
Submitted 19 January 2024
Accepted 7 June 2024
Published 8 July 2024

Corresponding author
Jorge Ortega, artibeus2@aol.com

Academic editor
Armando Sunny

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj.17651

Copyright
2024 Gutiérrez et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Unraveling genomic features and
phylogenomics through the analysis of
three Mexican endemic Myotis genomes
Edgar G. Gutiérrez1, Jesus E. Maldonado2, Gabriela Castellanos-Morales3, Luis
E. Eguiarte4, Norberto Martínez-Méndez1 and Jorge Ortega1

1Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad
de México, Mexico

2Center for Conservation Genomics, Smithsonian’s National Zoo and Conservation Biology Institute,
Washington, D.C., United States of America

3Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Unidad Villahermosa
(ECOSUR-Villahermosa), Villahermosa, Tabasco, Mexico

4Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México,
Ciudad de México, Mexico

ABSTRACT
Background. Genomic resource development for non-model organisms is rapidly
progressing, seeking to uncover molecular mechanisms and evolutionary adaptations
enabling thriving in diverse environments. Limited genomic data for bat species hinder
insights into their evolutionary processes, particularly within the diverse Myotis genus
of the Vespertilionidae family. InMexico, 15Myotis species exist, with three—M. vivesi,
M. findleyi, andM. planiceps—being endemic and of conservation concern.
Methods. We obtained samples of Myotis vivesi, M. findleyi, and M. planiceps for
genomic analysis. Each of three genomicDNAwas extracted, sequenced, and assembled.
The scaffolding was carried out utilizing the M. yumanensis genome via a genome-
referenced approach within the ntJoin program. GapCloser was employed to fill
gaps. Repeat elements were characterized, and gene prediction was done via ab
initio and homology methods with MAKER pipeline. Functional annotation involved
InterproScan, BLASTp, and KEGG. Non-coding RNAs were annotated with INFER-
NAL, and tRNAscan-SE. Orthologous genes were clustered using Orthofinder, and a
phylogenomic tree was reconstructed using IQ-TREE.
Results. We present genome assemblies of these endemic species using Illumina
NovaSeq 6000, each exceeding 2.0 Gb, with over 90% representing single-copy genes
according to BUSCO analyses. Transposable elements, including LINEs and SINEs,
constitute over 30% of each genome. Helitrons, consistent with Vespertilionids, were
identified. Values around 20,000 genes from each of the three assemblies were derived
from gene annotation and their correlation with specific functions. Comparative
analysis of orthologs among eight Myotis species revealed 20,820 groups, with 4,789
being single copy orthogroups. Non-coding RNA elements were annotated. Phyloge-
nomic tree analysis supported evolutionary chiropterans’ relationships. These resources
contribute significantly to understanding gene evolution, diversification patterns, and
aiding conservation efforts for these endangered bat species.
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INTRODUCTION
Whole genome sequences contribute to the identification of the genetic basis of
specialization, of adaptation to ecological niches, and of different evolutionary events
associated with natural history, origin, and persistence (Zhao et al., 2009; Árnason et al.,
2018; Coimbra et al., 2021). Genome sequences are a fundamental to understand genome
architecture, including the gene repertoire, the molecular mechanisms, and the adaptive
evolution of the species (Jones, Teeling & Rossiter, 2013; Ekblom &Wolf, 2014; Teeling et
al., 2018; Armstrong et al., 2019; Jung et al., 2020).

In the last decade, comparative genomic analyses have been used in different groups of
mammals for the detection of genetic variation, gene rearrangements, evolution of gene
families, functional genomics and phylogenomics, among others (Gorbunova et al., 2014;
Zoonomia Consortium, 2020; Chai et al., 2021; Yuan et al., 2021). To date, there are about
50 bat genome assemblies available in the NCBI GenBank database, which have been
used to identify unique bat evolutionary traits (e.g., Jebb et al., 2020; Nikaido et al., 2020;
Moreno-Santillan et al., 2021). Research focused on bat genomic comparisons has revealed
signatures of adaptive evolution in genes related to metabolism, reproduction, visual
function, longevity, the origin of flight under positive selection, expansion and contraction
events of gene families associated with immune response, and chemosensory receptors
(Seim et al., 2013; Zhang et al., 2013; Hawkins et al., 2019; Gutiérrez-Guerrero et al., 2020;
Yohe et al., 2021). Other previous studies have been instrumental in unveiling signatures
of parallel and convergent evolution in genes involved in the echolocation process (Davies
et al., 2012; Parker et al., 2013; Wang et al., 2020).

Bats belong to the Order Chiroptera, representing one of the most diverse groups of
mammals, with 1,474 recognized species (Simmons & Cirranello, 2024), and are ca. one fifth
of all extant mammalian species (Wilson & Mittermeier, 2019). Bats are the sole group of
mammals capable of performing active flight (Jones & Teeling, 2006), and most bat species
possess a laryngeal echolocation system, allowing to effectively navigate, detect, locate, and
capture their food (usually insects, but see below) at night (Jones & Teeling, 2006; Dong et
al., 2016). These adaptations enabled bats to exploit a wide range of ecological niches, with
the ability to feed on insects, crustaceans, frogs, small mammals, fish, nectar, fruits, and
blood (Kunz et al., 2011; Aizpurua & Alberdi, 2018).

Interestingly, bats seem to harbor significantlymore zoonotic viruses than othermammal
groups but without manifesting any disease (Calisher et al., 2006; Olival et al., 2017), that
seems to be related to a unique immune system and other unique adaptations that help
counter infections (Skirmuntt et al., 2020; Dutheil, Clinchamps & Bouillon-Minois, 2021;
Ahn et al., 2023). Some of these viruses of medical relevance for humans are Ebola, Nipah,
Hendra, and the severe acute respiratory syndrome coronaviruses (i.e., SARS-CoV) (Li et
al., 2005; Clayton, Wang & Marsh, 2013).
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Bats have genomes with a more limited size and constraint compared to other
mammalian orders, exhibiting a genome around 2 Gb in size, comparable to that of various
bird species (Smith, Bickham & Gregory, 2013; Kapusta, Suh & Feschotte, 2017; Sotero-Caio,
Baker & Volleth, 2017). Bat karyotypes exhibit a wide range of diploid numbers, spanning
from 2n = 14 to 2n = 62 in Vampyressa and rhinolophid species, respectively (Kasai,
O’Brien & Ferguson-Smith, 2013). Notably, within the Vespertilionidae family, particularly
in the genusMyotis possesses a karyotype with a diploid number of 44, which has remained
unchanged and is therefore considered ancestral (Bickham et al., 2004; Volleth & Heller,
2012; Sotero-Caio, Baker & Volleth, 2017).

Vespertilionidae is the most species-rich family within Chiroptera, including more
than 530 species (Hill & Smith, 1984; Simmons & Cirranello, 2024). Vespertilionid bats
are found around the world, from tropical forests, semi-deserts, and deserts to temperate
regions (Stadelmann et al., 2004; Burgin et al., 2018). In this family, the genus Myotis is
very diverse, with ca. 139 in all the continents, except the polar regions (Stadelmann et al.,
2004; Simmons & Cirranello, 2024). MostMyotis species are insectivorous, but some eat fish
regularly or occasionally basis (Siemers et al., 2001; Ma et al., 2003; Otalora-Ardila et al.,
2013; Aizpurua et al., 2016). Myotis bats have three main ecomorphotypes reflecting their
feeding-foraging ecology (Findley, 1972; Ruedi et al., 2013; Ghazali, Moratelli & Dzeverin,
2017): ‘‘foliage gleaners’’, ‘‘trawlers’’ and ‘‘aerial netters’’ (Findley, 1972; Morales et al.,
2019). These ecomorphotypes evolved several times in the different biogeographic regions
where Myotis bats are found (Ruedi & Mayer, 2001; Ghazali, Moratelli & Dzeverin, 2017).
Hence, the entire genusMyotis is a notable example of diversification, showcasing ecological
and morphological convergences (Stadelmann et al., 2004; Ruedi et al., 2013;Morales et al.,
2019).

A total of 139 Myotis species have been described, making it the most diverse genus of
mammals (Simmons & Cirranello, 2024). In Mexico 15 species of Myotis are found (11%
of all known Myotis species); three are considered endemic: M. vivesi, M. findleyi, and
M. planiceps (Ceballos, 2014). The IUCN Red List of Threatened Species classifiesM. vivesi
as Vulnerable, andM. findleyi andM. planiceps as Endangered (Arroyo-Cabrales & Ospina-
Garces, 2016a; Arroyo-Cabrales & Ospina-Garces, 2016b; Arroyo-Cabrales & Ospina-Garces,
2016c). These three species have restricted geographical distributions: M. vivesi is mainly
found in islands of the coast of Gulf of California in the state of Sonora, and Baja California
peninsula (Avila-Flores & Medellín, 2014); M. findleyi is only found in the Islas Marias in
the Pacific Ocean, in front of Nayarit state (Wilson, 2014); M. planiceps is restricted to
small and isolated montane areas in Nuevo León, Coahuila and Zacatecas states (Arroyo-
Cabrales et al., 2005; Jimenez-Guzman, 2014), and was once considered extinct (Baillie &
Groombridge, 1996). When grouping their feeding-foraging habits,M. vivesi falls under the
trawlers, whereasM. findleyi andM. planiceps are catalogued as aerial netters.

Research on non-model organisms faces challenges due to limited genomic data
availability. This issue is particularly pronounced in bats, where genomic resources
are scarce for most species, hindering the study of their evolution. The lack of such
resources has impeded research into molecular mechanisms and evolutionary processes
in bats. To address this gap, we present the first genome sequence assembly for three
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endangered endemic Myotis species. Leveraging the Illumina NovaSeq 6000 platform, we
conducted high-throughput sequencing, assembled genomes, and identified transposable
elements, revealing the presence of helitrons. Our study includes a comprehensive
annotation of genes, prediction of non-coding RNA elements, and the generation of a
cluster of orthologous genes by comparing with other Myotis genomes and a chiropterans
phylogenomic analyses. This work contributes valuable insights into genome architecture,
gene repertoires, environmental interactions, and evolutionary mechanisms in this diverse
group of mammals.

MATERIALS & METHODS
Sample collection and sequencing
An individual of Myotis vivesi and M. findleyi specimens were collected in the field, while
the M. planiceps sample was obtained from the collections at the Instituto Nacional de
Antropología e Historia deMéxico and provided by Dr. J. Arroyo-Cabrales. The individuals
(M. vivesi and M. findleyi) underwent sedation using isoflurane. Subsequently, euthanasia
was induced through inhalation within a nitrogen (N2)-filled euthanasia chamber.
Both procedures strictly adhered to the stipulations outlined in the official Mexican
standard (NOM-033-SAG/ZOO-2014), which delineates the approved methodologies for
euthanizing both domestic and wild animals. All samples were collected following the
guidelines established by the American Society of Mammalogists for the ethical use of wild
mammals in research (Sikes, Thompson & Bryan, 2019), and the procedures were carried
out in accordance with Mexican Federal guidelines, license No. SGPA/DGVS/07992/20
issued by Secretaria de Medio Ambiente y Recursos Naturales (SEMARNAT) to Dr.
Jorge Ortega. The samples obtained were preserved in liquid nitrogen, and subsequently
stored at −80 ◦C, following Yohe et al. (2019) protocol for bat tissue collection for -omics
analysis and primary cell culture.M. vivesi was collected in Coronado Island (26◦08′11′′N,
111◦15′55′′W), in the Gulf of California. Myotis findleyi was collected in María Cleofas
Island (21◦19′33′′N, 106◦14′12′′W), in front of Nayarit state.Myotis planicepswas preserved
in ethanol collected in Los Pinos, Arteaga (25◦20′29′′N, 100◦47′24′′W) Coahuila state; this
site is a montane area on the edge of a small patch of piñon pine (Pinus pseudostrobus;
Arroyo-Cabrales et al., 2005). The remaining tissue samples were deposited in the tissue
bank ‘‘Colección de tejidos de Vertebrados de la Escuela Nacional de Ciencias Biológicas’’
(SEMARNAT No. DGVS-CC-328-CDMX/22).

Heart tissue samples fromM. vivesi andM. findleyi, and amuscle tissue fromM. planiceps
were used to extract genomic DNA using the HMW-DNA extraction protocol for animal
tissue with the PureLink and magnetic bead protocol v. 1.2 (Kucka, 2020). Agarose (1%
concentration) gel electrophoresis was used to determine the gDNA integrity, and a Qubit
Fluorometric Quantification (4 model; Thermo Fisher Scientific, Waltham, MA, USA) to
determine the gDNA concentration.

Genomic DNA sequencing was performed using Illumina NovaSeq 6000 technology at
the Novogene UC Davis Sequencing Center (Davis, CA, USA). Libraries were prepared
by DNA fragmentation following the manufacturer’s recommended protocol. Genomic
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DNA was randomly cut into short fragments. The fragments obtained were end repaired
by adding a single adenine base to form an overhang via an A-tailing reaction and further
ligated with Illumina adapters (Table S1). Fragments with adapters were amplified by
PCR, selected for size, and purified. The libraries were verified and quantified using
a Qubit and real-time PCR, and a bioanalyzer was used for size distribution detection.
Quantified libraries were pooled and sequenced according to effective library concentration
and amount of data required. The libraries were selected based on the size of the
fragments, allowing to discern between short (150 bp) and long (>150 bp) DNA fragments.
Subsequently, the hairpin dimers and failed ligation products that formed during this
process were eliminated.

Genome assembly
The total number of obtained reads (in millions of sequences) from Illumina sequencing
were determined through a FastQC analysis (Andrews, 2010). Reads were filtered to a
minimum length of 150 bp and sequence coverage for all species was > 30X. The repair phase
consists of detecting and correcting the errors in the reads. The procedure was carried out
with Trimmomatic v. 0.3.9 (Bolger, Lohse & Usadel, 2014) considering the following steps:
(1) detection of overlap between reads; (2) error correction through a consensus operation,
and (3) elimination of sequencing adapters (from illumina sequencing) contained in reads.
MaSuRCA v. 4.0.9 (Zimin et al., 2013) was run to perform de novo assembly of the filtered
reads. The outcomes of these initial assemblies conducted via a de novo approach were
evaluated using Quast v. 5.0.2 (Mikheenko et al., 2018; Table S2) for comparison.

After the construction of the contigs, scaffolding and gap-filling were carried out to
connect contigs and obtaining longer sequences. First, we ran ntJoin v. 1.1.1 (Coombe et
al., 2020), which is an assembly-driven scaffolder; this program needs a target assembly
and at least one reference-assembly as input files. In this case, we used as a reference
genome M. yumanensis (GCA_028538775.1). The genome sequence of M. yumanensis is
one of the few NearcticMyotis species available in the NCBI GenBank database. ntJoin uses
minimizer graphs to produce a mapping between assemblies and reference information
to generate scaffolds in the target assembly (Coombe et al., 2020). We subsequently ran
GapCloser (Luo et al., 2012) for gap-filling using the filtered reads. Finally, the quality and
integrity of the assembly was evaluated through the quantification of the genome assembly
metrics (total length, total of contigs and scaffolds, L50, N50, among others) with the Quast
software. Additionally, a visualization of each assembly contiguity and completeness was
generated using assembly-stats v. 17.02 (Challis, 2017). The evaluation of the integrity of
the assembly was performed by searching for single copy orthologous genes with BUSCO
v. 5.4.3 (Manni et al., 2021) and the Mammalia_odb10 database that currently includes
9226 mammalian orthologous genes, available on OrthoDB (https://www.orthodb.org;
Kuznetsov et al., 2023).

Characterization of repetitive elements
Characterization of transposable elements (TEs) included in each assembly were predicted,
annotated, and masked using RepeatModeler and RepeatMasker v. 4.1.3 (Flynn et al., 2020;
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Smit, Hubley & Green, 2022). RepeatModeler identified families of transposable elements
throughout the genome (Flynn et al., 2020). For RepeatMasker we used two databases,
one database is a bat-specific custom transposable elements generated by manual curation
(Jebb et al., 2020), the second contains mammalian transposable elements available on
RepBase, as well as a manual curation of TE sequences from the Zoonomia project
(Zoonomia Consortium, 2020; Paulat et al., 2022). After obtaining the masked genomes
and files containing the repetitive elements found in our genomes, we calculated the
substitution rate (through the Kimura substitution level; Kimura, 1980) of the TE’s,
using the calcDivergenceFromAlign.pl and createRepeatLandscape.pl scripts provided in the
RepeatMasker package. The Kimura substitution model (Kimura, 1980) was then used to
estimate the relative age and history of transposition of the TE’s sequences in the three
genomes.

Gene prediction and functional annotation
Protein-encoding genes in the three Myotis genomes were comprehensively annotated
using two approaches. The first approach is carried out through different types of
protein/transcripts evidence (by homology) that is available in databases. The second
is known as ab initio gene prediction. These two gene annotations approaches were
performed in the Maker pipeline v. 2.31.10 (Holt & Yandell, 2011). The masked genomes
(output files of RepeatMasker) and the available extrinsic evidence were used as input files
to perform gene prediction by homology.We used transcriptomic and proteomic data from
M. lucifugus (GCF_000147115.1) and M. myotis (GCA_014108235.1) available from the
NCBI GenBank database as extrinsic evidence. In the second approach, the ab initio gene
prediction was carried out using the output data from the first run (.gff3 extension out file
fromMaker result) through the Augustus v. 3.4.0 (Stanke & Morgenstern, 2005) and SNAP
v. 2006-07-28 (Korf, 2004) within the Maker pipeline. Additionally, the Annotation Edit
Distance (AED) score was calculated to determine the accuracy of each gene annotation,
with the AED_cdf_generator.pl script, also available within the Maker pipeline. The AED
score is employed to assess the precision of a genome annotation. It is derived frommerging
annotation metrics related to accuracy and comprehensiveness. Annotations with AED
scores at or below 0.50 are deemed satisfactory, while those with scores at or below 0.30
are indicative of exceptionally high-quality annotations (Holt & Yandell, 2011).

Functional annotation of the structural final gene sets was performed by detection of
protein domains using three approaches. The first was carried out using InterproScan
v. 5.62–94.0 (Jones et al., 2014) and each of the gene predictions were compared against
gene annotations available in the InterPro database (Blum et al., 2021). The InterPro
database integrates predictive information about protein function from many resources
providing a description of the protein function (Blum et al., 2021). The second approach
is based on protein homology through BLASTp v. 2.13.0+ (Camacho et al., 2009). This
package requires a database to compare and detect the best match for each gene analyzed.
The functional inference analysis was generated using the protein sequence databases
UniProtKB/Swiss-Prot (UniProt Consortium, 2023) and NCBI RefSeq (O’Leary et al.,
2016). The third approach corresponds to the search for putative biological functions of
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the structural predicted genes were assigned by compared against the Kyoto Encyclopedia
of Genes and Genomes (KEGG; Kanehisa et al., 2023). Low quality genes of less than 50
amino acids and/or exhibiting premature termination were removed.

ncRNA annotation
To predict and annotate all non-coding RNA (ncRNA) sequences included in our genomes,
we used INFERNAL v. 1.1.4 (Nawrocki & Eddy, 2013) and tRNAscan-SE v. 2.0.12 (Chan
et al., 2021). Five main types of ncRNA were annotated in these analyses: transfer RNA
(tRNA), ribosomal RNA (rRNA), micro-RNA (miRNA), small nucleolar RNA (snoRNA),
and small nuclear RNA (snRNA). The tRNA genes were annotated by tRNAscan-SE, with
parameters assigned for eukaryotic genomes, and the sequences of the snoRNA, snRNA,
rRNA and miRNA genes were inferred with INFERNAL.We used the Rfam v.14.9 database
(Kalvari et al., 2020) as a reference to perform the aforementioned analysis.

Homology inference
Orthologous gene clustering was conducted employing two distinct approaches. The first
approach involved consolidating our three recently acquired gene annotations with an
additional five gene annotations linked to Myotis species: three species distributed in
the Old World (M. myotis, GCF_014108235.1; M. daubentonii, GCF_963259705.1, and
M. davidii, GCF_000327345.1/) and two species distributed in the NewWorld (M. brandtii,
GCA_000412655.1, andM. lucifugus, GCA_000147115.1). These annotations were sourced
from the NCBI RefSeq database. For the second approach, we combined our three Myotis
gene annotations, with 37 other bat genome annotations most of these provided by
Moreno-Santillan et al. (2021); as well as two gene annotations that used as outgroups
(Table S3). These two strategies were instrumental in the grouping of orthologous genes.
To perform orthologous gene clustering, we utilized Orthofinder v. 2.5.4 (Emms & Kelly,
2019) with default settings. In addition, we harnessed the capabilities of OrthoVenn3 (Sun
et al., 2023) to explore and visualize the resulting ortholog clusters.

Phylogenomic tree reconstruction
Wesought to unveil the phylogenetic relationships among the recently acquired annotations
of endemic Mexican Myotis species and the bats with available genomic resources by
reconstructing a phylogenomic tree. In this endeavor, we focused on the clustering of
single-copy orthologous genes. Briefly, the procedure entailed amino acid-level sequence
multiple alignment, incorporating the sequences from 274 single-copy orthogroups. These
orthogroups resulted from the grouping of 40 bat species, with two mammals serving as an
outgroup. TheMAFFT v. 7.520 software (Katoh & Standley, 2013) was employed to perform
thismultiple alignment, and subsequent correctionsweremade to rectifymisaligned regions
using Gblocks v. 0.91b (Talavera & Castresana, 2007). We conducted a search to identify
the optimal evolutionary model that best fits our dataset using ModelTest-NG v. 0.1.7
(Darriba et al., 2020). Finally, the genomic tree was reconstructed through a Maximum
Likelihood (ML) approach, using the IQ-TREE v. 2.2.5 software (Minh et al., 2020) with
branch support estimated through 1,000 bootstrapping replicates. The branch lengths
depicted in the tree signify their respective coalescent units.
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RESULTS
For each species more than 200 million of reads were obtained (Fig. S1). The raw reads
from the three sequencings, are accessible to the public under BioProject PRJNA1021227
in the SRA database of the NCBI. FastQC analysis showed a total of 238,848,022 reads
by each sense (5′–3′and 3′–5′) for M. findleyi (Fig. S1), followed by 232,122,197 reads for
M. planiceps and 216,183,530 reads for M. vivesi, with the lowest number (Fig. S1). In
general, the reads are 150 bp in length and have a Phred quality ≥ 30 (Fig. S1). Therefore,
sequencing with Illumina Novaseq 6000 was efficient and accurate, placing all reads in the
optimal range. The number of reads eliminated during the post-trimming process did not
exceed 0.003% of the total reads in each file (Fig. S2). The discarded reads encompassed
sequences that did not exhibit concordance between the forward and reverse strands of the
double-stranded DNA, displayed low quality, or contained elements associated with the
adapters utilized during the sequencing process. A second FastQC analysis was performed
to compare between pre- and post- filtering (Fig. S3).

The final length of each genome assembly ranged from M. findleyi with a total of
2,050,536,070 bp (2.05 Gbp) in length in 60,544 scaffolds (Fig. 1; Fig. S4); followed
by the M. vivesi, with a total length of 2,064,249,348 bp (2.06 Gbp) in 56,186 scaffolds
(Fig. 1; Fig. S4) and M. planiceps with 2,080,496,215 bp in 256,303 scaffolds (Fig. 1;
Fig. S4). The GC content was 42.50% in the M. planiceps, 42.71% in M. vivesi, and
42.91% in M. findleyi (Fig. 1; Fig. S5). The N50 for M. vivesi and M. findleyi were N50
= 91,830,945 bp and N50 = 92,497,855, respectively (Fig. 1), while for M. planiceps was
lower, 83,203,680 bp. L50 statistic was seven inM. vivesi andM. findleyi and nine in the case
of M. planiceps (Table S4). Through the detection of orthologous genes with BUSCO and
the Mammalia_odb10 database, we detected 56.5, 91.5 and 93.8% of complete single-copy
genes in M. planiceps, M. findleyi, and M. vivesi, respectively (Fig. 1). The specific number
of complete orthologous genes detected were 5,219, 8,438, and 8,654 in M. planiceps,
M. findleyi, and M. vivesi, respectively (Fig. 1). Contrastingly, the variability in the count
of missing orthologous genes is evident across species. Specifically, forM. vivesi, this figure
stands at 4.2%, while forM. findleyi, it slightly increases to 5.5%. Notably, in the instance of
M. planiceps, this percentage rises to 32.5%, marking the highest proportion noted within
the assemblies (Fig. 1).

In the M. vivesi genome, the analysis using RepeatMasker resulted in the masking of
approximately 36.4%of the total sequence, which corresponds to TEs (Fig. 2), inM. findleyi,
a total of 35.8% of the genome’s total length was masked (Fig. 2) and inM. planiceps 28.7%
of the complete genome sequence was masked (Fig. 2). Within the three genomes the
most frequent TEs, are long interspersed nuclear elements (LINEs) representing 14.4%,
13.2%, 10.6% of the complete genome length in M. vivesi, M. findleyi, and M. planiceps,
respectively (Fig. 2). The second most frequent type of sequences are short interspersed
nuclear elements (SINEs), with a total of 937,607 (5.20%) sequences in M. vivesi genome,
followed by 880,584 sequences (including 6.02%) in M. findleyi genome, and 5.9% of
M. planiceps (Fig. 2). The less abundant repetitive elements included smaller percentages
(<4%) of simple repeats, satellites, and low complexity elements (Fig. 2).

Gutiérrez et al. (2024), PeerJ, DOI 10.7717/peerj.17651 8/29

https://peerj.com
http://dx.doi.org/10.7717/peerj.17651#supp-1
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA1021227
http://dx.doi.org/10.7717/peerj.17651#supp-1
http://dx.doi.org/10.7717/peerj.17651#supp-1
http://dx.doi.org/10.7717/peerj.17651#supp-1
http://dx.doi.org/10.7717/peerj.17651#supp-1
http://dx.doi.org/10.7717/peerj.17651#supp-1
http://dx.doi.org/10.7717/peerj.17651#supp-1
http://dx.doi.org/10.7717/peerj.17651#supp-1
http://dx.doi.org/10.7717/peerj.17651#supp-1
http://dx.doi.org/10.7717/peerj.17651#supp-1
http://dx.doi.org/10.7717/peerj.17651#supp-1
http://dx.doi.org/10.7717/peerj.17651


Figure 1 Graphical representation of the genome assembly statistics of (A)M. vivesi, (B)M. findleyi,
and (C)M. planiceps. The contiguity and genome assembly metrics of each of the threeMyotis species
are visualized as a circle, representing the total length of each assembly (2 Gb). The graphs were
generated and visualized at: https://github.com/rjchallis/assembly-stats. (D) The integrity analysis
of each genome assembly through the identification of orthologous genes with BUSCO and the
Mammalia_odb10 database.

Full-size DOI: 10.7717/peerj.17651/fig-1

The Kimura distance-based copy divergence analyses showcased a similarity in
divergence of the most prevalent TEs sequences compared to the consensus TE sequence
across the threeMyotis genomes (Fig. 2). Within the genome profiles of the threeMyotis, a
notable predominance of retrotransposons was observed in contrast to other elements (e.g.,
DNA transposons). The Kimura distance analysis indicated a relatively recent transposition
activity, aligning with the maximum peaks of the mainly TE families (Fig. 2). These
peaks are related to bursts of TE transposition events within each genome. Noteworthy
divergence peaks were particularly prominent in LINEs, Helitrons, and SINEs elements,
while comparatively smaller divergence peaks appeared inDNA elements and LTR elements
(Fig. 2). Remarkably low K values detected among the analyzed genomes pointed to the
existence of recent, potentially active copies of elements. The profiles are characterized by
a significant peak of relatively recent LINEs elements (including Helitrons and SINEs) and
a more recent peak of DNA transposons (with the minimum K values). Among the oldest
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Figure 2 Repeat landscape obtained by the Kimura substitution level related to the occupied propor-
tion of the genome (left) and the fraction (right; pie chart) of the TE families (SINEs, LINEs, LTR retro-
transposons, Helitrons and DNA elements) in the three genomes. For each element, the graph shows the
sequence divergence from its consensus with the Kimura distance (x-axis) in relation to the genome per-
cent of each TE families (y-axis). Elements with older transposition activity are shown on the right side of
the graph, while most recent transposition activity are depicted on the left side. The graphs correspond to
the genomes of (A)Myotis vivesi, (B)M. findleyi, and (C)M. planiceps.

Full-size DOI: 10.7717/peerj.17651/fig-2
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Figure 3 Number of predicted genes in the three genomes of the Mexican endemic species ofMyotis.
Structurally and functionally annotated using the indicated databases. (A) Protein coding genes, and (B)
the main types of non-coding RNA genes.

Full-size DOI: 10.7717/peerj.17651/fig-3

(with the > K values) identifiable elements within the three Myotis genomes are LINEs,
SINEs, and LTRs.

We performed a structural gene prediction detecting 21,394, 23,444, 23,851 genes in
M. findleyi, M. planiceps, and M. vivesi, respectively (Fig. 3). Regarding the functional
annotation using the InterProScan and UniProtKB/Swiss-Prot databases, these values
changed, annotating between 86.2 and 91.9% of genes associated with a function in
M. findleyi, followed by 91.2 and 93.7% inM. vivesi (Fig. 3; Table S5) and 91 and 94.8% in
the M. planiceps (Fig. 3; Table S5). In addition, the KEGG annotation score 49.9, 45.7 and
44.7% positive hits inM. vivesi,M. planiceps, andM. findelyi, respectively (Fig. 3; Table S5;
Fig. S6). Furthermore, the cumulative fraction of the AED distribution ranged from 0 to 1,
where more than 90% of the annotations have an AED score less than 0.5, portraying the
satisfactory annotation precision for each of the threeMyotis genomes (Fig. S7).

Prediction of ncRNA elements resulted in the annotation that ranged from 2000
to 2500 ncRNA sequences, while the largest number of sequences was snoRNA in all
three cases (1028—M. findleyi; 1041—M. vivesi; and 1059—M. planiceps, Fig. 3). The
miRNA sequences exhibited varying counts among the species: M. planiceps displayed
397 sequences, M. findleyi revealed a count of 492, while M. vivesi showcased the highest
count at 542 sequences. The counts of tRNA differed across the species: M. planiceps
exhibited 218 sequences,M. findleyi showed 263, andM. vivesi presented the highest count
at 284 sequences (Fig. 3). The snRNA elements counted for 205, 247, and 324 sequences
in M. planiceps, M. findleyi, and M. vivesi, respectively. Among the ncRNA annotation,
rRNA genes were found to have the lowest frequency, ranging from 10 in M. planiceps, 13
sequences inM. vivesi, and 19 elements inM. findleyi (Fig. 3).

We implemented orthologous gene clustering using eight species of the genus Myotis
(three Mexican endemics and five other available species in the NCBI RefSeq database)
which generated a total of 20,820 orthogroups. The total number of genes associated in
orthogroups was 170,943, corresponding to 95.2% of the total number of genes analyzed,
indicating that only 4.8% of these were unassigned genes. Of the total orthogroups, 9,398
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contain at least one representative in each of the complete set of the eight species analyzed.
Of the above set, 4,789 correspond to single-copy orthogroups (Table S6). The number
of singletons has the lowest proportion with 324 (Table S6). Ortholog clustering analysis,
focusing on the association betweenOld andNewWorld species, has generated orthogroups
containing at least one representative of each subset, shedding light on similarities between
species. Specifically, when examining New World species, a substantial 9,648 orthogroups
were identified, indicating a notable clustering effect within this subset. Similarly, when
associating the three endemic Mexican Myotis species with those distributed in the Old
World, another 9,657 orthogroups were shared, signifying important genetic similarity
(Fig. 4). Nevertheless, pairwise comparison between the three endemic species under
scrutiny and the Myotis species from the New and Old World starkly reveals disparities in
shared orthogroup numbers (Fig. 4). A higher proportion of shared orthogroups is observed
among NewWorld species. In contrast, a lower ratio characterizes the relationship between
the species in our study and those distributed in the Old World (Fig. 4). These findings
are supported in heat map analysis, which vividly illustrates a strong relationship of
orthologous genes between phylogenetically related species (Fig. S8).

By clustering orthologous genes from our focal species with genomic datasets derived
from 39 other species including two species from the supraorder Euarchontoglires were
employed as outgroups, which included humans andmice, we successfully identified a total
of 247 orthogroups. Subsequently, a multiple sequence alignment was performed using
a concatenated sequences for each species, yielding a comprehensive matrix comprising
approximately 197,975 amino acids for every species included in our analysis. In this
endeavor, we employed the JTT+I+G4 evolutionary model, selected as the most suitable
model for our data based on the outcomes of ModelTest-NG. Our findings pertaining to
the reconstruction of the phylogenomic tree using aML analysis provide robust support for
an early divergence event between the suborders Yinpterochiroptera and Yangochiroptera.
This inference is underscored by a bootstrap support value of 100 (Fig. 5). The species of
interest included to the Yangochiroptera lineage, within the Vespertilionidae family, and
they form a well-supported cluster with other members of the Myotis genus, with robust
branch support ranging from 94 to 100% bootstraps.

DISCUSSION
We assembled, annotated, and described the first reference-based drafts genomes for three
Mexican endemic Myotis species that will be useful for studies on adaptive evolution,
molecular mechanisms and gene rearrangement, among others. The genomes ranged
from 2.05 to 2.08 Gb, similar to genomes in other Myotis species (i.e., 2.03 Gb in
M. lucifugus (GCA_000147115.1), 2.06 Gb in M. davidii (GCA_000327345.1), 2.11 Gb
in M. brandtii (GCA_000412655.1), two different genome lengths in M. myotis (2.0 and
2.29 Gb; GCA_014108235.1, GCA_004026985.1, respectively), and inM. yumanensis (1.95
and 2.05 Gb; GCA_028538775.1, GCA_028536395.1, respectively)). Species belonging
to other vesper bat have similar genome lengths (i.e., Eptesicus fuscus (2.01 and 2.03
Gb; GCA_027574615.1 and GCA_000308155.1, respectively), Antrozous pallidus (2.1 Gb;
GCA_027595915.1), Corynorhinus townsendii (2.1 Gb; GCA_026230055.1)).
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Figure 4 Clustering analysis of orthologous genes in eightMyotis species. (A) Venn diagram illustrates
the total orthogroups generated from the association of threeMyotis species endemic of Mexico (M. plan-
iceps,M. vivesi andM. findleyi) together with two otherMyotis species from the NewWorld (M. brandtii
andM. lucifugus). (B) Orthogroups shared between the three Mexican endemic species and threeMyotis
species distributed in the Old World (M. Myotis,M. davidii andM. daubentonii) are represented. Gene
annotations were obtained from NCBI RefSeq. The Venn Diagrams were created in https://orthovenn3.
bioinfotoolkits.net/and subsequently refined using Adobe Illustrator v. 27.0. (C) The Mexican endemic
Myotis species analyzed in this study. Photos by: Edgar G. Gutiérrez and Mercedes Morelos.

Full-size DOI: 10.7717/peerj.17651/fig-4

Variation in length between genomes is common among species in a genus and, even
in different individuals of the same species. Variation in genome length in mammals
can be explained by different numbers in repeat sequences, including satellite DNA, TEs
(e.g., LINEs and SINEs) and ribosomal genes (Lindblad-Toh et al., 2005; Biémont, 2008;
Kapusta, Suh & Feschotte, 2017). In addition, it has been reported that centromeres and the
Y chromosome play an important role in the differences in genome size both within and
between species (Biémont, 2008). Another likely explanation is artifacts resulting from the
sequencing technology, the depth of sequencing, and the employed assembly algorithms.
The future implementation of diverse levels of sampling and replicates and the adoption
of long-read sequencing technologies such as PacBio and Nanopore will play a crucial
role in elucidating the scope and underlying factors contributing to both within- and
between-species variations (Sims et al., 2014).

Transposable elements constituted∼29–36%of the total length of each of our assemblies,
encompassing SINEs, LINEs, LTR retrotransposons, DNA transposons and other low
frequency elements including simple repeats and satellites. The proportions of TEs
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Figure 5 Amaximum likelihood phylogenomic tree was reconstructed for a concatenated dataset
comprising 42 species with 247 orthogroups. The phylogenomic tree was reconstructed using the
JTT+I+G4 model of sequence evolution. The numbers on the nodes represent bootstrap values. The
colors distinguish the different families, indicated on the figure, except for the families within the suborder
Yingpterochiroptera which we represented as single group.

Full-size DOI: 10.7717/peerj.17651/fig-5

families in these three Myotis species were lower compared to other Vespertilionid
bats: Eptesicus fuscus (40.58%), M. davidii (42.61%), M. lucifugus (47.16%), Pipistrellus
pipistrellus (47.95%), and others (Osmanski et al., 2023), but we should remember that the
quality and depth of the assembly could affect the precision of the TE annotation (Osmanski
et al., 2023). Across other bats, the distribution of TEs varies notably. For instance, in
Molossus molossus (Molossidae), TEs constitute about 41.91% of the total genome length,
while in Carollia perspicillata (Phyllostomidae), this proportion is approximately 31.10%.
In the case of Micronycteris hirsuta (Phyllostomidae), TEs encompass a significant 46.71%
of the genome.When examining bats belonging to the Yinpterochiroptera suborder, the TE
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proportions tend to be approximately one-third of the genome size. For instance, Pteropus
vampyrus (Pteropodidae) displays a TE proportion of around 30.37%, Rhinolophus sinicus
(Rhinolophidae) exhibits 34.97%, and Rousettus aegyptiacus (Pteropodidae) shows a TE
proportion of 35.79% (Osmanski et al., 2023). In other mammals TE proportions are even
higher, reaching above 50% of the complete genome are common (i.e., the bison, Bison
bison (50.12%), the woodland dormouse, Graphiurus murinus (63.21%), the aardvark,
Orycteropus afer (74.45%), the latter is an example of a mammal that has most of the
genome covered by TEs discovered to date (Osmanski et al., 2023)). In addition, we found
Helitrons in the threeMyotis genomes. The Helitrons elements are represented by a history
of transposition that began about 30-36 mya within the Vespertilionidae family (Thomas
et al., 2011).

The Kimura distance-based comparative analysis, which estimates the divergence of
TE sequences, and relates to the history of transposable activity, reveals that the three
transposable accumulation profiles are shaped by recent bursts of TEs, such as DNA
transposons, and retrotransposons, such as LINEs, and SINEs. These profiles represent
waves of insertion and excision of TEs families to the genomes (Platt II et al., 2014). Our
TE profiles results are in line with recent TEs activity reported in other vespertilionid bats
(e.g., Lasiurus borealis, Eptesicus fuscus), including other Myotis species (e.g., M. myotis, M.
lucifugus and M. brandtii), which have experienced several recent, independent bursts of
DNA transposons and retrotransposons (Platt II, Mangum & Ray, 2016; Jebb et al., 2020;
Osmanski et al., 2023; Paulat et al., 2023).

Nevertheless, accumulation profiles of TEs exhibit distinct variations among other
vesper bats, such as Miniopterus natalensis and Pteronotus parnellii, but also in species
of the Yinpterochiroptera suborder, e.g., Pteropus vampyrus, Rousettus leschenaultii, and
Eidolon helvum. These TE accumulation profiles unveil a contrasting trend wherein the
ages of TE insertions reflect extended periods of genomic inactivity or very low activity.
This phenomenon is particularly evident in the older waves of TE insertions, underscoring
the intermittent nature of genomic dynamics in these species (Platt II, Mangum & Ray,
2016; Nikaido et al., 2020; Osmanski et al., 2023; Paulat et al., 2023). Although the origin of
TEs is not exactly known, horizontal transfer could be a likely mechanism of TEs origin
and spread between genomes (Kofler et al., 2018; Paulat et al., 2023).

Overall, between 2,000 and 2,500 non-coding RNA (ncRNA) sequences were annotated.
Among these sequences, a larger number of snoRNA sequences were identified in the three
species under examination, each with comparable counts: 1,028 in M. findleyi; 1,041 in
M. vivesi; 1,059 in M. planiceps (Fig. 3). In contrast, previous studies have reported highly
variable quantities of each ncRNA type in other bat species, including someMyotis species
(Platt II et al., 2014; Yuan et al., 2015; Jebb et al., 2020;Mostajo et al., 2020). Our results are
consistent with M. myotis, showing a higher abundance of snoRNA elements, followed by
miRNAs, and a lower abundance of rRNA (Jebb et al., 2020). However, our results differ
from M. lucifugus, M. brandtii, and M. davidii, which exhibited a higher abundance of
lncRNA elements, followed by miRNAs, and a lower abundance of snoRNA elements (see
Mostajo et al., 2020). Discrepancies also arise to the findings in M. ricketii, wherein Yuan
et al. (2015) identified a notably higher count of rRNA elements in contrast to any other
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category of non-coding RNA. There are few genomic or transcriptomic studies in bats that
have annotated non-coding RNA elements. Consequently, our understanding regarding
the vast collection of untranslated RNA and its fundamental role in various regulatory
and cellular functions is limited, including their roles in differentiation and development
(Bartel, 2004; Mostajo et al., 2020).

The prediction and annotation of orthologous genes is a fundamental requirement for
many genomic analyses. This has enabled the prediction of gene function, the evolution
of gene families, the reconstruction of phylogenetic trees, the identification of differences
in the genes underlying the phenotypes that are likely to be a consequence of adaptations
or may contribute to adaptations that evolved in organisms (Kirilenko et al., 2023). The
number of structurally annotated genes and genes associated with a biological function
varied between each of our genomes (e.g., InterProScan annotation, from 18,439 to 22,351
in M. findleyi, and M. vivesi, respectively). This variation aligns with findings reported in
genomic annotation inferences for other bat species (Myotis myotis (21,303 genes),Molossus
molossus (20,221 genes), and Phyllostomus discolor (20,953 genes) (Jebb et al., 2020) and
other mammalian species (i.e., Ursus maritimus (17,189 genes), Tursiops truncatus (15,868
genes) and Acinonyx jubatus (16,969 genes); (Hecker & Hiller, 2020)). The composition
of the data set as well as technical factors—including differences in the contiguity and
quality of each set—influence on the accuracy of ortholog inference (Trachana et al., 2011;
Kirilenko et al., 2023). Through the association with gene expression (i.e., transcriptomic
data), the quality and precision of the annotations can be increased. Furthermore, gene
loss events contribute to the variation in gene number among mammalian genomes. These
gene losses have been reported to be involved with prominent physiological or metabolic
adaptations (Sharma et al., 2018).

Clustering of orthologous genes using OrthoFinder suggests that more than 95% of
genes were clustered into orthogroups and are associated among the eight Myotis species
included in this analysis. By examining theMyotis species represented in each gene cluster,
a total of 9,398 common orthologous gene clusters were identified for the eight genomes
(Table S6). In our clustering analysis of New World Myotis species, distinct patterns
emerged. Specifically, we identified 54, 65, and 101 orthologous groups unique toM. vivesi,
M. findleyi, andM. planiceps, respectively (Fig. 4A). Similarly, a comparable proportion of
exclusive orthogroups was observed in the cluster encompassing our focal species and the
Old World Myotis species (Fig. 4B). These orthogroups probably represent evolutionarily
young genes that have undergone divergence after gene duplication (Assis & Bachtrog, 2015:
Holland et al., 2017). The paired association of orthogroups revealed a greater proportion
of orthogroups shared between species that are more closely related.

The ML phylogenomic tree, constructed for 42 mammalian species, encompassing 40
bats (29 representatives from Yangochiroptera and 11 from Yinpterochiroptera), was based
on the analysis of 247 sets of single-copy orthologous genes. This tree effectively elucidates
the evolutionary history of Chiroptera. Our phylogenetic results align with previous
research using a variety of transcriptomic and other data (Teeling et al., 2005; Lei & Dong,
2016; Hawkins et al., 2019). Yinpterochiroptera and Yangochiroptera received robust
bootstrap support of 100, as determined from the concatenated alignment of orthogroups
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(see Fig. 5). However, unlike earlier studies (e.g., Nikaido et al., 2020), we do not observe
the nesting of megabats within microbat lineages. Within the clade of microbats, which are
included as part of the suborder Yangochiroptera, a distinct divergence is evident between
the branches leading to the superfamily Vespertilionoidea and the branch leading to the
family Phyllostomidae. The latter is the better-represented family, featuring a total of 13
members. Within the superfamily Vespertilionoidea, we successfully position the species
that belong to the family Molossidae, with just two representative species, and the species
grouped within the lineage of the family Vespertilionidae. Within the latter, our species of
interest form a subclade with other Myotis members. However, the demarcation between
the Old World and New World Myotis subclades is gradually becoming discernible. These
results are consistent with findings from earlier investigations (e.g., Morales et al., 2019).
Nonetheless, the ongoing expansion of genomic resources for the Myotis genus and other
bat species remains essential for gaining a comprehensive understanding of the evolution
within this intriguing group.

CONCLUSION AND PERSPECTIVES
Here we present the first genome assemblies of three endemic Mexican bat species from
the genus Myotis. We performed the annotation of transposable elements as well as
protein-coding genes. We assigned putative functions to these gene sets using various
algorithms and databases. We predicted the presence of ncRNA elements within our
genome sequences. Furthermore, we conducted orthologous gene clustering with other
Myotis species, resulting in a substantial number of single-copy orthogroups, that can
be utilized for future investigations involving phylogenetic reconstructions and gene
family evolution. Integration of these genomic resources with developing and forthcoming
datasets, as well as recently published studies for bats and other mammals, as the studies
cited above should enable in-depth future studies aimed to detect species-specific genetic
variants and molecular mechanisms that may potentially influence molecular adaptation
underlying their evolution. We anticipate that the results of these multidisciplinary studies
will have significant conservation applications, such as a better understanding of the genetic
basis of system functions, including the immune system.

We believe these first genome assemblies of three endemic Myotis species from Mexico
will be a useful resource to facilitate comparative genomic investigations in future studies,
focusing on understanding how bats and other mammals have managed to survive
and diversify in their environments through their evolutionary mechanisms, a previous
bat studies have focused on acquiring and comparing complete genomes to establish
associations between protein coding changes and specific adaptations (Teeling et al.,
2018; Jebb et al., 2020) and to produce notable adaptation studies, including molecular
adjustments to feeding habits (Gutiérrez-Guerrero et al., 2020), olfactory receptors (Yohe
et al., 2021), echolocation (Marcovitz et al., 2019; Wang et al., 2021), and immune system
(Jebb et al., 2020; Moreno-Santillan et al., 2021), among others. Future studies should
analyze all the available Vespertilionidae genomes in a comparative manner to discover
ecological and evolutionary patters to explain the adaptive radiation of this genus, and to
understand why it is so successful.
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