The human touch: a meta-analysis of anthropogenic effects on plant-pollinator interaction networks (#95435)

First submission

Guidance from your Editor

Please submit by 16 Feb 2024 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

- 3 Figure file(s)
- 2 Table file(s)
- 1 Raw data file(s)

Systematic review or meta analysis

- Have you checked our <u>policies</u>?
- Is the topic of the study relevant and meaningful?
- Are the results robust and believable?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

The human touch: a meta-analysis of anthropogenic effects on plant-pollinator interaction networks

Karla López-Vázquez ¹, Carlos Lara ^{Corresp., 2}, Pablo Corcuera ³, Citlalli Castillo-Guevara ², Mariana Cuautle ²

Corresponding Author: Carlos Lara

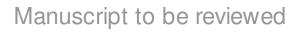
Email address: carlos.lara.rodriguez@gmail.com

Background. Anthropogenic activities significantly impact natural ecosystems, leading to alterations in plant and pollinator diversity and abundance. These changes often result in shifts within interacting communities, potentially reshaping the structure of plant-pollinator interaction networks. Given the escalating human footprint on habitats, evaluating the response of these networks to anthropization is critical for devising effective conservation and management strategies. Methods. We conducted a comprehensive review of the plant-pollinator network literature to assess the impact of anthropization on network structure. Employing a meta-analytical approach, we examined how anthropization activities, such as land use changes, urbanization, habitat fragmentation, agriculture, and livestock farming, affect both plant and pollinator richness. Additionally, we assessed network metrics such as nestedness (NODF), network specialization (H2), connectance (C), and modularity (Q) to understand structural changes. Results. We generated a dataset of 36 effect sizes for various metrics of network structure from 38 papers published between 2010 and 2023. Studies assessing the impact of agriculture and livestock farming were well-represented, with networks involving interacting insects being the most studied taxa. Our meta-analysis suggests that anthropization decreases richness for both plants and pollinators. However, there was high heterogeneity among studies. Similarly, agriculture and fragmentation reduce nestedness and increase specialization in plant-pollinator networks, while modularity and connectance are mostly not affected. We also performed meta-regressions to identify variables accounting for this heterogeneity across studies, and we demonstrate that outcomes may depend on the habitat fragment size where the studies were carried out. **Conclusions**. The analysis of human impacts on plant-pollinator networks showed varied effects worldwide. Activities like agriculture and livestock farming significantly changed ecosystems, reducing species richness in both pollinators and plants, highlighting network vulnerability. Responses differed among network metrics, signaling

Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México, Mexico

² Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, San Felipe Ixtacuixtla, Tlaxcala, Mexico

Bepartamento de Biología, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México, Mexico


nuanced impacts on structure. Regional differences stressed the need for tailored conservation. Despite insights, more research is crucial for a complete understanding of these ecological relationships.

The human touch: a meta-analysis of anthropogenic effects

2 on plant-pollinator interaction networks

3	
4	Karla López-Vázquez ¹ , Carlos Lara ² , Pablo Corcuera ³ , Citlalli Castillo-Guevara ² , and Mariana
5	Cuautle ²
6	
7	
8	¹ Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana,
9	Iztapalapa, Ciudad de México, México.
10	² Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, San Felipe
11	Ixtacuixtla, Tlaxcala, México.
12	³ Departamento de Biología, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de
13	México, México.
14	
15	*Corresponding author:
16	Carlos Lara
17	Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, San Felipe
18	Ixtacuixtla, Tlaxcala, Mexico
19	Email address: carlos.lara.rodriguez@gmail.com
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	

31	Abstract
32	Background. Anthropogenic activities significantly impact natural ecosystems, leading to
33	alterations in plant and pollinator diversity and abundance. These changes often result in shifts
34	within interacting communities, potentially reshaping the structure of plant-pollinator interaction
35	networks. Given the escalating human footprint on habitats, evaluating the response of these
36	networks to anthropization is critical for devising effective conservation and management
37	strategies.
38	Methods. We conducted a comprehensive review of the plant-pollinator network literature to
39	assess the impact of anthropization on network structure. Employing a meta-analytical approach,
40	we examined how anthropization activities, such as land use changes, urbanization, habitat
41	fragmentation, agriculture, and livestock farming, affect both plant and pollinator richness.
42	Additionally, we assessed network metrics such as nestedness (NODF), network specialization
43	(H2), connectance (C), and modularity (Q) to understand structural changes.
14	Results. We generated a dataset of 36 effect sizes for various metrics of network structure from
45	38 papers published between 2010 and 2023. Studies assessing the impact of agriculture and
46	livestock farming were well-represented, with networks involving interacting insects being This statement is ambiguous. Could
1 7	most studied taxa. Our meta-analysis suggests that anthropization decreases richness for boyou provide a
48	plants and pollinators. However, there was high heterogeneity among studies. Similarly, represents the
19	agriculture and fragmentation reduce nestedness and increase specialization in plant-pol in extent to which studies assessing
50	networks, while modularity and connectance are mostly not affected. We also performed nthe impact of
51	regressions to identify variables accounting for this heterogeneity across studies, and we livestock farming,
52	demonstrate that outcomes may depend on the habitat fragment size where the studies wer and insect
53	carried out. networks were well-represented?
54	Conclusions . The analysis of human impacts on plant-pollinator networks showed varied effects
55	worldwide. Activities like agriculture and livestock farming significantly changed ecosystems,
56	reducing species richness in both pollinators and plants, highlighting network vulnerability.
57	Responses differed among network metrics, signaling nuanced impacts on structure. Regional
58	differences stressed the need for tailored conservation. Despite insights, more research is crucial
59	for a complete understanding of these ecological relationships.
60	

61

62	Introduction \	I believe that, in general, the		
		introduction would		
63	Anthropization is the process by v	benefit from	rm natural environments or	•
64	(Steffen et al., 2011). This multifa	examples of	s a myriad of economic and	d political
65	factors, including changes in land	studies with	rastructure development, d	eforestation,
66	agriculture, mining, and pollution	results supporting the statements.	g the landscapes that susta	in life on our
67	planet (Ellis & Ramankutty, 2008;	1	ez, Cárdenas-García, 2017). Within this
68	context, the intricate relationships	separating the citations would	heir pollinators face unprec	redented believe that this statement needs a
69		make it easier to		citation. Perhaps
70	Studies exploring the impacts of	or interest.	ant-pollinator interaction no	thic work: https://
71	been pivotal in our understanding	of how human activi	ties have fundamentally alte	ered thes doi.org/10.3389/
72	ecological relationships. The focu	_	-	Alternatively
73	shifts in structural patterns within	these networks. Thes	se changes are driven by an	assortmesupport the
74	influences, including disturbance	gradients, land use m	odification, urbanization, h	abitat logstatement with other references
75	fragmentation, which have been s	tudied extensively in	recent years (Marrero, Tor	
76	2014; Moreira, Boscolo & Viana,	2015; Grass et al., 2	018; Jauker et al., 2019; Ne	
77	2018; Della Rocca et al., 2023). Is	mportantly, these san	ne factors constitute the prin	natrepetitive with the first paragraph.
78	behind the alarming worldwide de	• ,	,	Please consider
79	The sensitivity of pollinators to	habitat alterations is	striking, resulting in reducti	restructuring for better coherence
80	richness and abundance. Moreove	er, these alterations pr	ovoke shifts in species com	_{po} and clarity.
81	the foraging behavior of pollinator	rs, with far-reaching	ecological consequences (M	Iurcia, 1996;
82	Aizen & Feinsinger, 2003). Never	theless, it is not a uni	iform decline, as anthropize	ed ecosystems
83	affect various species differently.			
84	(Ewers & Didham 2006; Steffan-L	Dewenter et al., 2007). Furthermore, the convers	important to separate the
85	areas into cultivated land significa			floicitations to
86	resources, the number of visits by	pollinators, and the r	richness of these crucial spe	facilitate the reader's access to
87	(Ricketts et al., 2008). This transit	tion can also disrupt t	he spatial and temporal stab	oili the specific study
88	interactions (Garibaldi et al., 201	la).	This seems to indicate changes	of interest. Additionally,
89	Urbanization, a hallmark of anth	ropization, is associa	ated win beta-diversity,	icl consider
90	abundance of insect pollinator spe	ecies. This decline is a	Consider	statement with
91	pollution (Morón & Márquez, 201	(2), and the extensive	use oproviding further	cid <mark>more examples,</mark> possibly from
92	green spaces (Muratet & Fontaine	e, 2015). Intriguingly,	, there supporting references.	more recent sources.

93 differences have been identified in terms of pollinator abundance or diversity between urbanized 94 and less urbanized areas (Williams & Winfree, 2013; Vanbergen et al., 2014; Zakardjian et al., 95 2020). A nuanced impact emerges when considering specialist and generalist pollinators. 96 Specialists, which rely on a limited number of plant species for sustenance, are more severely 97 affected by anthropization compared to generalists, which have a broader dietary range (Bronstein, 1994; Kunin, 1997; Marrero, Torreta & Medan, 2014; Marín et al., 2020). 98 99 Animal pollination is crucial for the sexual reproduction of the majority of flowering plants (Kremen, James & Pitts-Singer, 2008; Campbell et al., 2012; Cardoza, Harris & Grozinger, 100 2012). The efficiency of pollinators in transporting compatible pollen to plant stigmas 101 102 profoundly influences reproductive success. Consequently, the decline in pollinators can trigger adverse impacts on the life cycle of zoogamous plants and lead to reductions in species 103 104 populations (Yao, Holt & Marshall, 1999; Lennartsson, 2002). Habitat fragmentation, a frequent 105 outcome of anthropization, is a known factor in the disruption of pollinator richness, abundance, and composition (Kearns, Inouye & Waser, 1998; Young & Clarke, 2000). It is often cited as the 106 107 primary cause of reproductive impairment in fragmented habitats (Aguilar et al., 2009). Documented cases emphasize how habitat fragmentation and alterations in pollinatio 108 affect the reproductive success of certain plants. However, the intricate relationship bdocumented 109 cases', it is habitat alteration and pollination is shaped by various factors, including plant-pollina important to 110 support this with 111 specificity, the quality of fragmented habitat, and resource availability (Jauker et al., citations for these To truly grasp the impacts of habitat modification on species survival and communicases and 112 composition, it is imperative to transcend species richness and recognize that all speciperhaps explain 113 how they affect intricately interconnected by ecological interactions (Valiente-Banuet et al., 2015). Ppollination. 114 115 pollinator interactions exist as complex networks, organized into local groups of plants and 116 pollinators (Biella et al., 2019). Network analysis emerges as a valuable tool, providing insights 117 into the stability and functionality of plant-pollinator communities in ecosystems. Nonetheless, the influence of land use changes on insect diversity and the structure of their plant-insect 118 119 interaction networks may be contingent on the intensity of the disturbance (Escobedo-Kenefi et 120 al., 2022). 121 The primary objective of this review was to synthesize the existing body of literature concerning plant-pollinator interaction networks in anthropized environments. Our emphasis was 122 123 on understanding the impact of human activities on the structural characteristics of these

researchers cannot obtain the same number of

124	networks. We utilized various indices, including nestedness (NODF), specialization (H2),
125	connectivity (C), and modularity (Q), to conduct our analysis. Additionally, using a meta-
126	analysis, our review aimed to compare species richness of both pollinators and plants in
127	anthropized and conserved environments. We assessed whether the effect size varied depending
128	on factors such as the type of organism (plant or pollinator), the type of disturbance, the
129	continent of study, authorship, and the size of fragmented areas where the revised studies were
130	carried out. These assessments were conducted through a comprehensive meta-analysis,
131	providing a more detailed understanding of the multifaceted impact of anthropization on plant-
132	pollinator interaction networks.
133	
134	Materials & Methods
135	Search protocol and data collection
136	A comprehensive literature search was conducted by KL-V and CL based on studies published
137	from 2010 to 2023 in scientific journals reporting plant-pollinator interaction networks within
138	anthropized environments. Keyword searches and their combinations were used. These included
139	"interaction networks" AND "pollinators" AND "diversity" AND "fragmentation", OR "land
140	use change", OR "habitat loss", along with specific terms such as "bats", "bees", "beetles",
141	"birds", "butterfly", "flies", "hummingbirds" and "moth". Articles were retrieved through an
142	intensive search in the public databases Web of Science and Scopus.
143	Selection criteria: After conducting the literature search, article titles and abstracts were
144	reviewed to determine whether they met the inclusion criteria for the review. Only studies that
145	assessed the impact of anthropogenic activities on structural patterns of plant-pollinator
146	interaction networks, allowing for comparisons of pollinator and plant species richness within
147	these networks, and studies that considered at least three sampling sites (see Figure 1) were
148	included. Titles and abstracts were carefully examined to determine if the article met repeated in this
149	inclusion criteria for the review. Subsequently, articles meeting these criteria were reparagraph.
150	entirety. By adhering to these explicit inclusion and exclusion criteria, potential disagrammatic
151	were resolved. In cases where discrepancies persisted, our co-authors were consulted any exclusion
152	decision was reached through a majority vote. criteria, only inclusion criteria
153	In order to describe the impact of anthropization on the structure of interaction networks. I believe that this
154	between plants and pollinators, those studies employing network metrics such as nest part of the method introduces bias to the study because other

155	(NODF), network specialization (H2'), connectivity (C), and modularity (Q) were included for
156	our analyses. These network-level parameters allow for a comprehensive understanding of the
157	overall structure of all interactions within the community.
158	Nestedness (NODF) is an asymmetric pattern of network specialization where specialis interesting to add
159	another subtitle species exclusively (or predominantly) interact with generalists, while the generalists also here related to
160	interact with each other (<i>Jordano</i> , <i>Bascompte & Olesen</i> , 2003; Guimarães et al., 2006). The interaction network metrics.
161	nestedness pattern holds significant ecological importance as it acts as a kind of insurance in the next
162	long-term functioning of the ecosystem. It serves as a buffering mechanism against paragraphs, there is no discussion
163	environmental variations (<i>Thébault & Fontaine, 2010</i>) and significantly contributes to the about 'Search
164	stability of such networks (<i>Bastolla et al., 2009</i> ; <i>Thébault & Fontaine, 2010</i>) by promotir protocol and data collection'.
165	greater resilience to extinction for well-connected generalist species (Aizen, Sabatino &
166	Tylianakis, 2012).
167	Connectance (C) is a parameter that measures the proportion of observed interactions relative
168	to all possible interactions within the network and is used to assess the complexity of a network.
169	From a conservation perspective, there is a desire to maintain high levels of connecta Citation
170	provides stability and resilience to the network. Additionally, connectance is closely related to
171	species richness in each community and, therefore, the size of the network. As the network size
172	increases, interactions that do not involve species become more frequent, which decreases the
173	value of connectance (Jordano, 1987).
174	Network specialization (H2') is a parameter that measures the degree of specialization (or
175	selectivity) of the network, with values ranging from 0 to 1. When values are close to 0, the
176	network consists mainly of generalist species, indicating low specialization. Conversely, values
177	close to 1 indicate that the network is highly specialized, with a predominance of specialist
178	species (Blüthgen, Menzel & Blüthgen, 2006). Particularly, specialization in plant-pollinator
179	interactions can be a successful strategy in stable and specific environments, but in areas with
180	anthropogenic activities, it can make species more vulnerable to changes and disturbances in Citation
181	their surroundings.
182	Modularity (Q) is a parameter that indicates whether there is a group of individuals or species
183	that have more interactions among themselves than with other groups in the network (Marquitti
184	et al., 2014). It has been observed that the modularity of networks increases their robustness
185	against disturbances, as specialized interactions are concentrated within the modules and do not

186	affect other species outside of those modules (Stouffer & Bascompte, 2011). Additionally,
187	modules can have specific ecological functions, so if one module is negatively affected by a
188	disturbance, other modules can partially compensate for the loss of function, maintaining the
189	overall functional stability of the network (Montoya, Pimm & Solé, 2006). However, highly
190	modular networks also inevitably exhibit lower overall connectivity and thus lower overall
191	redundancy, which could reduce resilience to secondary extinctions (Thébault & Fontaine,
192	2010).
193	
194	Statistical analyses
195	A synthesis was conducted on the potential impact of anthropization on the structural patterns of
196	plant-pollinator interaction networks, describing the decrease, increase, or lack of effect as
197	reported by the authors (see Table 1). As an initial step in assessing the impact of anthropogenic
198	activities on the structure of plant-pollinator interaction networks, we examined variations in
199	metric values associated with network structural patterns, such as NODF, H2, connectance, and
200	modularity (as response variables), across different anthropogenic activities, including land use
201	change, urbanization, fragmentation, agriculture, and livestock (as a fixed factor), using analysis
202	of variance (ANOVA). To identify specific groups of anthropogenic activities that displayed
203	significant differences in their network metric values, we utilized Tukey post hoc tests. These
204	tests were performed using the R Studio software (R Core Team, 2020).
205	
206	Effect size calculation
207	To conduct a meta-analysis, it was necessary to determine an effect size that could be
208	summarized across all studies. In this regard, the effect size is defined as a metric that quantifies
209	the relationship between two entities, capturing the direction and magnitude of this relationship
210	(Harrer et al., 2021). The effect size was selected using the standardized mean difference
211	(SMD), with the Hedges' g correction for small samples (Hedges & Vevea, 1996). This was
212	because the means of plant and pollinator richness between preserved and anthropized
213	environments were the most frequently reported response variables in the collected articles. The
214	calculation of SMD for each study involved subtracting the mean of pollinator or plant richness
215	from the preserved site from the mean of pollinators and plants from the anthropized site in each
216	respective study, and then dividing this difference by the pooled standard deviation (Harrer et

al., 2021). Positive values indicate a higher number of pollinators or plants in the preserved site, 217 while negative values indicate the opposite. A value of 0 represents the absence of an effect size. 218 219 When means and standard deviations were not reported in an article, other reported statistics that 220 could be converted to SMD, such as correlation coefficients, chi-square (χ^2), one-way ANOVA, and two-sample t-test, along with their corresponding formulas, were used (*Harrer et al.*, 2021). 221 222 In cases where a document did not provide any of these data, it was excluded from the meta-223 analysis. 224 225 Meta-analysis and meta-regressions 226 The limited number of studies conducted in a semi-arid climate prevented its inclusion as a 227 category in the meta-analysis. Consequently, these were included within the category of studies in tropical climates and analyzed accordingly. Additionally, only one study included in the 228 229 review examined livestock as an anthropogenic activity; therefore, this activity was not included 230 as a category in the analyses. 231 For the meta-analysis, a random-effects model was employed. This model assumes that studies 232 do not reflect a single true effect due to differences in populations, interventions, comparators, or 233 outcome assessment methods (Fernández-Chinguel et al., 2019). This approach allowed the In addition to comparison of results across different studies, even when they did not measure the parameterioning the 234 packages, please interest in the same way. The maximum likelihood (ML) method was used to obtain tau², 235 provide 236 measures the variability between the effects of different studies (*Higgins*, 2011), and the Jainformation on the specific functions method was used to calculate confidence intervals for tau² and tau (Borenstein et al. 2009) 237 used for the analysis and cite enhance the robustness of our analysis, outlier effect sizes were excluded. Outliers were 238 the authors of identified when the confidence intervals fell outside the confidence interval of the summar these packages. 239 effect (Higgins, 2011). All analyses were conducted using the dmetar, meta, and metafor Previously, you 240 mentioned 'R packages in the R Studio programming environment (Viechtbauer, 2010), and the results 241 Studio software,' displayed in forest plots. In these forest plots, when the confidence interval of an effect si and now you 242 referred to 'R 243 not intersect with the null vertical line on the 'effect sizes' axis, it suggests a significant Studio difference in the response variable influenced by the studied factor. Furthermore, if multiprogramming 244 environment.' 245 confidence intervals do not cross the null line in the same direction, this may indicate Please use a consistency in the results and stronger evidence of a significant difference. A t test was consistent 246 definition; I 247 performed to determine if the size effect was different from the nule value (zero). The Qrecommend the latter.

248 used to compare the observed value to the expected value (i.e. residual heterogeneity, OE), 249 assuming a chi-squared (γ^2) distribution with degrees of freedom k-1, where k is the number of 250 studies. If the observed value was significantly greater than the expected value, the p-value from the test indicated the presence of a real difference in effect sizes among subgroups (Higgins, 251 2011). Also, we calculated the I^2 statistic, which determines the percentage of the total variability 252 in a set of effect sizes due to true heterogeneity, that is, the between-study variance (Gurevitch & 253 254 Nakagawa, 2015). Additionally, subgroup analysis was performed to determine if the pattern of heterogeneity in 255 256 effect size was related to the group of organisms evaluated (pollinators and plants), climate, 257 continent, or anthropogenic activity. The model for subgroup analyses is a mixed-effects model, because contains both random effects (within subgroups) and fixed effects (since subgroups are 258 259 assumed to be fixed). The Q-test was used to compare the observed value to the expected value (i.e. residual heterogeneity, QE), assuming a chi-squared (χ^2) distribution with degrees of 260 freedom G-1, where G is the number of groups. If the observed value was significantly greater 261 than the expected value, the p-value from the test indicated the presence of a real difference in 262 effect sizes among subgroups (*Higgins*, 2011). Also, we calculated the I² statistic for each 263 subgroup. 264 265 Furthermore, a meta-regression was conducted to identify specific continuous variables explaining heterogeneity between studies (Borenstein et al., 2009; Koricheva, Gurevitch & 266 267 Mengersen, 2013). In this type of analysis, one or more predictor variables can be used to predict Why are these real differences in effect sizes, considering mixed-effects models (*Higgins, 2011*). In variables 268 important as 269 the following predictor variables were employed: 1) habitat fragment size where the predictor variables conducted (total coverage in square meters), 2) year of study publication, 3) year of s, and how can you 270 justify the use of 271 The model was constructed using a stepwise (forward) approach, where predictor var the vear of 272 added one by one. Comparison between the full model and the reduced model was pepublication if you are also using the 273 using the likelihood ratio test. If the full model proved superior to the reduced model year of sampling variable was retained, and the next variable was added. The Knapp-Hartung adjustmed (which seems 274 more appropriate) to obtain more robust estimators, especially when the number of studies was low (Hi_2) 275 276 2011). Finally, permutations were used to assess the robustness of the model through resampled data (Higgins, 2011). In this analysis, p-values were recalculated based on test statistics obtained 277 278 from all possible permutations or a random selection of permutations from the original dataset. If

Peer l

279

the test statistic was equal to or greater than the original value in 50 out of 1000 permutations, a p-value of 0.05 was established for that predictor. 280 281 I believe providing a percentage or a 282 **Results** specific number of the articles would 283 Network metrics from a total of 38 articles published between 2010 and 2023, were use enhance 284 ANOVAs. This dataset is representative across four continents. The most promipently understanding of this wellrepresented anthropogenic activities included agriculture and livestock farming. Further 285 representation most well-represented taxon was that of insects (see Figure 2 and Table 1). The nestednand eliminate 286 metric showed no effect in nine studies, decreased in fourteen, and increased in two out or the 23 287 studies reviewed. Concerning H2', ten articles exhibited no effect, seven indicated a decre 288 names of the and nine showed an increase in the 26 studies that used this metric. Regarding connectance metrics, please do 289 so for all the 290 seven publications did not record an increase, while seven indicated an increase, and eigh metrics described. 291 demonstrated a decrease in the 22 studies analyzed. In terms of modularity, eight articles I think standardization is 292 an increase, three exhibited no effect, and one indicated a decrease out of the 12 studies in necessary this metric was assessed (see Table 1). Our ANOVAs revealed that anthropogenic activitithroughout the 293 document. varying effects on metrics associated with the structure of plant-pollinator interaction networks. 294 295 NODF values showed significant variation among different anthropogenic activities in the 296 studies we evaluated (F = 16.15, d.f. = 2, p = 0.007), with agriculture (p = 0.001) and fragmentation (p = 0.009) being the primary determining factors. A similar significant effect was 297 observed for specialization (H2') (F = 0.02, d.f. = 3, p = 0.02), where land use change (p = 0.02) 298 299 and fragmentation (p = 0.03) contributed to these differences. Conversely, no significant 300 differences were found among anthropogenic activities in their effects on connectance values (F = 0.9, d.f. = 3, p = 0.46). Regarding modularity, ANOVA was not applicable due to the limited 301 302 sample size of the reviewed studies and the lack of variance homogeneity 303 304 Meta-analysis 305 For the meta-analyses, only 16 out of the 38 studies met the inclusion criteria, and for the final 306 dataset used, 36 effect sizes were included (16 for plant species and 20 for pollinator species). The average effect size was 0.52, with a 95% confidence interval ranging from 0.07 to 0.96. The 307 308 associated p-value was significant (t = 2.37, d.f. = 35, p=0.02), indicating that anthropogenic 309 disturbance reduces the richness of pollinators and plants (see Figure 3). The value of tau² was

Manuscript This seems more like a discussion than a result.

1.21, while the I^2 value was 83.8%. The test of heterogeneity was significant (Q = 215.75, d.f.= 310 35, p < 0.0001), suggesting variability in effect sizes among different studies. The results 311 312 indicated a statistically significant difference in the richness of pollinator species between 313 conserved and disturbed sites. Both pollinators and plants are more vulnerable in sites with 314 anthropogenic activities, as they exhibit lower species richness. However, there is also 315 significant heterogeneity among the studies. This suggests that the actual effect may vary depending on the type of disturbance or that additional factors, beyond disturbance, may 316 influence species richness of pollinators at different sites (see Table 2, Figure 3). 317 318 319 Subgroup Analysis A subgroup analysis revealed significant differences in the observed effects within subgroups of 320 pollinators, plants, continents, and anthropogenic activities and climate subgroup (see Table 2). 321 322 Pollinators and Plants. The group of 'Pollinators' showed the largest effect size (g = 0.13) compared to 'Plants' (g = 0.79; Table 2). The Tau² value for 'Pollinators' ($\tau^2 = 0.88$) indicates low 323 324 heterogeneity, meaning that the studies regarding this group are consistent in their findings. On the other hand, the Tau² value for 'Plants' ($\tau^2 = 1.37$) indicates a moderate level of heterogeneity, 325 suggesting that there is some variability in the effect sizes reported in the studies concerning this 326 327 group. This variability may be due to differences in study characteristics, methodologies, or other 328 factors that influence the relationship between 'Pollinators' and the structure of the studied 329 networks. 330 Anthropogenic Activity. Our results indicate that 'Fragmentation' have the most significant effect (g = 2.07, Table 2) on the outcome variable within the anthropogenic activity category. 331 The high SMD value suggest that this activity have a substantial impact on the richness of plant-332 333 pollinator networks, and the low Tau² value ($\tau^2 = 0.11$, Table 2) indicate that this effect was 334 consistent among the different studies within this subgroup. We can also observe that the other 335 types of antropogenic disturbances had similar negative effects in plant and pollinators richness (Table 2). 336 337 Continent. Our results indicate differences in the effect sizes and levels of heterogeneity among continents. 'America' has the largest effect size (g = 0.66, Table 2) observed moderal sn't this the 338 smaller effect size heterogeneity between-study ($\tau^2 = 2.64$, Table 2). 'Asia' has a low effect size (g = 0.37) 339

moderate heterogeneity ($\tau^2=1.59$ Table 2). 'Africa' and 'Europe' have smaller effect sizes (g=

340

- 341 0.5 and g=0.5, respectively) with moderate levels of heterogeneity (τ^2 =0.84 and τ^2 =0.57 Table
- 342 2). The differences in effect sizes and heterogeneity may be attributed to regional variations,
- 343 such as different environmental factors, study methodologies, or other factors that affect the
- 344 relationship between anthropogenic activities and plant-pollinator networks richness in these
- 345 continents.
- 346 <u>Climate</u>. Our results indicated a larger effect size in studies conducted in tropical climates
- 347 (g=1.08), with an intermediate level of heterogeneity among these studies (g=-0.02) with slightly
- lower heterogeneity ($\tau^2=0.77$) compared to the former.

349

- 350 Meta-regression
- 351 A meta-regression analysis was conducted to identify quantitative variables that could act as
- 352 sources of heterogeneity and explain differences in effect size between studies. The model used
- in this analysis exhibited a significant amount of residual heterogeneity that is explained by the
- fragment size variable (QE = 180.53, d.f. = 33, p = <0.0001). In combining variables that could
- explain our meta-analysis results, in addition to fragment size, we included the year of sampling
- 356 (QE = 206.90, d.f. = 34, p = <0.0001) and the year of publication of the studies (QE = 215.17,
- 357 d.f. = 34, p = <0.001). Their values were found to be significant. Furthermore, after conducting
- permutations, however there was insufficient evidence to assert a significant relationship
- between fragment size, year of sampling, and year of publication variables (QE = 178.06, d.f. = 178.06)
- 360 31, p = 0.52).

361

362

Discussion

- 363 Identifying the structural patterns most susceptible to alterations caused by anthropogenic
- activities in the plant-pollinator interaction network allows us to anticipate the potential
- 365 consequences of anthropogenic impacts on biodiversity. Our results showed that the most
- impactful activities in this research are related to agriculture and fragmentation. These actichanges than
- are widely practiced worldwide. Some articles have examined how these agricultural activ
- affect plants and their pollinators. They explain how intensified agriculture can influence this statement;
- availability of native pollinators for crops, affecting food production. This highlights that geto be more
- expanses of natural habitats contribute to increased stability and predictability of pollinations specific about it.
- 371 services (Tscharntke et al., 2005; Sardiñas & Kremen, 2014).

Citation

Actually,
mutualistic
interactions can
be more
susceptible to
anthropogenic
ichanges than
single species. I'm
not sure about
this statement;
perhaps you need
specific about it.

372	Eurthermore, it has been observed that agricultural practices can affect pollinator populations
373	Furthermore, it has been observed that agricultural practices can affect pollinator process. The such as bees, a widely studied taxonomic group in plant-pollinator interaction networks. The such as bees, a widely studied taxonomic group in plant-pollinator interaction networks.
374	been noted how monocultures and pesticide use impact not only populations of wild bees but
375	also other pollinators (Roulston & Goodell, 2011; Garibaldi et al., 2011b). It's worth mentioning
376	that a significant transformation of natural ecosystems into agricultural land is projected to reach
377	109 million hectares by 2050. This transformation is expected to have substantial implication. How can this be
378	for the environment, such as increased nitrogen and phosphorus-driven eutrophication related to the results in this
379	pesticide use (<i>Tilman et al., 2001</i>). research?
380	Although our study did not find significant effects of activities such as livestock farming,
381	urbanization, land-use change, and intentional fires on interaction networks, it's important to
382	consider that these results may be due to the study's limitation in focusing solely on structural
383	patterns of networks. However, other research suggests that these activities also contribute to
384	climate change, which can affect plants through alterations in temperatures, precipitation
385	patterns, and atmospheric carbon dioxide levels, favoring invasive species over native ones
386	(Dukes & Mooney, 1999). It has also been examined that when analyzing livestock farming
387	independently from agriculture, how livestock impact pollinator visitation frequency can vary
388	and is further modified by changes in vegetation cover caused by livestock presence (Tadey,
389	2008).
390	On the other hand, changes in land use can vary in intensity, but in all cases, they cause hebitat
391	alterations that affect pollinator populations. This effect is mainly evident through the ancrarion
392	of floral resources; its impact varies depending on specific characteristics of pollinators, such as
393	specialization, mobility, sociability, nesting sites, and phenology (Lázaro & Tur, 2018).
394	Regarding the impact of intentional fires on pollinators, most studies are limited to comparing
395	burned areas with unburned areas (Carbone et al., 2019). The overall results of the two analyzed
396	studies indicated a positive effect on pollinator richness. However, a slight impact on
397	Lepidoptera richness was identified (Peralta et al., 2017; Da Silva, 2022). Regarding the effects
398	of anthropization on the structural patterns of interaction networks, previous research supports
399	our results, concluding that the metrics used (NODF, H2', C, and Q) are particularly sensitive to
400	environmental changes (Aguilar et al., 2009; Ferreira, Boscolo & Viana, 2013; Soar Could you please
401	& Lopes, 2017). However, contrary to our findings, other stadies have indicated that studies are being
402	data available suggest that nesting is not affected by habitat disturbance. Instead, H2 referred to?

103	show responses similar to those obtained in this study. Furthermore, changes in the roles of
104	species are also described, with oscillations between generalists and specialists in different
105	conditions. This is because in situations of lower environmental quality, specialist species with
106	morphological and behavioral limitations tend to be lost, as observed in previous research
107	(Ferreira, Boscolo & Viana, 2013).
108	The reviewed studies indicate that, although network nesting exhibited different effects on
109	anthropogenic activities, we can infer that the explanation for the fourteen studies where nesting
110	tends to decrease is that authors have observed that any disturbance resulting from anthropogenic
111	activities affects total species richness and the abundance of interactors, which decreases with
112	habitat loss (Spiesman & Inouye, 2013). This is because a reduction in species richne Could you please
113	the network size, and in turn, the number of interactions (links) by generalist species. support this with references?
114	related to specialization results (H2'), where an increase was observed in most studies. In some
115	cases, no effect was recorded concerning the different impacts of anthropogenic activities. This
116	can be attributed to the loss of specialist species, the increase in generalist species, and the
117	decrease of pollinators specialized in plants sensitive to environmental changes (Weiner et al.,
118	2014). Furthermore, this is confirmed by the analysis of variance, which shows that there are
119	indeed significant differences between anthropogenic activities concerning this metric, as it
120	demonstrates that specialization increases in studies where agricultural activities are present.
121	Consequently, these changes can reduce network robustness, which is less robust o Could you please
122	susceptible when core species are extinguished due to potential alterations in the spectrum support this with references?
123	comprise it, resulting in an imbalance in communities. Furthermore, some articles argue that
124	reduced nesting may be due to the reduction of lower-quality environmental areas (Burkle,
125	Marlin & Knight, 2013; Vanbergen et al., 2014; Moreira, Boscolo & Viana, 2015). An example
126	of this is the observation of a rapid decrease in species diversity over a short period, which
127	primarily affects specialist species and leads to a narrowing of the niche for the remaining
128	generalist species (Burkle, Marlin & Knight, 2013; Moreira, Boscolo & Viana, 2015). However,
129	in the long term, an even more intense reduction in diversity can be observed, also impacting
130	generalist species (Burkle & Knight, 2012). Furthermore, the increase and lack of effect on
131	nesting in the 11 presented studies could be linked to the concentration of interactions by
132	generalist species, both in plants and pollinators (Jauker et al., 2019; Díaz Infante, Lara &
133	Arizmendi, 2020; Morrison & Dirzo, 2020; Motivans et al., 2021; Escobedo-Kenefic, 2022).

434	Regarding network connectance, it did not generally change, although it increased in seven
435	studies and decreased in eight. While we may consider that network connectance is not
436	significantly affected in most studies, it's essential to note that some research has found large,
437	highly connected networks in agricultural areas due to the presence of flowering herbaceous
438	plants and fruit trees (Aavik et al., 2008). In this regard, some studies suggest that conservation
439	efforts should focus on preserving highly connected communities, seeking empirical evidence of
440	a relationship between connectance (complexity) and the conservation value of communities at
441	different stages of degradation (Prendergast & Ollerton, 2021).
442	As for modularity, the results showed an increase, likely because interaction networks in
443	fragmented sites tend to exhibit modular patterns. This is due to the high specialization in these
444	sites, given the limited number of interacting species (Santamaría et al., 2018; Morrison &
445	Dirzo, 2020; Librán-Embid et al., 2021). However, this modularity could result from a temporal
446	relationship influenced by species phenology (Morente-López et al., 2018; Lázaro & Gómez-
447	Martinez, 2022). As a result, the meta-analysis results showed that there is an impact Citation
448	richness of interacting species of both plants and pollinators. While two previous studies have
449	evaluated the impact of these activities, none have focused on describing what happens to
450	species richness within interaction networks. Furthermore, these studies have been limited to the
451	group of bees or insects, where the results have been similar to those obtained in this saccurate, as you also
452	contrast, in the meta-analysis, the magnitude of the effects was not as significant. mentioned that other kinds of anthropogenic
453	It has also been shown that the only type of anthropogenic activity that has a negative changes in plant and
454	agriculture, an activity performed extensively in many parts of the world where there i pollinator diversity. It's
455	little natural habitat left (Winfree et al., 2009). It has also been demonstrated that as the when stating 'the only
456	richness of plants increases in anthropized sites, the species richness of pollinators also activity that has a
457	As the richness of plant species increases in anthropized areas, there is also an increase agriculture, especially
458	pollinator Here, it's crucial to gesting that strategies to enhance plant species diversity
459	promote p exercise caution. An increase in richness is al-O'Brien et al., 2021) These findings may also relate with land-use change, fragmentation, and other
460	results obt not necessarily a positive outcome. It's ression analyses, where we explored the influence of please remember to
461	year, samplessential to consider the complexity of the complexity
462	(publication metrics and how year) did not yield statistically significant results, they and consider the context
463	changes in the explain whether the changes in the analyzed metrics.
464	due to anti species or key species within the In contrast, the fragment size variable did yield significant
	network.

network.

465	results. In this context, the composition of vegetation cover in the fragments confirms that having
466	a greater number of flowering species can attract more pollinators (Herrera, 1987).
467	Finally, our results indicated a larger effect size in studies conducted in tropical climates
468	compared to those conducted in temperate climates. During our data compilation, we found a
469	higher number of studies carried out in areas with tropical climates. This bias may be related to
470	the fact that the majority of terrestrial biodiversity is found in tropical forests (Dáttilo & Rico-
471	Gray, 2018). Therefore, it is in these areas where a greater number of studies regarding plant-
472	pollinator interactions are conducted. This suggests the need for a greater number of studies that
473	delve more deeply into the impacts of anthropization on plant-pollinator interaction networks in
474	temperate climate zones around the world.
475	
476	Conclusions
477	An in-depth analysis of patterns in plant-pollinator interaction networks shows a wide range of
478	responses to human activities. The study suggests that intensified agriculture and habitat
479	fragmentation are significant factors harming biodiversity and species interactions. While our
480	results didn't reveal major effects from activities like livestock farming, urbanization, land-use
481	changes, or intentional fires, it's possible these impacts are underestimated because we focused
482	on network structural patterns. Our findings suggest that metrics such as nestedness, H2',
483	connectance, and modularity are useful for assessing how human activities affect these networks.
484	Nestedness often decreases, likely due to habitat loss and a decline in species, affecting overall
485	diversity and interaction abundance. Connectance and modularity show variable responses, but
486	studies emphasize the importance of protecting well-connected communities.
487	Our study demonstrates that the impact of anthropogenic activities on plant-pollinator networks
488	is complex, context-dependent, and varies across different taxa and regions. The findings
489	underscore the importance of considering these factors when designing conservation strategies
490	and policies aimed at mitigating the negative effects of anthropogenic activities on biodiversity
491	within these networks. Further research may be needed to identify additional variables that
492	contribute to the observed heterogeneity and to develop more targeted conservation approaches.
493	
494	Acknowledgements

Acknowledgements

495	This work constitutes partial fulfillment of Karla Maria Lopez-Vazquez's doctorate degree
496	requirements at UAM.
497	
498	References
499	Adedoja O, Kehinde T. 2018. Changes in interaction network topology and species composition
500	of flower-visiting insects across three land use types. African Journal of Ecology 56: 964-
501	971. DOI: <u>10.1111/aje.12527</u> .
502	Aguilar R, Ashworth L, Cagnolo L, Jausoro M, Quesada M, Galetto L. 2009. Dinámica de
503	interacciones mutualistas y antagonistas en ambientes fragmentados. In: Ecología y
504	evolución de interacciones planta-animal. Editorial Universitaria, 199-232
505	Aizen MA, Feinsinger P. 2003. Bees not to be? Responses of insect pollinator faunas and flower
506	pollination to habitat fragmentation. In: Bradshaw G, Marquet P, Moonet, HA, eds. How
507	landscapes change: human disturbance and ecosystem disruption in the Americas. New
508	York .: Springer-Verlag.
509	Aizen MA, Sabatino M, Tylianakis JM. 2012. Specialization and rarity predict nonrandom loss
510	of interactions from mutualist networks. Science 335: 1486–1489. DOI:
511	10.1126/science.1215320.
512	Aavik T, Jõgar Ü, Liira J, Tulva I, Zobel M. 2008. Plant diversity in a calcareous wooded
513	meadow - The significance of management continuity. Journal of Vegetation Science, 19:
514	475–484. DOI: <u>10.3170/2008-8-18380</u> .
515	Bastolla U, Fortuna MA, Pascual-García A, Ferrera A, Luque B, Bascompte J. 2009. The
516	architecture of mutualistic networks minimizes competition and increases biodiversity.
517	Nature 458: 1018–1020. DOI: 10.1038/nature07950.
518	Biella P, Akter A, Ollerton J, Tarrant S, Janeček Š, Jersáková J, Klecka J. 2019. Experimental
519	loss of generalist plants reveals alterations in plant-pollinator interactions and a constrained
520	flexibility of foraging. Scientific Reports 9: 1–13. DOI: 10.1038/s41598-019-43553-4.
521	Blüthgen N, Menzel F, Blüthgen N. 2006. Measuring specialization in species interaction
522	networks. BMC Ecology 6: 1–12. DOI: 10.1186/1472-6785-6-9.
523	Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. 2009. Introduction to Meta-Analysis:
524	John Wiley & Sons. 1st Edition, 452 p.

525	Bronstein JL. 1994. Conditional outcomes in mutualistic interactions. Trends in Ecology &					
526	Evolution 9: 214–217. DOI: 10.1016/0169-5347(94)90246-1.					
527	Burkle LA, Knight TM. 2012. Shifts in pollinator composition and behavior cause slow					
528	interaction accumulation with area in plant-pollinator networks. Ecology 93: 2329-2335.					
529	DOI: <u>10.1890/12-0367.1</u> .					
530	Burkle LA, Marlin JC, Knight TM. 2013. Plant-pollinator interactions over 120 years: loss of					
531	species, co-occurrence, and function. Science 339: 1611-1615. DOI:					
532	10.1126/science.1232728.					
533	Campbell C, Yang S, Shea K, Albert R. 2012. Topology of plant-pollinator networks that are					
534	vulnerable to collapse from species extinction. Physical Review E 86: 021924. DOI:					
535	10.1103/PhysRevE.86.021924.					
536	Carbone LM, Tavella JR, Pausas JG, Aguilar R. 2019. Efecto del fuego sobre los polinizadores:					
537	Una revisión global. Primera Reunión de la Red de Investigadores en Biología de la					
538	Polinización de Argentina. CABA; Argentina					
539	Cardoza YJ, Harris GK, Grozinger CM. 2012. Effects of soil quality enhancement on					
540	pollinator-plant interactions. Psyche Journal of Entomology 2012: 1–18. DOI:					
541	<u>10.1155/2012/581458</u> .					
542	Da Silva Goldas C, Podgaiski LR, Veronese Corrêa da Silva C, Abreu Ferreira PM, Vizentin-					
543	Bugoni J, De Souza Mendonça M. 2022. Structural resilience and high interaction					
544	dissimilarity of plant-pollinator interaction networks in fire-prone grasslands. Oecologia					
545	198: 179–192. DOI: <u>10.1007/s00442-021-05071-x</u> .					
546	Dáttilo W, Rico-Gray V. 2018. Ecological networks in the tropics an integrative overview of					
547	species interactions from some of the most species-rich habitats on earth. Cham,					
548	Switzerland: Springer International Publishing.					
549	Della Rocca F, Tagliani A, Milanesi P, Barcella M, Assini SP. 2023. Contrasting response of					
550	mountain plant-pollinator network to fragmented semi-natural grasslands. Land 12: 356.					
551	DOI: <u>10.3390/land12020356</u> .					
552	Díaz Infante S, Lara C, Arizmendi MDC. 2020. Land-use change in a Mexican dry forest					
553	promotes species turnover and increases nestedness in plant-hummingbird network: are					
554	exotic plants taking over. Tropical Conservation Science 13: 1–15. DOI:					
555	<u>10.1177/1940082920978952</u> .					

556	Dukes JS, Mooney HA. 1999. Does global change increase the success of biological						
557	invaders? Trends in Ecology & Evolution 14: 135–139. DOI: 10.1016/S0169-						
558	<u>5347(98)01554-7</u> .						
559	Ellis EC, Ramankutty N. 2008. Putting people in the map: anthropogenic biomes of the world.						
560	Frontiers in Ecology and the Environment 68: 439–447. DOI: 10.1890/070062.						
561	Escobedo-Kenefic N, Casiá-Ajché QB, Cardona E, Escobar-González D, Mejía-Coroy A,						
562	Enríquez E, Landaverde-González P. 2022. Landscape or local? Distinct responses of						
563	flower visitor diversity and interaction networks to different land use scales in agricultural						
564	tropical highlands. Frontiers in Sustainable Food Systems 6: 589. DOI:						
565	<u>10.3389/fsufs.2022.974215</u> .						
566	Ewers RM, Didham RK. 2006. Confounding factors in the detection of species responses to						
567	habitat fragmentation. Biological Reviews 81: 117–142. DOI:						
568	<u>10.1017/S1464793105006949</u> .						
569	Fernandez-Chinguel JE, Zafra-Tanaka JH, Goicochea-Lugo S, Peralta CI, Taype-Rondan						
570	A. 2019. Aspectos básicos sobre la lectura de revisiones sistemáticas y la interpretación						
571	de meta-análisis. <i>Acta Médica Peruana</i> 36: 157–169. DOI: <u>10.35663/amp.2019.362.818</u> .						
572	Ferreira PA, Boscolo D, Viana BF. 2013. What do we know about the effects of landscape						
573	changes on plant–pollinator interaction networks? <i>Ecological Indicators</i> 31: 35–40. DOI:						
574	10.1016/j.ecolind.2012.07.025.						
575	Garibaldi LA, Aizen MA, Klein AM, Cunningham SA, Harder LD. 2011a. Global growth and						
576	stability of agricultural yield decrease with pollinator dependence. Proceedings of the						
577	National Academy of Sciences 108: 5909–5914. DOI: 10.1073/pnas.1012431108.						
578	Garibaldi LA, Steffan-Dewenter I, Kremen C, Morales JM, Bommarco R, Cunningham SA,						
579	Carvalheiro LG, Chacoff NP, Dudenhöffer JH, Greenleaf SS, Holzschuh A, Isaacs R,						
580	Krewenka K, Mandelik Y, Mayfield MM, Morandin LA, Potts SG, Ricketts TH,						
581	Szentgyörgyi H, Westphal C, Winfree R, Klein AM. 2011b. Stability of pollination						
582	services decreases with isolation from natural areas despite honey bee visits. Ecology						
583	<i>Letters</i> 14: 1062–1072. DOI: <u>10.1111/j.1461-0248.2011.01669.x</u> .						
584	Grass I, Jauker B, Steffan-Dewenter I, Tscharntke T, Jauker F. 2018. Past and potential future						
585	effects of habitat fragmentation on structure and stability of plant-pollinator and host-						

Guimarães JrPR, Rico-Gray V, Furtado dos Reis S, Thompson JN. 2006. Asymmetries in specialization in ant–plant mutualistic networks. <i>Proceedings of the Royal Society B: Biological Sciences</i> 273: 2041–2047. DOI: 10.1098/rspb.2006.3548. Gurevitch J, Nakagawa S. 2015. <i>Research synthesis methods in ecology</i> . In: Fox G, Negrete-Yankelevich S, Sosa V, eds. Ecological statistics. New York: Oxford University Press, 200–227. Harrer M, Cuijpers P, Furukawa TA, Ebert DD. 2021. <i>Doing Meta-Analysis with R: A Hands-On Guide</i> . Boca Raton, FL and London: Chapman & Hall/CRC Press. Hedges LV, Vevea JL. 1996. Estimating effect size under publication bias: Small sample properties and robustness of a random effects selection model. <i>Journal of Educational and Behavioral Statistics</i> 21: 299–332. DOI: 10.2307/1165338. Herrera CM. 1987. Components of pollinator "quality": comparative analysis of a diverse insect assemblage. <i>Oikos</i> 50: 79–90. DOI: 10.2307/3565403. Higgins JP. 2011. Cochrane handbook for systematic reviews of interventions. Version 5.1. 0 [updated March 2011]. The Cochrane Collaboration. <i>www. cochrane-handbook. org.</i> Jauker F, Jauker B, Grass I, Steffan-Dewenter II, Wolters V. 2019. Partitioning wild bee and hoverly contributions to plant–pollinator network structure in fragmented habitats. <i>Ecology</i> 100: e02569. DOI: 10.1002/ecy.2569. Jordano P. 1987. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. <i>The American Naturalist</i> 129: 657–677. DOI: 10.1086/284665. Jordano P, Bascompte J, Olesen JM. 2003. Invariant properties in coevolutionary networks of plant–animal interactions. <i>Ecology Letters</i> 6: 69–81. DOI: 10.1046/j.1461-0248.2003.00403.x. Kearns CA, Inouye DW, Waser NM. 1998. Endangered mutualisms: the conservation of plant–pollinator interactions. <i>Annual Review of Ecology and Systematics</i> 29: 83–112. DOI: 10.1146/annurev.ecolsys.29.1.83.	586	parasitoid networks. <i>Nature Ecology & Evolution</i> 2: 1408–1417. DOI: 10.1038/s41559-					
specialization in ant-plant mutualistic networks. <i>Proceedings of the Royal Society B: Biological Sciences</i> 273: 2041–2047. DOI: 10.1098/rspb.2006.3548. Gurevitch J, Nakagawa S. 2015. <i>Research synthesis methods in ecology.</i> In: Fox G, Negrete-Yankelevich S, Sosa V, eds. Ecological statistics. New York: Oxford University Press, 200–227. Harrer M, Cuijpers P, Furukawa TA, Ebert DD. 2021. <i>Doing Meta-Analysis with R: A Hands-On Guide.</i> Boca Raton, FI. and London: Chapman & Hall/CRC Press. Hedges LV, Vevea JL. 1996. Estimating effect size under publication bias: Small sample properties and robustness of a random effects selection model. <i>Journal of Educational and Behavioral Statistics</i> 21: 299–332. DOI: 10.2307/1165338. Herrera CM. 1987. Components of pollinator "quality": comparative analysis of a diverse insect assemblage. <i>Oikos</i> 50: 79–90. DOI: 10.2307/3565403. Higgins JP. 2011. Cochrane handbook for systematic reviews of interventions. Version 5.1. 0 [updated March 2011]. The Cochrane Collaboration. <i>www. cochrane-handbook. org.</i> Jauker F, Jauker B, Grass I, Steffan-Dewenter I, Wolters V. 2019. Partitioning wild bee and hoverly contributions to plant–pollinator network structure in fragmented habitats. <i>Ecology</i> 100: e02569. DOI: 10.1002/ecy.2569. Jordano P. 1987. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. <i>The American Naturalist</i> 129: 657–677. DOI: 10.1086/284665. Jordano P, Bascompte J, Olesen JM. 2003. Invariant properties in coevolutionary networks of plant-animal interactions. <i>Ecology Letters</i> 6: 69–81. DOI: 10.1046/j.1461-0248.2003.00403.x. Kearns CA, Inouye DW, Waser NM. 1998. Endangered mutualisms: the conservation of plant-pollinator interactions. <i>Annual Review of Ecology and Systematics</i> 29: 83–112. DOI: 10.1146/annurev.ecolsys.29.1.83. Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A,	587	<u>018-0631-2</u> .					
Biological Sciences 273: 2041–2047. DOI: 10.1098/rspb.2006.3548. Gurevitch J, Nakagawa S. 2015. Research synthesis methods in ecology. In: Fox G, Negrete-Yankelevich S, Sosa V, eds. Ecological statistics. New York: Oxford University Press, 200–227. Harrer M, Cuijpers P, Furukawa TA, Ebert DD. 2021. Doing Meta-Analysis with R: A Hands-On Guide. Boca Raton, FL and London: Chapman & Hall/CRC Press. Hedges LV, Vevea JL. 1996. Estimating effect size under publication bias: Small sample properties and robustness of a random effects selection model. Journal of Educational and Behavioral Statistics 21: 299–332. DOI: 10.2307/1165338. Herrera CM. 1987. Components of pollinator "quality": comparative analysis of a diverse insect assemblage. Oikos 50: 79–90. DOI: 10.2307/3565403. Higgins JP. 2011. Cochrane handbook for systematic reviews of interventions. Version 5.1. 0 [updated March 2011]. The Cochrane Collaboration. www. cochrane-handbook. org. Jauker F, Jauker B, Grass I, Steffan-Dewenter I, Wolters V. 2019. Partitioning wild bee and hoverfly contributions to plant–pollinator network structure in fragmented habitats. Ecology 100: e02569. DOI: 10.1002/ccy.2569. Jordano P. 1987. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. The American Naturalist 129: 657–677. DOI: 10.1086/284665. Jordano P, Bascompte J, Olesen JM. 2003. Invariant properties in coevolutionary networks of plant-animal interactions. Ecology Letters 6: 69–81. DOI: 10.1046/j.1461-0248.2003.00403.x. Kearns CA, Inouye DW, Waser NM. 1998. Endangered mutualisms: the conservation of plant-pollinator interactions. Annual Review of Ecology and Systematics 29: 83–112. DOI: 10.1146/annurev.ecolsys.29.1.83. Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A,	588	Guimarães JrPR, Rico-Gray V, Furtado dos Reis S, Thompson JN. 2006. Asymmetries in					
 Gurevitch J, Nakagawa S. 2015. Research synthesis methods in ecology. In: Fox G, Negrete-Yankelevich S, Sosa V, eds. Ecological statistics. New York: Oxford University Press, 200–227. Harrer M, Cuijpers P, Furukawa TA, Ebert DD. 2021. Doing Meta-Analysis with R: A Hands-On Guide. Boca Raton, Fl. and London: Chapman & Hall/CRC Press. Hedges LV, Vevea JL. 1996. Estimating effect size under publication bias: Small sample properties and robustness of a random effects selection model. Journal of Educational and Behavioral Statistics 21: 299–332. DOI: 10.2307/1165338. Herrera CM. 1987. Components of pollinator "quality": comparative analysis of a diverse insect assemblage. Oikos 50: 79–90. DOI: 10.2307/3565403. Higgins JP. 2011. Cochrane handbook for systematic reviews of interventions. Version 5.1. 0 [updated March 2011]. The Cochrane Collaboration. www. cochrane-handbook. org. Jauker F, Jauker B, Grass I, Steffan-Dewenter I, Wolters V. 2019. Partitioning wild bee and hoverfly contributions to plant–pollinator network structure in fragmented habitats. Ecology 100: e02569. DOI: 10.1002/ecy.2569. Jordano P. 1987. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. The American Naturalist 129: 657–677. DOI: 10.1086/284665. Jordano P, Bascompte J, Olesen JM. 2003. Invariant properties in coevolutionary networks of plant-animal interactions. Ecology Letters 6: 69–81. DOI: 10.1046/j.1461-0248.2003.00403.x. Kearns CA, Inouye DW, Waser NM. 1998. Endangered mutualisms: the conservation of plant-pollinator interactions. Annual Review of Ecology and Systematics 29: 83–112. DOI: 10.1146/annurev.ecolsys.29.1.83. Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A, 	589	specialization in ant-plant mutualistic networks. Proceedings of the Royal Society B:					
Yankelevich S, Sosa V, eds. Ecological statistics. New York: Oxford University Press, 200–227. Harrer M, Cuijpers P, Furukawa TA, Ebert DD. 2021. Doing Meta-Analysis with R: A Hands-On Guide. Boca Raton, FL and London: Chapman & Hall/CRC Press. Hedges LV, Vevea JL. 1996. Estimating effect size under publication bias: Small sample properties and robustness of a random effects selection model. Journal of Educational and Behavioral Statistics 21: 299–332. DOI: 10.2307/1165338. Herrera CM. 1987. Components of pollinator "quality": comparative analysis of a diverse insect assemblage. Oikos 50: 79–90. DOI: 10.2307/3565403. Higgins JP. 2011. Cochrane handbook for systematic reviews of interventions. Version 5.1. 0 [updated March 2011]. The Cochrane Collaboration. www. cochrane-handbook. org. Jauker F, Jauker B, Grass I, Steffan-Dewenter I, Wolters V. 2019. Partitioning wild bee and hoverfly contributions to plant–pollinator network structure in fragmented habitats. Ecology 100: e02569. DOI: 10.1002/ecy.2569. Jordano P. 1987. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. The American Naturalist 129: 657–677. DOI: 10.1086/284665. Jordano P, Bascompte J, Olesen JM. 2003. Invariant properties in coevolutionary networks of plant-animal interactions. Ecology Letters 6: 69–81. DOI: 10.1046/j.1461-0248.2003.00403.x. Kearns CA, Inouye DW, Waser NM. 1998. Endangered mutualisms: the conservation of plant-pollinator interactions. Annual Review of Ecology and Systematics 29: 83–112. DOI: 10.1146/annurev.ecolsys.29.1.83. Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A,	590	Biological Sciences 273: 2041–2047. DOI: 10.1098/rspb.2006.3548.					
Harrer M, Cuijpers P, Furukawa TA, Ebert DD. 2021. Doing Meta-Analysis with R: A Hands-On Guide. Boca Raton, FL and London: Chapman & Hall/CRC Press. Hedges LV, Vevea JL. 1996. Estimating effect size under publication bias: Small sample properties and robustness of a random effects selection model. Journal of Educational and Behavioral Statistics 21: 299–332. DOI: 10.2307/1165338. Herrera CM. 1987. Components of pollinator "quality": comparative analysis of a diverse insect assemblage. Oikos 50: 79–90. DOI: 10.2307/3565403. Higgins JP. 2011. Cochrane handbook for systematic reviews of interventions. Version 5.1. 0 [updated March 2011]. The Cochrane Collaboration. www. cochrane-handbook. org. Jauker F, Jauker B, Grass I, Steffan-Dewenter I, Wolters V. 2019. Partitioning wild bee and hoverfly contributions to plant–pollinator network structure in fragmented habitats. Ecology 100: e02569. DOI: 10.1002/ecy.2569. Jordano P. 1987. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. The American Naturalist 129: 657–677. DOI: 10.1086/284665. Jordano P, Bascompte J, Olesen JM. 2003. Invariant properties in coevolutionary networks of plant-animal interactions. Ecology Letters 6: 69–81. DOI: 10.1046/j.1461-0248.2003.00403.x. Kearns CA, Inouye DW, Waser NM. 1998. Endangered mutualisms: the conservation of plant-pollinator interactions. Annual Review of Ecology and Systematics 29: 83–112. DOI: 10.1146/annurev.ecolsys.29.1.83. Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A,	591	Gurevitch J, Nakagawa S. 2015. Research synthesis methods in ecology. In: Fox G, Negrete-					
Harrer M, Cuijpers P, Furukawa TA, Ebert DD. 2021. Doing Meta-Analysis with R: A Hands- On Guide. Boca Raton, FL and London: Chapman & Hall/CRC Press. Hedges LV, Vevea JL. 1996. Estimating effect size under publication bias: Small sample properties and robustness of a random effects selection model. Journal of Educational and Behavioral Statistics 21: 299–332. DOI: 10.2307/1165338. Herrera CM. 1987. Components of pollinator "quality": comparative analysis of a diverse insect assemblage. Oikos 50: 79–90. DOI: 10.2307/3565403. Higgins JP. 2011. Cochrane handbook for systematic reviews of interventions. Version 5.1. 0 [updated March 2011]. The Cochrane Collaboration. www. cochrane-handbook. org. Jauker F, Jauker B, Grass I, Steffan-Dewenter I, Wolters V. 2019. Partitioning wild bee and hoverfly contributions to plant–pollinator network structure in fragmented habitats. Ecology 100: e02569. DOI: 10.1002/ecy.2569. Jordano P. 1987. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. The American Naturalist 129: 657–677. DOI: 10.1086/284665. Jordano P, Bascompte J, Olesen JM. 2003. Invariant properties in coevolutionary networks of plant-animal interactions. Ecology Letters 6: 69–81. DOI: 10.1046/j.1461- 0248.2003.00403.x. Kearns CA, Inouye DW, Waser NM. 1998. Endangered mutualisms: the conservation of plant- pollinator interactions. Annual Review of Ecology and Systematics 29: 83–112. DOI: 10.1146/annurev ecolsys.29.1.83. Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A,	592	Yankelevich S, Sosa V, eds. Ecological statistics. New York: Oxford University Press,					
 On Guide. Boca Raton, FL and London: Chapman & Hall/CRC Press. Hedges LV, Vevea JL. 1996. Estimating effect size under publication bias: Small sample properties and robustness of a random effects selection model. Journal of Educational and Behavioral Statistics 21: 299–332. DOI: 10.2307/1165338. Herrera CM. 1987. Components of pollinator "quality": comparative analysis of a diverse insect assemblage. Oikos 50: 79–90. DOI: 10.2307/3565403. Higgins JP. 2011. Cochrane handbook for systematic reviews of interventions. Version 5.1. 0 [updated March 2011]. The Cochrane Collaboration. www. cochrane-handbook. org. Jauker F, Jauker B, Grass I, Steffan-Dewenter I, Wolters V. 2019. Partitioning wild bee and hoverfly contributions to plant–pollinator network structure in fragmented habitats. Ecology 100: e02569. DOI: 10.1002/ecy.2569. Jordano P. 1987. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. The American Naturalist 129: 657–677. DOI: 10.1086/284665. Jordano P, Bascompte J, Olesen JM. 2003. Invariant properties in coevolutionary networks of plant-animal interactions. Ecology Letters 6: 69–81. DOI: 10.1046/j.1461-0248.2003.00403.x. Kearns CA, Inouye DW, Waser NM. 1998. Endangered mutualisms: the conservation of plant-pollinator interactions. Annual Review of Ecology and Systematics 29: 83–112. DOI: 10.1146/annurev.ecolsys.29.1.83. Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A, 	593	200–227.					
 Hedges LV, Vevea JL. 1996. Estimating effect size under publication bias: Small sample properties and robustness of a random effects selection model. <i>Journal of Educational and Behavioral Statistics</i> 21: 299–332. DOI: 10.2307/1165338. Herrera CM. 1987. Components of pollinator "quality": comparative analysis of a diverse insect assemblage. <i>Oikos</i> 50: 79–90. DOI: 10.2307/3565403. Higgins JP. 2011. Cochrane handbook for systematic reviews of interventions. Version 5.1. 0 [updated March 2011]. The Cochrane Collaboration. <i>www. cochrane-handbook. org.</i> Jauker F, Jauker B, Grass I, Steffan-Dewenter I, Wolters V. 2019. Partitioning wild bee and hoverfly contributions to plant–pollinator network structure in fragmented habitats. <i>Ecology</i> 100: e02569. DOI: 10.1002/ecy.2569. Jordano P. 1987. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. <i>The American Naturalist</i> 129: 657–677. DOI: 10.1086/284665. Jordano P, Bascompte J, Olesen JM. 2003. Invariant properties in coevolutionary networks of plant-animal interactions. <i>Ecology Letters</i> 6: 69–81. DOI: 10.1046/j.1461-0248.2003.00403.x. Kearns CA, Inouye DW, Waser NM. 1998. Endangered mutualisms: the conservation of plant-pollinator interactions. <i>Annual Review of Ecology and Systematics</i> 29: 83–112. DOI: 10.1146/annurev.ecolsys.29.1.83. Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A, 	594	Harrer M, Cuijpers P, Furukawa TA, Ebert DD. 2021. Doing Meta-Analysis with R: A Hands-					
properties and robustness of a random effects selection model. <i>Journal of Educational and Behavioral Statistics</i> 21: 299–332. DOI: 10.2307/1165338. Herrera CM. 1987. Components of pollinator "quality": comparative analysis of a diverse insect assemblage. <i>Oikos</i> 50: 79–90. DOI: 10.2307/3565403. Higgins JP. 2011. Cochrane handbook for systematic reviews of interventions. Version 5.1. 0 [updated March 2011]. The Cochrane Collaboration. <i>www. cochrane-handbook. org.</i> Jauker F, Jauker B, Grass I, Steffan-Dewenter I, Wolters V. 2019. Partitioning wild bee and hoverfly contributions to plant–pollinator network structure in fragmented habitats. <i>Ecology</i> 100: e02569. DOI: 10.1002/ecy.2569. Jordano P. 1987. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. <i>The American Naturalist</i> 129: 657–677. DOI: 10.1086/284665. Jordano P, Bascompte J, Olesen JM. 2003. Invariant properties in coevolutionary networks of plant-animal interactions. <i>Ecology Letters</i> 6: 69–81. DOI: 10.1046/j.1461-0248.2003.00403.x. Kearns CA, Inouye DW, Waser NM. 1998. Endangered mutualisms: the conservation of plant-pollinator interactions. <i>Annual Review of Ecology and Systematics</i> 29: 83–112. DOI: 10.1146/annurev.ecolsys.29.1.83. Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A,	595	On Guide. Boca Raton, FL and London: Chapman & Hall/CRC Press.					
Behavioral Statistics 21: 299–332. DOI: 10.2307/1165338. Herrera CM. 1987. Components of pollinator "quality": comparative analysis of a diverse insect assemblage. Oikos 50: 79–90. DOI: 10.2307/3565403. Higgins JP. 2011. Cochrane handbook for systematic reviews of interventions. Version 5.1. 0 [updated March 2011]. The Cochrane Collaboration. www. cochrane-handbook. org. Jauker F, Jauker B, Grass I, Steffan-Dewenter I, Wolters V. 2019. Partitioning wild bee and hoverfly contributions to plant–pollinator network structure in fragmented habitats. Ecology 100: e02569. DOI: 10.1002/ecy.2569. Jordano P. 1987. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. The American Naturalist 129: 657–677. DOI: 10.1086/284665. Jordano P, Bascompte J, Olesen JM. 2003. Invariant properties in coevolutionary networks of plant-animal interactions. Ecology Letters 6: 69–81. DOI: 10.1046/j.1461-0248.2003.00403.x. Kearns CA, Inouye DW, Waser NM. 1998. Endangered mutualisms: the conservation of plant-pollinator interactions. Annual Review of Ecology and Systematics 29: 83–112. DOI: 10.1146/annurev.ecolsys.29.1.83. Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A,	596	Hedges LV, Vevea JL. 1996. Estimating effect size under publication bias: Small sample					
Herrera CM. 1987. Components of pollinator "quality": comparative analysis of a diverse insect assemblage. <i>Oikos</i> 50: 79–90. DOI: 10.2307/3565403. Higgins JP. 2011. Cochrane handbook for systematic reviews of interventions. Version 5.1. 0 [updated March 2011]. The Cochrane Collaboration. <i>www. cochrane-handbook. org.</i> Jauker F, Jauker B, Grass I, Steffan-Dewenter I, Wolters V. 2019. Partitioning wild bee and hoverfly contributions to plant–pollinator network structure in fragmented habitats. <i>Ecology</i> 100: e02569. DOI: 10.1002/ecy.2569. Jordano P. 1987. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. <i>The American Naturalist</i> 129: 657–677. DOI: 10.1086/284665. Jordano P, Bascompte J, Olesen JM. 2003. Invariant properties in coevolutionary networks of plant-animal interactions. <i>Ecology Letters</i> 6: 69–81. DOI: 10.1046/j.1461-0248.2003.00403.x. Kearns CA, Inouye DW, Waser NM. 1998. Endangered mutualisms: the conservation of plant-pollinator interactions. <i>Annual Review of Ecology and Systematics</i> 29: 83–112. DOI: 10.1146/annurev.ecolsys.29.1.83. Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A,	597	properties and robustness of a random effects selection model. Journal of Educational and					
assemblage. <i>Oikos</i> 50: 79–90. DOI: 10.2307/3565403. Higgins JP. 2011. Cochrane handbook for systematic reviews of interventions. Version 5.1. 0 [updated March 2011]. The Cochrane Collaboration. <i>www. cochrane-handbook. org.</i> Jauker F, Jauker B, Grass I, Steffan-Dewenter I, Wolters V. 2019. Partitioning wild bee and hoverfly contributions to plant–pollinator network structure in fragmented habitats. <i>Ecology</i> 100: e02569. DOI: 10.1002/ecy.2569. Jordano P. 1987. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. <i>The American Naturalist</i> 129: 657–677. DOI: 10.1086/284665. Jordano P, Bascompte J, Olesen JM. 2003. Invariant properties in coevolutionary networks of plant-animal interactions. <i>Ecology Letters</i> 6: 69–81. DOI: 10.1046/j.1461-0248.2003.00403.x. Kearns CA, Inouye DW, Waser NM. 1998. Endangered mutualisms: the conservation of plant-pollinator interactions. <i>Annual Review of Ecology and Systematics</i> 29: 83–112. DOI: 10.1146/annurev.ecolsys.29.1.83. Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A,	598	Behavioral Statistics 21: 299–332. DOI: 10.2307/1165338.					
Higgins JP. 2011. Cochrane handbook for systematic reviews of interventions. Version 5.1. 0 [updated March 2011]. The Cochrane Collaboration. www. cochrane-handbook. org. Jauker F, Jauker B, Grass I, Steffan-Dewenter I, Wolters V. 2019. Partitioning wild bee and hoverfly contributions to plant-pollinator network structure in fragmented habitats. Ecology 100: e02569. DOI: 10.1002/ecy.2569. Jordano P. 1987. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. The American Naturalist 129: 657–677. DOI: 10.1086/284665. Jordano P, Bascompte J, Olesen JM. 2003. Invariant properties in coevolutionary networks of plant-animal interactions. Ecology Letters 6: 69–81. DOI: 10.1046/j.1461-0248.2003.00403.x. Kearns CA, Inouye DW, Waser NM. 1998. Endangered mutualisms: the conservation of plant-pollinator interactions. Annual Review of Ecology and Systematics 29: 83–112. DOI: 10.1146/annurev.ecolsys.29.1.83. Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A,	599	Herrera CM. 1987. Components of pollinator "quality": comparative analysis of a diverse insect					
[updated March 2011]. The Cochrane Collaboration. www. cochrane-handbook. org. Jauker F, Jauker B, Grass I, Steffan-Dewenter I, Wolters V. 2019. Partitioning wild bee and hoverfly contributions to plant–pollinator network structure in fragmented habitats. Ecology 100: e02569. DOI: 10.1002/ecy.2569. Jordano P. 1987. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. The American Naturalist 129: 657–677. DOI: 10.1086/284665. Jordano P, Bascompte J, Olesen JM. 2003. Invariant properties in coevolutionary networks of plant-animal interactions. Ecology Letters 6: 69–81. DOI: 10.1046/j.1461-0248.2003.00403.x. Kearns CA, Inouye DW, Waser NM. 1998. Endangered mutualisms: the conservation of plant-pollinator interactions. Annual Review of Ecology and Systematics 29: 83–112. DOI: 10.1146/annurev.ecolsys.29.1.83. Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A,	600	assemblage. Oikos 50: 79–90. DOI: 10.2307/3565403.					
Jauker F, Jauker B, Grass I, Steffan-Dewenter I, Wolters V. 2019. Partitioning wild bee and hoverfly contributions to plant–pollinator network structure in fragmented habitats. <i>Ecology</i> 100: e02569. DOI: 10.1002/ecy.2569. Jordano P. 1987. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. <i>The American Naturalist</i> 129: 657–677. DOI: 10.1086/284665. Jordano P, Bascompte J, Olesen JM. 2003. Invariant properties in coevolutionary networks of plant-animal interactions. <i>Ecology Letters</i> 6: 69–81. DOI: 10.1046/j.1461-0248.2003.00403.x. Kearns CA, Inouye DW, Waser NM. 1998. Endangered mutualisms: the conservation of plant-pollinator interactions. <i>Annual Review of Ecology and Systematics</i> 29: 83–112. DOI: 10.1146/annurev.ecolsys.29.1.83. Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A,	601	Higgins JP. 2011. Cochrane handbook for systematic reviews of interventions. Version 5.1. 0					
hoverfly contributions to plant–pollinator network structure in fragmented habitats. <i>Ecology</i> 100: e02569. DOI: 10.1002/ecy.2569. Jordano P. 1987. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. <i>The American Naturalist</i> 129: 657–677. DOI: 10.1086/284665. Jordano P, Bascompte J, Olesen JM. 2003. Invariant properties in coevolutionary networks of plant-animal interactions. <i>Ecology Letters</i> 6: 69–81. DOI: 10.1046/j.1461-0248.2003.00403.x. Kearns CA, Inouye DW, Waser NM. 1998. Endangered mutualisms: the conservation of plant-pollinator interactions. <i>Annual Review of Ecology and Systematics</i> 29: 83–112. DOI: 10.1146/annurev.ecolsys.29.1.83. Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A,	602	[updated March 2011]. The Cochrane Collaboration. www. cochrane-handbook. org.					
habitats. <i>Ecology</i> 100 : e02569. DOI: 10.1002/ecy.2569. Jordano P. 1987. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. <i>The American Naturalist</i> 129 : 657–677. DOI: 10.1086/284665. Jordano P, Bascompte J, Olesen JM. 2003 . Invariant properties in coevolutionary networks of plant-animal interactions. <i>Ecology Letters</i> 6 : 69–81. DOI: 10.1046/j.1461-0248.2003.00403.x. Kearns CA, Inouye DW, Waser NM. 1998. Endangered mutualisms: the conservation of plant-pollinator interactions. <i>Annual Review of Ecology and Systematics</i> 29 : 83–112. DOI: 10.1146/annurev.ecolsys.29.1.83. Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A,	603	Jauker F, Jauker B, Grass I, Steffan-Dewenter I, Wolters V. 2019. Partitioning wild bee and					
Jordano P. 1987. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. <i>The American Naturalist</i> 129: 657–677. DOI: 10.1086/284665. Jordano P, Bascompte J, Olesen JM. 2003. Invariant properties in coevolutionary networks of plant-animal interactions. <i>Ecology Letters</i> 6: 69–81. DOI: 10.1046/j.1461- 0248.2003.00403.x. Kearns CA, Inouye DW, Waser NM. 1998. Endangered mutualisms: the conservation of plant- pollinator interactions. <i>Annual Review of Ecology and Systematics</i> 29: 83–112. DOI: 10.1146/annurev.ecolsys.29.1.83. Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A,	604	hoverfly contributions to plant-pollinator network structure in fragmented					
connectance, dependence asymmetries, and coevolution. <i>The American Naturalist</i> 129: 657–677. DOI: 10.1086/284665. Jordano P, Bascompte J, Olesen JM. 2003. Invariant properties in coevolutionary networks of plant-animal interactions. <i>Ecology Letters</i> 6: 69–81. DOI: 10.1046/j.1461-0248.2003.00403.x. Kearns CA, Inouye DW, Waser NM. 1998. Endangered mutualisms: the conservation of plant-pollinator interactions. <i>Annual Review of Ecology and Systematics</i> 29: 83–112. DOI: 10.1146/annurev.ecolsys.29.1.83. Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A,	605	habitats. Ecology 100: e02569. DOI: 10.1002/ecy.2569.					
Jordano P, Bascompte J, Olesen JM. 2003. Invariant properties in coevolutionary networks of plant-animal interactions. <i>Ecology Letters</i> 6: 69–81. DOI: 10.1046/j.1461-0248.2003.00403.x. Kearns CA, Inouye DW, Waser NM. 1998. Endangered mutualisms: the conservation of plant-pollinator interactions. <i>Annual Review of Ecology and Systematics</i> 29: 83–112. DOI: 10.1146/annurev.ecolsys.29.1.83. Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A,	606	Jordano P. 1987. Patterns of mutualistic interactions in pollination and seed dispersal:					
Jordano P, Bascompte J, Olesen JM. 2003. Invariant properties in coevolutionary networks of plant-animal interactions. <i>Ecology Letters</i> 6: 69–81. DOI: 10.1046/j.1461-0248.2003.00403.x. Kearns CA, Inouye DW, Waser NM. 1998. Endangered mutualisms: the conservation of plant-pollinator interactions. <i>Annual Review of Ecology and Systematics</i> 29: 83–112. DOI: 10.1146/annurev.ecolsys.29.1.83. Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A,	607	connectance, dependence asymmetries, and coevolution. The American Naturalist 129:					
plant-animal interactions. Ecology Letters 6: 69–81. DOI: 10.1046/j.1461-0248.2003.00403.x. Kearns CA, Inouye DW, Waser NM. 1998. Endangered mutualisms: the conservation of plant-pollinator interactions. Annual Review of Ecology and Systematics 29: 83–112. DOI: 10.1146/annurev.ecolsys.29.1.83. Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A,	608	657–677. DOI: <u>10.1086/284665</u> .					
611 0248.2003.00403.x. Kearns CA, Inouye DW, Waser NM. 1998. Endangered mutualisms: the conservation of plant- pollinator interactions. Annual Review of Ecology and Systematics 29: 83–112. DOI: 10.1146/annurev.ecolsys.29.1.83. Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A,	609	Jordano P, Bascompte J, Olesen JM. 2003. Invariant properties in coevolutionary networks of					
Kearns CA, Inouye DW, Waser NM. 1998. Endangered mutualisms: the conservation of plant-pollinator interactions. <i>Annual Review of Ecology and Systematics</i> 29: 83–112. DOI: 10.1146/annurev.ecolsys.29.1.83. Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A,	610	plant-animal interactions. <i>Ecology Letters</i> 6: 69–81. DOI: <u>10.1046/j.1461-</u>					
pollinator interactions. Annual Review of Ecology and Systematics 29: 83–112. DOI: 10.1146/annurev.ecolsys.29.1.83. Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A,	611	<u>0248.2003.00403.x</u> .					
10.1146/annurev.ecolsys.29.1.83. Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A,	612	Kearns CA, Inouye DW, Waser NM. 1998. Endangered mutualisms: the conservation of plant-					
Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A,	613	pollinator interactions. Annual Review of Ecology and Systematics 29: 83-112. DOI:					
	614	10.1146/annurev.ecolsys.29.1.83.					
Tjitrosoedirdjo SS, Tjitrosoemito S, Twele A, Weber R, Woltmann L, Zeller M,	615	Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A,					
	616	Tjitrosoedirdjo SS, Tjitrosoemito S, Twele A, Weber R, Woltmann L, Zeller M,					

Tscharntke, T. 2007. Tradeoffs between income, biodiversity, and ecosystem functioning
during tropical rainforest conversion and agroforestry intensification. Proceedings of the
National Academy of Sciences 104: 4973–4978. DOI: 10.1073/pnas.0608409104.
Kral-O'Brien KC, O'Brien PL, Hovick TJ, Harmon JP. 2021. Meta-analysis: Higher plant
richness supports higher pollinator richness across many land use types. Annals of the
Entomological Society of America 114: 267–275. DOI: 10.1093/aesa/saaa061.
Kremen C, James RR, Pitts-Singer T L. 2008. Crop pollination services from wild bees. Bee
pollination in agricultural ecosystems, Oxford University Press, New York, New York,
USA (2008), p. 10–26.
Koricheva J, Gurevitch J, Mengersen K. 2013. Handbook of meta-analysis in ecology and
evolution. Princeton University Press.
Kunin WE.1997. Population size and density effects in pollination: Pollinator foraging and plant
reproductive success in experimental arrays of Brassica kaber. Journal of Ecology 85: 225-
234. DOI: <u>10.2307/2960653</u> .
Lázaro A, Tur C. 2018. Los cambios de uso del suelo como responsables del declive de
polinizadores. Ecosistemas 27: 23–33. DOI: 10.7818/ECOS.1378.
Lázaro A, Gómez-Martínez C. 2022. Habitat loss increases seasonal interaction rewiring in
plant–pollinator networks. Functional Ecology 36: 2673–2684. DOI: <u>10.1111/1365-</u>
<u>2435.14160</u> .
Lennartsson T. 2002. Extinction thresholds and disrupted plant-pollinator interactions in
fragmented plant populations. <i>Ecology</i> 83: 3060–3072. DOI: <u>10.2307/3071842</u> .
Librán-Embid F, Grass I, Emer C, Ganuza C, Tscharntke T. 2021. A plant-pollinator meta-
network along a habitat fragmentation gradient. Ecology Letters 24: 2700–2712. DOI:
10.1111/ele.13892.
Marín L, Martínez-Sánchez ME, Sagot P, Navarrete D, Morales H. 2020. Floral visitors in
urban gardens and natural areas: Diversity and interaction networks in a neotropical urban
landscape. Basic and Applied Ecology 43: 3–15. DOI: 10.1016/j.baae.2019.10.003.
Marquitti FMD, Guimaraes JrPR, Pires MM, Bittencourt LF. 2014. MODULAR: software
for the autonomous computation of modularity in large network sets. <i>Ecography</i> 37: 221–
224. DOI: <u>10.1111/j.1600-0587.2013.00506.x</u> .

647	Marrero HJ, Torretta JP, Medan D. 2014. Effect of land use intensification on specialization in						
648	plant-floral visitor interaction networks in the Pampas of Argentina. Agriculture						
649	Ecosystems & Environment 188: 63–71. DOI: 10.1016/j.agee.2014.02.017.						
650	Mellink E, Riojas-López ME, Cárdenas-García M. 2017. Biodiversity conservation in an						
651	anthropized landscape: Trees, not patch size drive, bird community composition in a low-						
652	input agro-ecosystem. PLoS One 12: e0179438. DOI: 10.1371/journal.pone.0179438.						
653	Montoya JM, Pimm SL, Solé RV. 2006. Ecological networks and their fragility. Nature 442						
654	259–264. DOI: <u>10.1038/nature04927</u> .						
655	Moreira EF, Boscolo D, Viana BF. 2015. Spatial heterogeneity regulates plant-pollinator						
656	networks across multiple landscape scales. PLoS ONE 10: e0123628. DOI						
657	10.1371/journal.pone.0123628.						
658	Morente-López J, Lara-Romero C, Ornosa C, Iriondo JM. 2018. Phenology drives species						
659	interactions and modularity in a plant-flower visitor network. Scientific Reports 8: 9386						
660	DOI: 10.1038/s41598-018-27725-2.						
661	Morón MÁ, Márquez J. 2012. Nuevos registros estatales y nacionales de escarabajos						
662	(Coleoptera: Scarabaeoidea) y comentarios sobre su distribución. Revista Mexicana de						
663	Biodiversidad 83:698–711. DOI: 10.7550/rmb.28386.						
664	Morrison BM, Dirzo R. 2020. Distinct responses of antagonistic and mutualistic networks to						
665	agricultural intensification. <i>Ecology</i> 101: e03116. DOI: <u>10.1002/ecy.3116</u> .						
666	Motivans Švara E, Ştefan V, Sossai E, Feldmann R, Aguilon DJ, Bontsutsnaja A, E-Vojtkó						
667	A, Kilian IC, Lang P, Mõtlep M, Prangel E, Viljur ML, Knight TM, Neuenkamp L.						
668	2021. Effects of different types of low-intensity management on plant-pollinator						
669	interactions in Estonian grasslands. Ecology and Evolution 11:16909-16926. DOI:						
670	10.1002/ece3.8325.						
671	Muratet A, Fontaine B. 2015. Contrasting impacts of pesticides on butterflies and bumblebees in						
672	private gardens in France. Biological Conservation 182: 148-154. DOI						
673	10.1016/j.biocon.2014.11.045.						
674	Murcia C.1996. Forest fragmentation and the pollination of Neotropical plants. In: Schelhas						
675	JRG, eds. Forest patches in tropical landscapes. Island Press, Covelo.						

676	Newton AC, Boscolo D, Ferreira PA, Lopes LE, Evans P. 2018. Impacts of deforestation on							
677	plant-pollinator networks assessed using an agent based model. PLoS ONE 13: e0209406.							
678	DOI: <u>10.1371/journal.pone.0209406</u> .							
679	Peralta G, Stevani EL, Chacoff NP, Dorado J, Vázquez DP. 2017. Fire influences the structure							
680	of plant-bee networks. Journal of Animal Ecology 86: 1372-1379. DOI: 10.1111/1365-							
681	<u>2656.12731</u> .							
682	Prendergast KS, Ollerton J. 2021. Plant-pollinator networks in Australian urban bushland							
683	remnants are not structurally equivalent to those in residential gardens. Urban							
684	Ecosystems 24: 973–987. DOI: <u>10.1007/s11252-020-01089-w</u>							
685	RStudio Team. 2020. RStudio: Integrated development environment for R (1.3.959). RStudio,							
686	PBC. http://www.rstudio.com/							
687	Ricketts TH., Regetz, J, Steffan-Dewenter I, Cunningham SA, Kremen C, Bogdanski A,							
688	Gemmill-Herren B, Greenleaf SS, Klein AM., Mayfield MM, Morandin LA, Ochieng							
689	A, Potts SG, Viana FB. 2008. Landscape effects on crop pollination services: are there							
690	general patterns? <i>Ecology Letters</i> 11: 499–515. DOI: <u>10.1111/j.1461-0248.2008.01157.x</u> .							
691	Roulston TAH, Goodell K. 2011. The role of resources and risks in regulating wild bee							
692	populations. Annual Review of Entomology 56: 293-312. DOI: 10.1146/annurev-ento-							
693	<u>120709-144802</u> .							
694	Santamaría S, Sánchez AM, López-Angulo J, Ornosa C, Mola I, Escudero A. 2018. Landscape							
695	effects on pollination networks in Mediterranean gypsum islands. Plant Biology 20: 184-							
696	194. DOI: <u>10.1111/plb.12602</u> .							
697	Sardiñas HS, Kremen C. 2014. Evaluating nesting microhabitat for ground-nesting bees using							
698	emergence traps. Basic and Applied Ecology 15:161–168. DOI:							
699	10.1016/j.baae.2014.02.004.							
700	Soares RGS, Ferreira PA, Lopes LE. 2017. Can plant-pollinator network metrics indicate							
701	environmental quality? Ecological Indicators 78: 361–370. DOI:							
702	10.1016/j.ecolind.2017.03.037.							
703	Spiesman BJ, Inouye BD. 2013. Habitat loss alters the architecture of plant–pollinator interaction							
704	networks. <i>Ecology</i> 94: 2688–2696. DOI: <u>10.1890/13-0977.1</u> .							
705	Steffan-Dewenter I, Kessler M, Barkmann J, Bos MM, Buchori D, Erasmi S, Faust							
706	H.Gerhard G. Glenk K.Gradstein RS. Guhardia E. Harteveld M. Hertel D. Höhn P.							

707	Kappas M, Köhler S, Leuschner C, Maertens M, Marggraf R, Migge-Kleian S,							
708	Mogea J,Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A,							
709	Tjitrosoedirdjo SS, Tjitrosoemito S, Twele A, Weber R, Woltmann L, Zeller M,							
710	Tscharntke T. 2007. Tradeoffs between income, biodiversity, and ecosystem functioning							
711	during tropical rainforest conversion and agroforestry intensification. Proceedings of the							
712	National Academy of Sciences 104: 4973–4978. DOI: 10.1073/pnas.0608409104.							
713	Steffen W, Grinevald J, Crutzen P, McNeill J. 2011. The Anthropocene: conceptual and							
714	historical perspectives. Philosophical Transactions of the Royal Society A: Mathematical,							
715	Physical and Engineering Sciences 369 : 842–867. DOI: <u>10.1098/rsta.2010.0327</u> .							
716	Stouffer DB, Bascompte J. 2011. Compartmentalization increases food-web							
717	persistence. Proceedings of the National Academy of Sciences 108: 3648-3652. DOI:							
718	10.1073/pnas.1014353108.							
719	Tadey M. 2008. Efecto del ganado sobre los niveles de polinización en especies vegetales del							
720	monte patagónico. Ecología Austral 18: 89–100.							
721	Thébault E, Fontaine C. 2010. Stability of ecological communities and the architecture of							
722	mutualistic and trophic networks. Science 329: 853–856. DOI:							
723	10.1126/science.1188321.							
724	Tilman D, Fargione J, Wolff B, D'Antonio C, Dobson A, Howarth R, Schindler D,							
725	Schlesinger WH, Simberloff D, Swackhamer D. 2001. Forecasting agriculturally driven							
726	global environmental change. Science 292: 281–284. DOI: 10.1126/science.1057544.							
727	Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C. 2005. Landscape							
728	perspectives on agricultural intensification and biodiversity-ecosystem service							
729	management. <i>Ecology Letters</i> 8: 857–874. DOI: <u>10.1111/j.1461-0248.2005.00782.x</u> .							
730	Valiente-Banuet A, Aizen MA, Alcántara JM, Arroyo J, Cocucci A, Galetti M, Zamora R.							
731	2015. Beyond species loss: the extinction of ecological interactions in a changing							
732	world. Functional Ecology 29: 299–307. DOI: <u>10.1111/1365-2435.12356</u> .							
733	Vanbergen AJ, Woodcock BA, Gray A, Grant F, Telford A, Lambdon P, Chapman DS,							
734	Pywell RF, Heard MS, Cavers, S. 2014. Grazing alters insect visitation networks and							
735	plant mating systems. Functional Ecology 28: 178–189. DOI: <u>10.1111/1365-2435.12191</u> .							
736	Viechtbauer W. 2010. Conducting Meta-Analyses in R with the metafor Package. Journal of							
737	Statistical Software 36: 1–48. DOI: 10.18637/jss.v036.i03							

738	Weiner CN, Werner M, Linsenmair KE, Blüthgen N. 2014. Land-use impacts on plant-
739	pollinator networks: interaction strength and specialization predict pollinator
740	declines. Ecology 95: 466–474. DOI: 10.1890/13-0436.1.
741	Williams NM, Winfree R. 2013. Local habitat characteristics but not landscape urbanization drive
742	pollinator visitation and native plant pollination in forest remnants. Biological
743	Conservation 160: 10–18. DOI: 10.1016/j.biocon.2012.12.035.
744	Winfree R, Aguilar R, Vázquez DP, LeBuhn G, Aizen MA. 2009. A meta-analysis of bees
745	responses to anthropogenic disturbance. Ecology 90: 2068–2076. DOI: 10.1890/08-
746	<u>1245.1</u> .
747	Yao J, Holt PM, Marshall MS.1999. Woody plant colonization in an experimentally fragmented
748	landscape. <i>Ecography</i> 22: 715–728. DOI: <u>10.1111/j.1600-0587.1999.tb00521.x</u> .
749	Young AG, Clarke GM. 2000. Genetics, demography and viability of fragmented populations.
750	Cambridge University Press
751	Zakardjian M, Geslin B, Mitran V, Franquet E, Jourdan, H. 2020. Effects of urbanization on
752	plant-pollinator interactions in the tropics: an experimental approach using exotic
753	plants. Insects 11: 773. DOI: 10.3390/insects11110773.
754	
755	
756	

Table 1(on next page)

The dataset comprised 38 studies for the systematic review and 16 studies for the complete set of meta-analyses.

These were utilized to investigate the potential impact of anthropization on the structural patterns of plant-pollinator interaction networks.

Manuscript to be reidentify the 16 articles used for the meta-analyses

- Table 1. The dataset comprised 38 studies for the systematic review and 16 studies for the complete set of meta-analyses. These were
- utilized to investigate the potential impact of anthropization on the structural patterns of plant-pollinator interaction networks.

Metric	Taxonomic group	Climate	Anthropogenic activity	Trend	Reference
Nestedness	Bees	Temperate	Agriculture	No effect	Hagen & Kraemer, 2010
		-	Fragmentation	Decrease	Newton et al., 2018
		Tropical	Land use change	Decrease	Mathiasson & Rehan, 2020
		-	Fragmentation	Increase	Ferreira et al., 2020
			Urbanización	Decrease	Traveset et al., 2018
			Urbanización	Decrease	Prendergast & Ollerton, 2021
		Semi-arid	Intentional fires	No effect	Peralta et al., 2017
	Bees and others	Tropical	Agriculture	No effect	Morrison & Dirzo, 2020
			Land use change	No effect	Escobedo-Kenefic et al., 2022
		Semi-arid	Fragmentation	No effect	Jauker et al., 2019
			Fragmentation	Decrease	Grass et al., 2018
	Insects	Temperate	Agriculture	No effect	Motivans et al., 2021
			Agriculture	Decrease	Vanbergen et al., 2017
			Agriculture	No effect	Olsson et al., 2021
			Fragmentation	Decrease	Burkle & Knight, 2012
			Fragmentation	No effect	Spiesman & Inouye et al., 2013
			Livestock	Decrease	Vanbergen et al., 2014
		Tropical	Agriculture	Decrease	Moreira, Boscolo & Viana, 2015
			Land use change	No effect	Adedoja & Kehinde, 2018
			Fragmentation	Decrease	Della Rocca et al., 2023
		Semi-arid	Fragmentation	Decrease	Santamaría et al., 2018
	Butterflies	Tropical	Agriculture	No effect	Banza, Belo & Evans, 2015
		Semi-arid	Agriculture	Decrease	Colom, Traveset & Stefanescu, 2021
	Hummingbirds	Tropical	Agriculture	Decrease	Bustamante-Castillo, Hernández Baños & Arizmendi, 2020

Please		Land use change	Increase	Díaz Infante, Lara & Arizmendi, 2020
standardize the use of names or	Tropical	Fragmentation	No effect	Pinto et al., 2020
abbreviations	Temperate	Agriculture	No effect	Hagen & Kraemer, 2010
throughout the	Tropical	Fragmentation	Increase	Newton et al., 2018
document.	•	Fragmentation	Decrease	Ferreira et al., 2020
		Urbanización	Increase	Traveset et al., 2018
		Urbanización	Increase	Mas & Vilagines, 2018
		Urbanización	No effect	Prendergast & Ollerton, 2021
	Semi-arid	Intentional fires	Increase	Peralta et al., 2017
Bees and others	Tropical	Agriculture	No effect	Fründ, Linsenmair & Blüthgen, 2010
		Land use change	No effect	Escobedo-Kenefic et al., 2022
	Semi-arid	Fragmentation	Increase	Jauker et al., 2019
Insects	Temperate	Agriculture	No effect	Weiner et al., 2011
		Agriculture	Increase	Vanbergen et al., 2017
		Agriculture	Increase	Shinohara, Uchida & Yoshida, 2019
		Agriculture	Decrease	Motivans et al., 2021
		Fragmentation	Decrease	Burkle & Knight, 2012
		Fragmentation	Decrease	Marrero, Torretta & Medan, 2014
		Urbanización	Decrease	Marín et al., 2020
	Tropical	Land use change	No effect	Adedoja & Kehinde, 2018
		Land use change	Increase	Sritongchuay et al., 2022
		Fragmentation	Decrease	Della Rocca et al., 2023
		Intentional fires	No effect	Da Silva et al., 2022
	Semi-arid	Fragmentation	Increase	Santamaría et al., 2018
Butterflies	Tropical	Agriculture	Decrease	Banza, Belo & Evans, 2015
	Semi-arid	Agriculture	No effect	Colom, Traveset & Stefanescu, 202
Hummingbirds	Tropical	Agriculture	No effect	Bustamante-Castillo, Hernández Baños & Arizmendi, 2020
General	Tropical	Fragmentation	No effect	Pinto et al., 2020

Conectance	Bees	Temperate	Fragmentation	Decrease	Newton et al., 2018
		Tropical	Land use change	Decrease	Mathiasson & Rehan, 2020
			Urbanización	Decrease	Mas & Vilagines, 2018
			Urbanización	No effect	Traveset et al., 2018
			Urbanización	No effect	Prendergast & Ollerton, 2021
		Semi-arid	Intentional fires	Decrease	Peralta et al., 2017
	Bees and others	Tropical	Agriculture	Increase	Morrison & Dirzo, 2020
			Land use change	No effect	Escobedo-Kenefic et al., 2022
		Semi-arid	Fragmentation	Decrease	Jauker et al., 2019
	Insects	Temperate	Agriculture	Increase	Vanbergen et al., 2014
		_	Agriculture	Increase	Shinohara, Uchida & Yoshida, 2019
			Agriculture	Decrease	Motivans et al., 2021
			Agriculture	No effect	Olsson et al., 2021
			Fragmentation	Increase	Spiesman & Inouye et al., 2013
			Fragmentation	Decrease	Librán-Embid et al., 2021
			Livestock	Decrease	Vanbergen et al., 2017
		Tropical	Land use change	No effect	Adedoja & Kehinde, 2018
			Fragmentation	Increase	Della Rocca et al., 2023
		Semi-arid	Fragmentation	Increase	Santamaría et al., 2018
	Hummingbirds	Tropical	Agriculture	No effect	Bustamante-Castillo, Hernández Baños & Arizmendi, 2020
			Land use change	No effect	Díaz Infante, Lara & Arizmendi, 2020
	General	Tropical	Agriculture	Increase	Sritongchuay et al., 2019
Modularity	Bees	Semi-arid	Intentional fires	Increase	Peralta et al., 2017
-	Bees and others	Tropical	Agriculture	Increase	Morrison & Dirzo, 2020
			Land use change	No effect	Escobedo-Kenefic et al., 2022
		Semi-arid	Fragmentation	Increase	Grass et al., 2018
	Insects	Temperate	Agriculture	Increase	Villa-Galavi et al., 2021
			Fragmentation	Increase	Spiesman & Inouye et al., 2013
			Fragmentation	Increase	Librán-Embid et al., 2021

Manuscript to be reviewed

	Tropical	Intentional fires	No effect	Da Silva et al., 2022
	Semi-arid	Fragmentation	Increase	Santamaría et al., 2018
Butterflies	Semi-arid	Agriculture	Decrease	Colom, Traveset & Stefanescu, 2021
Hummingbirds	Tropical	Agriculture	No effect	Bustamante-Castillo, Hernández
				Baños & Arizmendi, 2020

3

7

8

Insects: Refers to studies that analyzed taxonomic groups of bees, butterflies, beetles, and flies.

⁵ Bees and others: Refers to studies that analyzed taxonomic groups of bees, hoverflies, bumblebees, and wasps.

⁶ General: Refers to studies that analyzed taxonomic groups of insects, mammals, and hummingbirds.

Table 2(on next page)

The subgroup analyses unveil notable differences in observed effects among subgroups of pollinators, plants, continents, anthropogenic activities, and climate.

This detailed analysis offers a more nuanced understanding of the overall effect by accounting for potential differences and variations present across the included studies.

- 1 Table 2. The subgroup analyses unveil notable differences in observed effects among subgroups
- 2 of pollinators, plants, continents, anthropogenic activities, and climate. This detailed analysis
- 3 offers a more nuanced understanding of the overall effect by accounting for potential differences
- 4 and variations present across the included studies.

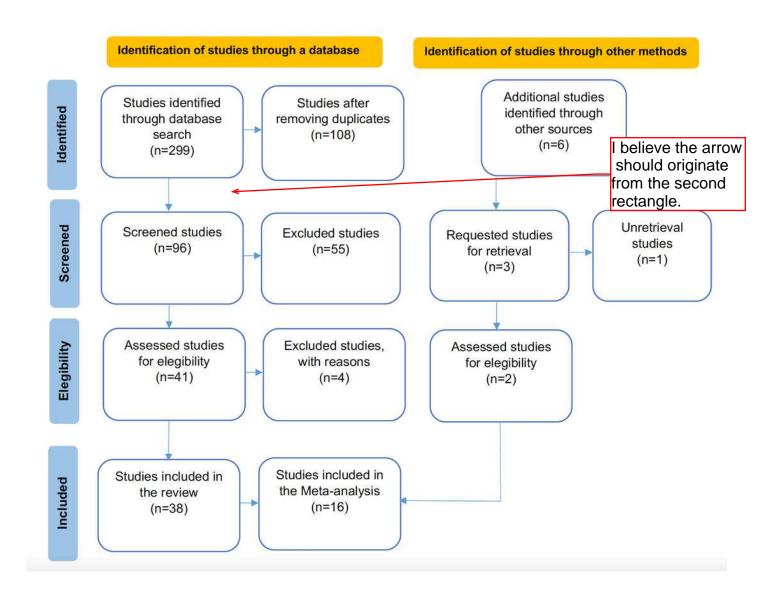

Category	SMD	95%	p	Tau ²	
	size effect	confidence	(within groups)		
		intervals			
Species			0.02		
Pollinators	0.79	0.22 - 1.36		0.88	
Plants	0.13	-0.58–0.85		1.37	
Climate			0.02		
Tropical	1.08	0.43 - 1.73		1.04	
Temperate	-0.02	-0.03-0.50		0.77	
Anthropogenic			0.02		
activity					
Agriculture	0.15	-0.32-0.62		0.62	
Fragmentation	2.07	1.06-3.09		0.11	
Urbanization	-0.44	-4.54-2.76		0.82	
Land use	0.98	0.11 - 1.85		0.36	
change					
Fires	-0.49	-2.57–1.72		2.26	
Continent			0.02		
America	0.66	-0.55–1.87		2.64	
Europe	0.50	0.003 - 1.01		0.57	
Africa	0.50	-0.78-1.80		0.84	
Asia	0.50	-2.33-2.93		1.59	

Figure 1

PRISMA flow diagram illustrating the data compilation process for the systematic review and meta-analysis. In the flowchart, the articles obtained from other sources are a result of reviewing the reference lists of the articles identified in the database

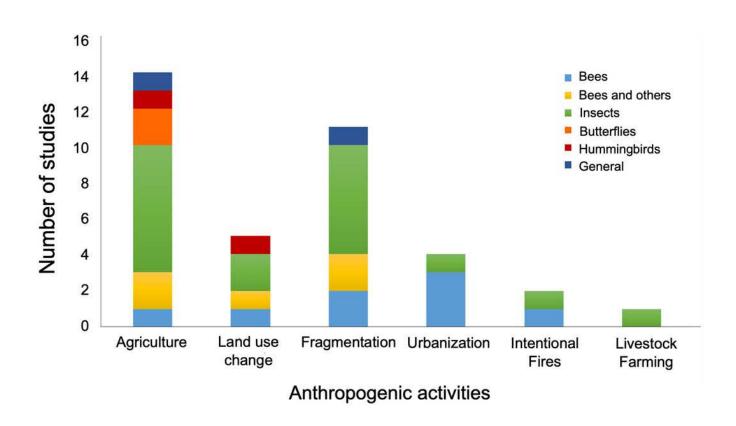

In the flowchart, the articles obtained from other sources are a result of reviewing the reference lists of the articles identified in the database search, while the excluded articles are those that did not meet the evaluation criteria in our review.

Figure 2

Representativeness of papers by taxonomic group in studies on plant-pollinator networks conducted in locations with anthropogenic activities, which were used in the meta-analysis.

Taxonomic groups were categorized as follows: (1) "Bees," referring to studies focused on this group of hymenopterans; (2) "Bees and others," which includes studies that analyze insect groups such as bees, syrphid flies, bumblebees, and wasps; (3) "Insects," encompassing studies that analyze bees, beetles, and butterflies as a group; (4) "Butterflies," focusing on Lepidoptera; (5) "Hummingbirds", covering studies conducted on this group of birds; and (6) "General," incorporating studies that analyze species groups, including insects, mammals, and hummingbirds.

Figure 3

Forest plot for the effect size (grey squares) and 95% confidence intervals (CI, vertical lines) for pollinator ("po") and plant ("pl") richness. The plot displays measurements in conserved (positive effect size values) and disturbed sites (negative effec

The plot displays measurements in conserved (positive effect size values) and disturbed sites (negative effect size values) across each study (Study ID).

Study ID	SMD S	SE (SMD)	Sta	ndardised Mean Difference	SMD	95%-CI	Weight
Vanbergen-pl-2014	-1.0200	0.4700		 :	-1.02	[-1.94; -0.10]	2.9%
Motivans-pl-2021	0.4300	0.8300				[-1.20; 2.06]	
Shinohara-pl-2019	-1.4800	0.8200				[-3.09; 0.13]	
Da_silva-pl-2022	-1.2900	0.6400		-		[-2.54; -0.04]	
Weiner-pl-2014	0.4500	0.2200				[0.02; 0.88]	
Marin-pl-2020	-2.0200	0.5800		- [[-3.16; -0.88]	
Sritongchuay-pl-2022	0.7500	0.4600				[-0.15; 1.65]	
Hagen-pl-2010	-1.7200	0.5900				[-2.88; -0.56]	
Olsson-pl-2021	-0.8500	0.3400		-		[-1.52; -0.18]	
Burkle-pl-2012	1.7400	0.5300				[0.70; 2.78]	
Fründ-pl-2010	0.8900	0.2800		+		[0.34; 1.44]	
Pinto-pl-2020	2.7100	0.6000		-		[1.53; 3.89]	
Ferreira-pl-2020	1.5000	0.6000		÷ •		[0.32; 2.68]	
Peralta-pl-2017	0.3400	0.3800				[-0.40; 1.08]	
Stein-pl-2020	0.7400	0.7300				[-0.69; 2.17]	
Kehinde-pl-2014	0.8300	0.6600		+10-		[-0.46; 2.12]	
Traveset-po-2018	0.4100	0.4200		 		[-0.41; 1.23]	
Weiner1-po-2011	0.6100	0.3200		•		[-0.02; 1.24]	
Weiner2-po-2011	0.2700	0.3100		#	0.27	[-0.34; 0.88]	3.2%
Weiner3-po-2011	0.8400	0.3300		-	0.84	[0.19; 1.49]	3.2%
Weiner4-po-2011	-0.5800	0.3200		-	-0.58	[-1.21; 0.05]	
Weiner5-po-2011	-0.4200	0.3200		= :	-0.42	[-1.05; 0.21]	
Jauker-po-2019	2.2200	0.3100		<u> </u>		[1.61; 2.83]	
Marin-po-2020	0.0800	0.4700		+		[-0.84; 1.00]	
Kehinde-po-2014	0.5600	0.6400		-		[-0.69; 1.81]	
Motivans-po-2021	1.3400	0.9400		 		[-0.50; 3.18]	
Stein-po-2020	2.0300	0.9100		_ :		[0.25; 3.81]	
Shinohara-po-2019	-0.7500	0.7400		- 1 :		[-2.20; 0.70]	
Weiner-po-2014	0.1600	0.1200		Ť.		[-0.08; 0.40]	
Hagen-po-2010	1.0600	0.5000				[0.08; 2.04]	
Fründ-po-2010	1.7000	0.3100				[1.09; 2.31]	
Escobedo-po-2022	1.0800	0.5300		_		[0.04; 2.12]	
Da_silva-po-2022	-0.7900	0.6000				[-1.97; 0.39]	
Sritongchuay-po-2022	2.2900	0.5800		1		[1.15; 3.43]	
Burkle-po-2012	1.2700	0.4900				[0.31; 2.23]	
Ferreira-po-2020	5.5100	1.1700		-	- 5.51	[3.22; 7.80]	1.6%
Random effects model (HK)			L.	0.62	[0.07; 0.97]	400.0%	
random enects model (Ar	''				0.32	[0.07, 0.97]	100.070
			-5	0 5			
				Effect size			