameter set to
6 (Zhang & Horvath, 2005). Hierarchical clustering tree construction within the network
was accomplished based on the gene dissimilarity matrix, aiding in the identification
of differentially expressed modules. Dynamic tree cutting was implemented for module
allocation, utilizing default parameters, including a minimum module size of 30 and a cut
height of 0.25.

Verification of lncRNA expression by qRT-PCR
Real-time quantitative polymerase chain reaction (qRT-PCR) was employed to assess
the expression levels of lncRNA in leaf mustard plants under a 36-hour drought stress
treatment (−1.0 Mpa) during germination. Total RNA from the plants was isolated using
the RNA Easy Fast Plant Tissue Kit (DP452) from Tiangen Biotech Co., Ltd. (Beijing,
China). The SnapGene (v3.2.1) software was utilized for designing qRT-PCR primers
specific to lncRNAs. Eight lncRNAs were randomly selected for qPCR, which targets
Aquaporin and LEA gene families. The ABI Quant Studio 6 Fluorescence Quantitative PCR
System (Applied Biosystems by Life Technologies, Waltham, MA, USA) was employed
for quantitative analysis. The 2−11CT method was utilized to calculate the relative RNA
expression levels (Livak & Schmittgen, 2001). Each group of data was assessed through
three technical replicates, and standard deviations were calculated. The internal reference
gene for lncRNAs was BjuActin7.

Statistical analysis
The germination parameters such as the time to reach 50% of maximum germination
(t50), the time required for the germination percentage to increase from 25% to 75%
(U7525), and the area under the germination curve within 72 h (AUC) were inferred from
the germination curve of each treatment separately, each with three replications. Then,
these parameters are depicted as mean values, each with its respective standard deviation
(S.D., n = 3). The identification of statistically significant differences (at P < 0.05) among
varying treatment conditions was enabled by the utilization of Duncan’smultiple range test,
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Figure 1 Seed germination dynamics of two leaf mustard cultivars (‘WeiLiang’, WL; and ‘ShuiDong’,
SD) under various drought stress conditions. (A) Germination curve of the drought-tolerant cultivar
WL under various drought conditions (0 MPa,−0.5 MPa, and−1.0 MPa). (B) Germination curve of the
drought-sensitive cultivar SD. (C) Comparison of t50 (the time to 50% maximum germination percent-
age) for the two cultivars under drought conditions estimated from the germination curve. (D) Compar-
ison of U7525 (the time difference to reach 25% and 75% of the maximum germination percentage) for
the two cultivars under drought conditions estimated from the germination curve. (E) Comparison of
AUC (the area under the germination curve) for the two cultivars under drought conditions.

Full-size DOI: 10.7717/peerj.17661/fig-1

conducted via the SPSS software package, version 16.0 (SPSS Inc., Chicago, IL, USA). The
creation of visual data representations was accomplished using GraphPad Prism version
9.0.0 and Microsoft Office Excel 2019.

RESULTS
Germination dynamics of leaf mustard cultivars
The seeds of the drought-tolerant leaf mustard cultivar (WL) and the drought-sensitive
one (SD) were germinated under various water potential conditions in germination boxes.
While there was no significant difference in the germination rate between the two cultivars
under control conditions, WL showed a significantly higher germination rate than SD
under drought stress (Figs. 1A and 1B). Additionally, WL demonstrated superior root
length, shoot length, and fresh weight compared to SD under drought stress. This trend
was also reflected in physiological indicators such as catalase (CAT) activity, peroxidase
(POD) activity, superoxide dismutase (SOD) activity, and proline content (Wei et al.,
2023).

As depicted in Fig. 1, germination parameters such as t50, U7525, and AUC were
calculated based on the seed germination curve for each cultivar under different drought
treatments. Statistical analysis revealed that seed germination was significantly affected by
the cultivars (WL or SD), the drought treatments (0 Mpa, −0.5 Mpa, and −1.0 Mpa), and
their interaction (Figs. 1C to 1E).
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Table 1 Hydrotimemodel parameters for two leaf mustard cultivars. ‘WL’ represents the cultivar
‘Weiliang’ and ‘SD’ represents ‘Shuidong’.

Cultivar 9b(50)(MPa) σ9b(MPa) θ H(MPa h)

WL −1.073 0.339 43.054
SD −0.437 0.195 16.695

A lower t50 value signifies greater seed vigor. Under 0 MPa, there was no substantial
difference between the two cultivars in t50 (31.06 h vs 36.41 h), indicating comparable
germination rates for WL and SD. However, at −0.5 MPa, t50 significantly escalated to
55.72 h for WL and even higher (64.53 h) for SD, demonstrating notable discrepancies
between the cultivars. Under −1.0 MPa, t50 rose further to 92.71 h for WL, suggesting
that WL seeds germinated more sluggishly under severe drought stress, while SD did not
germinate at all (Fig. 1C).

A smaller U7525 value indicates higher germination uniformity within the seed
population. Under the control condition (0 Mpa), germination consistency between
the two cultivars did not markedly differ, with U7525 ranging from 10.06 h to 12.96 h.
However, under moderate drought stress (−0.5 Mpa), U7525 values rose significantly for
both cultivars to 22.14 h and 23.36 h respectively, with no considerable difference between
the two cultivars. Under severe drought stress (−1.0 MPa), the value for WL changed
marginally (24.43 h), while SD failed to germinate (Fig. 1D).

The area under the curve (AUC) provides an overall assessment of seed germination
quality, with a larger AUC indicating superior germination quality. There were no
significant differences in AUC values between the two cultivars under control conditions.
However, under moderate and severe drought stress, WL exhibited a significantly higher
AUC value than SD, suggesting superior germination quality for WL and inferior quality
for SD (Fig. 1E).

To explore deeper into the differences in drought tolerance among the cultivars, we
developed a hydrotime model by fitting it to the germination data obtained under various
drought treatments. Subsequently, we estimated key parameters to better understand the
dynamics of drought performance in the cultivars. The results highlighted significant
differences in the base water potential value 9b(50) of seed germination between the
cultivars (Table 1). WL displayed a high stress-tolerance level, as exhibited by a very low
9b(50) value of−1.073 MPa. Conversely, SD was more drought-sensitive, since it showed a
much higher 9b(50) (−0.437 MPa). Additionally, the required hydrotime constant θH for
seed germination varied among the cultivars, ranging from 43.054 MPa h for WL to 16.695
MPa h for SD.

Collectively, our findings underscore distinct responses to drought stress between the
cultivars, with WL exhibiting superior growth capability compared to SD. Hence, it is
worthwhile to utilize RNA-seq data from both cultivars to further explore the influence of
lncRNAs on their markedly different responses to drought stress.
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Identification and expression analysis of lncRNA
We previously used RNA-Seq to investigate the gene expression patterns linked to drought
in leaf mustard during germination under drought conditions. The dataset comprised
samples from two cultivars (WL, SD) gathered at four time points (0 h, 12 h, 24 h, and 36 h)
during germination, under both control (0 Mpa) and severe drought stress (−1.0 Mpa)
scenarios. The analysis led to the identification of numerous drought-inducible mRNAs
(Wei et al., 2023). In this study, we further employed three distinct techniques (CPC,
CPAT, and Pfam) to precisely identify and analyze lncRNAs. A total of 29,983 lncRNAs
were successfully identified across all samples, as illustrated in Fig. 2. Contrasting with
protein-encoding genes (mRNA), lncRNAs exhibited distinctive characteristics, notably
fewer exons, with the majority having only two to four exons (Fig. 2A), and considerably
shorter sequence lengths (Fig. 2B). Principal component analysis revealed distinct lncRNA
expression patterns between the twomustard cultivars (Fig. 2E). The differential expression
analysis highlighted time-specific expression dynamics of lncRNAs in leaf mustard. The
number of DELs (differentially expressed lncRNAs) under the control condition (0 MPa)
showed a gradual increase over time at 12 h, 24 h, and 36 h post-germination, in comparison
to the initial time point (0 h) for SD. Moreover, the upregulated DELs at these time points
numbered 872, 1,090, and 1,356, while the downregulated DELs were 796, 986, and 1,165,
respectively (Fig. 2C). Conversely, under severe drought conditions (−1.0 Mpa) for SD,
the upregulated DELs decreased to 517, 684, and 691, respectively, while downregulated
DELs were limited to 478, 549, and 567, respectively. Out of these, 1,145 and 519 DELs
exhibited consistent expression patterns at all three time points under both control and
drought stress conditions, respectively (Figs. 3A and 3B).

The expression patterns of lncRNAs varied significantly between the two cultivars.
In the cultivar WL, the quantity of DELs under control conditions at 12 h, 24 h, and
36 h post-germination compared to 0 h of germination was notably higher (Fig. 3C).
Furthermore, under drought stress, WL showcased a greater number of DELs compared
to SD at the same time points (Fig. 3D). These findings suggest that lncRNAs may play a
more critical role in drought stress response in the drought-resilient cultivar WL.

The DELs under drought stress relative to the control condition exhibited variations
across different time points and between cultivars. Specifically, only three DELs showed
consistency at all three time points in SD (Fig. 3E), while in WL, merely two DELs
demonstrated consistency at the same time points (Fig. 3G). A substantial number of DELs
was observed between the two cultivars at three time points under drought stress, with a
notable 1,256 lncRNAs manifesting differential expression at all three time points (Fig. 3F).
Overall, the lncRNAs analysis across different time points and cultivars not only revealed
their temporal specificity in expression but also highlighted marked pattern discrepancies
between drought-tolerant and drought-sensitive cultivars.

Prediction and functional annotation of lncRNA target genes
We delved into exploring the potential biological functions of the identified lncRNAs
by investigating their target genes (mRNAs), to elucidate the distinct regulatory roles
of lncRNAs in mustard cultivars WL and SD. Through Pearson correlation analysis of
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Figure 2 Identification and expression analysis of lncRNAs. (A) Histogram depicting the distribution
of exonic counts for both lncRNAs and mRNAs; (B) Histogram illustrating the length distribution of tran-
scripts for lncRNAs and mRNAs; (C) Number of differentially expressed lncRNAs under various treat-
ment conditions; (D) Venn diagram depicting the overlap of lncRNAs identified by three distinct meth-
ods: Coding Potential Assessment Tool (CPAT), Coding Potential Calculator (CPC), and Pfam; (E) prin-
cipal component analysis of lncRNA expression levels across 42 samples. WL refers to the cultivar ‘Weil-
iang’, while SD refers to the cultivar ‘Shuidong’. C12, C24, and C36 denote germination at 12 h, 24 h, and
36 h under control conditions, respectively. Similarly, D12, D24, and D36 represent germination under
drought conditions at the corresponding time points.

Full-size DOI: 10.7717/peerj.17661/fig-2

lncRNA and mRNA expression levels, coupled with RNA-RNA interaction predictions,
we identified a total of 2,087 DELs and 12,433 corresponding target genes. Subsequent
GO enrichment analysis of these target genes revealed distinct patterns across various
comparison groups. Notably, in WL, the target genes at 12 h post-germination under
drought stress exhibited enrichment in various GO terms such as ‘‘response to high light
intensity’’ (GO:0009644), ‘‘plant-type vacuole membrane’’ (GO:0009705), and ‘‘seed oil
body biogenesis’’ (GO:0010344) (Fig. 4A). Conversely, in SD, the target genes did not
show enrichment in any GO terms during the same time frame. This disparity indicates a
quicker response of genes associated with these functions in WL compared to SD during
the initial stages of germination under drought stress. Furthermore, at 36 h of germination,
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Figure 3 Differential expression gene venn diagrams. (A) Differential expression analysis of lncRNAs in
the ‘Shuidong’ (SD) cultivar under control (C) conditions at 0 h, 12 h, 24 h, and 36 h of germination; (B)
Differential expression analysis of lncRNAs in SD under drought (D) conditions at 0 h, 12 h, 24 h, and 36
h of germination; (C) Differential expression analysis of lncRNAs in the ‘Weiliang’ (WL) cultivar under
control (C) conditions at 0 h, 12 h, 24 h, and 36 h of germination; (D) Differential expression analysis of
lncRNAs in WL under drought (D) conditions at 0 h, 12 h, 24 h, and 36 h of germination; (E) Differential
expression analysis of lncRNAs in SD under control (C) and drought (D) conditions at 12 h, 24 h, and 36
h of germination; (F) Differential expression analysis of lncRNAs between WL and SD under drought (D)
conditions at 12 h, 24 h, and 36 h of germination; (G) Differential expression analysis of lncRNAs in WL
under control (C) and drought (D) conditions at 12 h, 24 h, and 36 h of germination.

Full-size DOI: 10.7717/peerj.17661/fig-3

the enrichment level of ‘‘water transport’’ (GO:0006833) in WL was slightly higher than in
SD, suggesting potential differences in the water transport mechanisms between the two
cultivars under drought stress conditions.

Pfam enrichment analysis of target genes produced similar findings. The enrichment
analysis outcomes revealed a noteworthy enrichment of MIP in both cultivars under
drought stress relative to the control condition at 36 h of germination. Additionally, several
LEA family members (Dehydrin, LEA_4, and SMP) demonstrated variable degrees of
enrichment (Fig. 4B). Further, the KEGG pathway analysis highlighted the enrichment
of several pathways related to drought stress in WL. Significantly, pathways such as
photosynthesis (map00195) demonstrated remarkable enrichment at 36 h of germination
in WL compared to SD under drought stress, reflecting similar findings observed for other
metabolic pathways like nitrogen metabolism (map00910) and porphyrin and chlorophyll
metabolism (map00860) (Fig. 4C).

Co-expression analysis of lncRNAs and their target genes
The aforementioned analysis highlighted the potential for multiple lncRNAs to regulate
the same target gene (mRNA), suggesting functional similarities among lncRNAs with
similar expression patterns. To identify the key target genes of lncRNAs, we employed
WGCNA to analyze the top 25% of lncRNAs based on the FPKM values variance. Utilizing
a soft threshold of 6, we identified 3,651 lncRNAs, which were classified into 10 modules.
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Among these, the turquoise module exhibited the highest number of lncRNAs, totaling
1,569 (Fig. 5A). These lncRNAs collectively regulated 1,797 target genes (Fig. 5B). Notably,
the green module, consisting of only 217 lncRNAs, displayed regulation of 3,929 target
genes, suggesting instances of a single lncRNA modulating multiple target genes within
this module. Similar observations were made for the blue module (655 lncRNAs regulating
4,129 target genes) and the brown module (562 lncRNAs regulating 17,486 target genes).

Correlation analysis between the expression levels of lncRNAs within each module
and mRNAs from seed samples revealed module-specific gene expression patterns. For
instance, both the brown and yellow modules exhibited strong correlations with transcript
levels in seeds at the initial germination stage (0 h) in both cultivars. The turquoise
module showed a significant correlation only with mRNA levels in seeds of WL at the
initial germination stage. Furthermore, the red module showed a significant correlation
with mRNA levels in both cultivars under drought stress at 12 h of germination, with a
particularly strong correlation in WL compared to SD (Fig. 5F). These results highlight the
distinct relationships between lncRNA expression within modules and mRNA abundance
in different seed samples and under varying stress conditions.

To understand the functions of mRNA targeted by lncRNAs within each module, we
conducted GO enrichment analysis for the target genes of lncRNAs across all modules.
Except for the black and turquoise modules, which did not show significant enrichment
of GO terms, the other modules demonstrated varying degrees of enriched GO terms
(Table S1). Visualization through bubble charts depicting the enrichment analysis of
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the brown module (Fig. 5C) and the red module (Fig. 5D) unveiled distinct patterns
of enrichment. In the brown module, the enrichment analysis unveiled multiple stress
response-related GO terms, including responses to high light intensity (GO:0009644),
heat acclimation (GO:0010286), and stress responses (GO:0006950). Moreover, GO terms
related to seed development such as seed oil body biogenesis (GO:0048316), nutrient
reservoir activity (GO:0045735), and embryo development (GO:0009790) were also
identified (Fig. 5C). On the contrary, the red module exhibited enrichment in signal
processing such as mRNA splicing via spliceosome (GO:0000398), RNA secondary
structure unwinding (GO:0010501), and vegetative to the reproductive phase transition of
the meristem (GO:0010228) (Fig. 5D). These findings shed light on the specific functional
roles of lncRNAs within different modules and provide insights into some key biological
processes influenced by their interactions with target mRNAs.

Identification and construction of regulatory network for
drought-responsive genes
Pfam enrichment analysis unveiled the diverse regulatory roles of MIP (Aquaporin) and
LEA proteins (dehydrin, LEA_4, and SMP) in leaf mustard’s response to drought stress.
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Aquaporins and LEA proteins have crucial functions in regulating seed germination and
stress responses. Hence, we conducted a comprehensive analysis of these gene families,
identifyingAquaporins and LEA (including 8 subfamilies) as pivotal gene families associated
with seed germination and drought stress in mustard.

Within the Aquaporin gene family, we identified a total of 76 aquaporin genes, among
which 39 were regulated by 83 lncRNAs, showing differential expression in at least one
comparative group (Fig. 6A, Table S2). Among the lncRNAs regulating aquaporins,
MSTRG.173897 exhibited consistently high expression levels in both cultivars after
germination. Conversely, MSTRG.168716, MSTRG.163239, and MSTRG.1301 displayed
lower expression levels at 12 h, 24 h, and 36 h of germination in both cultivars. Meanwhile,
MSTRG.139136 demonstrated gradually increasing expression over time but exhibited
relatively low expression under drought stress compared to the control condition in both
cultivars. Notably, certain lncRNAs exhibited distinct expression patterns between the
two cultivars under drought stress. For instance, the expression levels of MSTRG.164194,
MSTRG.74300, and MSTRG.82428 in SD were higher than those in WL, potentially
contributing to the observed differences in drought tolerance between the two cultivars.

We also identified 17 genes belonging to the SMP subfamily of the LEA family, regulated
by 41 lncRNAs (Fig. 6B). The expression levels of these lncRNAs decreased during the
seed germination stage but were higher under drought stress compared to the control
condition. This suggests that these lncRNAs elevate expression levels under drought stress
to regulate SMP. MSTRG.22298 exhibited the highest expression level and continued to
express during the germination stage, with no significant difference observed between the
control conditions of the two cultivars. However, the expression level of this lncRNA under
drought stress in WL was significantly lower than in SD, indicating its potential role as a
crucial negative regulator of drought tolerance in mustard.

For other LEA subfamilies, we identified 106 lncRNAs that regulate 17 Dehydrin genes,
66 lncRNAs controlling 9 LEA _1 genes, 121 lncRNAs manipulating 141 LEA _2 genes, six
lncRNAs guiding 13 LEA _3 genes, 70 lncRNAs governing 23 LEA _4 genes, 52 lncRNAs
managing eight LEA _5 genes, and two lncRNAs overseeing seven LEA _6 genes (Fig. S1
and Table S3). Analogous to SMP, these lncRNAs exhibited high expression during seed
germination. Certain lncRNAs displayed consistent expression across all samples, with a
noticeable downregulation in their expression levels in WL relative to SD under drought
stress conditions, suggesting a negative regulatory role.

The network diagram depicting lncRNAs regulating target genes reveals a complex
regulatory network, with multiple lncRNAs simultaneously regulating one or more
aquaporin genes and LEA genes. For example, MSTRG.107159 simultaneously regulates
six PIP genes, one of which is regulated not only by MSTRG.107159 but also by
MSTRG.121325, MSTRG.130644, and MSTRG.26412. Similar regulatory relationships
were observed in the SMP subfamily, with multiple lncRNAs regulating a single gene.
Specifically, 18 lncRNAs simultaneously regulate SMP-4, and among these, 5 lncRNAs
also regulate SMP-3. Comparable regulatory relationships were observed in several other
subfamilies (Fig. S1).
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lncRNA regulates photosynthesis pathways
The KEGG pathway analysis has emphasized the critical role of the photosynthesis pathway
(map00195) in the drought response in WL (Fig. 4C). Subsequently, we conducted a
detailed analysis revealing the regulatory influence of lncRNAs on multiple target genes
within this pathway (Fig. 7 and Fig. S2). During drought stress, the expression levels of
lncRNAs were notably downregulated at 36 h post-germination in both mustard cultivars
when compared to the control condition. Remarkably, a higher proportion of lncRNAs
experienced downregulation in the drought-tolerant cultivar WL than in the drought-
sensitive SD. This observation suggests that WL responds to drought stress by modulating
genes related to photosynthesis through the suppression of a larger number of lncRNAs.

Several lncRNAs were identified as key regulators of genes involved in photosynthesis
(Fig. 7). Notably, Psb27 was targeted by 20 lncRNAs, with 18 of them showing significant
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down-regulation in WL following 36 h of drought treatment, while only six exhibited a
similar trend in SD under the same conditions. This regulatory trend by lncRNAs was
also observed in other genes within the photosynthesis pathway. Among the lncRNAs
influencing Psb27, MSTRG.150397 stood out for its substantial down-regulation (8.78-
fold). Furthermore, MSTRG.150397 was found to modulate PetC, PetH, and PsbW, all
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Figure 8 QRT-PCR verification of lncRNA expression. SD refers to the drought-susceptible cultivar
‘Shuidong,’ while WL represents the drought-tolerant cultivar ‘Weiliang’. C36 denotes the time point
of 36 h post germination under control conditions, whereas D36 indicates the same time point under
drought conditions. The relative gene expression levels were normalized to the expression of the internal
reference gene BjuActin7 and compared to the values quantified by RNA-Seq, expressed as fragments per
kilobase of transcript per million mapped reads (FPKM).

Full-size DOI: 10.7717/peerj.17661/fig-8

of which displayed significant down-regulation in WL after 36 h of drought treatment.
Additionally, the expression levels of lncRNA in the remaining samples showed varying
degrees of down-regulation compared to the initial germination stage.

Verification of lncRNA by qRT-PCR
To validate the identified differential expression of lncRNAs from the genome-wide
RNA-seq analysis, qRT-PCR was performed on eight randomly selected lncRNAs linked to
the Aquaporin and LEA gene families (Fig. 8), utilizing specific primers detailed in Table S4.
The results indicated that four lncRNAs (MSTRG.101263,MSTRG.131157,MSTRG.24022,
and MSTRG.105853) displayed down-regulation under drought stress conditions across
both cultivars, while the remaining four (MSTRG.10658, MSTRG.35668, MSTRG.114891,
MSTRG.106958) exhibited up-regulation. The expression patterns observed via qRT-PCR
were consistent with the RNA-seq data, affirming the reliability and robustness of the
lncRNA identification process.

DISCUSSION
Numerous studies have underscored the crucial role lncRNA plays in plant development,
growth, and stress resistance by managing their target mRNAs (Chen et al., 2021). The
functionality of lncRNAs is not isolated but rather, they indirectly orchestrate physiological
processes in plants through interactions with additional molecules (Guan et al., 2024).
In the present investigation, advanced high-throughput sequencing methodologies were
utilized to scrutinize the transcriptome of two distinct leaf mustard cultivars, exhibiting
contrasting drought tolerance phenotypes at the germination phase, subsequently
constructing a regulatory network comprising lncRNA and mRNA. A total of 29,983
lncRNAs was identified from a pool of 42 leaf mustard samples, a count significantly
surpassing that detected in upland rice (Yang et al., 2022), a discrepancy which may be
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attributable to the larger assortment of cultivars and treatments incorporated in this study.
Mirroring previous studies, most identified lncRNAs were categorized as long intergenic
lncRNA (lincRNA) (Zhang et al., 2014). The core attributes of lncRNA and mRNA were
further examined, revealing that lncRNA sequences exhibited markedly shorter lengths
compared to mRNA counterparts (Fig. 2). Furthermore, lncRNA displayed a paucity of
exons and lower expression levels, findings that corroborate previous findings (Chen et al.,
2021; Xu et al., 2021). To elucidate the functional capacity of lncRNAs, target genes for the
2,087 DELs were computationally predicted, yielding a total of 12,433 target genes, which
were found to be prominently associated with photosynthesis and hormone metabolism
pathways. Therefore, this study suggests that drought stress profoundly influences plant
hormone metabolism and photosynthesis, a conclusion in alignment with prior studies
(Chaves et al., 2002).

As a fundamental physiological process in plant growth anddevelopment, photosynthesis
plays a pivotal role in the response to abiotic stress (Longo et al., 2020). In maize, seeds
can modulate photosynthesis during germination to withstand abiotic stress (Meng, Wen
& Zhang, 2022). Under abiotic stress conditions during seed germination, differentially
expressed genes (DEGs) in Apocynum venetum and differentially expressed proteins in
mulberry (Morus alba L.) are primarily concentrated in photosynthesis-related pathways
(Li et al., 2023; Wang et al., 2023). Also, our study reveals significant enrichment of the
photosynthesis pathway at 36 h post germination (Fig. 7), paralleling discoveries made
during the germination of quinoa (Chenopodium quinoa) seeds (Hao et al., 2022). This
suggests a critical role of photosynthesis in the mustard plant’s response to drought
stress during seed germination. Within this pathway, we detected numerous target genes,
regulated by lncRNAs, that are associated with drought stress. Psb27 contributes to the
efficient assembly and repair of PSII under stress conditions (Huang et al., 2021). PsaN and
PetC are central genes in the response to drought (Arab et al., 2022). The expression levels
of genes related to photosynthetic electron transport (PetE and PetF) significantly decrease
under stress conditions (Wang et al., 2021). In our study, these stress response genes,
regulated by lncRNAs in the photosynthesis pathway, exhibit significant upregulation or
downregulation across the two cultivars (Fig. 7). This implies that lncRNAs and their target
genes in the photosynthesis pathway are connected to drought resistance in mustard and
could represent key genes that account for the differences in drought resistance among
different mustard cultivars.

Water supply is a determining factor for seed germination and seedling emergence, with
plant aquaporin proteins playing an instrumental role in controlling water transmembrane
transport and seed germination regulation. Despite their importance, studies on mustard
aquaporin protein genes are scarce. In the present study, the Pfam enrichment analysis of
lncRNA target genes implies that genes associated with aquaporin protein and LEA gene
families may serve a vital role in regulating mustard seed germination under drought stress.
Aquaporin proteins in plants are typically categorized into four subfamilies, i.e., PIP, TIP,
NIP, and SIP (Maurel et al., 2015). We identified 39 aquaporin protein genes regulated
by 83 lncRNAs (Fig. 6). Certain lncRNAs demonstrate differential expression across the
two cultivars and are implicated in the regulation of genes associated with drought stress.
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For instance, the gene TIP2;1 (two copies in the mustard genome, i.e., Bjuva01g39180 and
Bjuvb01g38360), previously recognized as a key gene in drought stress response (Lukšić et
al., 2023), is regulated by a lncRNA, MSTRG.139136. TIP3;1 (three copies in the genome,
i.e., Bjuvb05g55980, Bjuva07g3020, and Bjuvb03g35190) is recognized as a positive regulator
of the abscisic acid (ABA) response. Mutants of TIP3;1 have been shown to diminish the
critical water potential necessary for seed germination (Footitt et al., 2019). Here we
showed that this gene is simultaneously regulated by three lncRNAs (MSTRG.45496,
MSTRG.164194, and MSTRG.168716). It is worth mentioning a significant variation in
the expression level of TIP3;1 between the two cultivars, proposing its potential role as a
pivot gene during drought stress response in mustard seed germination. LEA genes also
contribute to plant stress responses associated with water scarcity (Graether, 2022). RAB28
(BjuVB01G31660), a member of the LEA_5 subfamily, enhances seed germination (Guan
et al., 2024) and strengthens plant resilience to drought stress (Borrell et al., 2002; Amara et
al., 2013) and is regulated by MSTRG.22298, which showed significant upregulation under
drought stress conditions. Taken together, the recognition of these genes augments our
comprehension of the mustard drought-related gene families and regulatory networks,
offering valuable insights into the causes of the differences in drought resistance among
various mustard varieties.

CONCLUSIONS
We have successfully elucidated the pivotal role of lncRNAs in the response of leaf
mustard to drought stress during seed germination, by employing high throughput RNA
sequencing techniques. Through comprehensive analysis, a repertoire of drought-related
lncRNAs and mRNAs were identified. Subsequent GO, Pfam enrichment, KEGG pathway
analyses, and network construction of lncRNA and their target genes revealed their
involvement in the regulatory processes underlying mustard’s tolerance to drought stress.
Notably, MSTRG.150397 and MSTRG.150397 were found to potentially modulate target
genes (Psb27, PetC, PetH, and PsbW ) implicated in the photosynthesis pathway, thereby
impacting the plant’s ability to withstand drought stress. Additionally, MSTRG.107159
was identified as a regulator of six drought-responsive PIP genes. This research provides
a solid foundation for further investigations concerning the potential roles of lncRNAs
in enhancing plant drought resistance. Furthermore, it offers novel genetic resources that
could potentially be harnessed for the genetic engineering of crop species with improved
drought tolerance.
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