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ABSTRACT
Background: Alzheimer’s disease (AD) is the most common type of dementia that
affects the elderly population. Lately, blood-based proteomics have been intensively
sought in the discovery of AD biomarkers studies due to the capability to link
external environmental factors with the development of AD. Demographic
differences have been shown to affect the expression of the proteins in different
populations which play a vital role in the degeneration of cognitive function.
Method: In this study, a proteomic study focused on Malaysian Chinese and Malay
prospects was conducted. Differentially expressed proteins (DEPs) in AD patients
and normal controls for Chinese and Malays were identified. Functional enrichment
analysis was conducted to further interpret the biological functions and pathways of
the DEPs. In addition, a survey investigating behavioural practices among Chinese
and Malay participants was conducted to support the results from the proteomic
analysis.
Result: The variation of dysregulated proteins identified in Chinese and Malay
samples suggested the disparities of pathways involved in this pathological condition
for each respective ethnicity. Functional enrichment analysis supported this
assumption in understanding the protein-protein interactions of the identified
protein signatures and indicate that differentially expressed proteins identified from
the Chinese group were significantly enriched with the functional terms related to
Aβ/tau protein-related processes, oxidative stress and inflammation whereas
neuroinflammation was associated with the Malay group. Besides that, a significant
difference in sweet drinks/food intake habits between these two groups implies a
relationship between sugar levels and the dysregulation of protein APOA4 in the
Malay group. Additional meta-analysis further supported the dysregulation of
proteins TF, AHSG, A1BG, APOA4 and C4A among AD groups.
Conclusion: These findings serve as a preliminary understanding in the molecular
and demographic studies of AD in a multi-ethnic population.
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INTRODUCTION
Alzheimer’s disease (AD) is the most common type of dementia, an age-related
neurodegenerative disease characterized by unusual changes in the brain which
subsequently cause devolution in behaviour, thinking, memory and ability to carry out
daily tasks (Tan et al., 2021). Several risk factors are reported to be associated with AD,
such as age, hereditary and family history (Alzheimer’s Association, 2020; Mucke, 2009).
Several proteins are known to be associated with the initiation and development of AD,
including β-amyloid (Aβ), tau-protein, amyloid precursor protein (APP) and ε4 allele of
apolipoprotein E (ApoE4). Although numerous studies have been performed to explain
AD’s aetiology, most of the findings were related to Aβ plaque and tau tangle deposition in
the brain. The altered and causative mechanism, together with the chemical and molecular
components that lead to AD pathology remain unclear.

Currently, the clinical diagnosis of AD mainly depends on a series of examinations
based on neurophysiological assessments of the patient’s cognitive function (Daffner, 2000;
Yao et al., 2019). A variety of techniques have been widely used recently to support the
diagnosis of AD such as neuroimaging techniques e.g., positron emission tomography
(PET) and neurochemical assay testing in the cerebrospinal fluid (CSF) and blood (Shen
et al., 2017). As blood is more accessible than CSF, the investigation of blood-based
biomarkers is gaining traction in AD studies lately, as an alternative to CSF and PET
examinations that are rather invasive or high in price (Zetterberg & Burnham, 2019).
Several evaluations have been done using blood-based biomarkers in AD, but the results
have been inconsistent (Janelidze et al., 2016; Rehiman et al., 2020a, 2020b; Yao et al.,
2019). Such inconsistencies observed in Aβ, APP and ApoE4 could be due to their low
concentrations in blood compared with CSF as well as the variations in the methods used
(Zetterberg & Burnham, 2019). Nevertheless, we feel blood for assay of biomarkers, due to
its easy accessibility, will remain an important candidate for studying AD, and hence our
interest in developing along this line, with augmentation of standardised technical
methods by advanced bioinformatics.

Large-scale genomic and transcriptomic studies have been carried out to uncover the
disease pathological networks and their related novel therapeutic markers (Jansen et al.,
2019; Patel, Dobson & Newhouse, 2019; Su et al., 2019; Wightman et al., 2020); however,
these have not been able to significantly indicate the functional gene products i.e., proteins
(Bai et al., 2020; Liu, Beyer & Aebersold, 2016). On the other hand, the set of involved
proteins, known as proteomes, is more dynamic than what can be captured by genomics
and transcriptomics, as protein expressions are often influenced by external environmental
factors (International Service for the Acquisition of Agri-biotech Applications, 2006). The
identification of aberrant protein expressions that affect the pathogenesis of AD should
still be the main goal in studying the perturbation of processes related to AD (Madrid et al.,
2021; Shen et al., 2017; Zahid et al., 2014). With the advancement in technology, for
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example, by using mass spectrometry (MS), there can be in-depth profiling and
quantification of proteins in biological samples. The relatively high resolution of MS
technology has replaced the application of the low resolution and time-consuming two-
dimensional gel electrophoresis (2-DE) in measuring protein information, especially in
complex diseases (Tan et al., 2021). Computational methods to analyse a large number of
extracted proteins have been crucial to provide further insight.

There are many factors involved in affecting the regulation of proteins, such as genetic
regulation, genetic coding and external environmental factors (Wu et al., 2021). Among
these factors, the correlation between the environmental factors (i.e., living environment,
lifestyle practices and dietary plans) with the dysregulation of proteins in AD is the main
interest of this study.

Malaysia has a multi-ethnic population that comprises Malays (69.6%), Chinese
(22.6%), Indians (6.8%) and other races (1.0%) (Department of Statistics Malaysia, 2021).
In the same year, people ≥65 years of age formed about 7.4% of the total 32.7 million
Malaysian population (Department of Statistics Malaysia, 2021). It is also expected that
Malaysians who are diagnosed with dementia will reach 261,000 in the year 2030 according
to a report published by the Alzheimer’s Disease International in year 2015, and this
number can rise with the increase in lifespan (Alzheimer’s Disease International et al.,
2015). The multiethnicity and its concomitant rich variety of cultural practices among the
various races can provide insights into AD with regard to biological and environmental
influences.

We conducted an unbiased proteomic analysis using AD patients and normal controls
to investigate the disease-associated blood proteome changes in the two major ethnic
groups in Malaysia namely the Chinese and Malay. To the best of our knowledge, this
study is the first study conducted in Malaysia to compare the blood proteomic profiles
between the Chinese and Malay ethnics. The pathways associated with AD and the
interactions between the differentiated proteins in these two groups were the main interest
of this study. The proteins were profiled using quantitative liquid chromatography-tandem
mass spectrometry (LC-MS/MS) based on TMT labelling. Differential expression analysis
was performed to identify significant proteins with aberrant abundance. Functional and
network analyses were conducted next to identify the protein-protein interactions and
pathways of the dysregulated proteins in the two different races. Furthermore, a survey was
conducted to compare the sociodemographic characteristics, lifestyle, dietary and
behavioural practices of the Chinese and Malay patients. This survey aimed to provide
supportive evidence on the possible correlation between external environmental factors to
which the two ethnic groups have been subjected and any identified dysregulated proteins.
To increase the statistical power and reliability of the findings, a meta-analysis was
performed for the identified dysregulated proteins.

MATERIALS AND METHODS
The proposed pipeline is illustrated in Fig. 1.
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Subjects
A total of 12 subjects, eight patients diagnosed with AD, and four normal controls, were
recruited from the Memory and Geriatric clinics at the Universiti Malaya Medical Centre
(UMMC), Kuala Lumpur, Malaysia respectively. Written informed consent (BK-MIS-
1117-E01) was obtained from all subjects involved in the study. The 12 subjects comprised
five AD patients and two normal controls in the Chinese group and three AD patients and
two normal controls in the Malay group. All subjects are Malaysian citizens and ≥65 years
of age at the time when they were recruited in this study. The selection of AD patients was
made based on the criteria stated in Table 1.

Figure 1 Pipeline for the comparison of AD-associated blood proteome changes in Chinese and
Malay Malaysians. Full-size DOI: 10.7717/peerj.17643/fig-1
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At the same time, each AD subject was provided with a questionnaire which included
sociodemographic details, dietary habits and other behavioural practices. The answers
supplied by the subjects were corroborated by the accompanying caregiver.

The above study was approved by the Universiti Malaya Medical Centre (UMMC)
Medical Research Ethics Committee with the approval number of 2020114-9193.

Sample processing
A total of 10 ml of blood was collected from each subject in the BD Vacutainer CAT blood
collection tubes and were centrifuged at 1,000 g for 10 min at room temperature. The
serum supernatant was collected, centrifuged at 2,500 g for 10 mins at room temperature
and then stored at −80 �C until further processing.

Sample preparation
Depletion of high-abundance proteins was performed on all 12 serum samples using
ITSIPREP Albumin Segregation Kit-Solvent (ASKs) (ITSI Bioscience, Johnstown, PA,
USA) according to the protocol outlined by the manufacturer. The samples were then
pooled according to the race and gender of the subjects, as in Table 2. The protein
concentration of the eight pooled samples was determined using the Biorad Bradford
Assay Kit (Biorad, Hercules, CA, USA). Sample digestion was carried out according to the
manufacturer’s instructions. Following digestion, peptides were eluted from the column,
dried by vacuum centrifugation and reconstituted in 200 mM HEPES (pH 8.8), with the
peptide concentration subjected to Pierce quantitative colourimetric peptide assay
(Thermo Scientific, Waltham, MA, USA).

TMT-labelling and data-dependent acquisition LC-MS/MS
The eight pooled samples and two technical replicates were labelled in a 10-plex TMT label
batch as indicated in Table 2. The labelling of the TMT reagent (Thermo Scientific,
Waltham, MA, USA) for each sample was according to the Australian Proteome Analysis

Table 1 Inclusion and exclusion criteria of selecting AD patients and normal controls.

Subject Inclusion criteria Exclusion criteria

AD Malaysian Under palliative care for other diseases

65 years old and above Diagnosed with other type of dementia such as: vascular dementia; lewy body dementia;
Parkinson’s disease dementia; frontotemporal dementia; creutzfeldt-Jakob disease;
wernicke-korsakoff syndrome; normal pressure hydrocephalus; Huntington’s disease;
down-syndrome dementia.

Shows symptoms of memory deterioration
which have worsened with time

Show symptoms of losing the ability to
perform daily function

Diagnosed with AD for more than 2 months

Normal
controls

Malaysian Patients under palliative care for other diseases

65 years old and above Diagnosed with AD/any other type of dementia.

Does not show symptoms of memory
deterioration

Diagnosed with a known significant (in the view of the investigator) concurrent medical
disease.

Able to perform daily function
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Facility (APAF) SOP MS-096. The pooled peptide mixture was then separated into three
fractions using Pierce High pH reverse phase centrifugal columns. HpH fractionated
TMT-labelled peptides were subjected to LC-MS/MS analysis. The instrument was
operating in positive ion mode, scanning peptide precursors from 350 to 1,850 m/z at 60 k
resolution. The ten peptide ions that showed the most intense signals in the survey scan
were fragmented by HCD using a normalized collision energy of 33 with a precursor
isolation width of 0.8 m/z.

Protein identification and quantification
The raw data were processed using Proteome Discoverer (Version 2.1.0.81, Thermo
Scientific, Waltham, MA, USA). The data were searched using search engines SequestHT
and Mascot against a sequence database for theHomo sapiens. The parameters for the data
processing are shown in Supplemental Methods. The raw quantitative data were used for
further bioinformatics analysis.

Bioinformatics data analysis
A scale normalization was applied and the data were log-2 transformed according to
median of all samples before the bioinformatics analysis. Visualization of the protein
abundances was carried out in the first step using principal component analysis (PCA) and
hierarchical clustering (HC) to explore the patterns of similarity between the two ethnic
samples.

Next, two comparison groups were made throughout the analysis: (i) Chinese AD vs
Chinese Control (CADvC) and (ii) Malay AD vs Malay Control (MADvC). Firstly,

Table 2 List of sample details and the corresponding TMT tags.

Sample pool Label Patient/control Race Gender Age* Education background

AD1 126 Patient 1 Chinese Female 75 Tertiary

Patient 2 Chinese Female 74 Secondary

Patient 3 Chinese Female 75 No formal

AD2 127N Patient 4 Chinese Male 70 Tertiary

Patient 5 Chinese Male 75 Tertiary

AD3 127C Patient 6 Malay Female 86 Tertiary

AD4 128N Patient 7 Malay Male 84 Secondary

Patient 8 Malay Male 75 Tertiary

AD5@ 130C Patient 4 Chinese Male 70 Tertiary

Patient 5 Chinese Male 75 Tertiary

Ctrl1 128C Control 1 Chinese Female 84 Primary

Ctrl2 129N Control 2 Chinese Male 73 Tertiary

Ctrl3 129C Control 3 Malay Female 78 Secondary

Ctrl4 130N Control 4 Malay Male 74 Tertiary

Ctrl5@ 131 Control 2 Chinese Male 73 Tertiary

Notes:
* Age of subjects at the year of recruitment.
@ Technical replicates that are used as standard in controlling variation.
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differential protein analysis was performed which was followed by HC to identify aberrant
proteins as well as to investigate the variation of protein abundances among the two racial
groups. Next, protein-protein interaction (PPI) network and functional enrichment
analysis were carried out to understand the functional roles and pathways involved by the
identified correlated proteins in AD pathogenesis.

Differential protein analysis
Differential protein analysis was carried out in this study using the Linear Models for
Microarray Analysis (LIMMA) package, Bioconductor R, to find out the differentially
expressed proteins (DEPs). Proteins with an adjusted p-value of <0.05 were selected and
ranked as the top DEPs. Benjamini and Hochberg’s (BH) method was used as the adjusting
method to control the proportion of the false discovery rate within 5% of the total genes.
The upregulated and downregulated proteins were grouped according to the marking
value of LogFC > 0 and logFC < 0, respectively.

Hierarchical clustering
Unsupervised HC was performed to identify differentially expressed proteins across the
two comparison groups. HC was also carried out using the entire proteomic dataset to
observe the expression patterns of proteins from different ethnic groups, as mentioned in
the earlier step. Pearson correlation coefficient was applied in this step to obtain the
clusters of correlated proteins.

Functional enrichment and protein-protein interaction network
analysis
STRING (version 11.5) (Szklarczyk et al., 2019) was used to construct the protein-protein
interaction (PPI) networks of the identified DEPs. An interaction score of >0.4 was set to
allow protein interactions with medium confidence to be constructed in the networks.
Functional enrichment of the interacted proteins identified through PPI networks was
computed using the ClueGO application in Cytoscape (Bindea et al., 2009). The default
background corresponding to the genome-wide genes of Homo sapiens was selected. Gene
Ontology (GO) terms including biological process, molecular functions and cellular
functions were selected. KEGG pathways involved by the interacted proteins were also
investigated. A two-sided hypergeometric test with Bonferonni step-down was applied to
calculate the p-value correction of each term and the network connectivity (Kappa, Turin,
Italy) score was set to 0.4. Pathways with p-value <0.05 were considered significantly
enriched.

Data analysis on sociodemographic, lifestyle and physical survey of
the participants
Statistical analysis was performed on the survey data collected from the 12 subjects to find
out the relationship between sociodemographic characteristics, practices of lifestyle,
dietary and other behavioural activities with AD among different ethnicities. Scores were
given to each question according to their minimum frequency/amount measured daily,
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weekly or at one time, depending on their characteristics. Several questions were grouped
according to their characteristics and average scores of the group measurement were
calculated to reduce the complexity and enhance the normality of the data. In total, 28
variables were used to assess the relationship with the ethnic groups. The nonparametric
test of Mann-Whitney U test (p-value < 0.05) was used to analyse the continuous variables
while Fisher exact test (p-value < 0.05) was used for the categorical variables. This is due to
the ability of nonparametric methods to tolerate small-size samples and the assumption of
data normality is void. The statistical tests were conducted to check whether there are
significant differences between the two groups (Chinese and Malay) on the
sociodemographic characteristics, practices of lifestyle, dietary and other behavioural
activities.

Next, the Pearson correlation coefficient was carried out to find out the correlation of
the variables with AD status, in each ethnic group. This test was conducted on the variables
that showed significant differences between the Chinese and Malay groups. In this study, a
95% confidence interval was applied, with a p-value < 0.05 considered to be significant.

Meta-analysis
Meta-analysis was performed on the significant DEPs with the relative abundances mean
and standard deviation (SD) using Meta-essentials, version 1.5 (Suurmond, van Rhee &
Hak, 2017). Systematic literature was searched through the database of PubMed based on
keywords of “Alzheimer’s Disease”, “proteomics”, “biomarkers” and “human”. Studies that
reported the mean and SD of the selected dysregulated protein candidates for CADvC
(VDBP, TF, LTF, AHSG, F9, SELENOP, RBP4, ECM1, ITIH1, HGFAC, A1BG, KRT1 and
KRT10) and MADvC (APOA4, FGA, C2, C4A and ITIH4) were included. For studies that
did not provide relevant information, corresponding authors were contacted through
email. Meta-analysis was performed for the DEPs that were reported in at least two studies.
The outcomes were presented in the standardized mean differences (SMD) of AD and
normal control group, measured using Hedges’ algorithm. A confidence interval (CI) of
95% was applied in this study. As variations occurred in the biomarker measurement of
different studies (e.g., different proteomic platforms), a random effect model was used. The
heterogeneity of the included studies was assessed using Cochran’s Q test, t-statistic and I2

index.

RESULTS
The TMT quantitative proteomic analysis of the serum samples in our study resulted in the
identification and quantification of 172 unique proteins. Pre-processing methods were
performed on the data, such as the exclusion of the identified highly-abundance serum
albumin proteins and proteins with missing values prior to the subsequent downstream
analysis. As a result, 163 proteins were included in the analysis.

Differential protein expression analysis
To observe the cluster conditions of the samples, unsupervised clustering was carried out
using PCA and HC. PCA result showed the samples were clustered by ethnicities, as
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illustrated in Fig. 2A while Fig. 2B shows the HC conducted based on the top 10% of the
proteins with the highest variance across the samples. The full version of HC using 163
proteins is attached in Fig. S1. Similarly to the result of PCA, the hierarchical tree clearly
indicated the clusters of samples by the two ethnicities. Nevertheless, as the proteins do not
perform differential expression analysis yet, the clusters identified are less distinguishable
in terms of AD vs control.

Differential expression analysis of the quantitative proteomics data (n = 163) was
performed using LIMMA (adjusted p-value < 0.05) across the two comparison groups:
CADvC and MADvC. Significant dysregulated proteins identified from each comparison
group were listed in Table 3. A Venn diagram of the identified DEPs from the two
comparison groups is shown in Fig. 3A. From this finding, it can be observed that most of
the DEPs identified in CADvC did not overlap with the DEPs identified in MADvC. Only
one protein, F12, was noted in both ethnic groups, and appeared to be upregulated in
CADvC but downregulated in MADvC. These suggested that the protein abundances in
ethnic groups of Chinese and Malay AD patients might be different.

Figure 3A shows the Venn diagram of the identified DEPs from CADvC and MADvC.
HC was again carried out independently with the DEPs identified from each of the
respective comparison groups (Figs. 3B and 3C). The resulting heatmaps segregated the
AD and control cases in Chinese and Malays, as shown in Figs. 3B and 3C. This verified
that the identified DEPs were significantly in distinguishing between AD cases and
controls according to the respective race and supported that selected DEPs could be
potential markers for AD in Chinese and Malays, respectively.

PPI network analysis
Following this, PPI was constructed to enhance the understanding of the role and interaction
of the correlated dysregulated proteins using the identified DEPs. The PPI networks of
correlated proteins identified in CADvC and MADvC (Table 3) are illustrated in Fig. 4.

Figure 2 Visualisation of the samples’ clusters using (A) PCA and (B) HC.
Full-size DOI: 10.7717/peerj.17643/fig-2
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Table 3 List of differentially expressed proteins (DEPs) identified through LIMMA in the two
comparison groups: CADvC and MADvC.

Chinese AD vs Chinese control (CADvC)

Accession Protein name logFC adj.P.Val Regulation

Chinese AD vs Chinese control (CADvC)

A0A286YFJ8 IGHG4 0.9111454 0.0026895 Up

P00748 F12 0.790919 0.0043438 Up

P04264 KRT1 0.773537 0.0047613 Up

Q92496 CFHR4 0.9942576 0.0072636 Up

P35527 KRT9 0.6347817 0.009087 Up

Q04756 HGFAC 0.7197487 0.0119676 Up

P13645 KRT10 0.7481082 0.0155827 Up

P36980 CFHR2 1.0779595 0.0222128 Up

P02765 AHSG 0.5314173 0.0237169 Up

P02753 RBP4 0.9520529 0.026608 Up

Q5SQ11 PTGDS 0.647988 0.0284087 Up

P02774-3 VDBP 0.8069054 0.0287951 Up

P49908 SELENOP 0.5142812 0.0298058 Up

P04217 A1BG 0.5457707 0.0352925 Up

A6NC48 BST1 0.5960251 0.0361826 Up

P02787 TF 0.6400018 0.0372747 Up

P02788 LTF 0.7742431 0.0396698 Up

Q16610-4 ECM1 0.6953304 0.0414427 Up

P00740 F9 0.4752045 0.0212655 Up

A0A096LPE2 SAA2-SAA4 −0.7740782 0.0128821 Down

P02042 HBD −1.2352253 0.0131224 Down

O75882 ATRN −0.5770248 0.014957 Down

P19827 ITIH1 −0.910063 0.0184665 Down

A0A0C4DH31 IGHV1-18 −1.6953243 0.0283833 Down

A0A087WSY6 IGKV3D-15 −1.1552825 0.0286905 Down

A0A0G2JMB2 IGHA2 −0.8217308 0.0420321 Down

Malay AD vs Malay control (MADvC)

P02671 FGA 1.1257808 0.0078898 Up

A0A087WSY6 IGKV3D-15 0.5932666 0.0413459 Up

A0A0G2JPR0 C4A −1.0490485 0.0037218 Down

P06681 C2 −0.9597209 0.0065765 Down

Q12805 EFEMP1 −0.8564646 0.0090733 Down

Q14624 ITIH4 −0.8005078 0.0122691 Down

P00748 F12 −0.7457226 0.015647 Down

A0A286YEY4 IGHG2 −0.7778262 0.0193615 Down

P06727 APOA4 −1.1521863 0.0213486 Down

P13646 KRT13 −1.1226734 0.0283367 Down

P35908 KRT2 −0.870911 0.0427892 Down

P18065 IGFBP2 −0.7772892 0.0440745 Down
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From the findings illustrated in Fig. 4, it can be seen that all the proteins of
immunoglobulin heavy chains were not found in the STRING database. Hence, they were
excluded from the PPI networks in this study. This might be due to their nature as part of
the polypeptide subunit of an antibody which was not recognised as a complete protein.
PPI demonstrated the possibility of one/a group of proteins which affected the expression
of other proteins in the regulation i.e., the activation/inhibition of certain pathways.
Figure 4A demonstrated the interaction of proteins AHSG, SELENOP, RBP4, TF, LTF,
A1BG, VDBP, ECM1, ITIH1, HGFAC, F9, F12, KRT1, KRT10 in CADvC. Proteins ATRN,

Figure 3 Differential abundance of proteins observed in AD. (A) Venn diagram of the identified DEPs from the two comparison groups: CADvC
and MADvC. (B) Hierarchical clustering of 27 DEPs obtained from comparison group CADvC using LIMMA. (C) Hierarchical clustering of 10
DEPs obtained from comparison group MADvC using LIMMA. Full-size DOI: 10.7717/peerj.17643/fig-3
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HBD, CFHR2, CFHR4, KRT9, BST1, PTGDS and SAA2-SAA4 did not share similar
functions with the other proteins in the network and hence were excluded in the following
functional enrichment analysis. In MADvC, proteins C2, C4A, FGA, ITIH4, APOA4 and
F12 were found to interact with each other, however, the relationship of proteins EFEMP1,
KRT2, KRT13 and IGFBP2 with the other correlated proteins were uncertain (Fig. 4B).

Functional enrichment analysis
For further interpretation of the biological functions and pathways of the interacted DEPs,
GO enrichment analysis was performed using the ClueGO application in Cytoscape. The
resulting GO terms and KEGG pathways which were significantly enriched with the
interacted proteins correlated with CADvC andMADvC are shown in Fig. 5. The details of
the pathways are included in Table S1. The enriched gene ontology and pathways
identified using the interacted proteins in each comparison group were illustrated in Fig. 6.

As demonstrated in Figs. 5 and 6, the dysregulated proteins identified from Chinese and
Malay were similarly enriched with the pathways blood microparticle, collagen-containing
extracellular matrix and transport, inflammatory response, humoral immune response,
defence response and protein metabolic process.

Figure 4 Protein-protein interaction networks of the correlated proteins identified in (A) CADvC, (B) MADvC. The proteins are represented by
the coloured nodes and are joined by the edges that represent the protein-protein interactions where the joint proteins commonly contribute to some
shared functions/roles. Full-size DOI: 10.7717/peerj.17643/fig-4
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Analysis of questionnaire survey data of the subjects by ethnicity
The sociodemographic details and medical conditions of the subjects are shown in Table 4.
No significant differences were observed for most of the characteristics between Chinese
and Malay ethnic groups. Nevertheless, a significant difference (p-value = 0.028) was noted
when all the Malay respondents were living with family members while the living situation
of the Chinese was distributed to living with spouse, family members, or others such as
with maid or old folk’s home.

Figure 5 Significant KEGG pathways and GO terms enriched. (A) CADvC, (B) MADvC and the number of associated proteins found within each
of the pathways. Common pathways between CADvC and MADvC were highlighted in yellow. (C) Venn diagram of the pathways identified.

Full-size DOI: 10.7717/peerj.17643/fig-5

Tan et al. (2024), PeerJ, DOI 10.7717/peerj.17643 13/31

http://dx.doi.org/10.7717/peerj.17643/fig-5
http://dx.doi.org/10.7717/peerj.17643
https://peerj.com/


Figure 6 Network depiction of the identified proteins with enriched GO categories and pathways
that related to AD’s pathology in (A) CADvC, (B) MADvC. Each of the nodes represents the
enriched pathways and GO terms and the edges indicate the interaction between the proteins and terms.
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Following the statistical analysis as shown in Table 5, the parameters surveyed in the
questionnaire did not show a significant difference between Chinese and Malay subjects,
except for the consumption of sweet drinks/foods; the sugar consumption of Malay
patients (mean of 8.29 ± 1.05) was significantly higher compared to their Chinese
counterparts (mean of 4.03 ± 1.83), with a p-value of 0.023.

Table 4 Sociodemographic and medical details of the subjects.

Demographics Chinese (n = 7) Malay (n = 5) p-value
Mean ± SD/n(%)

Living area City centre 1 (14.3) 0 1

Town centre 6 (85.7) 4 (80) 1

Village 0 1 (20) 0.417

Marital status Married 4 (57.1) 5 (100) 0.205

Widow 3 (42.9) 0 0.205

Living situation Living with spouse only 3 (42.9) 0 0.205

Living with family members (e.g., spouse, siblings and children) 2 (28.6) 5 (100) 0.028

Others 2 (28.6) 0 0.47

Highest education No formal education 1 (14.3) 0 1

Primary 1 (14.3) 0 1

Secondary 1 (14.3) 2 (40) 0.523

Polytechnique/university/college 4 (57.1) 3 (60) 1

Height 159.29 ± 5.77 160.28 ± 4.65 0.744

Weight 54.14 ± 7.16 57.24 ± 8.15 0.53

Systolic blood pressure 115.86 ± 5.15 126.8 ± 21.39 0.678

Family history of AD 2 (28.6) 0 0.47

Medical conditions/history Diabetes mellitus 2 (28.6) 1 (20) 1

Hypertension 2 (28.6) 2 (40) 1

Visual disease 3 (42.9) 2 (40) 1

Heart disease 0 2 (40) 0.152

Asthma 1 (14.3) 1 (20) 1

Hepatitis 2 (28.6) 1 (20) 1

Arthritis 1 (14.3) 1 (20) 1

Others 1 (14.3) 2 (40) 0.523

History of head injury 1 (14.3) 0 1

Employment status Unemployed 1 (14.3) 0 1

Self-employed 1 (14.3) 0 1

Retired 5 (71.4) 5 (100) 1

Figure 6 (continued)
The functional groups of the biological process are represented in different colour nodes. The corre-
sponding proteins are shown in the centre of each network. The p-value of the GO terms is illustrated by
the size of the nodes: the smaller the p-value, the large the size of the nodes.

Full-size DOI: 10.7717/peerj.17643/fig-6
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From Tables 4 and 5, two parameters showed significant differences between Chinese
and Malay participants which are living with family members and consumption of sweet
drinks/food. Next, the Pearson correlation coefficient was performed on these two

Table 5 Lifestyle and physical practices of participants by ethnicity.

Practices Chinese (n = 7) Malay (n = 5) p-value
Mean ± SD/n(%)

Lifestyle and dietary practices

Duration of sleep (hours/night) 7.9 ± 0.22 7.33 ± 0.76 0.723

No. of times wake up at night (times/night) 1.2 ± 0.1 2 ± 0 0.259

Smoker Smoker 1 (14.29) 3 (60) 0.222

Never 6 (85.71) 2 (40) 0.222

Cigarettes (cigarettes/week) 20 ± 52.92 63 ± 62.61 0.208

No. of times skip meals (breakfast, lunch or dinner) (times/week) 0.19 ± 0.5 0 0.5

Eating style Vegetarian 1 (14.29) 0 1

Non-vegetarian 6 (85.71) 5 (100) 1

Fast food/fried food/food high in salt and fat (times/week) 1 ± 0 2.4 ± 1.92 0.103

Sweet drinks/food (e.g., snacks, soda, dessert, fruits) (times/week) 4.03 ± 1.83 8.29 ± 1.05 0.023

Alcohol consumption (unit/occasion) 0.6 ± 1.34 0 0.259

Physical practices

Mode of transportation Private transport 7 (100) 5 (100) –

Time spent on transportation (mins/time) 12.86 ± 23.6 12 ± 16.43 0.922

No. of days of going out (days/week) 2.29 ± 1.8 2.6 ± 2.88 1

Types of outdoor activities Dining 3 (42.86) 3 (60) 1

Exercise 1 (14.29) 1(20) 1

House visit 1 (14.29) 1 (20) 1

Entertainment 1 (14.29) 1 (20) 1

Run errands 2 (28.57) 1 (20) 1

Medical appointment 7 (100) 5 (100) –

Level of exercise No exercise 1 (14.29) 0 1

Light exercise 4 (57.14) 5 (100) 0.205

Moderate exercise 2 (28.57) 0 0.47

Time spent on exercise (mins/day) 14.28 ± 9.32 20 ± 7.91 0.283

Sitting (mins/day) 124.29 ± 61.06 174 ± 13.42 0.17

Table 6 Pearson correlation coefficient test on the parameters of living with family members and consumption of sweet drink/food in Chinese
and Malay ethnic groups.

Parameters Pearson correlation coefficient (r) (p-value)

Chinese Malays

Living with family members (e.g., spouse, siblings and children) 0.4 (0.374) –

Sweet drinks/food (e.g., snacks, soda, dessert, fruits) −0.551 (0.2) 0.879 (0.049)

Tan et al. (2024), PeerJ, DOI 10.7717/peerj.17643 16/31

http://dx.doi.org/10.7717/peerj.17643
https://peerj.com/


parameters to find the correlation of the parameters with the Chinese and Malay groups.
The correlation results are shown in Table 6. Low correlations were found for both
parameters (r = 0.4 and r = −0.551 respectively) with the Chinese ethnic. As for the Malay
group, all the Malay participants lived with their family members (e.g., spouse, siblings and
children), hence no deviation (SD = 0) and no correlation were calculated for this
parameter. On the contrary, the consumption of sweet drinks/food showed a significantly
high correlation (r = 0.879, p-value = 0.049) with the Malay group.

Meta-analysis
From the PubMed literature search, 23 articles were identified to be related and were
accessed for suitability. From there, 13 articles were included in the systematic review and a
total of eight studies including the outcomes from the current study were included in the
meta-analysis. Tables S2 and S3 presented the forest plots of the dysregulated proteins
identified in CADvC and MADvc respectively, among the AD and normal control
subjects. For the meta-analysis of the dysregulated proteins identified from CADvC
(Table S2), protein HGFAC was excluded from the analysis as no relevant information
could be found. Meanwhile, proteins TF (SMD= −0.18, 95% CI= [−1.09 to 0.73], p = 0.01,
r = 0.09), AHSG (SMD= −0.24, 95% CI = [−1.12 to 0.64], p < 0.001, r = 0.13) and A1BG
(SMD = −0.21, 95% CI = [−1.89 to 1.47], p = 0.01, r = 0.11) showed significant
down-regulation in AD compared to control. Notably, all of these proteins showed weak
dysregulations with low effect size (r < 0.3) in the data. From the outcomes presented by
the meta-analysis of the dysregulated proteins identified in MADvC (Table S3), proteins
APOA4 (SMD = 0.29, 95% CI = [−0.97 to 1.55], p < 0.001, r = 0.14) and C4A (SMD = 0.24,
95% CI = [−20.59 to 21.06], p < 0.001, r = 0.39) were found to be significantly upregulated
in AD compared to normal control. In this comparison group, protein APOA4 showed
weak dysregulations while protein C4A showed medium dysregulation (moderate effect
size, r < 0.5) among the AD group.

DISCUSSION
This study aimed to provide new insight into Alzheimer’s disease via a study of proteomics
using sampling from the two major races from the multi-ethnic population in Malaysia. It
is presumed that the genetic constitution of different ethnic groups differs, thus, the gene
regulation product, proteins, might on this account alone already vary (Galanter et al.,
2017;Huang, Shu & Cai, 2015). However, we also felt that by looking at the proteins, rather
than being confined to genomes, could at the same time encompass environmental
influencers in the development of AD.

In this study, the number of samples from the Chinese (seven samples) and Malays (five
samples), do not reflect the general composition of our population, in which the Chinese
form 22.6% and the Malays form 69.6% of the population (Department of Statistics
Malaysia, 2021). The lower number of Malays studied was due to the attendance pattern at
the Memory Clinic where ~50% of the patients who visited the clinic were Chinese while
only ~16% of the patients were Malays. To minimise the potential confounding related to
medications and comorbidities, patients who were under palliative care for other diseases
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were excluded from the recruitment of the subjects in this study. Although the sample
quality of AD proteomics is unavoidably affected by the cofounding factors, literature has
shown that the confounding effects are relatively smaller on the analysis of whole
proteome compared to that on the modified proteome (i.e., ubiquitinome and
phosphatome) due to the characteristic of modified proteins which are highly unstable and
dynamic (Bai et al., 2021). In the current proteomic study, the pooling strategy applied to
the samples by grouping subjects with similar gender, ethnicity and disease condition
together averages the confounding effects and at the same time increases the statistical
power (Johnstone et al., 2012). Also, as shown from the result of the survey analysis of the
demographic data, none of the possible comorbidity factors showed a significant
correlation with AD (Tables 5 and 6), other than the practice of sweet intakes among the
Malay population.

The results from differential expression analysis comparing CADvC and MADvC
(Table 3 and Fig. 3) indicated that DEPs differed between the two ethnic groups. It
suggested that different protein regulations were involved in the AD development of
Chinese and Malay patients. Among the DEPs identified, Coagulation factor XII (F12) is
the only protein that is commonly found among the CADvC and MADvC. There is
evidence that the depletion of F12 in mice lessens fibrin deposition and lessens cognitive
decline (Chen et al., 2017; Park et al., 2021). The activation of F12 triggers thrombosis in
plasma which in turn induces inflammation in the AD pathogenesis pathway (Singh et al.,
2021). In this study, F12 was found to show upregulated activity in CADvC but
downregulated in MADvC. This shows that the roles of this protein on AD development
might vary in different ethnic groups, due to the effect of different environmental factors
and lifestyle practices. A study was conducted to test the average activity of F12 in the
Chinese population (Han et al., 2015). Mutations were found in subjects who were
detected with abnormal low activities of F12 which suggested the potential of F12
dysregulation in correlating with the Chinese population. However, our study did not
support this finding and further clarification is needed to confirm this.

Despite the divergence in proteins identified between CADvC and MADvC (Figs. 5 and
6), several pathways were commonly found between the groups. Other than blood
microparticles, collagen-containing extracellular matrix and transport are pathways
relating to the cellular and functional component of the blood, the other pathways are
found to exhibit a close connection with AD pathogenesis. As such, the cellular and
molecular changes in inflammatory, humoral immune and defence responses are found to
be linked with neuroinflammation, which is one of the critical factors contributing to AD
pathogenesis. Inflammation response occurring in the brain is a well-established core
feature for AD development (Kinney et al., 2018). On top of that, there are increasing
evidences demonstrating the relationship between peripheral inflammation with cognitive
dysfunction in AD (Leung et al., 2013; Park, Han & Mook-Jung, 2020). Inflammatory
signals have been shown in the blood peripheral system and act as a communication route
to the cytokines levels in brain (Leung et al., 2013; Park, Han & Mook-Jung, 2020).
Humoral immune response, where defence response is part of the system, refers to the
initiation of antibody molecule production in blood. In AD, circulating anti-Aβ antibodies
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such as B cells and immunoglobulins enhance neuroprotection over the development of
Aβ, hence attenuating AD pathogenesis potentially (Cao & Zheng, 2018; Montero-Calle
et al., 2020). The dysfunction in protein metabolism can cause neurodegenerative diseases,
including AD. One of the most remarkable examples is the dysregulation in the Aβ
mechanism, where the failure can lead to the accumulation of plaques in the brain
(Kaddurah-Daouk et al., 2013; Montero-Calle et al., 2020; Yan et al., 2020).

In CADvC, 14 proteins showed an association with each other (Fig. 4A). These proteins
showed consistent enrichment with extracellular matrix (ECM), as shown in Fig. 6A. This
observation implicated the prominence of ECM in the causal pathogenesis of AD. The
dysregulation of ECM has been found to be related to the development of AD in several
ways, including the triggering/inhibition of Aβ aggregation, interaction with tau protein,
relieving oxidative stress and reducing inflammatory response (Sun et al., 2021). This can
be further corroborated by the role of the identified proteins, as shown in Table S4.

Recent studies found that the consumption of alcohol is relevant to the inflammatory
mechanism in inducing AD by reducing Aβ uptake by the primary microglia (Eid, Mhatre
& Richardson, 2019; Heymann et al., 2016; Kalinin et al., 2018; Langballe et al., 2015).
According to the survey analysis done in this study, the habit of alcohol consumption,
although it was not significant, was higher among the Chinese group. Alcohol
consumption is not practised among the Malay population due to their religious belief of
Islam. In accordance with these findings, this study highlighted the involvement of the
dysregulated proteins identified among the Chinese group in the pathways related to an
inflammatory response. Reports showed that alcohol drinkers tend to have more severe
cognitive decline compared to those infrequent or non-drinkers (Eid, Mhatre &
Richardson, 2019; Heymann et al., 2016; Langballe et al., 2015).

Notably, the roles of some identified proteins (e.g., ITIH1, HGFAC, A1BG, KRT1, and
KRT10) in AD development are yet to be discovered. This study uncovered a group of
previously unknown proteins that are associated with each other, suggesting the potential
for their co-regulation on ECM-related pathways and their roles in AD pathogenesis.
Hence, they might serve as potential protein markers which require attention in further
research.

Meta-analysis was conducted using the set proteins identified in CADvC in order to
increase the statistical power and reliability of the result of this study. The aberrant levels of
proteins TF, AHSG and A1BG among AD were confirmed through the findings of the
meta-analysis.

The proteins identified from the MADvC support the influence of neuroinflammation
in the pathogenesis of AD. The findings of the roles of these proteins in leading to
neuroinflammation further enhanced the contribution of functional terms defence
response, protein metabolic process and ECM in AD pathophysiology relating to Malays.
The roles of the proteins and their relationship with AD are summarized in Table S5. The
reliability of the roles and functions of proteins APOA4 and C4A in AD was supported by
the findings of the meta-analysis conducted in this study which showed significant
upregulation activities among the AD group when compared to the normal controls.
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Interestingly, the expressions of a few identified proteins were found to be influenced by
the living environment factors. The association of the VDBP with ethnicity was found to be
strong in several studies related to vitamin D deficiency in Malaysia (Chin et al., 2014;
Rahman et al., 2004; Shafinaz & Moy, 2016). Protein VDBP functions to maintain the
levels of vitamin D in plasma by promoting its reabsorption in the kidney (Bouillon et al.,
2020; Rozmus et al., 2020). Previous studies indicated the association of vitamin D with Aβ
clearance in the brain, attenuating neurodegeneration (Bivona et al., 2019, 2021). The
consumption of nutritional supplements (including vitamin D) in the Chinese population
was found to be higher compared to the other ethnicities in Malaysia (Abdullah, Teo &
Foo, 2016; Saffian et al., 2021). Furthermore, sunlight exposure is the main source of
vitamin D in Malaysia. The lower level of melanin content in the skin and the common
clothing practices encourage higher vitamin D absorption from the sunlight in the
Malaysian Chinese group (Saffian et al., 2021; Shafinaz & Moy, 2016). Hence, the higher
vitamin D prevalence among the Chinese population might explain the high abundance of
protein VDBP found among Chinese AD patients (Woon et al., 2019).

APOA4 is found to be involved in the regulation of blood sugar levels by improving
insulin sensitivity and promoting sugar uptake (Li et al., 2017). Studies have found the
expression of APOA4 to be affected by the sugar levels in the brain (Liu et al., 2004;Wang
et al., 2015). In this study, APOA4 showed significantly differentiated abundance with AD
in the Malay group (MADvC). The presence of APOA4 was found to lead to the
deterioration of cognitive competency in healthy Malay individuals (Abu Bakar et al.,
2019). In addition, the relationship of APOA4 with sugar intake in Malays is further
supported by the data analysis from our survey, where there was significantly higher sugar
consumption in the Malays compared to the Chinese. Numerous studies have also
demonstrated marked differences in sugar intake habits across different ethnic groups,
where Malays were found to have a higher affinity toward food and drinks with higher
sugar levels (Cheah et al., 2019; Eng et al., 2022; Zainuddin et al., 2018).

One limitation of this study is the small sample size collected. The heterogeneity of
dementia (i.e., vascular dementia, Lewy Bodies dementia, AD, etc.) with different clinical
and progress presentations in patients who visited the clinics resulted in the restriction of
the number of patients that could be recruited into this study. Furthermore, as blood
sampling is an invasive sampling method, some of the patients refused to provide consent.
As a result, recruitment was limited restricting the proteomic analysis. Limited sample size
in the proteomic study can lead to biased results and conclusions and to overcome this, the
multiplex strategy of pooling samples was applied in this study. The samples were pooled
according to gender and disease condition of the respective ethnicity of the subjects so that
similar proteins from different samples but the same ethnicity could be eluted at the same
mass-to-charge ratio (m/z) and at the same time. By this, the relative abundances of
different proteins could be directly compared and the problem of the bias can be reduced
(Arul & Robinson, 2018).

In this study, the differential protein analysis was carried out using limma with proteins
of adjusted p-value < 0.05 considered significant aberrant. Notably, log2FC was not applied
as a filtering criterion in selecting differentiated proteins but used as a marking value in
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evaluating the regulation of the dysregulated proteins. Imposing fold change on a small
sample size experiment often causes uncertainty in the sample variability estimation
(Kammers et al., 2015). The application of a commonly used fold change threshold (i.e.,
1.5) could also result in the loss of information or unreproducible outcomes (Schwammle,
León & Jensen, 2013). Besides that, to reduce the compulsion imposed by the small sample
size of this experiment, moderated t-statistics rather than the ordinary t-test was computed
using the empirical Bayes method in limma. The statistical principles implemented in
limma help to reduce the problems inherited in small experiments. The statistical method
of empirical Bayes allows the “borrowing” of strength between the proteins in a dynamic
way, reducing the number of false positive and false negative rates (Kammers et al., 2015;
Ritchie et al., 2015). Hence, the statistical power and reliability of the results were improved
for experiments with a small number of replicates, as contained in this study (Ritchie et al.,
2015).

This study suggests the preliminary proteomic profiles of AD in Chinese and Malay
groups in Malaysia. Although the findings of this study are consistent with the literature,
they nonetheless represent the dysregulation of proteins found within a small sample size
dataset and will require further validation. First, the expression of the selected biomarkers
from this study could be confirmed through in vitro experiments such as absolute protein
quantification. Next, future research should also expand towards the deep evaluation of the
described mechanisms/networks identified in this study such as using bioimaging
techniques to effectively improve the chances of reducing neuroinflammation/ metabolic
dysregulation that leads to AD pathogenesis. Thirdly, the prospects should include more
subjects in future studies and expand to the other ethnicities in Malaysia. The
multi-cultural genetic constitution could provide a better understanding of AD
pathogenesis by bridging the genetic, molecular and network factors to different
behavioural/environmental factors. Furthermore, the proposed method could be expanded
into multi-omics analysis to include more data from the other omics (i.e., transcriptomics
and metabolomics) so that the characteristics, functions and mechanisms from the other
omics could be linked and connected. Further investigations may provide an opportunity
to evaluate the understanding of AD pathogenesis and different physiological mechanisms
together with the physical environment in designing new diagnostic approaches/therapies.

CONCLUSIONS
The expansion of the ageing population has indirectly led to the increment of AD cases
reported. With regard to that, the study of the interaction between the dysregulated
proteins may provide an understanding of the characterization of AD pathophysiology.
The variation of protein abundances in different ethnic populations that are possibly
affected by different behavioural practices caught more attention in the research relating to
AD study. This study proposes an integrated method that combines proteomic profiling
and differential expression analysis between AD patients and normal controls for Chinese
and Malays in Malaysia. The pathways and protein-protein interactions of the identified
protein signatures were analyzed using functional enrichment analysis. The results showed
that the dysregulated proteins identified from Chinese samples were significantly enriched
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to the pathway leading to Aβ/tau protein, oxidative stress and inflammation and the
dysregulated proteins for Malay groups were more related to neuroinflammation. The
results were supported by previous studies on the developmental mechanisms of AD in
Malaysia, especially among the Chinese and Malay populations. The survey conducted
further interpreted the impact of different lifestyle practices on the variation of
dysregulated protein identified in this study. The significant difference in sugar
consumption practices between Chinese and Malay groups supports the relation of
dysregulated APOA4 protein in the Malay groups. An additional meta-analysis conducted
further supported the significant aberrances in levels of proteins TF, AHSG, A1BG, APOA4
and C4A among AD patients compared to the normal controls. This study suggests
preliminary findings on AD-related proteomics analysis and its relation to the
environmental factors in Chinese andMalay populations in Malaysia. This effort should be
expanded to include more subjects and ethnicities to have a better understanding of the
pathogenesis of AD in Malaysia.
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