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ABSTRACT
Background: Tree ontogeny is the genetic trajectories of regenerative processes in
trees, repeating in time and space, including both development and reproduction.
Understanding the principles of tree ontogeny is a key priority in emulating natural
ecological patterns and processes that fall within the calls for closer-to-nature forest
management. By recognizing and respecting the growth and development of
individual trees and forest stands, forest managers can implement strategies that
align with the inherent dynamics of forest ecosystem. Therefore, this study aims to
determine the ontogenetic characteristics of tree regeneration and growth in
northern European hemiboreal forests.
Methodology: We applied a three-step process to review i) the ontogenetic
characteristics of forest trees, ii) ontogenetic strategies of trees for stand-forming
species, and iii) summarise the review findings of points i and ii to propose a
conceptual framework for transitioning towards closer-to-nature management of
hemiboreal forest trees. To achieve this, we applied the super-organism approach to
forest development as a holistic progression towards the establishment of natural
stand forming ecosystems.
Results: The review showed multiple aspects; first, there are unique growth and
development characteristics of individual trees at the pre-generative and generative
stages of ontogenesis under full and minimal light conditions. Second, there are four
main modes of tree establishment, growth and development related to the light
requirements of trees; they were described as ontogenetic strategies of stand-forming
tree species: gap colonisers, gap successors, gap fillers and gap competitors. Third, the
summary of our analysis of the ontogenetic characteristics of tree regeneration and
growth in northern European hemiboreal forests shows that stand-forming species
occupy multiple niche positions relative to forest dynamics modes.
Conclusions: This study demonstrates the importance of understanding tree
ontogeny under the pretext of closer-to-nature forest management, and its potential
towards formulating sustainable forest management that emulates the natural
dynamics of forest structure. We suggest that scientists and foresters can adapt
closer-to-nature management strategies, such as assisted natural regeneration of
trees, to improve the vitality of tree communities and overall forest health. The
presented approach prioritizes ecological integrity and forest resilience, promoting

How to cite this article Petrokas R, Manton M, Kavaliauskas D. 2024. Tree regeneration and ontogenetic strategies of northern European
hemiboreal forests: transitioning towards closer-to-nature forest management. PeerJ 12:e17644 DOI 10.7717/peerj.17644

Submitted 14 February 2024
Accepted 6 June 2024
Published 8 August 2024

Corresponding author
Raimundas Petrokas,
raimundas.petrokas@lammc.lt

Academic editor
Shaw Badenhorst

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj.17644

Copyright
2024 Petrokas et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.17644
mailto:raimundas.petrokas@�lammc.lt
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.17644
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/


assisted natural regeneration, and fostering adaptability and connectivity among
plant populations in hemiboreal tree communities.

Subjects Biodiversity, Ecology, Plant Science, Forestry
Keywords Tree growth, Tree development, Stand development, Sustainable forest management,
Ecological forestry

INTRODUCTION
In 2021, the European Commission (2021) published the New EU Forest Strategy for 2030.
The strategy continuously supports and enhances attempts to balance forest resource use
between social, economic, and conservation aspects. It calls for the maintenance of these
three interrelated aspects under the guise of closer-to-nature forest management
(European Commission, 2023). Closer-to-nature forest management is a new approach
that prioritizes the emulation of natural ecological processes and the integration of
ecosystem dynamics into forest management practices. This approach contrasts traditional
methods of intensive harvesting and industrial forestry models or clear-cutting by seeking
a balance between human needs and the preservation of ecological integrity. The key
principles that characterise closer-to-nature forest management involve selective logging
and the retention of habitat structures, promoting natural regeneration, applying adaptive
management, maintaining ecological connectivity, mimicking natural patterns and
processes, and engaging the community and stakeholders (Larsen et al., 2022; European
Commission, 2023). Despite this, commercial forestry is still considered one of the most
significant achievements of scientific forest management, based on the anthropocentric
paradigm of our relationship with nature (Studley, 2010). Policy objectives also continue to
advocate for further forestry intensification as a mitigation measure of climate change
(Bäck et al., 2017). For example, in the hemiboreal vegetation zone, an issue with finding
alternatives to clear-cutting forest management practices has been an ongoing discussion
(Jõgiste et al., 2017), precisely because there is a prevailing opinion that the main
shade-tolerant tree species (which is also economically important) is Norway spruce.
However, Norway spruce is associated with many problems (i.e., drought, bark beetle
attacks, wind throws, and root rot damages), so the implementation of alternative practices
management is required but proving difficult (de Groot, Diaci & Ogris, 2019). This also
implies that closer-to-nature forest management must be consistent with site history and
consider disturbance-induced changes in biotic and abiotic factors, as the sensitivity of an
ecosystem to climate change is primarily determined by its ability to recover from
disturbances (Attiwill, 1994; Kröel-Dulay et al., 2015).

Focussing on emulating natural patterns and processes suggests that harnessing and
assisting natural regeneration of forests should be a principal establishment method for
new or rotational forest stands (European Commission, 2023). Natural regeneration
facilitates the spontaneous growth of a variety of native forest species by improving the
adaptive aptitude and resilience of forests, thus making forests more robust to adapt and
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mitigate climate change (Huuskonen et al., 2021). The loss of genetic diversity is generally
not expected in natural regeneration under current climate and local growth conditions,
provided that a sufficiently large number of parental trees within the stand surrounding
forests actively contribute to the reproduction process (Konnert & Hosius, 2010). However,
limitations in genetic variability and structure may arise in natural regeneration,
particularly when population sizes are dramatically reduced, resulting in reduced seed
production (Savolainen & Kärkkäinen, 1992). Similar risks of decreasing genetic diversity
(e.g., effective population size) can be faced in species with low tree densities, whether due
to rarity or wide dispersion, leading to less diverse parental combinations in subsequent
generations (Lande & Barrowclough, 1987). Although the natural regeneration of forest
trees has adapted to the current climate and local growth conditions, forests may not
evolve in time to cope with current climate change predictions (Aitken et al., 2008; Leech,
Almuedo & O’Neill, 2011; Aitken & Bemmels, 2016; Valladares, 2017). This is because trees
are long-lived and limited in their ability to adapt under such expediated environmental
and climate change (Aitken et al., 2008; Kremer et al., 2012; Kijowska-Oberc et al., 2020;
Bisbing et al., 2021). This means that assisted species and population migration and active
restoration will be needed to help increase and also to maintain forest resilience
(Richardson et al., 2009; Leech, Almuedo & O’Neill, 2011; Pedlar et al., 2012; Schwartz et al.,
2012; Koralewski et al., 2015; Aitken & Bemmels, 2016; Chen et al., 2022; Stanturf, Ivetić &
Dumroese, 2024). Thus, closer-to-nature forest management that aims at natural forest
regeneration must consider the ecophysiological characteristics of species (i.e., shade
tolerance, growth rate, phenology, etc.), which are deeply rooted in the principles of plant
ontogeny.

Plant ontogeny refers to the entire sequential regenerative process of an individual plant
from its initiation as a seed, through germination, seedling establishment, vegetative
growth, reproductive maturity, and eventually to senescence or death (Rolston, 2002).
According to the concept of biological age, the regenerative process of individual plants is
split into several ontogenetic phases that interact uniquely with multiple environmental
components (Grubb, 1977). These phases are integral to comprehending the complex
dynamics of forest ecosystems, particularly under closer-to-nature forest management
(European Commission, 2021). Therefore, understanding the ontogeny of trees is crucial
for the implementing of closer-to-nature forest management that aligns with the inherent
life cycles of trees and other vegetation in each forest ecosystem. This highlights the need
for a conceptual framework to mitigate barriers to dynamic relationships among the
elements that make up the forest ecological space.

The aim of the study is to characterize natural ecological patterns and processes of
northern European hemiboreal forests from the point of view of the biological age
dynamics of stand-forming tree species. To do this we reviewed i) the ontogenetic
characteristics of forest trees, ii) ontogenetic strategies of trees for stand-forming species,
and iii) summarized the findings of objectives of points i and ii to propose a conceptual
framework for transitioning towards closer-to-nature management of hemiboreal forest
trees.
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MATERIALS AND METHODS
Study area and objects
The hemiboreal forest zone is the overlapping zone between the southern margin of the
boreal forest zone and the northern margins of the temperate forest zone. The European
hemiboreal forest extends from southern Scandinavia in the west, through the Baltic states,
Russia’s Kaliningrad region, southern Finland, Belarus and, and eastward to the Ural
mountains in central Russia (Ahti, Hämet-Ahti & Jalas, 1968). We selected Lithuania’s
hemiboreal forest ecosystems for this review, because their natural patterns and processes
are at risk due to a changing climate, forest management intensification, and planting of
Norway spruce or Scots pine monocultures over the past century (Manton et al., 2022;
Petrokas & Manton, 2023).

Despite the variety of climates, soils, and evolutionary backgrounds of forests in
different parts of the world, the patterns of stand dynamics can be remarkably similar
(Camp &Oliver, 2004). Forests go through a number of stages, from stand initiation, stand,
self-thinning, the emergence of the underwood to its maturity. This is deeply influenced by
three primary factors: climatic, edaphic, and biotic (Bonan & Shugart, 1989; Larsen, 2013).
Climatic factors comprise prevailing weather conditions, including temperature,
precipitation, and sunlight, which significantly impact the type of vegetation that can exist
in a given forest region (Richards, 1952). The word ‘climate’ originated from the Greek
word ‘klima’ which alludes to the slope or angle of the sun’s rays descending on the Earth’s
surface. Edaphic factors relate to soil characteristics, such as texture, composition,
moisture, and nutrient content, that shape the forest’s ability to support a diverse range of
plant communities and overall ecosystem health (Pianka, 2000). Biotic factors, involves
living organisms within the forest ecosystem and encompasses the intricate interactions
among various plant and animal species. These three factors contribute directly to the
potential natural vegetation, habitat structures, ecological balance, and overall resilience of
the forest ecosystem (Bonan & Shugart, 1989).

The climax, a continuum of end communities that vary in time and space across
environmental gradients largely characterised by local variations in climatic, edaphic, and
biotic conditions, sometimes referred to as the ‘potential natural vegetation’, was
considered in this review as a position of relative stability characteristic of a forest
ecosystem (Richards, 1952; Whittaker, 1953; Stern & Roche, 1974; Kotar, 1997). The
concept of potential natural vegetation corresponds to the hypothetical state of vegetation
that could arise under actual environmental conditions if human influence ceased and
progressive ecological process became instantaneous (Capelo et al., 2007). The potential
natural vegetation paradigm assumes for a given area a univocal correspondence between a
single combination of bioclimatic stage and lithology, considering the biogeographical
context, and a unique progressive ecological sequence leading to a single climax
community. Thus, the mosaic of hemiboreal forest communities in zonal habitats is largely
the result of ecological succession leading ultimately to climatic climax or potential natural
vegetation. In some parts of the hemiboreal forest zone, there are areas where local
peculiarities of the soil or topography make the development of the climatic climax forest
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impossible, even though the climate is suitable (Fig. 1). In such areas, stable communities
of this kind are termed edaphic climaxes on immature sand soils or biotic climaxes on
hydromorphic soils associated with marshes, swamps or poorly drained uplands (Petrokas
& Manton, 2023).

According to Bohn et al. (2000, 2004) there are seven potential natural forest vegetation
types recognised for Lithuania (Table 1). The natural distribution of Norway spruce is
mainly driven by climatic conditions. Scots pine forests, partly with deciduous
small-leaved tree species and Norway spruce, or Scots pine bog forests should be

Figure 1 An overview of the potential natural hemiboreal forest climax types of Lithuania. Euro-
VegMap 2.0.6 was used to create this map (Bohn et al., 2004). The global map shows both the location of
Lithuania and the European hemiboreal forest region (Ahti, Hämet-Ahti & Jalas, 1968).

Full-size DOI: 10.7717/peerj.17644/fig-1

Table 1 Potential natural forest vegetation types of Lithuania.

Potential natural forest vegetation types Forest type series Climax type

Hemiboreal spruce forests with broadleaved trees oxn, ox, mox* Climatic

Boreal and hemiboreal pine forests and Baltic pine groves vm, m Edaphic

Hemiboreal pine forests v, cl Edaphic

Pine bog forests msp, csp, lsp Biotic

Species-rich oak-hornbeam and pine-oak forests hox Climatic

Lime-oak forests aeg, cmh Climatic

Swamp and fen forests fil, ur, cal/cir, c Edaphic/Biotic

Note:
*Ground layer codes of the main types of plant communities (Karazija, 1988): aeg—Aegopodiosa, c—Caricosa, cal—
Calamagrostidosa, cir—Carico-iridosa, cl—Cladoniosa, cmh—Carico-mixtoherbosa, csp—Carico-sphagnosa, fil—
Filipendulo-mixtoherbosa, hox—Hepatico-oxalidosa, lsp—Ledo-sphagnosa, m—Myrtillosa, mox—Myrtillo-oxalidosa,
msp—Myrtillo-sphagnosa, ox—Oxalidosa, oxn—Oxalido-nemorosa, ur—Urticosa, v—Vacciniosa, vm—Vaccinio-
myrtillosa.
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considered as edaphic or biotic formations that are in stable equilibrium with their
environment. Lithuania’s black alder and downy birch carr and swamp forests, classified as
swamp and fen forests, are also edaphic or biotic formations, depending on special soil
conditions or relief. In these associations one combination of dominants, consisting of
stand-forming species with specialized soil requirements or tolerances, seems able to
maintain itself permanently. Lithuania’s species-rich oak-hornbeam forests, including
pine-oak forests, and lime-oak forests are climatic formations, in the development of
which climate and vegetation play the principal part.

Methods of investigation
This review builds on the topic of adaptive relationships in hemiboreal forests as described
by Petrokas & Manton (2023). Here, we further develop the subject by exploring the light
requirements of early tree growth at different stages of ontogenesis, which have not been
previously covered. We reused the same data and methods as applied in Petrokas &
Manton (2023). Based on this review, we used Google Scholar, ScienceDirect, and the Web
of Science search engines to search for various keywords (Table 2). We did not quantify
our research results, in terms of numbers; instead, we analysed the resulting articles until
we were able to build a compelling and comprehensive overview summary on the topic of
light requirements for the growth and development of individual trees and forests. The
criteria for excluding the literature were the quality of the scientific discourse and its
relevance to the objectives of the study. Journal metrics or article types (e.g., research
article, literature review article, technical report) were not taken into consideration, as the
goal of the review was to highlight the importance of understanding the biological age of

Table 2 Overview of the literature review search criteria outlining each section and the inclusion/exclusion of keywords.

Paragraph no. Search keywords Inclusion/Exclusion keywords

Introduction 1 Closer + To + Nature + Forest Europe

Introduction 2 Natural + Regeneration ± Genetic + Diversity Forest ± Tree + Species

Introduction 3–4 Biological + Age ± Plant + Ontogeny Closer + To + Nature

Materials & Methods 1 Forest + Management Hemiboreal ± Lithuania

Materials & Methods 2 Climatic + Edaphic + Biotic Forest + Ecosystem

Materials & Methods 3 Natural + Potential + Vegetation Hemiboreal ± Climax

Materials & Methods 4 Climax + Vegetation ± Forest + Formation Hemiboreal ± Lithuania

Results 1 Ontogenetic ± Growth ± Development Plant ± Tree ± Traits

Results 2 Ontogeny ± Phenology ± Light Tree ± Regeneration

Results 3 Light ± Photosynthesis ± Respiration Forest ± Tree ± Vitality

Results 4–5 Gap ± Cohort ± Succession ± Disturbance Tree ± Stand

Results 5–9 Juvenile ± Immature ± Virginile ± Generative Forest + Gap ± Light + Intensity ± Shade + Tolerance

Discussion 1–2 Forest + Dynamics ± Ecological + Niche Forest + Types ± Tree + Species

Discussion 4 Natural + Disturbance ± Silvicultural + System Natural + Regeneration ± Forest + Dynamics

Discussion 5–7 Natural + Regeneration Regeneration + Success ± Seed + Production ± Tree + Species

Discussion 8 Closer + To + Nature + Forest Femelschlag ± System
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trees in the context of closer-to-nature forest management. A Zotero digital bibliographic
library was compiled to organise the selected references.

To review the natural regeneration characteristics of hemiboreal forests of northern
Europe that reflect the ontogenetic characteristics of stand-forming tree species, we applied
a 3-step process.

The first step of the study was to review the ontogenetic characteristics of stand-forming
tree species under full and minimal light conditions at the pre-generative and generative
stages of ontogenesis (i.e., shape of primary and secondary crowns; branching order of the
shoot system; length of annual shoot on the main axis and on lateral branches; etc.) based
on Smirnova & Bobrovskii (2001), Evstigneev & Korotkov (2016), and Evstigneev &
Korotkova (2019). It must be noted that despite the widespread idea of biological age
among Russian plant demographers, the definition of calendar age is still dominant in
forest science, and few works have been devoted to the problem of the biological age or the
ontogenetic (age) spectra of different species of hemiboreal forest trees and their
communities. For instance, natural forming stand communities of Norway spruce are
generally comprised of mixed species with various ontogenetic dynamics whilst modern
management aims towards single species and age stand profiles which lack variation
(Angelstam & Kuuluvainen, 2004; Žemaitis, Gil & Borowski, 2019).

The second step describes the ontogenetic strategies of stand-forming tree species. The
four modes of tree establishment and development identified in previous studies (Petrokas,
Baliuckas & Manton, 2020; Petrokas & Kavaliauskas, 2022; Petrokas & Manton, 2023)
have been adjusted to match the tree light requirements defined by Evstigneev & Korotkova
(2019).

Finally, adhering to previous research by Petrokas & Manton (2023), the third step
summarizes and discuss the findings of the above steps and proposes a conceptual
framework for transitioning towards closer-to-nature management of hemiboreal
forest trees.

RESULTS
Ontogenetic characteristics of trees
Ontogenesis refers to two distinct but coordinated processes in the life of a plant:
differentiation and elongation (Champagnat, Barnola & Lavarenne, 1986). Primary
growth, that is, the dynamics of metamer emergence, initiated by apical meristems near the
tips of shoots (by buds) and roots (by meristematic points), results in the secondary
process, the elongation of a plant body. Genetically programmed changes among
successive metamers occur as a normal expression of whole-plant ontogeny (Barthélémy &
Caraglio, 2007). Whole-plant ontogeny encompasses growth, which refers to increases in
body size, and development, the allocation of resources to cell differentiation for
specialized systems (Arendt, 1997). Growth traits of trees include calendar age; height of
aboveground parts; stem diameter at breast height and at its base; length of fissuring bark
on the trunk; length and width of the crown; branching order of the shoot system; length of
annual shoot on the main axis and on lateral branches; and other (Evstigneev & Korotkov,
2016). Developmental traits of trees include the presence or absence of juvenile, semi-adult
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and adult structures; ability to seed or vegetatively reproduce; ratios of the processes of
growth and dying out in shoot and root systems; shape of primary and secondary crowns;
and other. When it comes to tree shape and structure, branching is most important. As a
result of branching, sibling axes succeed topologically from a parent axis (Hallé, Oldeman
& Tomlinson, 1978; Barthélémy, Edelin & Hallé, 1989, 1991). The main parent axis (stem)
is usually taken as the first order of a fixed ontogenetic progression of axis types and the
side shoots as the second (Diggle, 1994). Within this sequence, spanning from axis 1 to the
final axis category and adhering to a defined branching pattern, each branch signifies a
specific state of meristematic activity. The collective branch series may be regarded as a
comprehensive representation, effectively delivering an overview of the overarching
meristematic activity (Barthélémy, Edelin & Hallé, 1991).

Tree ontogeny is the genetic trajectories of regenerative processes in trees that repeat in
time and space, including both development and reproduction (DiFrisco, 2019).
Transmissional invariance of the underlying genetic code provides the initial conditions
for the next regenerative process (Balázs, 2014). The entire chain of regenerative processes,
from bud burst to fructification up to seed germination and the formation of the next
generation, under changing environmental conditions affects the natural regenerative
capacity of tree species (Gatsuk et al., 1980; Petrokas & Kavaliauskas, 2022). When the
species in question is existing in an environment which imposes narrow limits in terms of
seasonal changes and climatic factors, phenology determines which competing individual,
group of individuals, or species will open its buds late enough to escape late killing frosts or
drop seed at the optimal time to increase its chances of germination and survival. It is
argued that phenological complementarity can enhance tree survival and therefore forest
resistance (Billing et al., 2022). Tree size has been found to be a critical factor driving
complementarity effects in forests across Europe (Madrigal-González et al., 2016). Thus, to
explain tree species’ phenological patterns across growth phases it is crucial to consider
their ontogenetic characteristics (Ritchie, 1966; Segrestin, Navas & Garnier, 2020).
Ontogenetic characteristics of hemiboreal forest trees under full and minimal light
conditions at the pre-generative and generative stages of ontogenesis are presented in
Table 3. Light is known to be a leading formative factor in forest communities (Evstigneev
& Korotkova, 2019). The range of light possibilities is the limit of irradiance within which
the production process can be carried out (Evstigneev, 2018). The lower limit of this range
is determined by the minimum light at which tree biomass growth is still possible, and the
upper limit is determined by the maximum value of biomass production, which is achieved
under conditions of free growth under full light.

In a closed forest community, the reduction of incoming light at any one of several
canopy levels below the crowns is one of the most limiting factors for tree survival, growth,
and reproduction (Messier et al., 1999; Niinemets, 2010; Poorter et al., 2014). Decreasing
the amount of light on a leaf from full sunlight to darkness leads to a change from the gain
of organic matter (photosynthesis) to the loss or use of organic matter (dark respiration)
(Parker, 1996). The unfavourable balance of photosynthesis and dark respiration of the
lower and middle branches, as well as of the entire body, defines the low vitality of trees in a
closed forest community. In the undergrowth, the umbrella-shaped crown, frequent
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Table 3 Ontogenetic characteristics of hemiboreal forest trees at the pre-generative and generative stages of ontogenesis after natural
regeneration is initiated.

Ontogenetic
stage

Free growth under full light Low vitality under light minimum

Juvenile A distinctive feature of the trees is a single elongated shoot,
consisting of several annual increments. The basal part of the
shoot lies flat and takes root in some individuals; it is represented
by the hypocotyl and a few increments of subsequent years.
Individuals of rhizome origin do not have a hypocotyl section,
and the length of the shoot developing from adventitious buds
reaches high values. Such regenerative shoots are characteristic
of most trees, with the exceptions of Qr, Fs, Fe, Ps, and Pa. Leaf
blades and needles have a shadow structure. The trees do not
extend beyond herbaceous-dwarf shrub layer.

The apical bud of the main (primary) shoot dies, and monopodial
growth of the first-order axis stops at the beginning of the 2nd or
3rd growing season. Nevertheless, the formation of the vertical
stem continues typically due to the side bud just above and
nearest to the dead one. The central apical shoot is replaced
annually by a lateral shoot. Pt and Be individuals under deep
shade conditions can live up to 2 years; Qr and Ps–up to 5 years;
Pa–up to 6 years; Ug, Cb, and Fe–up to 7 years; Ap–up to 9 years;
and Tc–up to 10 years.

Immature
young

A distinctive feature of the trees is appearance of lateral elongated
shoots. Branching and crown formation start; infant crowns with
axes of the 2nd order are formed. The anatomy of leaves still
retains the shadow structure.

Substantial shading defines replacement of the central apical shoot
by a lateral shoot in the shoot system. The 3rd branching order is
formed. Pt and Be individuals under light starvation can live up
to 7 years; Ps and Pa–up to 10 years; Ug–up to 12 years; Qr, Ap,
Fe, and Tc–up to 16–18 years; and Cb–up to 29 years.

Immature The current height increment is several times greater than the
lateral increment; the upper part of the crown, which enters the
shrub layer, becomes narrow and elongated, the lower part is
usually broad because it is an artefact of the umbrella-shaped
crown that was formed in the herbaceous-dwarf shrub layer.
The 3rd branching order is formed.

The growth of the shoots is reduced to a minimum, and the side
branches are catching up to the height of the leader axis.
The branching order increases in the crown as well as in
individual shoots, and some branches die. A system of ‘stumps’
with adventitious roots is formed at the base of the tree. Pt and
Be individuals under the canopy can spend 11–12 years; Ug and
Qr–14 years; Cb–19 years; Tc–21 years; Ps–22 years; Fe–23
years; Pa–25 years; Ap–32 years.

Virginile
young

Upper lateral shoots deviate from the trunk at an acute angle for
most tree species. The annual growth rates of the upper lateral
shoots are 2–3 times less than that of the leader axis. Intensively
branching trees (e.g., Cb and Qr) have the 5th branching order,
less intensively branching trees (e.g., Ap and Fe)–the 4th.
Be individuals can produce seed in 6 years; Pt–in 8 years; Cb, Ap
and Ps–in 11 years; Fe, Pa, and Qr–in 12–13 years; and Ug and
Tc–in 16 years.

The umbrella-shaped crown, frequent replacement of the central
apical shoot by lateral shoots, cleaning of the trunk from the
lower branches and minimal annual increments are signs that
the tree has reduced its growth processes. Pt and Ps trees do not
have clearly expressed umbrella-shaped crowns. Be individuals
under the canopy can spend 12 years; Pt–16 years; Ps–18 years;
Cb–22 years; Qr and Tc–24 years; Ap–37 years; Fe, Ug, and
Pa–48 years; and Fs–70 years.

Virginile Virginile trees occupy a place in the tree layer. The height
increment is greater than at any other ontogenetic stage.
Intensively branching trees (e.g., Cb and Qr) have the 6th

branching order, less intensively branching trees (e.g., Ap and
Fe)–the 5th. The age of individuals is up to 25 years.

The trunk is clean from the lower branches at a considerable
height; the multilayer crown is converted to a single-layer type,
sometimes to umbrella-shaped. The branching order of shoot
system increases. The age of Pt individuals is up to 18 years; Be
and Ug–up to 25 years; Qr and Cb–up to 29 years; Tc, Ap, and
Fe–up to 40 years; Ps–up to 60 years; and Pa–up to 75 years.

Generative
young

The cortex begins to form in the lower part of the trunk.
Intensively branching trees have the 7th branching order, less
intensively branching trees–the 6th. The fruits of flowering trees
and seed cones of gymnosperms are usually in the upper half of
the crown.

The stag-headed trees; minimal growth of the main axis and large
trunk diameters.

Generative
mature

A domed crown is a distinctive feature of most trees. The bark
with deep cracks in different tree species expands to a height
equal to up to two-thirds of the trunk height. Intensively
branching trees have the 8th branching order, less intensively
branching trees–the 7th. Seed production is the highest.

Small crown diameters and dead branches in the lower part of the
crowns.

(Continued)
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replacement of the central apical shoot by lateral shoots, cleaning of the trunk from the
lower branches and minimal annual increments are signs that the plant has reduced its
growth processes and expects improved light conditions at a low level of vitality
(Evstigneev & Korotkov, 2016). With a constant minimum light intensity, tree development
can linger for many years in each of the ontogenetic stages. A multilayer crown, which
extends vertically, and large annual growth increments with dense leaves are evidence of
active growth processes (Evstigneev & Korotkova, 2019). Thus, the light balance within the
multiple canopies can be considered a necessary condition for the transition of individuals
to subsequent ontogenetic stages. This suggests that forest management operations such as
forest thinning should try to maintain natural light balance within multiple canopies.

Ontogenetic strategies of trees
Closer-to-nature forest management aims towards promoting assisted natural regeneration
of trees by establishing favourable environmental and ecological conditions for their
successful growth, and development (European Commission, 2023). A better
understanding of the relation between overstory gaps, understory vegetation dynamics, and
the ontogeny of stand-forming tree species can help develop natural regeneration-based
management methods for different forest types.

The classical understanding of “gap” in forest science is within the gap dynamics
paradigm: a gap in the forest canopy resulting from the death of a tree or group of trees or
stand replacement in response to disturbance. The hemiboreal forest zone contains three
broad forest disturbance regimes of different sizes, i) small tree-scale gap associated to a
single tree to a small group of trees, ii) multi-cohort dynamics with partial stand-scale
disturbances and iii) successional stand development in response to landscape-scale
disturbance events resulting in even-aged stands (Angelstam & Kuuluvainen, 2004;
Kuuluvainen, 2016). The disturbance regime is simply a description of the types of
disturbance characteristic of a given forest landscape; the scale and agents of these
disturbance types are the primary considerations in predicting the kind, quantity, and
spatial pattern of biological legacy (Frelich, 2002; Franklin, Mitchell & Palik, 2007).
However, the distinction of each disturbance regime can be fuzzy depending on the tempol
and spatial scale as well as the intensity of the disturbance and species composition. For
instance, the succession regime with large disturbances may also develop multi-cohort

Table 3 (continued)

Ontogenetic
stage

Free growth under full light Low vitality under light minimum

Generative
old

The growth in height of the trees stops, and the upper part of the
trunk dries out and dies; secondary crown formation starts
(except Ps). The trees typically have a flat-topped crown with
dead skeletal branches. The bark with deep cracks all over the
trunk. Intensively branching trees have the 9th branching order,
less intensively branching trees–the 8th.

Piped rot can occur in trees.

Note:
Ap—Acer platanoides L., Be—Betula pendula Roth, Cb—Carpinus betulus L., Fs—Fagus sylvatica L., Fe—Fraxinus excelsior L., Pa—Picea abies L. Karst, Ps—Pinus
sylvestris L., Pt—Populus tremula L., Qr—Quercus robur L., Tc—Tilia cordata Mill., Ug—Ulmus glabra Huds.
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dynamics and or small-scale gaps at any given time (Kuuluvainen, Bergeron & Coates,
2015). Within each of these broad forest disturbances regimes, the response of hemiboreal
forest trees differs in regeneration and growth modes (Vodde et al., 2010). The analysis of
characteristics of trees at the pre-generative and generative stages of ontogenesis under full
and minimal light conditions allows these differences to be named as four ontogenetic
strategies of stand-forming tree species.

First, gap colonisers (Fig. 2) have low shade tolerance combined with rapid
development, high growth intensity and physiological processes (photosynthesis and
respiration), with large average annual biomass increases and a short lifespan when
growing in the undergrowth due to a lack of light (Evstigneev & Korotkova, 2019). This set
of characteristics allows these trees to colonise large treefall gaps (frequently with exposed
mineral soils) as well as sparse forests and grow in them as dominants (Yamamoto, 1996;
Petrokas, Ibanga & Manton, 2022). Eurasian aspen, silver birch and Scots pine are
characterised by a highest light demand and low shade tolerance; they develop to the
juvenile stage at light intensity of 2.7%, 3.1% and 6.0% of full light in the open but reach
immature stage at 6.6%, 9.6% and 13.9% and the virginile stage only at 17.9%, 23.0% and
34.3%, respectively (Evstigneev & Korotkova, 2019). Grey alder is a more light-demanding
species compared to black alder, which is replaced by other species as soon as the canopy
closes (McVean, 1953).

Second, gap successors appear in forest sites with high light conditions, and saplings
can survive under a closed canopy (Evstigneev, 2018; Petrokas, Ibanga & Manton, 2022).

Figure 2 An conceptual overview of ontogenetic strategies of tree regeneration for European
hemiboreal forests. Photos and design by D. Kavaliauskas, M. Manton and R. Petrokas. Graphic
design components are royalty-free from the MS Office stock.

Full-size DOI: 10.7717/peerj.17644/fig-2
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Norway spruce and European hornbeam are among the most shade-tolerant species; they
develop to the juvenile stage at light intensity of 1.1% and 0.7% of full light in the open but
reach the immature stage at 1.2% and 1.5% and the virginile stage at 1.4% and 1.8%,
respectively (Evstigneev & Korotkova, 2019). The European hornbeam grows primarily
below the canopy of other broadleaves, such as light-loving English oak (Kuehne et al.,
2014; Evstigneev, 2018). Norway spruce is the most common admixture in stands of other
dominants (Kuliešis et al., 2021).

Third, gap fillers survive in newly created light gaps (Petrokas, Ibanga & Manton,
2022). At the juvenile stage they are shade-tolerant, but at subsequent stages of ontogenesis
their need for light increases (Evstigneev, 2018). European ash and English oak develop to
the juvenile stage at light intensity of 0.4% and 1.2% of full light in the open but reaches
immature stage at 0.9% and 4.5% and the virginile stage at 4.2% and 10.4%, respectively
(Evstigneev & Korotkova, 2019). The ability of English oak to change its life state is the
most important mechanism of adaptation to the constantly changing light conditions of
the forest environment (Evstigneev & Korotkova, 2024).

Fourth, gap competitors are adapted to habitats beneath a dark forest canopy formed
by spruce and broadleaved trees with crowns that cast deep shadow (Evstigneev &
Korotkova, 2019). They are represented by Norway maple, small-leaved lime and wych elm
and are characterised by the greatest shade tolerance at all ontogenetic stages; they develop
to the juvenile stage at light intensity of 0.3%, 0.6% and 0.5% of full light in the open but
reach immature stage at 0.5%, 0.8% and 0.7% and the virginile stage at 0.8%, 1.0% and
1.1%, respectively (Evstigneev & Korotkova, 2019). European beech is the most
shade-tolerant broadleaved tree and the strongest competitor in its range (Walter, 2012).

In summary, gap colonisers proposed by us are closest to the ruderal (reactive) type of
strategy and gap competitors to the tolerant type, according to Smirnova (1994). Whereas
gap successors and gap fillers are represented by tree species that are most often attributed
to the competitive strategy. Thus, the four strategies can be arranged from large gaps to
medium gaps, small gaps, and understory growth, with the latter two sometimes also
responding by release from suppression makes sense.

DISCUSSION
Managing forest tree regeneration and growth
The adaptive capacity and resilience of forest communities is determined by plant
regeneration strategies to deal with unique environmental conditions related to
competition, abiotic limitation to growth (stress) and periodic destruction of biomass
(disturbance) (van Schaik, Terborgh & Wright, 1993; Yang & Rudolf, 2010; Dayrell et al.,
2018). Our conceptual framework for transitioning toward closer-to-nature management
of hemiboreal forest trees posits that there are complex adaptive dynamic relationships in
hemiboreal tree communities. It promotes natural regeneration that matches the biological
age dynamics of stand-forming tree species, and protects the retention of the natural
ecological patterns and processes of the northern European hemiboreal forests. It follows
the Lithuanian classification of forest types, four types of stand-forming tree species, three
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modes of forest dynamics, and four types of natural disturbance-based silvicultural systems
(Hawley & Smith, 1954; Karazija, 1988; Navasaitis et al., 2003; Angelstam & Kuuluvainen,
2004; Barbati, Corona & Marchetti, 2006; Aakala et al., 2011; Myking et al., 2011;
Gabrilavičius, Petrokas & Danusevičius, 2013; Kuuluvainen, Bergeron & Coates, 2015;
Kuuluvainen, 2016; Plesa et al., 2018; Stobbe & Gumnior, 2021; Armolaitis et al., 2022;
Petrokas & Manton, 2023; Gonçalves & Fonseca, 2023) (Table 4).

Ecological niche is the subset of environmental conditions that affect a specific
population of trees (Chamary, 2023). Mixed tree communities with high functional
diversity, where broadleaf and coniferous trees coexist, contain a broad range of functional
niches, which can lead to more efficient resource use and adaptation to environmental
changes (Billing et al., 2022). A summary of our analysis of the ontogenetic characteristics
of hemiboreal trees shows that stand-forming species occupy one to several niche positions
relative to forest dynamics modes. For instance, the niche position of European hornbeam
is restricted to the gap-phase processes that typically operate throughout stand

Table 4 A conceptual framework for transitioning towards closer-to-nature management of hemiboreal forest trees.

Forest type
series**

Regeneration strategies of trees* Forest
dynamics

Disturbances Silvicultural system

Gap
colonisers

Gap
successors

Gap
fillers

Gap
competitors

Abiotic Biotic

oxn Pt Be Bu Ai Ag Pa Qr Fe Tc Ug Ap Gap-phase Windthrow Diseases, insects, clear-
cutting

Single tree selection

ox, mox Ps Pt Be Pa Qr – Even-aged Fire,
windthrow

Irregular
shelterwood

vm, m Ps Be Pt Pa – – Even-aged Fire Soil compaction Irregular
shelterwood

v Ps Be – – – Multi-
cohort

Fire Soil compaction Group selection

cl Ps – – – Multi-
cohort

Fire Soil compaction Group selection

msp Ps Bu – – – Even-aged Fire Irregular
shelterwood

csp Ps Bu – – – Gap-phase Windthrow Clear-cutting Group selection

lsp Ps – – – Even-aged Fire Physiological draught Irregular
shelterwood

hox Pt Be Ai Ps Pa Cb Qr Fs Tc Ug Ul Ap Gap-phase Windthrow Diseases, insects, clear-
cutting

Single tree selection

aeg, cmh Pt Be Bu Ag Ai – Qr Fe Tc Ug Ul Ap Gap-phase Windthrow Diseases, insects, clear-
cutting

Single tree selection

fil, ur Ag Bu Be Ai Pa Fe – Gap-phase Windthrow Clear-cutting Group selection

cir Ag Bu Pa – – Gap-phase Windthrow Clear-cutting Group selection

c Bu Ag Pa – – Gap-phase Windthrow Clear-cutting Group selection

cal Bu Ag Be Pa Qr – Even-aged Fire,
windthrow

Irregular
shelterwood

Note:
*Ag—Alnus glutinosa L. Gaertn., Ai—Alnus incana L. Moench, Ap—Acer platanoides L., Be—Betula pendula Roth, Bu—Betula pubescent Ehrh., Cb—Carpinus betulus L.,
Fs—Fagus sylvatica L., Fe—Fraxinus excelsior L., Pa—Picea abies L. Karst, Ps—Pinus sylvestris L., Pt—Populus tremula L., Qr—Quercus robur L., Tc—Tilia cordataMill.,
Ug—Ulmus glabra Huds., Ul—Ulmus laevis Pall. **Ground layer codes of the main types of plant communities (Karazija, 1988): aeg—Aegopodiosa, c—Caricosa, cal—
Calamagrostidosa, cir—Carico-iridosa, cl—Cladoniosa, cmh—Carico-mixtoherbosa, csp—Carico-sphagnosa, fil—Filipendulo-mixtoherbosa, hox—Hepatico-oxalidosa, lsp
—Ledo-sphagnosa, m—Myrtillosa, mox—Myrtillo-oxalidosa, msp—Myrtillo-sphagnosa, ox—Oxalidosa, oxn—Oxalido-nemorosa, ur—Urticosa, v—Vacciniosa, vm—
Vaccinio-myrtillosa.
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development caused by the death of individual trees or small groups of trees in English
oak-hornbeam forests (e.g., Hepatico-oxalido-Quercetum/Carpinetum forest types). In
contrast, the niche position of Scots pine can be characterised as even-aged dynamics in
mixed Norway spruce forests (e.g., Oxalido/Myrtillo-oxalido-Piceetum/Pinetum forest
types), multi-cohort dynamics in Scots pine forests (e.g., Vaccinio/Cladonio-Pinetum forest
types), and gap-phase to multi-cohort dynamics related in Scots pine bog forests (e.g.,
Carico-sphagno-Pinetum forest type).

Moreover, English oak and European ash are difficult to regenerate in light restricted
forests, this has been controversial issue for more than a century (Götmark et al., 2005).
The extreme viewpoint is the assumption of a “non-forest” biology of these species and a
close connection between their regeneration and grazing by wild ungulates (Frans Vera
theory; Angelstam et al. (2017)). Smirnova, Bobrovsky & Khanina (2001) proposed to
identify a special forest edge group of tree species along with early-successional and
late-successional species. It includes species whose successful regeneration is associated
with meadows and edges following grazing and browsing or tree seed which are animal-
dispersed. These includes species such as wild apple, wild pear, and English oak. Currently,
the main place of natural regeneration of English oak is abandoned meadows and
secondary light forests. The situation with understanding European ash regeneration is
even more complicated and it is impossible to summarize it briefly. However, recent
studies show (e.g., Shashkov et al., 2022) a different result: wind-dispersed ash trees
successfully spread to abandoned arable land and pastures (Smirnova, Bobrovsky &
Khanina, 2018). This brief overview shows that each species’ uniqueness is worthy of
further research.

None the less most disturbances are either driven by/or are indirectly linked to
environmental conditions related to abiotic limitation to growth and periodic destruction
of biomass (Boisvenue & Running, 2013; Dayrell et al., 2018). Incorporating an
understanding of natural disturbance and forest dynamics more fully into silvicultural
practice is the basis for an ecological forestry approach (Franklin, Mitchell & Palik, 2007).
The goal of ecological forest management is to obtain the maximum number of planned
sizes and quality assortments while strictly adhering to all environmental and biodiversity
requirements. In this model, between 5% and 30% of all grown wood is usually lost in the
form of dead trees, but what is the most important is that silviculture under ecological
forestry can mimic natural disturbance severity and return intervals and provide a
complete range of habitats (McCoy & Bell, 1991; Molefe, 2019; Kuliešis et al., 2021; Himes
et al., 2022). Thus, due to disturbance regimes and stand development processes, the choice
of silvicultural system is critical to the success of natural regeneration. Unlike traditional
shelterwood and seed tree applications, most natural disturbances leave a living legacy,
such as resilient mature overstory trees of varying sizes, as well as intact layers of
understory (including seedling banks). Therefore, silvicultural interventions should foster
adaptability and connectivity among populations to facilitate gene flow and species
migration (Himes et al., 2022). In general, multi-aged, gap-based silvicultural methods,
including group selection, single tree selection, and expanding-gap irregular shelterwood,
aim to emulate natural disturbance regimes and the dynamics of complex forest structure
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under active management (Seymour, White & deMaynadier, 2002; Himes et al., 2022). The
group shelterwood benefits more shade-tolerant and shade-intermediate species while it is
inappropriate for shade-intolerant species or species sensitive to frost damage (Hawley &
Smith, 1954). Greater regeneration success of shade-intolerant species is achieved in group
selection (Gonçalves & Fonseca, 2023). As a rule, in hemiboreal landscapes, indirect
evidence of stand-replacing disturbances or silvicultural interventions such as clear-cutting
are young even-aged forest stands of shade-intolerant species, such as birches, Eurasian
aspen, and Scots pine (Shorohova et al., 2009). Moreover, in modern hemiboreal forests it
is very rare to find forests with close to climax dynamics with a variety of natural gap
dynamics. This leads to the need for assisted natural regeneration of trees to emulate the
natural dynamics of forest structure.

Assisted natural regeneration of trees
Assisted natural regeneration lays the groundwork necessary to consider the life-cycle
features of trees that affect the complex adaptive dynamic relationships in hemiboreal tree
communities indirectly via their effects on survival, growth, and reproduction (Petrokas,
Ibanga & Manton, 2022). Natural regeneration of trees is a function of several sequential
ecological processes, pollination and fertilization, seed development and maturation, seed
predation, dispersal and germination, seedling establishment, vegetative growth, natural
selection, and biological maturity. Successful reproduction and dispersal are the first step
in landscape-level forest dynamics and, eventually, in the way forest regenerates after
disturbance (Boisvenue & Running, 2013). Processes such as annual seed production, seed
dispersal, and environmental conditions for germination, early survival, and early growth
of regenerating trees can cause large differences in regeneration success (De Lombaerde,
2020). Seed dispersal and early seedling recruitment establish the foundation for plant
regeneration and can significantly impact the demography and evolution of plant
populations (Clark et al., 1999; Nathan & Muller-Landau, 2000; Hampe, El Masri & Petit,
2010; Bontemps, Klein & Oddou-Muratorio, 2013). Overall, regeneration success can be
quite variable due to edaphic and climatic conditions, seed losses, and/or seedling
mortality (Gonçalves & Fonseca, 2023). Den Ouden et al. (2010) identified four critical
phases that must be passed to achieve successful natural regeneration: (1) seed production
(e.g., synchrony in flowering phenology, successful pollination and seed formation),
(2) seed fall or presence in the seed bank at the time regeneration is initiated, (3)
germination, emergence, and establishment, and (4) survival and growth. In addition, the
variability in seed production between years, known as regular or irregular masting, mast
seeding, seed predators, seed dispersal models and distances, have a significant impact on
natural regeneration (McVean, 1955;Matlack, 1987; Venable & Brown, 1988; Kelly & Sork,
2002; Heuertz et al., 2003; Kramer, Bruinderink & Prins, 2006; Kutter & Gratzer, 2006;
Barbour & Brinkman, 2008; Harrington et al., 2008; Navasaitis, 2008; Övergaard, 2010;
Claessens et al., 2010; Pigott, 2012; Bontemps, Klein & Oddou-Muratorio, 2013; Venturas,
Nanos & Gil, 2014; Evstigneev & Korotkov, 2016; Beck et al., 2016; Gerzabek,
Oddou-Muratorio & Hampe, 2020; Liu & Evans, 2021) (Table 5). For instance, species such
as black alder (McVean, 1955), European ash (Eisen et al., 2024), and European white elm
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(e.g., Venturas, Nanos & Gil, 2014) often rely on water for seed dispersal, which can be a
limiting factor for dispersal and germination. Furthermore, species with heavy seeds like
English oak and European beech often depend on animal-mediated seed dispersal and seed
predator’s satiation (Kelly & Sork, 2002; Bontemps, Klein & Oddou-Muratorio, 2013).
Thus, mixture of tree species with different seed dispersal models enhances the uniformity
of seed distribution across patches, a process that is indirectly influenced by changes in
germination and seed size. Typically, seeds are predominantly produced in patches with
above-average densities. Consequently, uniform dispersal leads to a net movement of seeds
to patches with lower-than-average density (Venable & Brown, 1988).

Furthermore, the age of seed bearing, which is varied between species and trees in
different environments (open landscapes and forests (Table 5)), cannot justify harvesting
at a younger age, since the new generation of forest trees is effectively established based on
the reproductive cycles of the species and the waiting years for the mast seeding (Petrokas
& Kavaliauskas, 2022). Therefore, mast seeding should be used throughout the life of the
forest to allow natural regeneration and/or silvicultural practices that promote the
utilisation of the seed source (e.g., Övergaard, 2010; Gärtner, Lieffers & Macdonald, 2011;
Pearse et al., 2021). For example, in mast years, the presence of seed-caching and berry-
eating species is critical to the distribution of animal-dispersed oak trees, which depend on
their seeds being carried away from the parent tree and buried by jays, mice, and squirrels
(Moran, 2019).

Table 5 Some seed-bearing and seed dispersal characteristics of hemiboreal forest trees.

Tree ontogenetic strategies Tree species Seed-bearing age
(years)

Seed harvest interval Seed dispersal models

Forest Open

Gap colonisers Alnus glutinosa 301 62 Every 3–4 years1 Wind and water

Alnus incana 252 52 Every 1–4 years2 Wind and water

Betula pendula 253 63 Annually (more intensively every 2–3 years)4,5 Wind

Betula pubescens 255 105 Annually (more intensively every 2–3 years)5 Wind and water

Pinus sylvestris 403,4 113,4 Every 3–5 years4 Wind

Populus tremula 253,4 83 Annually4 Wind

Gap successors Carpinus betulus 303 114,3 Almost every year4 Wind

Picea abies 503 133 Every 3–5 (6) years4 Wind

Gap fillers Fraxinus excelsior 453 123 Annually (more intensively every 2–3 years)4,5 Wind and water

Quercus robur 603,4 133 Every 3–4 years4 Animals and birds

Gap competitors Acer platanoides 403 113 Annually4 Wind

Fagus sylvatica 706 406 Every 3–5 years6 Wind???, animals and birds

Tilia cordata 403 163 Annually4 Wind

Ulmus glabra 303 153,4 Almost every year4 Wind

Ulmus laevis 307 104 Annually (more intensively every 2–3 years)1 Wind and water

Note:
*References: 1Claessens et al. (2010), 2Harrington et al. (2008), 3Evstigneev & Korotkov (2016), 4Navasaitis (2008), 5Beck et al. (2016), 6Övergaard (2010), 7Barbour &
Brinkman (2008).
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The impoverished composition of many modern forests is the result of a long land-use
history that has created gaps in the local ranges of tree species (e.g., Johann et al., 2004;
Myking et al., 2016; Jansen, Konrad & Geburek, 2019). In many cases, successful spread of
species is hindered by short dispersal distances compared to the large size of anthropogenic
disturbances. In any case, due to biological reasons and various forest management
approaches, the dynamics of natural regeneration and growth of forest trees is quite
difficult to modify. After all, the seeds of many species of trees have special adaptations that
allow them to remain dormant for years, waiting for optimal conditions to germinate and
effectively establish a new generation (Venable & Brown, 1988; Klupczy�nska & Pawłowski,
2021).

Incorporating closer-to-nature forest management
During this review we have also found that promoting closer-to-nature forest management
through the emulation of natural disturbance-based patterns and processes is not an
entirely new concept or approach. In 1880, Gayer developed the “Femelschlag” forest
management approach (Silvy-Leligois, 1953; Raymond et al., 2009), a traditional
reproduction technique used to produce multi-species forest stands by promoting shade
intolerant trees, such as English oak, Scots pine, etc (Puettmann et al., 2009). It aims at
harnessing accelerated natural regeneration by emulating natural disturbance-based
patterns (gap size) and encouraging tree species diversity in multiple-age classes, thereby
enhancing ecosystem complexity and resilience (Mohr & Schori, 1999). Targeted removal
of the tree canopy allows more sunlight to reach the forest floor stimulating seeds stored on
the ground to regeneration in the gaps, creating mixture of old and young forest
conditions. Thus, moving towards closer-to-nature forest management involve wholistic
analysis of past management systems combined with natural ecological patterns and
processes of forest trees, vegetation communities (such as in this study), as well as novel
methods of balanced and sustainable forest management.

CONCLUSIONS
This study shows the importance of understanding tree ontogeny in the context of closer-
to-nature forest management in Europe, and its potential towards formulating sustainable
practices that emulate the natural dynamics of forest structure that assist gene flow and
species migration and help adapt and mitigate climate change. By recognizing and
respecting the growth and developmental status of individual trees and forests, forest
managers can implement strategies that align with the inherent dynamics of the ecosystem.
This approach prioritizes ecological integrity and forest resilience, fostering a more
harmonious coexistence between human activities and the natural environment. Using the
hemiboreal forests of northern Europe, we have demonstrated the specific developmental
characteristics of individual trees and forests so that scientists and foresters can tailor
management strategies to enhance overall forest health, adaptive capacity, resilience, and
productivity. This knowledge can be used to determine tree species composition and thus
aid in developing closer-to-nature forest management practices, enabling the conservation
of habitats necessary for the dynamic functioning of the ecological processes essential to
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the regeneration of the natural resources, optimal timber harvesting, and the mitigation of
environmental impacts. In the pursuit of effective natural resource stewardship, an
in-depth understanding of the ontogenetic stages of forest trees becomes indispensable
towards fostering the development of resilient and thriving ecosystems. The priority now is
to regenerate the forest naturally, with supplementary planting, where necessary. Letting
nature lead is one of the key principles of emulating nature, with tree planting coming last.
This review shows that understanding the interplay of climatic, edaphic, and biotic factors
is a crucial first step towards developing and implementing ecological forest management
strategies that mimic natural disturbance severity and return intervals and provide a
complete range of habitats.
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