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Objective. Surveillance is critical for the rapid implementation of control measures for diseases caused
by aerially dispersed plant pathogens, but such programs can be resource-intensive, especially for
epidemics caused by long-distance dispersed pathogens. The current cucurbit downy mildew platform for
monitoring, predicting and communicating the risk of disease spread in the United States is expensive to
maintain. In this study, we focused on identifying sites critical for surveillance and treatment in an
attempt to reduce disease monitoring costs and where control may be applied to mitigate the risk of
disease spread.

Methods. Static networks were constructed based on the distance between ûelds, while dynamic
networks were constructed based on the distance between ûelds and wind speed and direction, using
epidemic data collected from 2008 to 2016. Three strategies were used to identify highly connected ûeld
sites. First, the probability of pathogen transmission between nodes and the probability of node infection
were modeled over a discrete weekly time step within an epidemic year. Second, nodes identiûed as
important were selectively removed from networks and the probability of node infection was recalculated
in each epidemic year. Third, the recurring patterns of node infection were analyzed across epidemic
years.

Results. Static networks exhibited scale-free properties where the node degree followed a power-law
distribution. Betweenness centrality was the most useful metric for identifying important nodes within the
networks that were associated with disease transmission and prediction. Based on betweenness
centrality, ûeld sites in Maryland, North Carolina, Ohio, South Carolina and Virginia were the most central
in the disease network across epidemic years. Removing ûeld sites identiûed as important limited the
predicted risk of disease spread based on the dynamic network model.

Conclusions. Combining the dynamic network model and centrality metrics facilitated the identiûcation
of highly connected ûelds in the southeastern United States and the mid-Atlantic region. These highly
connected sites may be used to inform surveillance and strategies for controlling cucurbit downy mildew
in the eastern United States.
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16 ABSTRACT

17 Objective. Surveillance is critical for the rapid implementation of control measures for diseases 

18 caused by aerially dispersed plant pathogens, but such programs can be resource-intensive, 

19 especially for epidemics caused by long-distance dispersed pathogens. The current cucurbit downy 

20 mildew platform for monitoring, predicting and communicating the risk of disease spread in the 

21 United States is expensive to maintain. In this study, we focused on identifying sites critical for 

22 surveillance and treatment in an attempt to reduce disease monitoring costs and where control may 

23 be applied to mitigate the risk of disease spread. 
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24 Methods. Static networks were constructed based on the distance between fields, while dynamic 

25 networks were constructed based on the distance between fields and wind speed and direction, 

26 using epidemic data collected from 2008 to 2016. Three strategies were used to identify highly 

27 connected field sites. First, the probability of pathogen transmission between nodes and the 

28 probability of node infection were modeled over a discrete weekly time step within an epidemic 

29 year. Second, nodes identified as important were selectively removed from networks and the 

30 probability of node infection was recalculated in each epidemic year. Third, the recurring patterns 

31 of node infection were analyzed across epidemic years. 

32 Results. Static networks exhibited scale-free properties where the node degree followed a power-

33 law distribution. Betweenness centrality was the most useful metric for identifying important 

34 nodes within the networks that were associated with disease transmission and prediction. Based 

35 on betweenness centrality, field sites in Maryland, North Carolina, Ohio, South Carolina and 

36 Virginia were the most central in the disease network across epidemic years. Removing field sites 

37 identified as important limited the predicted risk of disease spread based on the dynamic network 

38 model. 

39 Conclusions. Combining the dynamic network model and centrality metrics facilitated the 

40 identification of highly connected fields in the southeastern United States and the mid-Atlantic 

41 region. These highly connected sites may be used to inform surveillance and strategies for 

42 controlling cucurbit downy mildew in the eastern United States.

43

44 Subjects: Computational Biology, Ecology, Epidemiology, Plant Science, Statistics

45 Keywords: Centrality measures, Disease monitoring, Infection frequency, Network analysis, 

46 Scale-free network
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47 INTRODUCTION

48 Pathogen dispersal is a fundamental property in developing disease epidemics at different spatial 

49 scales that can range from local to the landscape level. The transmission of invasive plant 

50 pathogens and the spread of resultant epidemics influences essential ecosystem services, including 

51 biodiversity and food production in agricultural systems (Brown & Hovmøller, 2002; Crowl et al., 

52 2008). Measures that involve containment and eradication programs can be implemented to reduce 

53 the potential impact of these epidemics. However, the planning and implementation of any specific 

54 measure requires an understanding of the mechanics of invasions and the ecological consequences, 

55 risks, and dynamics of disease spread. Such efforts can benefit greatly from epidemic records 

56 within a region as they enable an analysis of the overall structure of pathogen dispersal. 

57 Information from such analyses can help design control programs for disease epidemics and risk-

58 based surveillance. For example, timely recording of animal movements was fundamental in the 

59 containment of the 2011 foot and mouth disease epidemic in the UK, for which retrospective 

60 analyses demonstrated that initial spread was influenced by the frequency of animal movement 

61 (Ferguson, Donnelly & Anderson, 2001; Kao et al., 2006).        

62 One approach to understand pathogen dispersal and the spread of resultant epidemics is 

63 through network analysis, a method that is becoming increasingly popular but still has limited 

64 application in plant disease epidemiology (Garrett et al., 2018; Xing et al., 2020). Networks 

65 consist of �nodes� and �links�, where nodes are the entities of interest (e.g., individual fields or 

66 observed sites of disease outbreak), while links connect nodes in various ways, for example, the 

67 potential of encounter or pathogen transmission between two nodes. Further, networks can be 

68 weighted with link weights that are proportional to the probability of transmission. Networks have 

69 been used to describe the spread of epidemics caused by aerially dispersed plant pathogens such 

PeerJ reviewing PDF | (2023:12:93930:0:1:NEW 8 Dec 2023)

Manuscript to be reviewed

Anjali Pande
This could be phrased better ; for example:
 Dispersal properties of the pathogen are fundamental to progression of disease in an epidemics

The transmission of XXXX and the resultant epidemic spread.

Anjali Pande
Include might be a better word

Anjali Pande
I assume you mean "control" measure? it would be good to state this for clarity.

Anjali Pande
Do you mean Control efforts? Specify for clarity

Anjali Pande
I suggest you rephrase for better grammar and English purposes - something like; analyses can help INFORM the designing of control programmes OR they can help decision makers OR can be helpful in designing ….

Anjali Pande
Unclear what is meant - potential of encounter with a pathogen? Exposure to a pathogen? Could even be "encounter with"

Anjali Pande
An epidemic by definition is spread of a pathogen...so it might be better to say "epidemic spread of...."



70 as Podosphaera macularis in hop (Gent, Bhattacharyya & Ruiz, 2019) and Phakopsora pachyrhizi 

71 in soybean (Sutrave et al., 2012; Sanatkar et al., 2015). The primary determinants in pathogen 

72 dispersal, such as source strength, location of host populations and relevant covariate information, 

73 can be formulated as a network spreading model (Firester, Shtienberg & Blank, 2018; Garrett et 

74 al., 2018; Gent, Bhattacharyya & Ruiz, 2019; Sutrave et al., 2012). Such models can combine 

75 static spatial components, such as field location, and dynamic components of an epidemic, such as 

76 wind, to infer the underlying contact structure of landscape connectivity (With et al., 1997).

77 The choice of networks to be studied depends on several factors that include the disease of 

78 interest and specific questions on the network structure. The latter, in turn, influences the type of 

79 network measures to be used in the analysis of pathogen dispersal and disease spread. Static and 

80 dynamic networks are common in landscape connectivity analyses. Connections in a static network 

81 are fixed links, while connections in a dynamic network change over time. Both static and dynamic 

82 networks have been applied in plant disease epidemiology (Sanatkar et al., 2015; Sutrave et al., 

83 2012). In dynamic networks, between-node distances, host availability, wind speed and wind 

84 direction, can be formulated as a susceptible-infected (SI) model to describe epidemic spread 

85 (Sutrave et al., 2012). Further, plant diseases display seasonal differences in the occurrence and 

86 intensity of epidemics. Thus, analysis of data from multiple epidemic years is useful in determining 

87 if there are recurring patterns that could inform monitoring or disease control measures. Highly 

88 connected nodes provide more effective surveillance and opportunities for more targeted control 

89 to reduce disease spread within the network. An open question still remains regarding which 

90 centrality measures are most important for identifying important nodes for surveillance and 

91 managing real-world networks (Holme, 2017). Due to inherent differences in pathogen dispersal 
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92 and disease spread mechanisms, centrality measures used to identify important nodes for 

93 surveillance may be specific to different pathosystems (Holme, 2018). 

94 A motivating plant disease example for network analysis to inform surveillance and disease 

95 control is cucurbit downy mildew (CDM). A resurgence of the disease occurred around the world 

96 in the last 20 years that fundamentally altered cucurbit production and disease management at 

97 multiple scales (Holmes et al., 2015; Ojiambo et al., 2015). The resurgence of CDM in Europe and 

98 the United States was attributed to the introduction of a new pathotype or species that was 

99 previously limited to East Asia (Cohen et al., 2015; Thomas et al., 2017). Fungicides are integral 

100 to CDM control due to the lack of cultivars with adequate resistance and in the absence of control, 

101 the disease can result in complete crop loss (Holmes et al., 2015). The disease is caused by an 

102 obligate pathogen, Pseudoperonospora cubensis, which exhibits significant long-distance 

103 dispersal (Ojiambo & Holmes, 2011). In continental United States, P. cubensis overwinters below 

104 approximately 30-degree latitude in southern Florida and along the Gulf of Mexico on living hosts, 

105 and disease outbreaks in northern states rely on pathogen dispersal from the south (Ojwang� et al., 

106 2021). In 2008, disease surveillance based on a series of sentinel and non-sentinel field sites was 

107 implemented as part of the CDM ipmPIPE (http://cdm.ipmpipe.org) surveillance system (Ojiambo 

108 et al., 2011). Based on the prediction framework developed by Main et al. (2001) and the sentinel 

109 site data, an integrated aerobiological model was developed to predict disease occurrence and 

110 progression in the eastern United States (Neufeld et al., 2018) to guide growers on when to apply 

111 their initial fungicide application. Surveys conducted in Georgia, Michigan, and North Carolina 

112 show that the forecasting system resulted in an average reduction of two to three fungicide 

113 applications compared to calendar-based application schedules. This reduction in fungicide 

114 applications translated to more than $6 million in savings for producers in these three states alone 
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115 annually (Ojiambo et al., 2011). However, the disease surveillance system is expensive to maintain 

116 and thus, there is increasing interest in identifying locations that are critical for pathogen dispersal 

117 and disease spread within the region. The latter could facilitate a more targeted surveillance 

118 approach by directing the limited resources to locations that are more integral to disease spread 

119 and pathogen transmission within the region. These sentinel and non-sentinel sites have been 

120 instrumental in understanding the spatio-temporal spread of CDM (Ojiambo & Holmes, 2011; 

121 Ojiambo et al., 2017; Ojwang� et al., 2021). 

122 In this study, we specifically focus on centrality metrics (Meghanathan & Lawrence, 2016) 

123 that are directly applicable for CDM surveillance and management to identify highly connected 

124 sites. The centrality measures are betweenness (BWC), closeness (CLC), degree (DGC) and 

125 eigenvector (EVC), that have previously been used in network analysis of aerially dispersed plant 

126 pathogens and have relevance in describing epidemic spread (Andersen et al., 2019). Our inference 

127 of the importance of the highly connected sites is limited to disease records from the existing 

128 structure of sentinel and non-sentinel sites within the region. The specific objectives of this study 

129 were to: i) determine a centrality measure that is most useful in the surveillance and control of 

130 CDM, ii) identify highly connected nodes that are critical for pathogen dispersal and spread of 

131 CDM and iii) establish how removal of highly connected nodes influences the spread and 

132 containment of CDM in the eastern United States.

133

134 MATERIALS AND METHODS

135 Data source

136 Records of CDM epidemics in the eastern United States from 2008 to 2016 were used in this study. 

137 The data were obtained from the CDM ipmPIPE database (http://cdm.ipmpipe.org) that tracks 
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138 reports of disease occurrence in the United States (Ojiambo et al., 2011). Epidemic records in the 

139 system include reports from a network of regularly monitored sites (sentinel plots) and voluntary 

140 reports (non-sentinel sites) submitted by commercial growers, agricultural researchers and the 

141 public. Sentinel sites were strategically placed within specific states and planted with different 

142 cucurbit host types for monitoring CDM occurrence. Sentinel sites were located at research 

143 facilities or commercial fields with standard dimensions of 15 m × 61 m and were georeferenced 

144 using the Global Positioning System. These sites were planted early and regularly monitored for 

145 disease symptoms every 1 to 2 weeks by state collaborators and extension specialists. Cucurbits 

146 grown at the sentinel sites were cucumber cv. Straight 8 and Poinsett 76 (Cucumis 

147 sativus), cantaloupe cv. Hales Best Jumbo (Cucumis melo), acorn squash cv. Table Ace (Cucurbita 

148 pepo), butternut squash cv. Waltham (Cucurbita moschata), giant pumpkin cv. Big Max 

149 (Cucurbita maxima), and watermelon cv. Micky Lee (Citrullus lanatus) (Ojiambo et al., 

150 2011). Non-sentinel reports were from locations not designated for regular surveillance but rather 

151 voluntary reports from commercial fields, research plots, and home gardens (Table 1). These non-

152 sentinel reports are useful given that, in some epidemic years, CDM was reported earlier in non-

153 sentinel plots than in sentinel plots and thus they could be informative for inferring sources for 

154 disease spread. 

155 Latitudes and longitudes geo-coordinates for sentinel and non-sentinel sites were generated 

156 from the customized section of the CDM ipmPIPE website (http://cdm.ipmpipe.org). Where no 

157 plot data were available, latitudes and longitudes of county centroids were extracted from US 

158 Census Bureau 1990 Gazetteer Files and used as approximate georeferenced points. The compiled 

159 data from sentinel and non-sentinel sites included, among other things, the date of first disease 

160 symptoms, planting type (sentinel plot, commercial field, research plot, home garden, or 
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161 unspecified), state, county, and geo-location. A disease case represented a unique combination of 

162 host and date of first disease symptoms at a particular location. The total number of disease cases 

163 across the study years ranged from 114 to 220, while the number of counties affected ranged from 

164 86 to 179 across epidemic years (Table 1). Correlation analysis was performed to determine 

165 whether the number of counties influenced the number of disease reports (Fig. S1) and whether 

166 numbers of sites with active surveillance were correlated with the number of counties (Fig. S2) in 

167 the region during the study period. 

168 Hourly wind speed and direction at each sentinel plot were derived from weather 

169 observations from the National Oceanic and Atmospheric Administration Integrated Surface 

170 Database (Smith et al., 2011) provided by BASF (Research Triangle Park, Raleigh, NC). Wind 

171 measurements were taken at 10 m above the ground. Meteorological wind direction is the direction 

172 the wind is blowing from, e.g., wind coming from the north is a northerly wind, and a southerly 

173 wind is a wind coming from the south. The raw observations for the meteorological wind direction 

174 for a northerly wind is defined as 360o, a southerly wind is 180o, a westerly wind is 270o, and an 

175 easterly wind is 90o (Fig. S3). Meteorological wind direction (wd) in degrees was converted to a 

176 mathematical direction (md, i.e., the angle as measured in the mathematically conventional way, 

177 counterclockwise from the eastward direction) in degrees using the formula: 

178                                        (1) 
270 , 270

360 (270 ), 270

wd if wd
md

wd if wd

ý óü
ý ý û ý þþ

179 The mathematical direction in degrees was subsequently converted to radians. The x and y (u and 

180 v) components of the hourly wind vectors were then calculated as:  and , where cos»x rý sin »y rý

181 r is the wind speed in miles per hour and » is the wind direction in radians (Fig. S3).

182

183
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184 Static network analysis

185 Spatial networks were constructed for each epidemic year to provide insight into the structure of 

186 CDM spread in the eastern United States. The general methodology involved linking a �source� 

187 node i at a one location to a �sink� node j at another location using a probability based on the 

188 distance between the two nodes. This probability is given by a connection kernel which decays 

189 with distance such that connections are predominantly localized (Danon et al., 2010). In this study, 

190 nodes were a combination of sentinel and non-sentinel sites in the eastern United States. We point 

191 out that other locations in the eastern United States that were not monitored in this study may 

192 contribute to the risk and spread of CDM. However, only the reports of the locations where CDM 

193 was monitored or reported were available for inclusion in this study.

194 Let N be a set of nodes with node  and node . To form the static ÿ * {1,&, ý) ÿ * {2,&, ý)
195 network, a link (l) between two nodes (i and j) was determined as a function of distance. Between-

196 node Euclidean distances were calculated using the Haversine formula (Sinnot, 1984) using the 

197 package geosphere (Hijmans, 2017) implemented in the R programming language (R Development 

198 Core Team). The x and y displacement vectors for two nodes were calculated based on the 

199 equirectangular projection as follows:

200                                                 (2)

2 2sin [(Ç + Ç ) / 2] cos(Ç ) cos(Ç )sin [(» » ) / 2]

R 2 atan2( , 1 )

R (» » ) cos[(Ç + Ç ) / 2]

R (Ç Ç )

j i j j j i

i j

j i j i

j i

z

l z z

x

y

ý û ý

ý ô ô ý

ý ô ý

ý ô ý

201 Where Ç = latitude (radians), » = longitude (radians), R = radius of the earth (mean = 6,371 km), 

202 and  = haversine distance between node i to node j. i jl

203 Links were created using an inverse power-law dispersal kernel , where  is the ( ) b

i jy l ýý ÿ
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204 probability of transmission from node i to node j (Andersen et al., 2019),  is the distance between i jl

205 node i to node j, and b is the spread parameter. The parameter b was not estimated in this study but  

206 were obtained from a previous study on the isotropic spread of CDM in the eastern United States 

207 (Ojiambo et al., 2017) that used the same epidemic data from 2008 to 2016 that was used in the 

208 present study. In that study, the authors examined how b varied over multiple epidemic years and 

209 found that b varied over years ranging from 1.61 to 3.36. Thus, values of b generated from that 

210 study were used in corresponding epidemic years examined in the present study as a representation 

211 of isotropic spread through links in the network. In essence, a link was formed between node i to 

212 node j based on whether they are within a certain distance and a link was created between node i 

213 to node j if y > Ç for 0 < Ç < 1, where Ç is the threshold probability of pathogen transmission. 

214 Several static networks were created for a range of values of Ç for uncertainty analysis to 

215 determine the influence of Ç on link formation as described by Andersen et al. (2019). The range 

216 of Ç selected was bounded by values that produced a full network and a near-zero probability of 

217 link formation (Fig. S4) to facilitate identification of a network with a giant component (GC), since 

218 a network without a GC does not provide much information on the behavior of epidemic spread. 

219 Thus, the value of Ç selected to generate the final static network was identified in two stages. First, 

220 Ç had to result in a network where each node was connected to at least another node (Ferrari, 

221 Preisser & Fitzpatrick, 2014). Second, the selected Ç also had to have a high proportion of nodes 

222 within the GC in the resulting static network. For each epidemic year, the final static network 

223 generated using the selected value Ç for each epidemic year was used in additional network 

224 analyses described below (dynamic networks and error quantification). Degree and the exponent 

225 of degree distribution, ³, for final static networks were estimated using R as described by Kolaczyk 

226 & Csárdi (2020).
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227 Network centrality measures  

228 Centrality measures, betweenness centrality (BWC), closeness centrality (CLC), degree centrality 

229 (DGC) and eigenvector centrality (ECV) (Table 2), were calculated using the igraph package in R 

230 (Csárdi & Nepusz, 2006) for each static network that was created for different Ç values as described 

231 below (identification of important nodes). The empirical cumulative probability distributions of 

232 BWC, CLC, DGC, and EVC were calculated for each epidemic year to describe the distribution 

233 of the calculated centrality metrics across all nodes. For a set of centrality metrics across a set of 

234 nodes, the probability of each value was calculated and the empirical cumulative density function 

235 in the ggpubr package in R was used to calculate the cumulative probability distributions of BWC, 

236 CLC, DGC, and EVC. The similarity in ranking of nodes among centrality metrics was then 

237 assessed using Spearman�s rank-based correlation.

238

239 Identification of important nodes for disease spread within the static network 

240 Analysis of disease outbreaks from 2008 to 2016 was conducted to determine if recurring patterns 

241 of disease spread occurred that could help to identify important nodes in the networks. We tallied 

242 the number of times a node was observed across epidemic years, i.e., the infection frequency. Two 

243 approaches were used to identify nodes potentially important for disease spread and that could be 

244 useful for risk-based surveillance or disease mitigation: i) selection of nodes based on infection 

245 frequency and ii) selection of nodes based on a combination of infection frequency and centrality 

246 metrics. 

247 In the first approach, infection frequency was calculated for nodes in the dataset and nodes 

248 were then ranked from highest to lowest based on their infection frequency. In the second 

249 approach, the entire dataset was reduced to contain only nodes where disease occurred in at least 
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250 one year. A static network was then created such that each node was connected to at least another 

251 node (Ferrari, Preisser & Fitzpatrick, 2014) using b = 2.11 as estimated previously by Ojiambo 

252 et al. (2017) and the centrality metrics were calculated for this network. Centrality metrics were 

253 scaled to a value between 0 and 1 and combined with infection frequency in a ratio of 4:1 

254 (frequency:centrality) for each node to give more weight to infection frequency as described by 

255 Sutrave et al. (2012). Nodes were then ranked in decreasing order based on this weighted value. 

256 This weighting approach puts more emphasis on nodes where the disease is observed recurrently 

257 and nodes that either are highly connected and acting as bridges to other nodes (BWC), occur on 

258 the shortest path (CLC), or connected to other potential super-spreaders (DGC and EVC). A 

259 sensitivity analysis was conducted with four additional frequency:centrality ratios with different 

260 weights. The results of this analysis showed that changing the weights changed the ranks but did 

261 not give more weight to the infection frequency (Fig. S5). Further, of all ratios tested, only the 4:1 

262 ratio resulted in consistent results wherein the higher frequency nodes also had higher weights and 

263 were ranked higher (Table S1). 

264 For each epidemic year, a range of threshold values (0 < Ç < 1) was considered such that 

265 bounds for Ç produced a range of dense networks and sparse networks. In each year, 20 individual 

266 values of Ç were used to construct 20 networks. Centrality metrics were calculated for each network 

267 and the results were ranked in a decreasing order. The top 20 nodes with the highest scores were 

268 then selected and a second ranking was done for each node in this set. The number of times a node 

269 appeared in the top 20 ranking across all thresholds was recorded to eliminate the nodes that were 

270 ranked with higher scores in the dense and sparse networks. The nodes were then ranked in 

271 decreasing order. The results across centrality metrics and Ç values were combined into a heatmap 

272 visualization using the ggplot2 package in R (Wickham, 2016).  
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273 Dynamic network model of cucurbit downy mildew 

274 To describe the dynamic process of disease spread occurring on a static network, we modeled the 

275 probability of different nodes being infected over a discrete weekly time step, , in û ý1, 2,...,t Tþ

276 each epidemic year, based on a simplified SI model described by Sutrave et al. (2012) with the 

277 following assumptions: i) the pathogen is primarily dispersed by wind, ii) host response to the 

278 pathogen is homogeneous and iii) weather is favorable for infection and disease spread. This model 

279 combines the static (constant during each year) and the dynamic (time-varying during each year) 

280 components of the network and was formulated as:

281                                                            (3)                                                    
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282 where  is a constant function of the between-node distance and decays exponentially with i jñ

283 distance,  is the dynamic wind-based infection rate,  and b are as defined above,  is the i jò i jl i jl
r

284 displacement vector between two nodes,  is the wind vector at time t, and  is the link weight i jw
r

i ju

285 based on distance and wind between node i and node j at time t. 

286 Given that the probability of a node being infected depends on the number of infected 

287 neighbors, the probability  of node i not being infected by its neighbors was calculated as:iú  

288         (4)                                                                ( ) (1 ( ))
ii j N i j jt u p tú þý õ ý ÷

289 where  is the probability of node j being infected at time t, * [0,1] is the link weight as defined jp i ju

290 above, and  is a set of neighbors of node i. Given Equation 4, the probability  of node i being iN ip

291 infected at time t was calculated thus:
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292             (5)( ) 1 (1 ( 1)) ( )i i ip t p t túý ý ý ý

293 Values of  and  were calculated and updated, respectively, at each weekly time step. All ip
i jò

294 calculations were performed in MATLAB version R2019a (MathWorks Inc., Natick, MA).  

295

296 Error quantification in the dynamic network model

297 The observed infection status of a node and the corresponding predicted infection probability of 

298 the node were used to quantify the error in the dynamic network model. First, a value of 0 or 1 was 

299 assigned to a node that was either non-infected or infected, respectively, in the observed data at 

300 each time step t. Secondly, the observed (0 or 1) value for each node was compared to the 

301 corresponding infection probability calculated by the model at each time step t. The error was then 

302 defined as the absolute difference between the observed and predicted infection probability. Mean 

303 error for the infected nodes at time step t was then calculated as (Sutrave et al., 2012):

304                                (6)
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305 where  is the total number of infected nodes at time step t, while  is as defined above. ( )inN t ( )ip t

306 Similarly, the mean error for healthy nodes for at each time step t was calculated as: 

307        (7)
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308 where  is the total number of healthy nodes at time step . The total error was obtained by ( )hnN t ý
309 using the expression:

310                 (8)� � �( ) (1 ) ( )in hnE E t E tõ õý û ý

311                                                       

PeerJ reviewing PDF | (2023:12:93930:0:1:NEW 8 Dec 2023)

Manuscript to be reviewed

Anjali Pande
does this mean uninfected nodes? if yes use the same language throughout as you did previously - which was 'non-infected' for consistency



312 where Ç is a weighting factor. The ratio Ç: (1- Ç) in Equation 8 was 4:1 such that observed-infected 

313 nodes were given four times more weight than the observed-healthy nodes in the evaluation of the 

314 total error. Here, it was deemed more important to correctly predict infection than to correctly 

315 predict an absence of infection such that a few nodes incorrectly predicted will have an 

316 insignificant effect on the prediction error (Sutrave et al., 2012). All these calculations were 

317 performed in MATLAB. 

318

319 Assessing node importance in disease spread using a dynamic network  

320 The importance of nodes identified as highly connected based on the four centrality measures from 

321 the static network analysis, i.e., BWC, CLC, DGC, and EVC, were subsequently evaluated for 

322 their impact on disease spread based on link structures of the dynamic network model described 

323 above. Nodes identified as most important based on each centrality metric were removed from the 

324 networks and the probabilities of disease spread among the remaining nodes were recalculated in 

325 the new dynamic network for each epidemic year as described above. Prediction of disease 

326 outbreaks based on all nodes present in the network was subsequently compared to prediction of 

327 disease outbreaks when nodes identified as important based on the above centrality measures were 

328 removed from the network. This approach of node evaluation is equivalent to intensive disease 

329 management, where important nodes are completely removed and the resultant impact of their 

330 removal on disease propagation within the network is assessed (Sutrave et al., 2012). A sensitivity 

331 analysis was also conducted for a range of Ç:(1- Ç) ratios to examine the effect of the choice of the 

332 value of Ç on the model prediction errors. This analysis showed that increasing the value of Ç 

333 resulted in negligible changes in prediction errors across all centrality measures and epidemic years 

334 (Table S2).
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335 RESULTS

336 Spatiotemporal dynamics of disease spread in the eastern United States

337 Observations of disease outbreak suggested a spatial association between the locations of first and 

338 last disease reports. The disease was first observed in a sentinel plot in southern Florida in Miami-

339 Dade County in 6 out of 8 epidemic years (Fig. 1). Most of the first disease reports from 2008 to 

340 2016 occurred in February and March in southern Florida or southwestern Texas along the Gulf 

341 of Mexico, with reports of initial disease outbreaks being from both sentinel and non-sentinel sites.  

342 Subsequent reports of new disease outbreaks progressed northward with time, with new 

343 outbreaks occurring later in more northern states (Fig. 1). The first outbreaks of CDM in more 

344 northern states (e.g., Michigan, New York, or Wisconsin) occurred considerably later than 

345 corresponding reports of first CDM outbreaks in southern states (e.g., Alabama, Georgia or South 

346 Carolina). Across all years, the last set of new disease reports occurred in July, August and 

347 September across several states within the region (Fig. 1). 

348 The total number of states with CDM ranged from 22 to 27, and the corresponding number 

349 of counties ranged from 86 to 179 across the region (Table 1). There was a positive correlation (r 

350 = 0.95; P = 0.0007) between the number of disease reports and counties (Fig. S1), with the number 

351 of sites increasing with an increasing number of infected counties. However, the correlation 

352 between the number of counties where the disease was present and the number of counties where 

353 surveillance was occurring was not significant (r = 0.37; P = 0.3300) (Fig. S2). The linear 

354 maximum distance between two disease reports, a measure of epidemic extent, ranged from 2,491 

355 km in 2012 to 3,071 km in 2015.

356 The number of times that nodes were infected based on combined epidemic data across all 

357 years varied from 1 to 6 (Fig. 2). Nodes where the infection frequency was consistently higher 
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358 than the median frequency (frequency > 3) were in Alabama, Maryland, Michigan, North Carolina, 

359 Ohio, and South Carolina. Nodes with the highest levels of infection frequency were in Wicomico 

360 County in Maryland, Johnson, Lenoir, New Hanover, and Sampson counties in North Carolina, 

361 and Sandusky, Huron, and Wayne counties in Ohio, with an infection frequency of 5 and 6 (Fig. 

362 2). The remaining nodes had an infection frequency less than the median and they constituted most 

363 of the nodes present in counties scattered throughout the region.

364

365 Connectivity threshold and static networks of cucurbit downy mildew

366 The proportion of nodes in the giant component (GC) and the extent of connectedness in a network 

367 were used to select the threshold probability of transmission, Ç, to generate the final static 

368 networks. For example, for the 2008 epidemic data, networks were more connected at Ç = 6.21 × 

369 10-9 (GC = 1.0) than at Ç = 1.14 × 10-9 (GC = 0.92), with other threshold values resulting in either 

370 highly or sparsely connected networks. Thus, to achieve a balance in connectivity, Ç = 6.21 × 10-9 

371 was used to generate the final static network for the epidemic data in 2008 (Fig. 3). Similarly, for 

372 the 2009 data, networks were more connected at Ç = 7.83 × 10-9 (GC = 0.98) than at Ç = 1.12 × 10-8 

373 (GC = 0.95) with the remaining threshold values resulting in either highly or sparsely connected 

374 networks. Thus, Ç = 7.83 × 10-9 was used to generate the final network for disease records in 2009. 

375 This logical approach was used to generate the final networks for disease records for the remaining 

376 epidemic years from 2010 to 2016. The corresponding values of Ç were 1.0 × 10-19, 4.72 × 10-13, 

377 2.55 × 10-13, 1.0 × 10-14, 2.55 × 10-17, 1.0 × 10-12 and 1.0 × 10-12, respectively (Fig. 3). In summary, 

378 the threshold for probability of transmission for the final static networks was very low ranging 

379 from (1.0 × 10-19 to 7.8 × 10-9) and the average degree ranged from 12.9 (in 2014) to 52.1 (in 

380 2015). The exponent of the degree distribution (³) was 2.34 (2008), 1.63 (2009), 2.03 (2010), 1.75 
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381 (2011), 1.93 (2013), 1.82 (2014), 2.05 (2015) and 2.14 (2016). Values of ³ g 2 indicate that a 

382 network is scale-free, i.e., the degrees follow a power-law distribution and the network is 

383 characterized by large hubs or nodes with a very high number of links. 

384   

385 Centrality measures and selection of important nodes 

386 Betweenness, closeness, degree, and eigenvector centrality metrics varied between epidemic years. 

387 Variability among the 20 most important nodes for each of these metrics was also observed for the 

388 final static network constructed within a given epidemic year. Overall, variability among the 20 

389 most important nodes within any epidemic year across the entire study was high for BWC. For 

390 example, BWC values ranged from 264.5 to 888.3 in 2008 (Table 3), from 1147.6 to 2415.7 in 

391 2009 (Table 4), and from 237.6 to 1718.2 in 2010 (Table 5). The mean value for the 20 most 

392 important nodes as identified by BWC in these respective years was 441.8, 1656.9, and 474, with 

393 corresponding standard deviation of 441.1, 896.7 and 1046.9. Variability among the 20 most 

394 important nodes as identified based on the other centrality metrics was relatively limited (Tables 

395 3, 4 and 5), with variability among the nodes identified as important based on CLC being the 

396 lowest across the entire study period.  

397 The cumulative probability distribution of BWC across the nodes in the examined networks 

398 exhibited a power-law distribution. About 85% of the nodes had BWC values < 250, with BWC 

399 >1500 being the largest BWC value observed (Fig. S6). In contrast, the cumulative distribution of 

400 CLC and DGC was more characteristic of a normal distribution, with the variance of CLC being 

401 relatively smaller than that of DGC. The cumulative distribution of EVC followed a Poisson 

402 distribution and except for the most important node in each epidemic year (EVC = 1), each other 

403 node had an EVC value that was closer to that of one or two other nodes. 
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404 Ranking of nodes considered to be important varied among centrality metrics for epidemic 

405 years examined (Tables 3 to 5). Spearman�s rank-based correlation coefficients were highest 

406 between BWC and CLC, with correlations ranging from 0.43 to 0.74 (Fig. S7). Correlations 

407 between BWC and DGC or EVC were relatively lower across the epidemic years except between 

408 BWC and DGC in 2016, where r = 0.46 (Fig. S7). The consistency in the rankings of nodes based 

409 on centrality measures was summarized as a heatmap to visualize unique nodes within the 

410 networks (Fig. 4). Many nodes overlapped in their rankings among the top 20 important nodes 

411 (across all thresholds and centralities) in 2010 (Fig. 4A) and 2014 (Fig. 4C) based on BWC and 

412 CLC. However, most nodes overlapped across the four centrality measures in 2011 (Fig. 4B). For 

413 example, node 117 in Lewis County, West Virginia, appeared more than 20 times in the top 20 

414 rankings based on BWC and CLC. This same node also appeared more than 10 times in the top 20 

415 ranking of nodes based on DGC and EVC.

416

417 Infection frequency and centrality selection of important nodes

418 Identifying important nodes based on infection frequency and centrality measures of static 

419 networks showed some similarities and differences based on the examined centrality metric. The 

420 ranking of nodes based on BWC and CLC was generally similar across years, while rankings based 

421 on EVC were different from all other centrality measures. Based on BWC, nodes that had a 

422 frequency > 4 had the highest calculated values (combined frequency × centrality), with the largest 

423 value being 0.82 for the node in Sandusky County in Ohio (Fig. 5), while the lowest weight was 

424 0.13 for a node in Charleston County in South Carolina. Based on CLC, the largest weight for the 

425 source was 0.98 for the node in Sandusky County in Ohio that had a frequency > 6, while the node 

426 with the lowest weight was that in Miami-Dade County in Florida that had a weight of 0.198. 
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427 Similarly, the node in Sandusky County in Ohio had the highest weight of 0.93 based on DGC, 

428 followed by nodes in Johnston, Lenoir and New Hanover counties in North Carolina, Wicomico 

429 County in Maryland, and Huron and Wayne counties in Ohio that have a frequency of 5 (Fig. 5). 

430 Node ranking based on EVC was comparably different from a ranking based on all other centrality 

431 measures. A node in Johnston County in North Carolina had the highest weight of 0.84, followed 

432 by nodes in Wicomico County in Maryland, Sampson and Johnston counties in North Carolina 

433 and Wayne County in Ohio (Fig. 5). 

434

435 Dynamic network model of disease spread and predicted probability of node infection

436 The dynamic network model revealed an emerging and evolving network that differed from 

437 the static network representation of disease spread (Fig. 6). Generally, similar temporal and spatial 

438 patterns were observed in all other years, although the probabilities between nodes in different 

439 states and levels of these probabilities differed between years. In all epidemic years, links between 

440 nodes closest to the initial disease outbreak (open square) in southern Florida had the highest 

441 probabilities of transmission early in the season (i.e., week 10), while the probability of 

442 transmission for links between nodes elsewhere in the network was relatively low (Fig. 6). As 

443 epidemics progressed in time and space, link probabilities increased for nodes that were more 

444 distant from the initial outbreak in more northern latitudes, although probabilities remained 

445 relatively low for isolated nodes (Fig. 6). 

446 The probability of infection increased in time and space, with a generally northward 

447 expansion of the epidemic front in all years (Fig. 7). Predicted probability of infection increased 

448 most during weeks 20 or later. By week 35, the predicted probability increased for most nodes in 

449 the eastern United States, with only a relatively few nodes in Illinois and Michigan having a low 
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450 infection probability. 

451

452 Errors in dynamic model and impact of removal of important nodes on model errors

453 Based on all nodes in the network, mean absolute errors in the dynamic model generated across 

454 weekly time steps and averaged monthly from January to August was lowest in 2015 with a value 

455 of 0.09 and highest in 2011 with a value of 0.33. The mean absolute error for the dynamic model 

456 across the entire study for all the nodes was 0.21 (Table 6). 

457 Removal of nodes identified as important based on BWC, CLC, DGC, and EVC increased 

458 the mean absolute errors, indicating the nodes were indeed important for network structure and 

459 prediction accuracy. However, the changes in mean absolute errors after node removal varied 

460 depending on the specific centrality measure considered. Removal of nodes identified as important 

461 by BWC resulted in the largest mean absolute error, 0.32, a 52.4% error rate relative to the base 

462 prediction that included all nodes. In contrast, removing nodes identified as important based on 

463 CLC, EVC and DGC led to comparatively small increases in mean absolute error (0.24, 0.24 and 

464 0.25, respectively). Thus, model errors due to the removal of nodes identified as important based 

465 on BWC were 3 to 4 times higher than errors resulting from the removal of nodes identified as 

466 important based on CLC, DGG, or EVC, indicating BWC was superior in identifying important 

467 nodes in this data set (Table 6).      

468 The probability of node infection and epidemic progress in the disease network was also 

469 affected by the removal of nodes identified as central in the network. Relative to a network with 

470 all nodes present, removing nodes identified as important based on BWC reduced the probability 

471 of infection of uninfected nodes in the subsequent time step in all epidemic years (Fig. 8). For 

472 example, the removal of the nodes in counties in north Florida, Georgia, and South Carolina that 
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473 were identified as important based on BWC arrested the progression of CDM and infection of 

474 nodes in north Florida, South Georgia, and South Carolina in 2009 by week 25 (Fig. 8). We 

475 observed a similar pattern of infection probability being meaningfully changed in other years as 

476 well when node removal was based on BWC, with the precise change in infection probability 

477 varying in specific years. In contrast, removal of nodes identified as central based on CLC, DGC 

478 or EVC had a comparably minor impact on the probability of node infection and epidemic progress 

479 in all years (Fig. 8).

480

481 4. Discussion

482 Estimating the probability and timing of outbreaks in specific sites, and determining where and 

483 when the introduction of inoculum can impact the extent of an epidemic, is one of the challenges 

484 in predicting the spread of plant diseases and pests (Meentemeyer et al., 2011; Fitzpatrick et al., 

485 2012). The CDM pathogen can be dispersed over long distances and the disease can spread rapidly 

486 under favorable environmental conditions (Ojiambo & Holmes, 2011). In this study, networks 

487 were formulated based on historical epidemic records of CDM to establish how connectivity of 

488 cucurbit fields influences pathogen dispersal and disease spread in the eastern United States. 

489 Multiple low- to high-density static networks were initially generated and analyzed, and networks 

490 with biologically-plausible structures and topologies were selected for further analysis. The 

491 exponent of the degree distributions for most of the examined networks followed a power-law 

492 distribution, indicating that static networks of CDM displayed scale-free properties (Pastor-

493 Satorras & Vespignani, 2001), where most nodes had a small number of links, while a smaller 

494 number of nodes had a relatively large number of connections. Scale-free connectivity implies the 

495 existence of highly connected nodes (hubs) that are responsible for the rapid spread of disease 
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496 within the network (Jeger et al., 2007). The transmission probability threshold is low or even 

497 absent in scale-free networks (Shirley & Rushton, 2005; Pastor-Satorras & Vespignani, 2001) and 

498 this may partly explain the low levels of Ç observed in the present study. Disease spread in scale-

499 free networks is rapid and models suggest that control of pathogens spreading in such networks 

500 should focus on the highly connected sites (Jeger et al., 2007). Thus, targeted sampling of 

501 frequently-infected and highly connected sites that are critical in spreading the disease may benefit 

502 disease surveillance. 

503 Sites in Florida, Alabama, North, and South Carolina that were infected more frequently 

504 in the past may be candidates for disease surveillance. Acquiring the frequency of infection data 

505 is a prerequisite, but constant scouting for the disease is expensive. However, once the historical 

506 frequency of infection data is available, additional information about network traits is inexpensive 

507 to obtain using mathematical models (Sutrave et al., 2012). Network centrality metrics such as 

508 BWC, CLC, DGC and EVC can facilitate the identification of such highly connected nodes 

509 (Andersen et al., 2019; Gent et al., 2019) and aid in evaluating strategies for selecting nodes for 

510 surveillance (Sanatkar et al., 2015). Based on a complete static network model, these centrality 

511 measures were used to identify highly connected sites for the spread of CDM in the eastern United 

512 States. Combining past infection frequency with centrality measures improved the identification 

513 of important nodes. For example, DGC, BWC, and CLC produced similar rankings with the 

514 infection-based frequency for nodes with an infection frequency greater than four. Although EVC 

515 produced a different ranking, nodes with a frequency greater than four still had high weights, thus 

516 agreeing with the rankings from the other centrality measures. The combination of frequency-

517 based and DGC was useful in selecting sampling nodes for sentinel plots for soybean rust in the 

518 United States (Sutrave et al., 2012). DGC is considered the standard measure in network science 
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519 and is useful for identifying important nodes in static networks of several pathosystems to inform 

520 strategic management (Christley et al., 2005; Gent et al., 2019; Kiss et al., 2006; Xing et al., 2020). 

521 Unlike other centrality measures, DGC is easier to calculate and does not require assessing the 

522 entire network (Christely et al., 2005). In this study, DGC was ineffective in identifying important 

523 nodes compared to BWC. Further, BWC rankings were poorly correlated with those of DGC 

524 except for the epidemic data collected in 2016. 

525 Betweenness centrality was more useful in identifying the influential nodes in the network 

526 as compared to other commonly used metrics. BWC measures the importance of a node by 

527 computing how many times a node of interest is on the shortest paths between any two other nodes. 

528 This centrality measure has been used to characterize large networks by way of selected nodes 

529 since the seminal work by Granovette (1973). Nodes of high BWC have been used for determining 

530 keystone species in food webs, finding clusters and communities, and analyzing the robustness of 

531 networks by identifying sensitive points of failure (Barabási & Bonabeau, 2003; Girvan & 

532 Newman, 2002; Vasas & Jordán, 2006). In epidemiology, nodes with high BWC indicates that 

533 they are important in disease spread as they act as bridges or �hubs� to other nodes. Removal of 

534 these nodes can contain an epidemic (Ezeoke et al., 2018), as was observed in this study. The 

535 observation that BWC was more informative of node importance than other centrality measures 

536 emphasizes the need to generate centrality measures that are specific to the disease of interest 

537 (Holme, 2018). Invariably, different centrality measures can result in a different ranking profile of 

538 important nodes for different pathosystems, possibly due to the inherent differences in the 

539 underlying mechanisms of pathogen dispersal and disease spread, landscape connectivity, or other 

540 factors (Dudkina et al. 2023; Holme, 2018; Singer et al., 2022).  
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541 The importance of the highly connected sites in disease spread was further evaluated using 

542 a dynamic network model. Mean absolute errors and the probability of infection in nodes across 

543 the networks were relatively insensitive to the removal of nodes identified as central by CLC, 

544 DGC, and EVC. In contrast, mean absolute errors and the probability of infection in simulated 

545 epidemics were quite sensitive to the removal of nodes identified as central based on BWC. This 

546 may be related to the physical location of the nodes identified as highly central by the various 

547 centrality measures. Removing nodes identified as important based on CLC, DGC and EVC that 

548 were located in Pennsylvania, Ohio, and New York did not affect disease progression northward 

549 from southern states, whereas removing important nodes in North Carolina largely prevented 

550 disease spread. Nodes with high BWC scores were scattered across the region, including in the 

551 southern U.S. Removal of these nodes, reduced disease spread, and in some epidemic years, it 

552 entirely halted disease spread from most southern states. Most spread of CDM is over relatively 

553 short distances of less than 30 km (Ojiambo & Holmes, 2011) as the host is planted from south to 

554 north. Since BWC is based on the number of shortest paths that pass through a target node, a target 

555 node will have a high BWC score if it appears in many shortest paths. Given the relative short 

556 dispersal distances of P. cubensis, it is plausible that BWC may be better at capturing the dynamics 

557 of disease transmission for most of the dispersal events that drive the spread of CDM. 

558 Where resources available for control are limited, targeting nodes with high BWC for 

559 treatment has also been found to be an effective strategy in impeding epidemics caused by a disease 

560 that spreads rapidly (Singer et al., 2022). The most central nodes identified as important based on 

561 BWC were sites in Michigan in the Great Lakes region, Ohio in the Midwest, and Maryland, North 

562 Carolina, South Carolina, and Virginia along the mid-Atlantic coast. These states are located along 

563 the seasonal transport pathway of P. cubensis spores from overwintering locations from the south 
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564 (Aylor, 2003). Further, most of these have the largest acreage of cucurbit production in the United 

565 States. Thus, a combination of spore transport and host density may be a reason for the location of 

566 the most central nodes in the above states. These sites could thus be reasonable targets for more 

567 intensive sampling for surveillance when collecting reports of new outbreaks within the region. 

568 Potentially, more effective disease management in these highly connected sites, such as the 

569 strategic deployment of host resistance, could reduce inoculum production that drives infection in 

570 neighboring cucurbit fields in the eastern United States. 

571 Unlike the dynamic model used for the spread of soybean rust in the United States (Sutrave 

572 et al., 2012), the dynamic model used in this present study incorporated a power-law dispersal 

573 gradient characteristic for the long-distance dispersal of plant pathogens. Based on the 2008 and 

574 2009 epidemic data and point-pattern analysis, the dispersal distances for the CDM pathogen were 

575 estimated to be up to 390, 737 and 879 km, with 1,000 km being the maximum possible distance 

576 of spatial association (Ojiambo & Holmes, 2011). Further, Ojiambo et al. (2017) showed that the 

577 spread parameter b varied in different epidemics, with the final epidemic extent ranging from 4.16 

578 × 108 to 6.44 × 108 km2. Thus, different values of b were used in the construction of static networks 

579 and in the dynamic network model to account for the difference in spatial spread in each epidemic 

580 year. The dynamic network model used in the present study improves on long-distance dispersal 

581 by using a flexible threshold for distance to allow for connectivity of nodes that are further apart 

582 (Ferrari, Preisser & Fitzpatrick, 2014). However, the model does not account for differences in 

583 environmental factors that are likely to influence pathogen dispersal. In addition, accounting for 

584 differences in host susceptibility at the different locations could further improve our ability to 

585 generalize the findings reported here to different cucurbit host types. Subsequent studies are also 

586 needed to establish how unknown disease sources can be imputed in this network modeling 
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587 framework and determine how accounting for these unknown sources could influence the network 

588 structure and inference made on the location of highly connected sites for disease surveillance 

589 reported in this study. Due to the non-random placement of sentinel plots within the monitoring 

590 network, these results may not be generalizable and additional studies may be needed to assess 

591 how the random placement of sentinel plots could influence the findings reported in this study.  

592
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731 Table 1 States, number of counties in eastern United States where cucurbit downy mildew was reported, and number of monitoring sites 

732 with disease summarized by planting type, during the study period.

Number of sites by planting type

Year
Number of

states affected
Number of 

counties Commercial Home garden Research Sentinela Unspecifiedb Totalc

2008 22 113 68 10 12 59 5 154

2009 24 165 77 26 24 92 1 220

2010 25 118 77 17 24 25 1 144

2011 23 86 57 10 22 28 0 117

2012 25 149 99 20 23 31 0 173

2013 26 179 118 30 23 29 4 204

2014 23 104 53 16 22 20 3 114

2015 27 171 126 15 22 42 4 209

2016 22 107 61 9 19 33 0 122

733 a Sentinel planting type refers to fixed plots, planted early and designated for weekly monitoring.
734 b Unspecified refers to reports where the planting type was not stated when disease was reported in the cucurbit downy mildew 
735 monitoring database.
736 c Total number of disease monitoring sites designated as either commercial, home garden, research, sentinel and unspecified plot. 
737
738
739
740
741
742
743
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744 Table 2 Definition of centrality measures in a network model used to study the spread of cucurbit downy mildew in the eastern United 

745 States.

Centrality measure Central node Relevance in epidemic spread 

Betweenness (BWC) Acts as a bridge to other nodes Removal of nodes with high betweenness may contain an epidemic 
Closeness (CLC) Lies on the shortest path Nodes are able to spread disease through a network
Degree (DGC) Connected to many other nodes Nodes with high degree may be �superspreaders� 
Eigenvector (ECV) Connected to other high-degree nodes Nodes with neighbors having high degree may be �superspreaders�

746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
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770 Table 3. Centrality-based ranking of the twenty most important sites in the cucurbit downy mildew network for the epidemic observed 

771 in the eastern United States in 2008.

Betweennessa Closenessa Degreea Eigenvectora

Rank ID State BWC ID State CLC ID State DGC ID State EVC

1 74 MS 888.3 89 NC 0.0034 131 PA 73 128 PA 1.000

2 118 OH 665.3 118 OH 0.0034 52 MD 72 131 PA 0.994

3 135 SC 608.6 125 PA 0.0034 125 PA 72 134 PA 0.989

4 124 OH 534.1 128 PA 0.0034 128 PA 72 125 PA 0.981

5 39 KY 517.2 130 PA 0.0034 130 PA 72 130 PA 0.974

6 141 TN 507.2 124 OH 0.0034 127 PA 71 99 NY 0.963

7 31 GA 500.4 52 MD 0.0034 134 PA 69 127 PA 0.962

8 89 NC 471.1 134 PA 0.0034 99 NY 66 102 NY 0.953

9 137 SC 470.8 86 NC 0.0033 102 NY 65 96 NY 0.943

10 82 NC 416.6 148 VA 0.0033 96 NY 64 97 NY 0.930

11 91 NC 416.6 150 VA 0.0033 129 PA 64 98 NY 0.926

12 139 TN 375.8 131 PA 0.0033 11 DE 63 100 NY 0.902

13 52 MD 372.1 87 NC 0.0033 97 NY 63 52 MD 0.879

14 75 MS 336.7 88 NC 0.0033 98 NY 63 126 PA 0.858

15 125 PA 324.7 127 PA 0.0033 13 DE 62 129 PA 0.856

16 128 PA 305.4 80 NC 0.0033 100 NY 61 111 OH 0.847

17 136 SC 290.5 78 NC 0.0033 10 DE 59 113 OH 0.847

18 33 GA 290.1 79 NC 0.0033 93 NJ 59 117 OH 0.828

19 29 GA 279.0 151 VA 0.0032 94 NJ 59 120 OH 0.820

20 34 GA 264.5 39 KY 0.0032 133 PA 59 101 NY 0.814

Mean 441.8 0.0033 65.4 0.913

SD 441.1 0.0000   9.9 0.132

772  a ID = node identification number, BWC = betweenness centrality, CLC = closeness centrality, DGC = degree centrality, and EVC = 
773 eigenvector centrality; SD = Standard deviation.
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774 Table 4. Centrality-based ranking of twenty most important nodes in the cucurbit downy mildew network for the epidemic observed in 

775 the eastern United States in 2009.

Betweennessa Closenessa Degreea Eigenvectora

Rank ID State BWC ID State CLC ID State DGC ID State EVC

1 34 GA 2415.7 122 NC 0.0012 74 MI 35 109 NC 1.000

2 212 VA 2390.2 132 NC 0.0012 79 MI 35 136 NC 0.979

3 48 KY 2376.2 134 NC 0.0012 82 MI 33 114 NC 0.979

4 154 OH 2152.4 129 NC 0.0012 93 MI 33 118 NC 0.966

5 32 GA 2011.5 124 NC 0.0012 109 NC 33 130 NC 0.960

6 192 TN 1907.7 135 NC 0.0012 158 OH 33 127 NC 0.960

7 186 SC 1803.5 205 VA 0.0012 200 VA 33 211 VA 0.937

8 169 PA 1796.5 212 VA 0.0012 76 MI 32 119 NC 0.913

9 2 AL 1672.3 48 KY 0.0011 90 MI 32 128 NC 0.906

10 180 SC 1605.4 163 OH 0.0011 114 NC 32 207 VA 0.898

11 104 MS 1515.0 164 OH 0.0011 118 NC 32 115 NC 0.891

12 171 PA 1413.6 165 OH 0.0011 136 NC 32 125 NC 0.887

13 103 MS 1351.4 133 NC 0.0011 211 VA 32 126 NC 0.884

14 25 FL 1343.5 192 TN 0.0011 75 MI 31 113 NC 0.882

15 200 VA 1311.5 123 NC 0.0011 83 MI 31 121 NC 0.872

16 153 OH 1259.8 169 PA 0.0011 88 MI 31 120 NC 0.869

17 147 NY 1258.1 171 PA 0.0011 89 MI 31 112 NC 0.869

18 54 KY 1248.4 183 SC 0.0011 91 MI 31 203 VA 0.867

19 101 MS 1158.2 207 VA 0.0011 92 MI 31 200 VA 0.864

20 158 OH 1147.6 203 VA 0.0011 111 NC 31 110 NC 0.850

Mean 1656.9 0.0011 32.2 0.912

SD   896.7 0.0000   2.8 0.106

776 a ID = node identification number, BWC = betweenness centrality, CLC = closeness centrality, DGC = degree centrality, and EVC = 
777 eigenvector centrality; SD = Standard deviation.
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778 Table 5. Centrality-based ranking of twenty most important sites in the cucurbit downy mildew network for the epidemic observed in 

779 the eastern United States in 2010.

Betweennessa Closenessa Degreea Eigenvectora

Rank ID State BWC ID State CLC ID State DGC ID State EVC

1 30 KY 1718.2 30 KY 0.0033 116 OH 56 116 OH 1.000

2 31 KY 1009.3 31 KY 0.0032 103 OH 54 109 OH 0.998

3 65 MS   691.0 116 OH 0.0032 104 OH 54 106 OH 0.997

4 4 AL   577.1 121 PA 0.0032 105 OH 54 110 OH 0.995

5 139 TX   556.0 105 OH 0.0032 106 OH 54 103 OH 0.995

6 77 NC   486.1 103 OH 0.0032 108 OH 54 113 OH 0.995

7 25 GA   469.3 104 OH 0.0032 109 OH 54 114 OH 0.995

8 74 NC   410.1 108 OH 0.0032 110 OH 54 104 OH 0.995

9 13 FL   404.1 110 OH 0.0032 113 OH 54 108 OH 0.995

10 23 GA   342.0 113 OH 0.0032 114 OH 54 61 MI 0.992

11 26 GA   342.0 114 OH 0.0032 61 MI 53 41 MI 0.983

12 5 AL   331.3 107 OH 0.0032 40 MI 52 53 MI 0.983

13 120 PA   305.2 106 OH 0.0031 41 MI 52 60 MI 0.983

14 130 SC   296.8 109 OH 0.0031 48 MI 52 48 MI 0.983

15 138 TX   282.0 120 PA 0.0031 53 MI 52 105 OH 0.977

16 80 NC   264.0 119 PA 0.0031 60 MI 52 42 MI 0.964

17 67 NC   257.1 115 OH 0.0031 107 OH 52 40 MI 0.960

18 117 PA   253.7 61 MI 0.0031 112 OH 52 111 OH 0.960

19 122 PA   246.7 112 OH 0.0031 122 PA 52 112 OH 0.959

20 140 VA   237.6 111 OH 0.0031 42 MI 51 43 MI 0.959

Mean   474.0 0.0032 53.1 0.983

SD 1046.9 0.0000   3.5 0.029

780 a ID = node identification number, BWC = betweenness centrality, CLC = closeness centrality, DGC = degree centrality, and EVC = 
781 eigenvector centrality; SD = Standard deviation
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782 Table 6 Absolute errors for a network model based on all sites and removal of sites identified as 

783 important based on centrality measures used to study the spatio-temporal spread of cucurbit downy 

784 mildew in the eastern United States. 

785 a For each year, values are means of absolute model errors generated across monthly time steps 
786 from January to August. 
787 b The 20 most important nodes identified by each centrality measure were removed in the network 
788 and the model rerun to calculate the corresponding absolute errors. 
789
790
791

Error after removal of important nodes based on centrality measureb

Yeara All nodes Betweenness Closeness Degree Eigenvector

2008 0.18 0.31 0.22 0.21 0.22
2009 0.27 0.39 0.29 0.28 0.33
2010 0.15 0.23 0.20 0.19 0.20
2011 0.33 0.40 0.35 0.34 0.34
2012 0.27 0.33 0.27 0.27 0.27
2013 0.28 0.45 0.30 0.31 0.31
2014 0.26 0.44 0.36 0.37 0.37
2015 0.09 0.12 0.10 0.10 0.10
2016 0.10 0.17 0.09 0.10 0.10
Mean 0.21 0.32 0.24 0.24 0.25
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792 Figure 1. Location of cucurbit downy mildew outbreaks in the eastern United States from 2008 to 
793 2016. Locations are color-coded based on the week of the year. Shapes represent the surveillance 
794 plot type associated with disease reports during the study period.
795
796 Figure 2. Frequency of cucurbit downy mildew outbreaks across all epidemic years from 2008 to 
797 2016 in the eastern United States. Colors represent the frequency (n) of disease cases: red (n = 6), 
798 yellow (n = 5), green (n = 4), light blue (n = 3), blue (n = 2) and pink (n = 1). Frequency represents 
799 the number of years a node was observed as an infected node (i.e., a location where the disease 
800 was reported).
801

802 Figure 3. Static networks of cucurbit downy mildew epidemics in eastern United States from 2008 

803 to 2016. Closed circles are nodes where disease was reported (either in a sentinel and non-sentinel 

804 plot) and the lines between two nodes are links for the probability of transmission between two 

805 nodes calculated based on the power-law dispersal kernel. Thresholds for probability of pathogen 

806 transmission ranged from ranged from 1.0 × 10-19 to 7.8 × 10-9 (see text for details). In all years, 

807 the initial source of disease outbreak was in Miami-Dade County (open square) in southern Florida.

808

809 Figure 4. A heatmap representation of the most important nodes across 20 thresholds for disease 
810 transmission across the network and four centrality measures for 2010 (A), 2011 (B) and 2014 (C) 
811 networks. Frequency represents the number of times a node appeared in the top 20 ranked list 
812 across all evaluated thresholds.
813
814 Figure 5. A depiction of node importance based on a combination of frequency of cucurbit downy 

815 mildew occurrence in the eastern United States and betweenness, closeness, degree or eigenvector 

816 network centrality measures. Frequency represents the number of years a node was observed as an 

817 infected node based on epidemic years from 2008 to 2016. Frequency of occurrence and centrality 

818 measures are weighted based on a ratio of 4:1.

819
820 Figure 6. Evolving network resulting from a dynamic network model for the spread of cucurbit 

821 downy mildew in the eastern United States in 2008, 2013, 2014 and 2015. Black circles indicate 

822 node centroids of disease outbreak, while the open square is initial source of disease outbreak. 

823 Lines are links that have been scaled relative to the probability of transmission by time, with darker 

824 and thicker lines indicating higher probabilities of transmission.

825

826 Figure 7. Prediction of cucurbit downy mildew outbreaks in the eastern United States in 2014 

827 based on cumulative disease outbreaks observed in previous times steps in the same epidemic year. 

828 Dark red nodes represent counties predicted to have an outbreak with a high probability. Blue 

829 nodes represent counties predicted to have no outbreak with negligible probability of infection, 

830 and all other shades from green to dark red represent increasing probability of disease outbreak. A 

831 single node in Texas was reported as infected by Week 10 in the observed data; thus the county 

832 was considered infected with probability of one by Week 10.

833
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834 Figure 8. Prediction of cucurbit downy mildew outbreaks in the eastern United States by week 25 

835 for all nodes present in the network (i.e., prediction) compared to prediction when the 20 most 

836 important nodes (based on betweenness, closeness, degree, and eigenvector centrality measures) 

837 are removed from the network based on data from epidemics in 2008, 2009, 2013 and 2014. 

838 Diamond symbols are nodes identified as important based on each centrality metric. The initial 

839 source of disease outbreak is represented by a square symbol in Miami-Dade County in southern 

840 Florida.

841

842
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Figure 1
Map of location of disease monitoring

Figure 1. Location of cucurbit downy mildew outbreaks in the eastern United States from
2008 to 2016. Locations are color-coded based on the week of the year. Shapes represent
the surveillance plot type associated with disease reports during the study period.
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Figure 2
Frequency map of cucurbit downy mildew outbreak

Figure 2. Frequency of cucurbit downy mildew outbreaks across all epidemic years from
2008 to 2016 in the eastern United States. Colors represent the frequency (n) of disease
cases: red (n = 6), yellow (n = 5), green (n = 4), light blue (n = 3), blue (n = 2) and pink (n =
1). Frequency represents the number of years a node was observed as an infected node (i.e.,
a location where the disease was reported).
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Figure 3
Static networks of cucurbit downy mildew epidemics

Figure 3. Static networks of cucurbit downy mildew epidemics in eastern United States from
2008 to 2016. Closed circles are nodes where disease was reported (either in a sentinel and
non-sentinel plot) and the lines between two nodes are links for the probability of
transmission between two nodes calculated based on the power-law dispersal kernel.

Thresholds for probability of pathogen transmission ranged from ranged from 1.0 × 10-19 to

7.8 × 10-9 (see text for details). In all years, the initial source of disease outbreak was in
Miami-Dade County (open square) in southern Florida.
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Figure 4
Illustration of important nodes for disease spread

Figure 4. A heatmap representation of the most important nodes across 20 thresholds for
disease transmission across the network and four centrality measures for 2010 (A), 2011 (B)
and 2014 (C) networks. Frequency represents the number of times a node appeared in the
top 20 ranked list across all evaluated thresholds.
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Figure 5
Node importance based on frequency of disease occurence and centrality measures

Figure 5. A depiction of node importance based on a combination of frequency of cucurbit
downy mildew occurrence in the eastern United States and betweenness, closeness, degree
or eigenvector network centrality measures. Frequency represents the number of years a
node was observed as an infected node based on epidemic years from 2008 to 2016.
Frequency of occurrence and centrality measures are weighted based on a ratio of 4:1.
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Figure 6
Dynamic network of the spread of cucurbit downy mildew

Figure 6. Evolving network resulting from a dynamic network model for the spread of
cucurbit downy mildew in the eastern United States in 2008, 2013, 2014 and 2015. Black
circles indicate node centroids of disease outbreak, while the open square is initial source of
disease outbreak. Lines are links that have been scaled relative to the probability of
transmission by time, with darker and thicker lines indicating higher probabilities of
transmission.
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Figure 7
Prediction of the temporal spread of cucurbit downy mildew

Figure 7. Prediction of cucurbit downy mildew outbreaks in the eastern United States in
2014 based on cumulative disease outbreaks observed in previous times steps in the same
epidemic year. Dark red nodes represent counties predicted to have an outbreak with a high
probability. Blue nodes represent counties predicted to have no outbreak with negligible
probability of infection, and all other shades from green to dark red represent increasing
probability of disease outbreak. A single node in Texas was reported as infected by Week 10
in the observed data; thus the county was considered infected with probability of one by
Week 10.
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Figure 8
Impact of removal of important nodes on disease spread

Figure 8. Prediction of cucurbit downy mildew outbreaks in the eastern United States by
week 25 for all nodes present in the network (i.e., prediction) compared to prediction when
the 20 most important nodes (based on betweenness, closeness, degree, and eigenvector
centrality measures) are removed from the network based on data from epidemics in 2008,
2009, 2013 and 2014. Diamond symbols are nodes identiûed as important based on each
centrality metric. The initial source of disease outbreak is represented by a square symbol in
Miami-Dade County in southern Florida.
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