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Objective. Surveillance is critical for the rapid implementation of control measures for diseases caused
by aerially dispersed plant pathogens, but such programs can be resource-intensive, especially for
epidemics caused by long-distance dispersed pathogens. The current cucurbit downy mildew platform for
monitoring, predicting and communicating the risk of disease spread in the United States is expensive to
maintain. In this study, we focused on identifying sites critical for surveillance and treatment in an
attempt to reduce disease monitoring costs and where control may be applied to mitigate the risk of
disease spread.

Methods. Static networks were constructed based on the distance between fields, while dynamic
networks were constructed based on the distance between fields and wind speed and direction, using
epidemic data collected from 2008 to 2016. Three strategies were used to identify highly connected field
sites. First, the probability of pathogen transmission between nodes and the probability of node infection
were modeled over a discrete weekly time step within an epidemic year. Second, nodes identified as
important were selectively removed from networks and the probability of node infection was recalculated
in each epidemic year. Third, the recurring patterns of node infection were analyzed across epidemic
years.

Results. Static networks exhibited scale-free properties where the node degree followed a power-law
distribution. Betweenness centrality was the most useful metric for identifying important nodes within the
networks that were associated with disease transmission and prediction. Based on betweenness
centrality, field sites in Maryland, North Carolina, Ohio, South Carolina and Virginia were the most central
in the disease network across epidemic years. Removing field sites identified as important limited the
predicted risk of disease spread based on the dynamic network model.

Conclusions. Combining the dynamic network model and centrality metrics facilitated the identification
of highly connected fields in the southeastern United States and the mid-Atlantic region. These highly
connected sites may be used to inform surveillance and strategies for controlling cucurbit downy mildew
in the eastern United States.
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ABSTRACT

Objective. Surveillance is critical for the rapid implementation of control measures for diseases
caused by aerially dispersed plant pathogens, but such programs can be resource-intensive,
especially for epidemics caused by long-distance dispersed pathogens. The current cucurbit downy
mildew platform for monitoring, predicting and communicating the risk of disease spread in the
United States is expensive to maintain. In this study, we focused on identifying sites critical for
surveillance and treatment in an attempt to reduce disease monitoring costs and where control may

be applied to mitigate the risk of disease spread.
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Methods. Static networks were constructed based on the distance between fields, while dynamic
networks were constructed based on the distance between fields and wind speed and direction,
using epidemic data collected from 2008 to 2016. Three strategies were used to identify highly
connected field sites. First, the probability of pathogen transmission between nodes and the
probability of node infection were modeled over a discrete weekly time step within an epidemic
year. Second, nodes identified as important were selectively removed from networks and the
probability of node infection was recalculated in each epidemic year. Third, the recurring patterns
of node infection were analyzed across epidemic years.

Results. Static networks exhibited scale-free properties where the node degree followed a power-
law distribution. Betweenness centrality was the most useful metric for identifying important
nodes within the networks that were associated with disease transmission and prediction. Based
on betweenness centrality, field sites in Maryland, North Carolina, Ohio, South Carolina and
Virginia were the most central in the disease network across epidemic years. Removing field sites
identified as important limited the predicted risk of disease spread based on the dynamic network
model.

Conclusions. Combining the dynamic network model and centrality metrics facilitated the
identification of highly connected fields in the southeastern United States and the mid-Atlantic
region. These highly connected sites may be used to inform surveillance and strategies for

controlling cucurbit downy mildew in the eastern United States.

Subjects: Computational Biology, Ecology, Epidemiology, Plant Science, Statistics

Keywords: Centrality measures, Disease monitoring, Infection frequency, Network analysis,

Scale-free network
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47 INTRODUCTION

48 Pathogen dispersal is a_at different spatial
49 scales that can range from local to the landscape level. The transmission of invasive plant
50 pathogens and the spread of resultant epidemics influences essential ecosystem services, including
51 biodiversity and food production in agricultural systems (Brown & Hovmaeller, 2002; Crowl et al.,
52 2008).—nd eradication programs can be implemented to reduce
53 the potential impact of these epidemics. However, the planning and implementation of an-
_requires an understanding of the mechanics of invasions and the ecological consequences,
55 risks, and dynamics of disease spread. (SHEHIGHONS can benefit greatly from epidemic records
56 within a region as they enable an analysis of the overall structure of pathogen dispersal.
57 _or disease epidemics and risk-
58 based surveillance. For example, timely recording of animal movements was fundamental in the
59 containment of the 2011 foot and mouth disease epidemic in the UK, for which retrospective
60 analyses demonstrated that initial spread was influenced by the frequency of animal movement
61 (Ferguson, Donnelly & Anderson, 2001; Kao et al., 2006).

62 One approach to understand pathogen dispersal and the spread of resultant epidemics is
63 through network analysis, a method that is becoming increasingly popular but still has limited
64 application in plant disease epidemiology (Garrett et al., 2018, Xing et al., 2020). Networks
65 consist of ‘nodes’ and ‘links’, where nodes are the entities of interest (e.g., individual fields or
66 observed sites of disease outbreak), while links connect nodes in various ways, for example, the
67 (OICHEANONEHEOMEor pathogen transmission between two nodes. Further, networks can be

68 weighted with link weights that are proportional to the probability of transmission. Networks have

69 been used to describe (iEISPICAUIONEPIGEHNEY causcd by aerially dispersed plant pathogens such
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as Podosphaera macularis in hop (Gent, Bhattacharyya & Ruiz, 2019) and Phakopsora pachyrhizi
in soybean (Sutrave et al., 2012; Sanatkar et al., 2015). The primary determinants in pathogen
dispersal, such as source strength, location of host populations and relevant covariate information,
can be formulated as a network spreading model (Firester, Shtienberg & Blank, 2018; Garrett et
al., 2018; Gent, Bhattacharyya & Ruiz, 2019; Sutrave et al., 2012). Such models can combine
static spatial components, such as field location, and dynamic components of an epidemic, such as
wind, to infer the underlying contact structure of landscape connectivity (With et al., 1997).

The choice of networks to be studied depends on several factors that include the disease of
interest and specific questions on the network structure. The latter, in turn, influences the type of
network measures to be used in the analysis of pathogen dispersal and disease spread. Static and
dynamic networks are common in landscape connectivity analyses. Connections in a static network
are fixed links, while connections in a dynamic network change over time. Both static and dynamic
networks have been applied in plant disease epidemiology (Sanatkar et al., 2015, Sutrave et al.,
2012). In dynamic networks, between-node distances, host availability, wind speed and wind
direction, can be formulated as a susceptible-infected (SI) model to describe epidemic spread
(Sutrave et al., 2012). Further, plant diseases display seasonal differences in the occurrence and
intensity of epidemics. Thus, analysis of data from multiple epidemic years is useful in determining
if there are recurring patterns that could inform monitoring or disease control measures. Highly
connected nodes provide- effective surveillance and opportunities for more targeted control
to reduce disease spread within the network. An open question still remains regarding which

centrality measures are (SSENMPONMIENONNUCHUNINEMIPONANIIONES for surveillance and

managing real-world networks (Holme, 2017). Due to inherent differences in pathogen dispersal

Peer] reviewing PDF | (2023:12:93930:0:1:NEW 8 Dec 2023)


Anjali Pande
I think this "more" is unnecessary

Anjali Pande
Important twice in a row - I would replace with "….measures are crucial for…" or "….measures are key to identify…


PeerJ

100

101

102

103

104

105

106

107

108

109

110

111

and disease spread mechanisms, centrality measures used to identify important nodes for
surveillance may be specific to different pathosystems (Holme, 2018).

A motivating plant disease example for network analysis to inform surveillance and disease
control is cucurbit downy mildew (CDM). A resurgence of the disease occurred around the world
in the last 20 years that fundamentally altered cucurbit production and disease management at
multiple scales (Holmes et al., 2015; Ojiambo et al., 2015). The resurgence of CDM in Europe and
the United States was attributed to the introduction of a new pathotype or species that was
previously limited to East Asia (Cohen et al., 2015; Thomas et al., 2017). Fungicides are integral
to CDM control due to the (HEKCHCHNaSadcquatcHesisanes nd in the absence of control,
the disease can result in complete crop loss (Holmes et al., 2015). The disease is caused by an
obligate pathogen, Pseudoperonospora cubensis, which exhibits significant long-distance
dispersal (Ojiambo & Holmes, 2011). In continental United States, P. cubensis overwinters below
approximately 30-degree latitude in southern Florida and along the Gulf of Mexico on living hosts,
and disease outbreaks in northern states rely on pathogen dispersal from the south (Ojwang’ et al.,

2021). In 2008, disease surveillance based on a series of sentinel and non-sentinel field sites was

implemented as part of the CDM ipmPIPE (http://cdm.ipmpipe.org) surveillance system (Ojiambo
etal., 2011). Based on the prediction framework developed by Main et al. (2001) and the sentinel
site data, an integrated aerobiological model was developed to predict disease occurrence and

progression in the eastern United States (Neufeld et al., 2018) to guide growers on when to apply

thei inital fungicide application. YSRGS
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annually (Ojiambo et al., 2011). However, the disease surveillance system is expensive to maintain
and thus, there is increasing interest in identifying locations that are critical for pathogen dispersal
and disease spread within the region. The latter could facilitate a more targeted surveillance
approach by directing the limited resources to locations that are more integral to disease spread
and pathogen transmission within the region. These sentinel and non-sentinel sites have been
instrumental in understanding the spatio-temporal spread of CDM (Ojiambo & Holmes, 2011,
Ojiambo et al., 2017; Ojwang’ et al., 2021).

In this study, we specifically focus on centrality metrics (Meghanathan & Lawrence, 2016)
that are directly applicable for CDM surveillance and management to identify highly connected
sites. The centrality measures are betweenness (BWC), closeness (CLC), degree (DGC) and
eigenvector (EVC), that have previously been used in network analysis of aerially dispersed plant
pathogens and have relevance in describing epidemic spread (Andersen et al., 2019). Our inference
of the importance of the highly connected sites is limited to disease records from the existing
structure of sentinel and non-sentinel sites within the region. The specific objectives of this study
were to: 1) determine a centrality measure that is most useful in the surveillance and control of
CDM, ii) identify highly connected nodes that are critical for pathogen dispersal and spread of
CDM and iii) establish how removal of highly connected nodes influences the spread and

containment of CDM in the eastern United States.

MATERIALS AND METHODS

Records of CDM epidemics in the eastern United States from 2008 to 2016 were used in this study.

The data were obtained from the CDM ipmPIPE database (http://cdm.ipmpipe.org) that tracks
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reports of disease occurrence in the United States (Ojiambo et al., 2011 )._in the
system include reports from a network of regularly monitored sites (sentinel plots) and voluntary
reports (non-sentinel sites) submitted by commercial growers, agricultural researchers and the
public. Sentinel sites were strategically placed within specific states and planted with different
cucurbit host types for monitoring CDM occurrence. Sentinel sites were located at research
facilities or commercial fields with standard dimensions of 15 m X 61 m and were georeferenced
using the Global Positioning System. These sites were planted early and regularly monitored for
disease symptoms every 1 to 2 weeks by state collaborators and extension specialists. Cucurbits
grown at the sentinel sites were cucumber cv. Straight 8 and Poinsett 76 (Cucumis
sativus), cantaloupe cv. Hales Best Jumbo (Cucumis melo), acorn squash cv. Table Ace (Cucurbita
pepo), butternut squash cv. Waltham (Cucurbita moschata), giant pumpkin cv. Big Max
(Cucurbita maxima), and watermelon cv. Micky Lee (Citrullus lanatus) (Ojiambo et al.,
2011). Non-sentinel reports were from locations not designated for regular surveillance but rather
COIREREEHOIl 0o commercial fields, research plots, and home gardens (Table 1). These non-
sentinel reports are useful given that, in some epidemic years, CDM was reported earlier in non-
sentinel plots than in sentinel plots and thus they could be informative for inferring sources for
disease spread.

Latitudes and longitudes geo-coordinates for sentinel and non-sentinel sites were generated

from the customized section of the CDM ipmPIPE website (http://cdm.ipmpipe.org). Where no

plot data were available, latitudes and longitudes of county centroids were extracted from US
Census Bureau 1990 Gazetteer Files and used as approximate georeferenced points. The compiled
data from sentinel and non-sentinel sites included, among other things, the date of first disease

symptoms, planting type (sentinel plot, commercial field, research plot, home garden, or
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161 unspecified), state, county, and geo-location. A disease case represented a unique combination of
162  host and date of first disease symptoms at a particular location. The total number of disease cases

163  across the study years ranged from 114 to 220, while the number of counties affected ranged from

164 86 to 179 across epidemic years (Table 1). (GONCIAHONIANANSISIVASDCHIOICUROpCICHne)
165 whether the number of counties influenced the number of disease reports (Fig. S1) antd w lcthcs
16 numbers of sites with active surveillance were correlated with the number of counties (1iz. 521 in
167 the region during the study period.

168 Hourly wind speed and direction at each sentinel plot were derived from weather
169 observations from the National Oceanic and Atmospheric Administration Integrated Surface
170  Database (Smith et al., 2011) provided by BASF (Research Triangle Park, Raleigh, NC). Wind
171  measurements were taken at 10 m above the ground. Meteorological wind direction is the direction
172 the wind is blowing from, e.g., wind coming from the north is a northerly wind, and a southerly
173  wind is a wind coming from the south. The raw observations for the meteorological wind direction
174  for a northerly wind is defined as 360°, a southerly wind is 180°, a westerly wind is 270°, and an
175 easterly wind is 90° (Fig. S3). Meteorological wind direction (wd) in degrees was converted to a
176 mathematical direction (md, i.e., the angle as measured in the mathematically conventional way,

177  counterclockwise from the eastward direction) in degrees using the formula:

178

270 — wd, if wd <270
= (1)

360+ (270 —wd), if wd > 270

179  The mathematical direction in degrees was subsequently converted to radians. The x and y (u and
180 v) components of the hourly wind vectors were then calculated as: x =rcos6 and y =rsin0, where
181  ris the wind speed in miles per hour and 0 is the wind direction in radians (Fig. S3).

182

183
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Static network analysis

Spatial networks were constructed for each epidemic year to provide insight into the structure of
CDM spread in the eastern United States. The general methodology involved linking a ‘source’
node i at a one location to a ‘sink’ node j at another location using a probability based on the
distance between the two nodes. This probability is given by a connection kernel which decays
with distance such that connections are predominantly localized (Danon et al., 2010). In this study,
-were a combination of sentinel and non-sentinel sites in the eastern United States. We point
out that other locations in the eastern United States that were not monitored in this study may
contribute to the risk and spread of CDM. However, only the reports of the locations where CDM
was monitored or reported were available for inclusion in this study.

Let N be a set of nodes with node i € {1,..., N) and node j € {2,..., N). To form the static
network, a link (/) between two nodes (i and j) was determined as a function of distance. Between-
node Euclidean distances were calculated using the Haversine formula (Sinnot, 1984) using the
package geosphere (Hijmans, 2017) implemented in the R programming language (R Development
Core Team). The x and y displacement vectors for two nodes were calculated based on the

equirectangular projection as follows:

z= sinz[((p].Jr ®,)/2]+cos(o;)cos(9;) sinz[(kj -),)/2]
L :R><2><atan2(\/z_,\/1—z)

x:RX(}\’j _;\‘i)cos[((Pj-i_ (P;)/z]

y:RX((P_/_(Pi)

2)

Where ¢ = latitude (radians), A = longitude (radians), R = radius of the earth (mean = 6,371 km),

and /; = haversine distance between node i to node ;.

Links were created using an inverse power-law dispersal kernel y = (/, j )7b , Where y is the
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204  probability of transmission from node i to node j (Andersen et al., 2019), I, ; is the distance between

205 node i to node j, and b is the spread parameter. The parameter b was not estimated in this study but
206 -obtained from a previous study on the isotropic spread of CDM in the eastern United States
207  (Ojiambo et al., 2017) that used the same epidemic data from 2008 to 2016 that was used in the
208  present study (ERGHSINGN the authors examined how b varied over multiple epidemic years and

209  found that b varied over years ranging from 1.61 to 3.36. Thus, values of b generated fron{jiligi)

GO v - r- (RSO PONNEEPISHENEA c x 2 mined in the present study as a representation
211  of isotropic spread through links in the network (ilSSCHCCHANIMKRNASHOICUIDEINCCIIOUCHIoD

214 Several static networks were created for a range of values of t for uncertainty analysis to
215 determine the influence of T on link formation as described by Andersen et al. (2019). The range
216  of t selected was bounded by values that produced a full network and a near-zero probability of
217  link formatior{{igMS@to facilitate identification of a network with 4 iGNCOMPONCHIIGIE) since
218 anetwork without a GC does not provide much information on the behavior of epidemic spread.
219 Thus, the value of 1 selected to generate the final static network was identified in two stages. First,
220 7 had to result in a network where each node was connected to at least another node (Ferrari,
221  Preisser & Fitzpatrick, 2014). Second, the selected t also had to have a high proportion of nodes
222 within the GC in the resulting static network. For each epidemic year, the final static network
223  generated using the selected value t for each epidemic year was used in additional network
224  analyses described below (dynamic networks and error quantification). Degree and the exponent
225 of degree distribution, y, for final static networks were estimated using R as described by Kolaczyk

226 & Csardi (2020).
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Network centrality measures

Centrality measures, betweenness centrality (BWC), closeness centrality (CLC), degree centrality
(DGC) and eigenvector centrality (ECV) (Table 2), were calculated using the igraph package in R
(Csardi & Nepusz, 2006) for each static network that was created for different t values as described
below (identification of important nodes). The empirical cumulative probability distributions of
BWC, CLC, DGC, and EVC were calculated for each epidemic year to describe the distribution
of the calculated centrality metrics across all nodes. For a set of centrality metrics across a set of
nodes, the probability of each value was calculated and the empirical cumulative density function
in the ggpubr package in R was used to calculate the cumulative probability distributions of BWC,
CLC, DGC, and EVC. The similarity in ranking of nodes among centrality metrics was then

assessed using Spearman’s rank-based correlation.

Identification of important nodes for disease spread within the static network
Analysis o {iSCaSCIONIDICARS) {rom 2008 to 2016 was conducted to determine if recurring patterns
of disease spread occurred that could help to identify important nodes in the networks. We tallied

the number of times a node wa{JBBSGINE@across epidemic years, i.e., the infection frequency. Two

approaches were used t (S OUEOERA PO RONCuEbE

RSSO RSSENREHON) ) 5-'-c'ion of nodcs based on infection

245

246

247

248

249

frequency and ii) selection of nodes based on a combination of infection frequency and centrality
metrics.

In the first approach, infection frequency was calculated for nodes in the dataset and nodes
were then ranked from highest to lowest based on their infection frequency. In the second

approach, the entire dataset was reduced to contain only nodes where disease occurred in at least
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250 one year. A static network was then created such that each node was connected to at least another
251 node (Ferrari, Preisser & Fitzpatrick, 2014) using b = 2.11 as estimated previously by Ojiambo
252 et al. (2017) and the centrality metrics were calculated for this network. Centrality metrics were
253 scaled to a value between 0 and 1 and combined with infection frequency in a ratio of 4:1
254  (frequency:centrality) for each node to give more weight to infection frequency as described by

255  Sutrave et al. (2012). Nodes were then ranked in decreasing order based on this weighted value.
256  This weighting approach puts more emphasis on nodes where the disease i_

257 and nodes that either are highly connected and acting as bridges o other nodes (BWC), oceur on
258 the shortest path (CLC), or connected to other potential super-spreaders (DGC and EVC). A

259  sensitivity analysis was conducted with four additional frequency:centrality ratios with different
260 weights. The results of this analysis showed that changing the weights changed the ranks but did
261  not give more weight to the infection frequency ((SiglS8) Further, of all ratios tested, only the 4:1
262 ratio resulted in consistent results wherein the higher frequency nodes also had higher weights and
263  were ranked higher (Table S1).

264 For each epidemic year, a range of threshold values (0 <t < 1) was considered such that
265 bounds for T produced a range of dense networks and sparse networks. In each year, 20 individual
266  values of T were used to construct 20 networks. Centrality metrics were calculated for each network
267 and the results were ranked in a decreasing order. The top 20 nodes with the highest scores were
268 then selected and a second ranking was done for each node in this set. The number of times a node
269 appeared in the top 20 ranking across all thresholds was recorded to eliminate the nodes that were
270 ranked with higher scores in the dense and sparse networks. The nodes were then ranked in
271  decreasing order. The results across centrality metrics and T values were combined into a heatmap

272  visualization using the ggplot2 package in R (Wickham, 2016).
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Dynamic network model of cucurbit downy mildew

To describe the dynamic process of disease spread occurring on a static network, we modeled the
probability of different nodes being infected over a discrete weekly time step, ¢ € {1, 2,..,T } , In

each epidemic year, based on a simplified SI model described by Sutrave et al. (2012) with the
following assumptions: 1) the pathogen is primarily dispersed by wind, ii) host response to the
pathogen is homogeneous and iii) weather is favorable for infection and disease spread. This model
combines the static (constant during each year) and the dynamic (time-varying during each year)

components of the network and was formulated as:

a,;=(,)"
ror
lij W,
ﬂij =t (3)
I,
;=% f,

where, ; is a constant function of the between-node distance and decays exponentially with

1
distance, f,; is the dynamic wind-based infection rate, /;; and b are as defined above,/; is the
displacement vector between two nodes, w,; is the wind vector at time 7, and u, is the link weight

based on distance and wind between node i and node j at time .
Given that the probability of a node being infected depends on the number of infected

neighbors, the probability 3 of node i not being infected by its neighbors was calculated as:
lgi(t):HjeNi(l_uij'pj(t)) (4)
where p; is the probability of node j being infected at time 7, u, ; € [0,1] is the link weight as defined

above, and V, is a set of neighbors of node i. Given Equation 4, the probability p, of node i being

infected at time ¢ was calculated thus:
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i) =1=(1-p,(-1))8() )
Values of p, and B, were calculated and updated, respectively, at each weekly time step. All

calculations were performed in MATLAB version R2019a (MathWorks Inc., Natick, MA).

Error quantification in the dynamic network model

The observed infection status of a node and the corresponding predicted infection probability of
the node were used to quantify the error in the dynamic network model. First, a value of 0 or 1 was
assigned to a node that was either non-infected or infected, respectively, in the observed data at
each time step z. Secondly, the observed (0 or 1) value for each node was compared to the
corresponding infection probability calculated by the model at each time step ¢. The error was then
defined as the absolute difference between the observed and predicted infection probability. Mean

error for the infected nodes at time step ¢ was then calculated as (Sutrave et al., 2012):

Nu(®)
PP M)

N, (1) ©

where N, (7) is the total number of infected nodes at time step ¢, while p,(¢) is as defined above.

Similarly, the mean error fo{HCANMYMMOUES for at each time step ¢ was calculated as:

Ny ()
~ o pi()
Ehn (t) = Zl]\]l

i (1)

where N, (¢) is the total number of healthy nodes at time step t. The total error was obtained by

(7)

using the expression:

E=vE, ()+(1-0)E, (t) (8)

m
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where v is a weighting factor. The ratio v: (1- v) in Equation 8 was 4:1 such that observed-infected

nodes were given four times more weight than the observed-healthy nodes in the evaluation of the

total error. Here, it was deemed more important to_

G CaiCH R EbSCHCCNORNSeHoR) such that a few nodes incorrectly predicted will have an
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insignificant effect on the prediction error (Sutrave et al., 2012). All these calculations were

performed in MATLAB.

Assessing node importance in disease spread using a dynamic network

The importance of nodes identified as highly connected based on the four centrality measures from
the static network analysis, i.e., BWC, CLC, DGC, and EVC, were subsequently evaluated for
their impact on disease spread based on link structures of the dynamic network model described
above. Nodes identified as most important based on each centrality metric were removed from the
networks and the probabilities of disease spread among the remaining nodes were recalculated in
the new dynamic network for each epidemic year as described above. Prediction of disease
outbreaks based on all nodes present in the network was subsequently compared to prediction of
disease outbreaks when nodes identified as important based on the above centrality measures were
removed from the network. This approach of node evaluation is equivalent to intensive disease
management, where important nodes are completely removed and the resultant impact of their
removal on disease propagation within the network is assessed (Sutrave et al., 2012). A sensitivity
analysis was also conducted for {iNECIONUIMIUINANDS o cxamine the effect of the choice of the
value of v on the model prediction errors. This analysis showed that increasing the value of v
resulted in negligible changes in prediction errors across all centrality measures and epidemic years

(Table S2).
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335 RESULTS

336 Spatiotemporal dynamics of disease spread in the eastern United States

337 Observations of disease outbreak suggested a spatial association between the locations of first and
338 last disease reports. The disease was first observed in a sentinel plot in southern Florida in Miami-
339 Dade County in 6 out of 8 epidemic years (Fig. 1). Most of the first disease reports from 2008 to
340 2016 occurred in February and March in southern Florida or southwestern Texas along the Gulf
341 of Mexico, with reports of initial disease outbreaks being from both sentinel and non-sentinel sites.
342 Subsequent reports of new disease outbreaks progressed northward with time, with new
343  outbreaks occurring later in more northern states (Fig. 1). The first outbreaks of CDM in more
344 northern states (e.g., Michigan, New York, or Wisconsin) occurred considerably later than
345 corresponding reports of first CDM outbreaks in southern states (e.g., Alabama, Georgia or South
346 Carolina). Across all years, the last set of new disease reports occurred in July, August and
347 September across several states within the region (Fig. 1).

348 The total number of states with CDM ranged from 22 to 27, and the corresponding number

349  of counties ranged from 86 to 179 across the region (Table 1). (HiCICRGSIDOSITNCICOMCIAHONUD
S e S S D SN ECIEMNEONtEs 1 0 cver, the correlation
352 between the ({DCHONCONNTCOICICHICIIcascasIpIesend and the number of counties where

353 surveillance was occurring was not significant (» = 0.37; P = 0.3300) (Fig. S2). The linear
354 maximum distance between two disease reports, a measure of (EpiccIMGIeRen® ranged from 2,491
355 kmin 2012 to 3,071 km in 2015.

356 The number of times that nodes were infected based on combined epidemic data across all

357 years varied from 1 to 6 (Fig. 2). Nodes where the infection frequency was consistently higher
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than the median frequency (frequency > 3) were in Alabama, Maryland, Michigan, North Carolina,
Ohio, and South Carolina. Nodes with the highest levels of infection frequency were in Wicomico
County in Maryland, Johnson, Lenoir, New Hanover, and Sampson counties in North Carolina,
and Sandusky, Huron, and Wayne counties in Ohio, with an infection frequency of 5 and 6 (Fig.
2). The remaining nodes had an infection frequency less than the median and they constituted most

of the nodes present in counties scattered throughout the region.

Connectivity threshold and static networks of cucurbit downy mildew

The proportion of nodes in the giant component (GC) and the extent of connectedness in a network
were used to select the threshold probability of transmission, 1, to generate the final static
networks. For example, for the 2008 epidemic data, networks were more connected at t = 6.21 X
10 (GC = 1.0) than at T = 1.14 x 10~ (GC = 0.92), with other (iSSHOIMINENES rcsulting in cither
highly or sparsely connected networks. Thus, to achieve a balance in connectivity, t=6.21 x 10~
was used to generate the final static network for the epidemic data in 2008 (Fig. 3). Similarly, for
the 2009 data, networks were more connected at t=7.83 x 10 (GC =0.98) thanatt=1.12 x 108
(GC = 0.95) with the remaining threshold values resulting in either highly or sparsely connected
networks. Thus, T=7.83 x 10~ was used to generate the final network for disease records in 2009.
This logical approach was used to generate the final networks for disease records for the remaining
epidemic years from 2010 to 2016. The corresponding values of T were 1.0 x 1071%, 4.72 x 10713,
2.55x 1013, 1.0 x 10714, 2.55 x 1017, 1.0 x 10-'?2 and 1.0 x 10-'2, respectively (Fig. 3). In summary,
the threshold for probability of transmission for the final static networks was very low ranging
from (1.0 x 10" to 7.8 x 10°) and the average degree ranged from 12.9 (in 2014) to 52.1 (in

2015). The exponent of the degree distribution (y) was 2.34 (2008), 1.63 (2009), 2.03 (2010), 1.75
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(2011), 1.93 (2013), 1.82 (2014), 2.05 (2015) and 2.14 (2016). Values of y > 2 indicate that a
network is scale-free, i.e., the degrees follow a power-law distribution and the network is

characterized by large hubs or nodes with a very high number of links.

Centrality measures and selection of important nodes

Betweenness, closeness, degree, and eigenvector centrality metrics varied between epidemic years.
Variability among the 20 most important nodes for each of these metrics was also observed for the
final static network constructed within a given epidemic year. Overall, variability among the 20
most important nodes within any epidemic year across the entire study was high for BWC. For
example, BWC values ranged from 264.5 to 888.3 in 2008 (Table 3), from 1147.6 to 2415.7 in
2009 (Table 4), and from 237.6 to 1718.2 in 2010 (Table 5). The mean value for the 20 most
important nodes as identified by BWC in these respective years was 441.8, 1656.9, and 474, with
corresponding standard deviation of 441.1, 896.7 and 1046.9. Variability among the 20 most
important nodes as identified based on the other centrality metrics was relatively limited (Tables
3, 4 and 5), with variability among the nodes identified as important based on CLC being the
lowest across the entire study period.

The cumulative probability distribution of BWC across the nodes in the examined networks
exhibited a power-law distribution. About 85% of the nodes had BWC values < 250, with BWC
>1500 being the largest BWC value observed (Fig. S6). In contrast, the cumulative distribution of
CLC and DGC was more characteristic of a normal distribution, with the variance of CLC being
relatively smaller than that of DGC. The cumulative distribution of EVC followed a Poisson
distribution and except for the most important node in each epidemic year (EVC = 1), each other

node had an EVC value that was closer to that of one or two other nodes.
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Ranking of nodes considered to be important varied among centrality metrics for epidemic
years examined (Tables 3 to 5). Spearman’s rank-based correlation coefficients were highest
between BWC and CLC, with correlations ranging from 0.43 to 0.74 (Fig. S7). Correlations
between BWC and DGC or EVC were relatively lower across the epidemic years except between
BWC and DGC in 2016, where » = O.4The consistency in the rankings of nodes based
on centrality measures was summarized as a heatmap to visualize unique nodes within the
networks (Fig. 4). Many nodes overlapped in their rankings among the top 20 important nodes
(across all thresholds and centralities) in 2010 (Fig. 4A) and 2014 (Fig. 4C) based on BWC and
CLC. However, most nodes overlapped across the four centrality measures in 2011 (Fig. 4B). For
example, node 117 in Lewis County, West Virginia, appeared more than 20 times in the top 20
rankings based on BWC and CLC. This same node also appeared more than 10 times in the top 20

ranking of nodes based on DGC and EVC.

Infection frequency and centrality selection of important nodes

Identifying important nodes based on infection frequency and centrality measures of static
networks showed some similarities and differences based on the examined centrality metric. The
ranking of nodes based on BWC and CLC was generally similar across years, while rankings based
on EVC were different from all other centrality measures. Based on BWC, nodes that had a
frequency >4 had the highest calculated values (combined frequency X centrality), with the largest
value being 0.82 for the node in Sandusky County in Ohio (Fig. 5), while the lowest weight was
0.13 for a node in Charleston County in South Carolina. Based on CLC, the largest weight for the
source was 0.98 for the node in Sandusky County in Ohio that had a frequency > 6, while the node

with the lowest weight was that in Miami-Dade County in Florida that had a weight of 0.198.

Peer] reviewing PDF | (2023:12:93930:0:1:NEW 8 Dec 2023)


Anjali Pande
Have I missed the explanation of why only 2008, 2011, 2014, 2016 were used? there is no explanation of this in the text or in the figure title or figure explanation


PeerJ

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

Similarly, the node in Sandusky County in Ohio had the highest weight of 0.93 based on DGC,
followed by nodes in Johnston, Lenoir and New Hanover counties in North Carolina, Wicomico
County in Maryland, and Huron and Wayne counties in Ohio that have a frequency of 5 (Fig. 5).
Node ranking based on EVC was comparably different from a ranking based on all other centrality
measures. A node in Johnston County in North Carolina had the highest weight of 0.84, followed
by nodes in Wicomico County in Maryland, Sampson and Johnston counties in North Carolina

and Wayne County in Ohio (Fig. 5).

Dynamic network model of disease spread and predicted probability of node infection

The dynamic network model revealed an emerging and evolving network that differed from
the static network representation of disease spread (Fig. 6). Generally, similar temporal and spatial
patterns were observed in all other years, although the probabilities between nodes in different
states and levels of these probabilities differed between years. In all epidemic years, links between
nodes closest to the initial disease outbreak (open square) in southern Florida had the highest
probabilities of transmission early in the season (i.e., week 10), while the probability of
transmission for links between nodes elsewhere in the network was relatively low (Fig. 6). As
epidemics progressed in time and space, link probabilities increased for nodes that were more
distant from the initial outbreak in more northern latitudes, although probabilities remained

relatively low for isolated nodes (Fig. 6).

G aEiC e CICP e ORNRANNEaS (Fiz. 7). Predicted probability of infection increased

448

449

most during weeks 20 or later. By week 35, the predicted probability increased for most nodes in

the eastern United States, with only a relatively few nodes in Illinois and Michigan having a low
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infection probability.

Errors in dynamic model and impact of removal of important nodes on model errors

Based on all nodes in the network, mean absolute errors in the dynamic model generated across
weekly time steps and averaged monthly from January to August was lowest in 2015 with a value
of 0.09 and highest in 2011 with a value of 0.33. The mean absolute error for the dynamic model
across the entire study for all the nodes was 0.21 (Table 6).

Removal of nodes identified as important based on BWC, CLC, DGC, and EVC increased
the mean absolute errors, indicating the nodes were indeed important for network structure and
prediction accuracy. However, the changes in mean absolute errors after node removal varied
depending on the specific centrality measure considered. Removal of nodes identified as important
by BWC resulted in the largest mean absolute error, 0.32, a 52.4% error rate relative to the base
prediction that included all nodes. In contrast, removing nodes identified as important based on
CLC, EVC and DGC led to comparatively small increases in mean absolute error (0.24, 0.24 and
0.25, respectively). Thus, model errors due to the removal of nodes identified as important based
on BWC were 3 to 4 times higher than errors resulting from the removal of nodes identified as
important based on CLC, DGG, or EVC, indicating BWC was superior in identifying important
nodes in this data set (Table 6).

The probability of node infection and epidemic progress in the disease network was also
affected by the removal of nodes identified as central in the network. Relative to a network with
all nodes present, removing nodes identified as important based on BWC reduced the probability
of infection of uninfected nodes in the subsequent time step in all epidemic years (Fig. 8). For

example, the removal of the nodes in counties in north Florida, Georgia, and South Carolina that
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were identified as important based on BWC arrested the progression of CDM and infection of
nodes in north Florida, South Georgia, and South Carolina in 2009 by week 25 (Fig. 8). We
observed a similar pattern of infection probability being meaningfully changed in other years as
well when node removal was based on BWC, with the precise change in infection probability
varying in specific years. In contrast, removal of nodes identified as central based on CLC, DGC
or EVC had a comparably minor impact on the probability of node infection and epidemic progress

in all years (Fig. 8).

4. Discussion

Estimating the probability and timing of outbreaks in specific sites, and determining where and
when the introduction of inoculum can impact the extent of an epidemic, is one of the challenges
in predicting the spread of plant diseases and pests (Meentemeyer et al., 2011; Fitzpatrick et al.,
2012). The CDM pathogen can be dispersed over long distances and the disease can spread rapidly
under favorable environmental conditions (Ojiambo & Holmes, 2011). In this study, networks
were formulated based on historical epidemic records of CDM to establish how connectivity of
cucurbit fields influences pathogen dispersal and disease spread in the eastern United States.
Multiple low- to high-density static networks were initially generated and analyzed, and networks
with biologically-plausible structures and topologies were selected for further analysis. The
exponent of the degree distributions for most of the examined networks followed a power-law
distribution, indicating that static networks of CDM displayed scale-free properties (Pastor-
Satorras & Vespignani, 2001), where most nodes had a small number of links, while a smaller
number of nodes had a relatively large number of connections. Scale-free connectivity implies the

existence of highly connected nodes (hubs) that are responsible for the rapid spread of disease
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within the network (Jeger et al., 2007). The transmission probability threshold is low or even
absent in-etworks (Shirley & Rushton, 2005; Pastor-Satorras & Vespignani, 2001) and
this may partly explain the low levels of T observed in the present study. Disease spread in scale-
free networks is rapid and models suggest that control of pathogens spreading in such networks
should focus on the highly connected sites (Jeger et al., 2007). Thus, targeted sampling of
frequently-infected and highly connected sites that are critical in spreading the disease may benefit
disease surveillance.

Sites in Florida, Alabama, North, and South Carolina that were infected more frequently
in the past may be candidates for disease surveillance. Acquiring the frequency of infection data
is a prerequisite, but constant scouting for the disease is expensive. However, once the historical
frequency of infection data is available, additional information about network traits is inexpensive
to obtain using mathematical models (Sutrave et al., 2012). Network centrality metrics such as
BWC, CLC, DGC and EVC can facilitate the identification of such highly connected nodes
(Andersen et al., 2019; Gent et al., 2019) and aid in evaluating strategies for selecting nodes for
surveillance (Sanatkar et al., 2015). Based on a complete static network model, these centrality
measures were used to identify highly connected sites for the spread of CDM in the eastern United
States. Combining past infection frequency with centrality measures improved the identification
of important nodes. For example, DGC, BWC, and CLC produced similar rankings with the
infection-based frequency for nodes with an infection frequency greater than four. Although EVC
produced a different ranking, nodes with a frequency greater than four still had high weights, thus
agreeing with the rankings from the other centrality measures. The combination of frequency-
based and DGC was useful in selecting sampling nodes for sentinel plots for soybean rust in the

United States (Sutrave et al., 2012). DGC is considered the standard measure in network science
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519 and is useful for identifying important nodes in static networks of several pathosystems to inform
520 strategic management (Christley et al., 2005, Gent et al., 2019; Kiss et al., 2006, Xing et al., 2020).
521 Unlike other centrality measures, DGC is easier to calculate and does not require assessing the

522  entire network (Christely et al., 2005). In this study, DGC was ineffective in identifying important

523 nodes compared to BWC. (NN RDe0)

525 Betweenness centrality was more useful in identifying the influential nodes in the network
526 as compared to other commonly used metrics. BWC measures the importance of a node by
527  computing how many times a node of interest is on the shortest paths between any two other nodes.
528 This centrality measure has been used to characterize large networks by way of selected nodes
529  since the seminal work by Granovette (1973). Nodes of high BWC have been used for determining
530 keystone species in food webs, finding clusters and communities, and analyzing the robustness of
531 networks by identifying sensitive points of failure (Barabasi & Bonabeau, 2003; Girvan &
532 Newman, 2002; Vasas & Jorddn, 2006). In epidemiology, nodes with high BWCjjifldicates) that
533 they are important in disease spread as they act as bridges or ‘hubs’ to other nodes. Removal of
534  these nodes can contain an epidemic (Ezeoke et al., 2018), as (HSjoDScINCORINSISG) The
535 observation that BWC was more informative of node importance than other centrality measures
536 emphasizes the need to generate centrality measures that are specific to the disease of interest
537 (Holme, 2018). Invariably, different centrality measures can result in a different ranking profile of
538 important nodes for different pathosystems, possibly due to the inherent differences in the
539 underlying mechanisms of pathogen dispersal and disease spread, landscape connectivity, or other

540 factors (Dudkina et al. 2023; Holme, 2018, Singer et al., 2022).
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The importance of the highly connected sites in disease spread was further evaluated using
a dynamic network model. Mean absolute errors and the probability of infection in nodes across
the networks were relatively insensitive to the removal of nodes identified as central by CLC,
DGC, and EVC. In contrast, mean absolute errors and the probability of infection in simulated
epidemics were quite sensitive to the removal of nodes identified as central based on BWC. This
may be related to the physical location of the nodes identified as highly central by the various
centrality measures. Removing nodes identified as important based on CLC, DGC and EVC that
were located in Pennsylvania, Ohio, and New York did not affect disease progression northward
from southern states, whereas removing important nodes in North Carolina largely prevented
disease spread. Nodes with high BWC scores were scattered across the region, including in the
southern U.S. Removal of these nodes, reduced disease spread, and in some epidemic years, it
entirely halted disease spread from most southern states. Most spread of CDM is over relatively
short distances of less than 30 km (Ojiambo & Holmes, 2011) as the host is planted from south to
north. Since BWC is based on the number of shortest paths that pass through a target node, a target
node will have a high BWC score if it appears in many shortest paths. Given the relative short
dispersal distances of P. cubensis, it is plausible that BWC may be better at capturing the dynamics
of disease transmission for most of the dispersal events that drive the spread of CDM.

Where resources available for control are limited, targeting nodes with high BWC for
treatment has also been found to be an effective strategy in impeding epidemics caused by a disease
that spreads rapidly (Singer et al., 2022). The most central nodes identified as important based on
BWC were sites in Michigan in the Great Lakes region, Ohio in the Midwest, and Maryland, North
Carolina, South Carolina, and Virginia along the mid-Atlantic coast. These states are located along

the seasonal transport pathway of P. cubensis spores from overwintering locations from the south
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Potentially, more effective disease management in these highly connected sites, such as the
strategic deployment of host resistance, could reduce inoculum production that drives infection in
neighboring cucurbit fields in the eastern United States.

Unlike the dynamic model used for the spread of soybean rust in the United States (Sutrave
et al., 2012), the dynamic model used in this present study incorporated a power-law dispersal
gradient characteristic for the long-distance dispersal of plant pathogens. Based on the 2008 and
2009 epidemic data and point-pattern analysis, the dispersal distances for the CDM pathogen were
estimated to be up to 390, 737 and 879 km, with 1,000 km being the maximum possible distance
of spatial association (Ojiambo & Holmes, 2011). Further, Ojiambo et al. (2017) showed that the
spread parameter b varied in different epidemics, with the final epidemic extent ranging from 4.16
x 108 to 6.44 x 108 km?2. Thus, different values of b were used in the construction of static networks
and in the dynamic network model to account for the difference in spatial spread in each epidemic
year. The dynamic network model used in the present study improves on long-distance dispersal
by using a flexible threshold for distance to allow for connectivity of nodes that are further apart
(Ferrari, Preisser & Fitzpatrick, 2014). However, the model does not account for differences in
environmental factors that are likely to influence pathogen dispersal. In addition, accounting for
differences in host susceptibility at the different locations could further improve our ability to
generalize the findings reported here to different cucurbit host types. Subsequent studies are also

needed to establish how unknown disease sources can be imputed in this network modeling
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framework and determine how accounting for these unknown sources could influence the network
structure and inference made on the location of highly connected sites for disease surveillance
reported in this study. Due to the non-random placement of sentinel plots within the monitoring

network, (iCSCHCSUISINayINoNDCIEcneIalZanI®) and additional studies may be needed to assess

how the random placement of sentinel plots could influence the findings reported in this study.
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731 Table 1 States, number of counties in eastern United States where cucurbit downy mildew was reported, and number of monitoring sites

732  with disease summarized by planting type, during the study period.

Number of Number of Number of sites by planting type
Year  states affected counties Commercial Home garden Research Sentinel*  Unspecified® Total®
2008 22 113 68 10 12 59 5 154
2009 24 165 77 26 24 92 1 220
2010 25 118 77 17 24 25 1 144
2011 23 86 57 10 22 28 0 117
2012 25 149 99 20 23 31 0 173
2013 26 179 118 30 23 29 4 204
2014 23 104 53 16 22 20 3 114
2015 27 171 126 15 22 42 4 209
2016 22 107 61 9 19 33 0 122

733  2Sentinel planting type refers to fixed plots, planted early and designated for weekly monitoring.

734 b Unspecified refers to reports where the planting type was not stated when disease was reported in the cucurbit downy mildew
735 monitoring database.

736 ¢ Total number of disease monitoring sites designated as either commercial, home garden, research, sentinel and unspecified plot.
737

738

739

740

741

742

743
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744  Table 2 Definition of centrality measures in a network model used to study the spread of cucurbit downy mildew in the eastern United

745  States.

Centrality measure Central node Relevance in epidemic spread

Betweenness (BWC)  Acts as a bridge to other nodes Removal of nodes with high betweenness may contain an epidemic
Closeness (CLC) Lies on the shortest path Nodes are able to spread disease through a network

Degree (DGC) Connected to many other nodes Nodes with high degree may be ‘superspreaders’

Eigenvector (ECV) Connected to other high-degree nodes  Nodes with neighbors having high degree may be ‘superspreaders’

746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
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770 Table 3. Centrality-based ranking of the twenty most important sites in the cucurbit downy mildew network for the epidemic observed

771 in the eastern United States in 2008.

Betweenness? Closeness? Degree? Eigenvector®
Rank 1D State  BWC 1D State CLC ID State DGC D State  EVC
1 74 MS 888.3 89 NC 0.0034 131 PA 73 128 PA 1.000
2 118 OH 665.3 118 OH 0.0034 52 MD 72 131 PA 0.994
3 135 SC 608.6 125 PA 0.0034 125 PA 72 134 PA 0.989
4 124 OH 534.1 128 PA 0.0034 128 PA 72 125 PA 0.981
5 39 KY 517.2 130 PA 0.0034 130 PA 72 130 PA 0.974
6 141 TN 507.2 124 OH 0.0034 127 PA 71 99 NY 0.963
7 31 GA 500.4 52 MD 0.0034 134 PA 69 127 PA 0.962
8 89 NC 471.1 134 PA 0.0034 99 NY 66 102 NY 0.953
9 137 SC 470.8 86 NC 0.0033 102 NY 65 96 NY 0.943
10 82 NC 416.6 148 VA 0.0033 96 NY 64 97 NY 0.930
11 91 NC 416.6 150 VA 0.0033 129 PA 64 98 NY 0.926
12 139 TN 375.8 131 PA 0.0033 11 DE 63 100 NY 0.902
13 52 MD 372.1 87 NC 0.0033 97 NY 63 52 MD 0.879
14 75 MS 336.7 88 NC 0.0033 98 NY 63 126 PA 0.858
15 125 PA 324.7 127 PA 0.0033 13 DE 62 129 PA 0.856
16 128 PA 305.4 80 NC 0.0033 100 NY 61 111 OH 0.847
17 136  SC 290.5 78 NC 0.0033 10 DE 59 113 OH 0.847
18 33 GA 290.1 79 NC 0.0033 93 NJ 59 117 OH 0.828
19 29 GA 279.0 151 VA 0.0032 94 NJ 59 120 OH 0.820
20 34 GA 264.5 39 KY 0.0032 133 PA 59 101 NY 0.814
Mean 441.8 0.0033 65.4 0.913
SD 441.1 0.0000 9.9 0.132

772 21D = node identification number, BWC = betweenness centrality, CLC = closeness centrality, DGC = degree centrality, and EVC =
773  eigenvector centrality; SD = Standard deviation.
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774  Table 4. Centrality-based ranking of twenty most important nodes in the cucurbit downy mildew network for the epidemic observed in

775  the eastern United States in 2009.

Betweenness? Closeness? Degree? Eigenvector®
Rank ID State  BWC ID State CLC ID State DGC 1D State  EVC
1 34 GA 2415.7 122 NC 0.0012 74 MI 35 109 NC 1.000
2 212 VA 2390.2 132 NC 0.0012 79 MI 35 136 NC 0.979
3 48 KY 2376.2 134 NC 0.0012 82 MI 33 114 NC 0.979
4 154 OH 2152.4 129 NC 0.0012 93 MI 33 118 NC 0.966
5 32 GA 2011.5 124 NC 0.0012 109 NC 33 130 NC 0.960
6 192 TN 1907.7 135 NC 0.0012 158 OH 33 127 NC 0.960
7 186 SC 1803.5 205 VA 0.0012 200 VA 33 211 VA 0.937
8 169 PA 1796.5 212 VA 0.0012 76 MI 32 119 NC 0.913
9 2 AL 1672.3 48 KY 0.0011 90 MI 32 128 NC 0.906
10 180 SC 1605.4 163 OH 0.0011 114 NC 32 207 VA 0.898
11 104 MS 1515.0 164 OH 0.0011 118 NC 32 115 NC 0.891
12 171 PA 1413.6 165 OH 0.0011 136 NC 32 125 NC 0.887
13 103 MS 1351.4 133 NC 0.0011 211 VA 32 126 NC 0.884
14 25 FL 1343.5 192 TN 0.0011 75 MI 31 113 NC 0.882
15 200 VA 1311.5 123 NC 0.0011 83 MI 31 121 NC 0.872
16 153 OH 1259.8 169 PA 0.0011 88 MI 31 120 NC 0.869
17 147 NY 1258.1 171 PA 0.0011 89 MI 31 112 NC 0.869
18 54 KY 1248.4 183 SC 0.0011 91 MI 31 203 VA 0.867
19 101 MS 1158.2 207 VA 0.0011 92 MI 31 200 VA 0.864
20 158 OH 1147.6 203 VA 0.0011 111 NC 31 110 NC 0.850
Mean 1656.9 0.0011 32.2 0.912
SD 896.7 0.0000 2.8 0.106

776 21D = node identification number, BWC = betweenness centrality, CLC = closeness centrality, DGC = degree centrality, and EVC =
777 eigenvector centrality; SD = Standard deviation.
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778 Table 5. Centrality-based ranking of twenty most important sites in the cucurbit downy mildew network for the epidemic observed in

779  the eastern United States in 2010.

Betweenness? Closeness? Degree? Eigenvector®
Rank ID State  BWC ID State CLC ID State DGC 1D State  EVC
1 30 KY 1718.2 30 KY 0.0033 116 OH 56 116 OH 1.000
2 31 KY 1009.3 31 KY 0.0032 103 OH 54 109 OH 0.998
3 65 MS 691.0 116 OH 0.0032 104 OH 54 106 OH 0.997
4 4 AL 577.1 121 PA 0.0032 105 OH 54 110 OH 0.995
5 139 TX 556.0 105 OH 0.0032 106 OH 54 103 OH 0.995
6 77 NC 486.1 103 OH 0.0032 108 OH 54 113 OH 0.995
7 25 GA 469.3 104 OH 0.0032 109 OH 54 114 OH 0.995
8 74 NC 410.1 108 OH 0.0032 110 OH 54 104 OH 0.995
9 13 FL 404.1 110 OH 0.0032 113 OH 54 108 OH 0.995
10 23 GA 342.0 113 OH 0.0032 114 OH 54 61 MI 0.992
11 26 GA 342.0 114 OH 0.0032 61 MI 53 41 MI 0.983
12 5 AL 331.3 107 OH 0.0032 40 MI 52 53 MI 0.983
13 120 PA 305.2 106 OH 0.0031 41 MI 52 60 MI 0.983
14 130 SC 296.8 109 OH 0.0031 48 MI 52 48 MI 0.983
15 138 X 282.0 120 PA 0.0031 53 MI 52 105 OH 0.977
16 80 NC 264.0 119 PA 0.0031 60 MI 52 42 MI 0.964
17 67 NC 2571 115 OH 0.0031 107 OH 52 40 MI 0.960
18 117 PA 253.7 61 MI 0.0031 112 OH 52 111 OH 0.960
19 122 PA 246.7 112 OH 0.0031 122 PA 52 112 OH 0.959
20 140 VA 237.6 111 OH 0.0031 42 MI 51 43 MI 0.959
Mean 474.0 0.0032 53.1 0.983
SD 1046.9 0.0000 3.5 0.029

780 21D = node identification number, BWC = betweenness centrality, CLC = closeness centrality, DGC = degree centrality, and EVC =
781  eigenvector centrality; SD = Standard deviation
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782 Table 6 Absolute errors for a network model based on all sites and removal of sites identified as
783  important based on centrality measures used to study the spatio-temporal spread of cucurbit downy

784 mildew in the eastern United States.

Error after removal of important nodes based on centrality measure®

Year? All nodes Betweenness Closeness Degree Eigenvector
2008 0.18 0.31 0.22 0.21 0.22
2009 0.27 0.39 0.29 0.28 0.33
2010 0.15 0.23 0.20 0.19 0.20
2011 0.33 0.40 0.35 0.34 0.34
2012 0.27 0.33 0.27 0.27 0.27
2013 0.28 0.45 0.30 0.31 0.31
2014 0.26 0.44 0.36 0.37 0.37
2015 0.09 0.12 0.10 0.10 0.10
2016 0.10 0.17 0.09 0.10 0.10
Mean 0.21 0.32 0.24 0.24 0.25

785 2 For each year, values are means of absolute model errors generated across monthly time steps
786  from January to August.

787 ® The 20 most important nodes identified by each centrality measure were removed in the network
788 and the model rerun to calculate the corresponding absolute errors.

789

790
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Figure 1. Location of cucurbit downy mildew outbreaks in the eastern United States from 2008 to
2016. Locations are color-coded based on the week of the year. Shapes represent the surveillance
plot type associated with disease reports during the study period.

Figure 2. Frequency of cucurbit downy mildew outbreaks across all epidemic years from 2008 to
2016 in the eastern United States. Colors represent the frequency (n) of disease cases: red (n = 6),
yellow (n =5), green (n =4), light blue (n = 3), blue (n =2) and pink (n = 1). Frequency represents
the number of years a node was observed as an infected node (i.e., a location where the disease
was reported).

Figure 3. Static networks of cucurbit downy mildew epidemics in eastern United States from 2008
to 2016. Closed circles are nodes where disease was reported (either in a sentinel and non-sentinel
plot) and the lines between two nodes are links for the probability of transmission between two
nodes calculated based on the power-law dispersal kernel. Thresholds for probability of pathogen
transmission ranged from ranged from 1.0 x 10-1° to 7.8 x 10 (see text for details). In all years,
the initial source of disease outbreak was in Miami-Dade County (open square) in southern Florida.

Figure 4. A heatmap representation of the most important nodes across 20 thresholds for disease
transmission across the network and four centrality measures for 2010 (A), 2011 (B) and 2014 (C)
networks. Frequency represents the number of times a node appeared in the top 20 ranked list
across all evaluated thresholds.

Figure 5. A depiction of node importance based on a combination of frequency of cucurbit downy
mildew occurrence in the eastern United States and betweenness, closeness, degree or eigenvector
network centrality measures. Frequency represents the number of years a node was observed as an
infected node based on epidemic years from 2008 to 2016. Frequency of occurrence and centrality
measures are weighted based on a ratio of 4:1.

Figure 6. Evolving network resulting from a dynamic network model for the spread of cucurbit
downy mildew in the eastern United States in 2008, 2013, 2014 and 2015. Black circles indicate
node centroids of disease outbreak, while the open square is initial source of disease outbreak.
Lines are links that have been scaled relative to the probability of transmission by time, with darker
and thicker lines indicating higher probabilities of transmission.

Figure 7. Prediction of cucurbit downy mildew outbreaks in the eastern United States in 2014
based on cumulative disease outbreaks observed in previous times steps in the same epidemic year.
Dark red nodes represent counties predicted to have an outbreak with a high probability. Blue
nodes represent counties predicted to have no outbreak with negligible probability of infection,
and all other shades from green to dark red represent increasing probability of disease outbreak. A
single node in Texas was reported as infected by Week 10 in the observed data; thus the county
was considered infected with probability of one by Week 10.
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Figure 8. Prediction of cucurbit downy mildew outbreaks in the eastern United States by week 25
for all nodes present in the network (i.e., prediction) compared to prediction when the 20 most
important nodes (based on betweenness, closeness, degree, and eigenvector centrality measures)
are removed from the network based on data from epidemics in 2008, 2009, 2013 and 2014.
Diamond symbols are nodes identified as important based on each centrality metric. The initial
source of disease outbreak is represented by a square symbol in Miami-Dade County in southern
Florida.
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Figure 1

Map of location of disease monitoring

Figure 1. Location of cucurbit downy mildew outbreaks in the eastern United States from
2008 to 2016. Locations are color-coded based on the week of the year. Shapes represent

the surveillance plot type associated with disease reports during the study period.
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Figure 2

Frequency map of cucurbit downy mildew outbreak

Figure 2. Frequency of cucurbit downy mildew outbreaks across all epidemic years from
2008 to 2016 in the eastern United States. Colors represent the frequency (n) of disease
cases: red (n = 6), yellow (n = 5), green (n = 4), light blue (n = 3), blue (n = 2) and pink (n =
1). Frequency represents the number of years a node was observed as an infected node (i.e.,

a location where the disease was reported).
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Figure 3

Static networks of cucurbit downy mildew epidemics

Figure 3. Static networks of cucurbit downy mildew epidemics in eastern United States from
2008 to 2016. Closed circles are nodes where disease was reported (either in a sentinel and
non-sentinel plot) and the lines between two nodes are links for the probability of

transmission between two nodes calculated based on the power-law dispersal kernel.
Thresholds for probability of pathogen transmission ranged from ranged from 1.0 x 10™ to

7.8 x 107 (see text for details). In all years, the initial source of disease outbreak was in

Miami-Dade County (open square) in southern Florida.

Peer] reviewing PDF | (2023:12:93930:0:1:NEW 8 Dec 2023)



Manuscript to be reviewed

45

40

Latitude

304

254

45

309

25+

451

251

=80 =70

-100 -90

80 70 -100 -90
Longitude Longitude

Peer] reviewing PDF | (2023:12:93930:0:1:NEW 8 Dec 2023)

-ap -80 =70
Longitude



PeerJ Manuscript to be reviewed

Figure 4

lllustration of important nodes for disease spread

Figure 4. A heatmap representation of the most important nodes across 20 thresholds for
disease transmission across the network and four centrality measures for 2010 (A), 2011 (B)

and 2014 (C) networks. Frequency represents the number of times a node appeared in the

top 20 ranked list across all evaluated thresholds.
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Figure 5

Node importance based on frequency of disease occurence and centrality measures

Figure 5. A depiction of node importance based on a combination of frequency of cucurbit
downy mildew occurrence in the eastern United States and betweenness, closeness, degree
or eigenvector network centrality measures. Frequency represents the number of years a
node was observed as an infected node based on epidemic years from 2008 to 2016.

Frequency of occurrence and centrality measures are weighted based on a ratio of 4:1.

Peer] reviewing PDF | (2023:12:93930:0:1:NEW 8 Dec 2023)



PeerJ

Manuscript to be reviewed

Eigenvector - A ||| Frquoency
=
R Degree -
1] S 20
o
5 -
Closeness -
O
l llllllll T ll lllllllllll'llll T Ill’l lllll l | LL} TITTT LLLS lll TITTITITITITIT T I oy IoaT
ar 42 47 75 80 104 109 114 118 124 130 140
4 9 23 31 38 43 48 55 61 a? 76 83 90 sa 105 110 115 120 125 131
5 10 24 34 38 44 49 56 62 70 77 a4 93 99 106 111 116 121 126 132
6 11 25 3 40 45 51 57 63 71 78 87 94 102 107 112 117 122 127 138
7 13 26 36 41 46 53 59 65 74 T8 &8 95 103 108 113 118 123 129 138
Eigenvector 1 Frequency
> -I
= Degree -
© o 20
b
T -
8 Closeness A 10
Betweenness | | | I |
t !'Illll'l TITT T 'I'llll'lll TIrT 'I TITT TTITTTvTT TrorTT l'l'll llllll'l Tr llll:l:llll'lllll'l'll(l'll'll'l'l lil'l T
17 k3l 48 53 59 7 85 90 95 100 105 111
3 s 18 27 34 43 49 54 60 ss 72 78 86 91 96 101 106 112
4 9 21 28 36 44 50 55 61 67 73 82 87 92 97 102 107 17
5 15 24 29 37 45 51 56 62 69 T4 as as 93 gs 103 109
6 16 25 30 52 58 64 70 75 104 110
Eigenvector - Frequency
m*
2 Degree -
© o 20
= b
=
)
(O  Closeness - 10
Betweenness A I | |
LAARAE 'Il'll i'll'l l'IlIl Illlll'lll'll'll'll'll'll'li'l('ll'll'l T T lll'll'll'.l. 'II'II'II'II'I 'Ii'l 'Il'll T LiL
4 54 59 76 # 106
5 16 zz 31 40 45 so 5 60 ss 77 83 ss 94 100 112
[ 17 23 3z 41 46 51 56 61 71 78 84 89 95 103 113
T 18 28 37 42 47 52 57 62 74 79 BS 90 97 104 114
8 20 29 3 43 48 53 58 63 75 80 8 91 9% 105
Node

Peer] reviewing PDF | (2023:12:93930:0:1:NEW 8 Dec 2023)



PeerJ

Figure 6

Dynamic network of the spread of cucurbit downy mildew

Figure 6. Evolving network resulting from a dynamic network model for the spread of
cucurbit downy mildew in the eastern United States in 2008, 2013, 2014 and 2015. Black
circles indicate node centroids of disease outbreak, while the open square is initial source of
disease outbreak. Lines are links that have been scaled relative to the probability of
transmission by time, with darker and thicker lines indicating higher probabilities of

transmission.
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Figure 7

Prediction of the temporal spread of cucurbit downy mildew

Figure 7. Prediction of cucurbit downy mildew outbreaks in the eastern United States in
2014 based on cumulative disease outbreaks observed in previous times steps in the same
epidemic year. Dark red nodes represent counties predicted to have an outbreak with a high
probability. Blue nodes represent counties predicted to have no outbreak with negligible
probability of infection, and all other shades from green to dark red represent increasing
probability of disease outbreak. A single node in Texas was reported as infected by Week 10

in the observed data; thus the county was considered infected with probability of one by

Week 10.
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Figure 8

Impact of removal of important nodes on disease spread

Figure 8. Prediction of cucurbit downy mildew outbreaks in the eastern United States by
week 25 for all nodes present in the network (i.e., prediction) compared to prediction when
the 20 most important nodes (based on betweenness, closeness, degree, and eigenvector
centrality measures) are removed from the network based on data from epidemics in 2008,
2009, 2013 and 2014. Diamond symbols are nodes identified as important based on each
centrality metric. The initial source of disease outbreak is represented by a square symbol in

Miami-Dade County in southern Florida.
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