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ABSTRACT
Small non-coding RNAs include powerful regulators of gene expression, transposon
mobility and virus activity. Among the various categories, mature microRNAs (miR-
NAs) guide the translational repression and decay of several targeted mRNAs. The
biogenesis of miRNAs depends on few gene products, essentially conserved from basal
to higher metazoans, whose protein domains allow specific interactions with dsRNA.
Here, we report the identification of key genes responsible of the miRNA biogenesis in
32 bivalves, with particular attention to the aquaculture speciesMytilus galloprovincialis
and Crassostrea gigas. In detail, we have identified and phylogenetically compared eight
evolutionary conserved proteins: DROSHA, DGCR8, EXP5, RAN, DICER TARBP2,
AGO and PIWI. In mussels, we recognized several other proteins participating in the
miRNA biogenesis or in the subsequent RNA silencing. According to digital expression
analysis, these genes display low and not inducible expression levels in adult mussels
and oysters whereas they are considerably expressed during development. As miRNAs
play an important role also in the antiviral responses, knowledge on their production
and regulative effects can shed light on essential molecular processes and provide new
hints for disease prevention in bivalves.

Subjects Aquaculture, Fisheries and Fish Science, Evolutionary Studies, Genomics, Marine
Biology
Keywords miRNA biogenesis,Mytilus galloprovincialis, Crassostrea gigas, Bivalves, RNAi

INTRODUCTION
Different types of non-coding RNAs (ncRNAs) have gained attention for their powerful
regulatory action on eukaryotic genes and other genetic elements (Carninci et al., 2005;
Mortimer, Kidwell & Doudna, 2014). The process known as RNA interference (RNAi)
exemplifies an evolutionary conserved mechanism of gene silencing based on small
guide RNAs and specific interacting proteins (Tomoyasu et al., 2008; Gammon & Mello,
2015). Silencing RNAs (siRNAs) and microRNAs (miRNAs) take part to the same
control machinery whereas Piwi-interacting RNAs (piRNAs) peculiarly silence germ-
line transposons, among other roles (Théron et al., 2014; Iwasaki, Siomi & Siomi, 2015).
Long noncoding RNAs (lncRNAs) in their normal or mutated forms can widely influence
physiological and pathological processes, as multiple lines of evidence indicate their
involvement in chromosome inactivation and epigenetic modifications, control of mRNA
decay and translation, and DNA sequestration of transcription factors (Huarte, 2015;
Ruan, 2015). More recently, circular RNAs have been identified as a group of competing
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endogenous RNAs whose effects in the miRNA function and transcriptional/post-
transcriptional regulation are now matter of study (Qu et al., 2015).

miRNAs are single-stranded RNA molecules of around 22 nucleotides, presenting
conserved structural features and able to modulate the expression of eukaryotic genes
by inhibition of mRNA translation or enhancement of mRNA decay (Ambros, 2003;
Bartel, 2004; Tarver, Donoghue & Peterson, 2012). Up to now, diversified sets of miRNAs
have been detected in five eukaryotic taxa (eumetazoans, silicisponges, vascular plants,
Clamydomonas and Ectocarpus spp.) while they are apparently absent in protists (Grimson
et al., 2008; Tarver et al., 2015). Depending on the annotation procedure, the number of
human miRNAs varies from 523 to 1,881 miRNA precursors, as reported in MirGeneDB
(Fromm et al., 2015) or in miRBase v. 21 (Kozomara, Griffiths & Jones, 2014), respectively.
Overall, human miRNAs could target 30–60% of the transcribed genes (John et al., 2004;
Sand et al., 2012), with implications in cell differentiation (Berezikov et al., 2005), cell death
(Xu et al., 2015), stress responses (Mendell & Olson, 2012) and diseases (Huang et al., 2014;
Min & Chan, 2015).

The miRNA biogenesis starts from pri-miRNA transcripts, mostly generated from RNA
polymerase II in form of long non-coding RNAs and able to form a hairpin subsequently
recognized by the so called microprocessor complex. DROSHA, a double-stranded RNA-
specific ribonuclease III, and the RNA binding protein Di-George syndrome Critical Region
gene 8 (DGCR8) are the microprocessor’s core proteins which allow interactions with
the DDX5 helicase, the RNA binding protein Lin-28 and hnRNP A1, among other
elements (Jean-Philippe, Paz & Caputi, 2013; Hong et al., 2013). During the recognition
of pri-miRNAs at the dsRNA-ssRNA junction, DGCR8 acts as a crucial molecular anchor
and directs DROSHA to cleave 11 bp away from the junction, with consequent release of
hairpin-shaped pre-miRNAs (Denli et al., 2004). Pre-miRNAs are firstly exported to the
cytoplasm via the Exportin5 (XPO5) by interaction with the small GTPase RAN; then, they
are further processed by the RISC loading complex, composed by the endoribonuclease
DICER, the RNA binding protein TARBP2 and Argonaute proteins (MacRae et al., 2008;
Miyoshi et al., 2009). The evolutionary conserved Argonaute proteins are specialized in
binding small RNAs and exist in several isoforms, with AGO and PIWI representing two
distinct subclades (Tolia & JoshuaTor, 2007; Ender & Meister, 2010).

AGOs select the ‘guide’ miRNA strand necessary for targeted gene silencing and,
therefore, are responsible for final miRNA maturation. Several other proteins have been
demonstrated to cooperate in miRNA processing and functions (Ender & Meister, 2010).
In fact, AGOs operate transcriptional repression and cause mRNA decay by interacting
with the GW-rich N-terminal region of GW182, a protein associated with cellular P-bodies
(Van Kouwenhove, Kedde & Agami, 2011). Other proteins involved in the mRNA turnover
(CAF1, PABPC1, eIF4G; CCR4-NOT and PAN2-PAN3 deadenylation complexes; in
human somatic cells, also the decapping complex DCP1-DCP2 and at least four helicases,
DDX5, DDX6, DDX17 and DDX42) may cooperate with the AGO-GW182 complex
to reduce the mRNA translation efficiency (Nottrott, Simard & Richter, 2006; Fabian &
Sonenberg, 2012).
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Unlike AGOs, the PIWI proteins specifically interact with piRNAs to participate in
the germline specification, gametogenesis, transposon silencing and in the maintenance
of genome integrity (Carmell et al., 2007; Malone & Hannon, 2009; Ghildiyal & Zamore,
2009; Siomi et al., 2011). The piRNA mechanism of action is not so well defined but
probably it involves the arginine methyl-transferase PRMT5, tudor domain-containing
proteins (TDRDs) and theMaelstrom protein (MAEL) (Sokolova et al., 2011).

With the widespread and cost-effective use of Next Generation Sequencing (NGS)
technologies, miRNAs have been deeply explored in non-model organisms, including
bacteria (Xu et al., 2014), plants (Rhee, Chae & Kim, 2015) and viruses (Kincaid & Sullivan,
2012; Diebel et al., 2015). The basic set of genes involved in the miRNA biogenesis, and
related protein interactions, are well known in mammals (Lau & MacRae, 2009), and also
in other metazoans like Cnidaria (Moran et al., 2013), Platyhelminthes (Resch & Palakodeti,
2012) and insects (Lucas & Raikhel, 2013; Hussain & Asgari, 2014). Regarding mollusks,
lists of miRNAs have been reported for a few species (Jiao et al., 2014; Chen et al., 2014;
Martín-Gómez et al., 2014; Zhou et al., 2014), miRNA families have been investigated in the
limpet genome (Kenny et al., 2015) and one study has considered bivalve DICER sequences
for phylogenetic analysis (Gao et al., 2014). A general overview on the bivalve miRNA
biogenesis complements is still lacking, so we took advantage of several genomic and
transcriptomic datasets available for Lophotrochozoa (GIGA Community of Scientists, 2014)
to identify and characterize the core elements involved in the miRNA formation pathway
inMytilus and Crassostrea spp. and other bivalves.

MATERIALS & METHODS
Sequences coding for proteins centrally involved in themiRNA pathway, namely DROSHA,
DGCR8, XPO5, RAN, DICER, TARBP2, AGO and PIWI, have beenmethodically identified
in the genomes and transcriptomes of M. galloprovincialis (Mg) and C. gigas (Cg) as well
as in other bivalve and non-bivalve species (66 species, listed in Table 1).

Sequence retrieval and analysis
The Mg WGS project (ID APJB000000000.1 (Nguyen, Hayes & Ingram, 2014)) and
the Cg genome draft (GCA_000297895 (Zhang et al., 2012)) were retrieved from
GenBank, whereas the oyster genome annotations were obtained from Ensembl
Metazoa release 29 (http://metazoa.ensembl.org/Crassostrea_gigas/Info/Index). A Mg
reference transcriptome was produced using 18,788 ESTs of mixed tissues previously
obtained by Sanger sequencing (Venier et al., 2009) and 453 million reads obtained
by paired-end (2 × 100 bp) Illumina Hiseq2000 sequencing of digestive gland
from North Adriatic Sea mussels (ID: PRJNA88481) (Gerdol et al., 2014), and from
haemocytes, gills, mantle and muscle of Spanish mussels (ID: SRP033481) (Moreira
et al., 2015). The quality of the sequencing readout was evaluated by the FastQC suite
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) discarding the reads with
PHRED quality below 20 and presenting more than two ambiguous nucleotides. De-
novo assembly was performed with Trinity, release 2013-08-14 (Grabherr et al., 2011),
setting the minimum contig length at 200 bp and using default settings. Subsequently,
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Table 1 Organisms included in the present work. Phylum, organism name, sequence origin and reference, ID used in phylogenetic trees and iden-
tified sequences are reported. Protostomia (green), Deuterostomia (orange) and novel protein sequences (numbers in bold) are well discernible.

Phylum Species Sequence
origin

Ref Used ID D
R
O
SH

A

D
G
C
R
8

X
PO

5

R
A
N

D
IC

ER

TA
R
B
P2

A
G
O
or

PI
W
I

Pleurobrachia bachei G EM Ple_bac No No 1 No 1 No 4Ctenophora
Mnemiopsis leidyi G EM Mne_ lei No No 1 1 1 No 4

Porifera Amphimedon queenslandica G EM Aq No 1 1 1 2 No 2
Placozoa Trichoplax adhaerens G EM Tri_ adh No No 1 1 2 No 1

Nematostella vectensis G EM Nvec 1 1 1 1 2 No 4
Porites australiensis T TSA Por_aus 1 1 1 1 1 No 6Cnidaria

Anthopleura elegantissima T TSA Ant_ ele 1 1 1 1 1 No 6
;Nematoda Caenorhabditis elegans G M Ce 1 1 1 1 1 23
; Daphnia pulex G EM Dap_ pul 1 1 1 1 2 1 10
; Culex quinquefasciatus G EM Cq 1 1 1 1 2 1 4
; Drosophila melanogaster G EM Dm 1 1 1 1 2 1 4
; Nasonia vitripennis G M Nv 1 1 1 1 2 1 4
; Tribolium castaneum G M Tc 1 1 1 1 2 1 4
; Apis mellifera G EM Am 1 1 1 1 2 1 4
; Lasioglossum albipes G K La 1 1 1 1 2 1 4
;

Arthropoda

Acyrthosiphon pisum G A Ap 1 1 1 1 2 1 15
Schistosoma mansoni G GD Sch_ man 1 1 2 1 2 1 3Platyhelmintes
Schmidtea mediterranea G SG Sch_med 1 1 1 2 1 4

;Rotifera Adineta vaga G V Adi_vag 1 1 1 1 1 1 4
;Brachiopoda Lingula anatina G L Lin_ ana 1 1 1 1 1 3
; Capitella telata G EM Ct 1 1 1 1 1 1 3
;
Annelida

Helobdella robusta G EM Hel_ rob 1 1 1 1 1 1 4
;Cephalopoda Octopus bimaculoides G M Oct_ bim 1 1 1 1 1 1 4
; Aplysia californica G B Ac 1 1 1 3 1 1 4
; Lottia gigantea G M Lg 1 1 1 1 1 1 3
; Mytilus galloprovincialis T Local Mg 1 1 1 1 1 1 3
; Mytilus edulis T Local Me 1 1 1 1 1 2
; Mytilus californianus T Local Mc 1 1 2
; Mytilus trossulus T Local Mt 1
; Anadara trapezia T Local At 1 1
; Tegillarca granosa T Local Tg 1
; Bathymodiolus azoricus T Local Ba 1
; Perna viridis T Local Pv 1 1 1 1 2
; Ennucula tenuis T Local Et 1 1 1
; Crassostrea corteziensis T Local Cc 1 1 1 1 4
; Crassostrea gigas G EM Cg 1 1 1 1 1 1 4

(continued on next page)
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Table 1 (continued)

Phylum Species Sequence
origin

Ref Used ID D
R
O
SH

A

D
G
C
R
8

X
PO

5

R
A
N

D
IC

ER

TA
R
B
P2

A
G
O
or

PI
W
I

; Crassostrea hongkongensis T Local Ch 1 1 3
; Crassostrea virginica T Local Cv 1 4
; Crassostrea angulata T local Ca 1 1 1 1 2
; Ostrea chilensis T Local Oc 1
; Ostrea edulis T Local Oe 1 2
; Ostrea lurida T local Ol 1 1
; Ostreola stentina T Local Os 1
; Saccostrea glomerata T Local Sg 1
; Argopecten irradians T Local Ai 1 1
; Mizuhopecten yessoensis T Local My 1 1 1 1 2
; Pecten maximus T Local Pm 1 2
; Pinctada fucata G F Pf 1 1 1 1
; Solemya velum T Local Sv 1 1 1 1 1 3
; Elliptio complanata T Local Ec 1 1 1 1 1
; Pyganodon grandis T Local Pg 1 1 2
; Uniomerus tetralasmus T Local Ut 1 1 3
; Villosa lienosa T Local Vl 1 1
; Corbicula fluminea T local Cf 1 1
; Meretrix meretrix T local Mm 1 2
; Ruditapes decussatus T local Rd 1 1
;

Mollusca

Ruditapes philippinarum T local Rp 1 1
;Echinodermata Strongylocentrotus purpuratus G M Sp 1 1 1 1 1 1 3
;Hemichordata Saccoglossus kowalevskii G M Sk 1 1 1 1 1 1 1
; Homo sapiens G M Hs 1 1 1 1 1 1 8
; Ciona intestinalis G M Ci 1 1 1 1 1 1 3
; Branchiostoma floridae G M Bf 1 1 1 1 1 1 7
; Oncorhynchus mykiss G O Om 1 1 1 1 1 1 5
;

Chordata

Danio rerio G M Dr 1 1 1 1 1 1 5
Arabidopsis thaliana G P At No No 1 1 4 No 10Streptophyta
Populus trichocarpa G P Pt No No 1 1 5 No 11

Notes.
Abbreviations:: A, Aphidbase; B, broadinstitute.org/ftp/pub/assemblies/invertebrates/aplysia/; EM, Ensambl Metazoa v.29; F, Takeuchi et al. (2012) DNA Res. 19(2): 117–
130;; G, Genome; GD, GeneDB; K, Kocher et al. (2013) Genome Biology 14 (12): R142; L, Lou et al. (2015) Nat Commun. 8; 6:8301; M, Metazome v3.0; O, Berthelot et al.
(2014) Nat Commun. 22; 5: 3657; P, Phytozome 11; SG, SmedGD; T, Transcriptome; TSA, NCBI Transcriptome shotgun assembly; V, Genoscope.
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Table 2 Key proteins of the miRNA biogenesis with their structural domains.

Process step Protein name Domains

DROSHA 2× RIBO III+ 1× DSRMMicroprocessor
complex DGCR8 1×WW+ 2× DSRM

XPO5 1× XPO1Moving to cyto-
plasm RAN 1× RAN

DICER PDB+Helicase+ DICER+ PAZ
+ 2× RIBO+ DSRMRISC loading

complex TARBP2 3× DSRM
AGO DUF+ PAZ+ PIWIFinal miRNA

maturation PIWI-like PAZ+ PIWI

protein coding sequences (cds) were predicted with Transdecoder (Grabherr et al., 2011).
Transcriptomic reads of 30 bivalve spp. (Cg plus other 29 species) were retrieved from the
SRA archive and assembled as described above (details in File S1). The protein predictions
of further 33 organisms were directly retrieved from public repositories or extracted from
the corresponding genome releases. The NCBI transcriptome shotgun assembly (TSA)
database was interrogated to retrieve hits for two additional cnidarians, Porites australiensis
and Anthopleura elegantissima (Table 1).

Protein domain searches
To investigate the presence of eight key proteins of miRNA biogenesis (DROSHA, DGCR8,
XPO5, RAN, DICER, TARBP2, AGO and PIWI), we downloaded their predictive HMM
from PFAM v.27 (listed in Table 2) and we scanned the sequence datasets with HMMer
v3.1 (Eddy, 2011) applying a cut-off E-value of 0.01. To achieve ameaningful comparison of
proteins from different organisms, we retained only hits presenting all diagnostic domains.
Moreover, we identified several mussel transcripts related to protein interactions occurring
in themiRNA biogenesis. To identify such proteins, we retrieved from PFAM the diagnostic
domains of human homologs (listed in Table 3) and we scanned their presence in the Mg
transcriptome as described above. Protein domain organization was reconstructed using
SMART (Letunic, Doerks & Bork, 2012).

Gene structure analysis
We used the transcript sequences of DROSHA, DGCR8, XPO5, DICER and TARBP2 as
blast queries against all Mg genomic contigs (blastn) in order to recover the related gene
structures. Positive hits having e-value lower than 10−20 were extracted and assembled on
the corresponding transcript, used as backbone. RNA-seq read mappings with adapted
parameters (CLC Genomic Workbench large gap mapping tool, with similarity and length
fraction set at 0.9) allowed us to ascertain the correct gene assembly. Homolog gene
structures were retrieved by interrogating genomic browsers, like Metazome v.3 (for
C. intestinalis, B. floridae, D. rerio, S. kowalevskii, S. purpuratus, N. vectensis, T. castaneum,
L. gigantea, O. bimaculoides, C. elegans and H. sapiens) and Ensembl Metazoa v.29 (for
C. gigas, C. quinquefasciatus, D. melanogaster, N. vitripennis, A. mellifera, A. queenslandica,
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Table 3 miRNA biogenesis proteins ofMytilus galloprovincialis. Protein name, GenBank ID, transcript (bp) and protein length (aa), identified domains and annota-
tion (first hit, e-value and percentage of similarity) are reported.

Protein
name

GenBank
ID

Transcript
length (bp)

Protein
length (aa)

Identified
domain(s)

Annotation
(first hit)

E-value
(e∧)

Similarity
(%)

MgDROSHA KT447251 4,384 1,377 2× RIBO III+ 1× DSRM Ribonuclease 3-like (Crassostrea gigas) 0 67

MgDGCR8 KT447252 2,483 728 1×WW+ 2× DSRM Microprocessor complex subunit DGCR8-like
(Crassostrea gigas)

0 50

MgXPO5 KT447259 3,875 1,201 XPO1 Exportin-5-like (Crassostrea gigas) 0 55

MgRAN KT447254 1,113 214 RAN GTP-binding nuclear protein Ran (Crassostrea gigas) −143 93

MgDICER KT447258 6,013 1,850 PDB+Helicase+ DICER
+ PAZ+ 2× RIBO+ DSRM

Endoribonuclease Dicer-like (Crassostrea gigas) 0 58

MgTARBP2 KT447253 7,583 321 3× DSRM Probable RISC-loading complex subunit (Crassostrea
gigas)

−143 69

MgAGO KT447257 3,337 892 DUF+ PAZ+ PIWI Protein argonaute-2-like (Crassostrea gigas) 0 84

MgPIWIa KT447255 2,686 867 PAZ+ PIWI Piwi-like protein 1 (Crassostrea gigas) 0 75

K
ey

m
iR
N
A
bi
og
en
es
is
pr
ot
ei
ns

MgPIWIb KT447256 3,603 948 PAZ+ PIWI Piwi-like protein 2 (Hydra vulgaris) 0 59

MgGW182 KT447250 3,825 1,274 UBA+ RRM Trinucleotide repeat-containing gene 6C protein-like
(Crassostrea gigas)

0 45

MgCNOT1 KT694355 5,373 1,791 DUF3819+ NOT1 CCR4-NOT transcription complex subunit 1-like
(Crassostrea gigas)

0 69

MgCNOT2 KT694357 864 288 NOT2_ 3_ 5 CCR4-NOT transcription complex subunit 2
(Pinctada fucata)

−156 82

MgCNOT3 KT694358 2,142 714 NOT3+ NOT2_ 3_ 5 CCR4-NOT transcription complex subunit 3-like
(Crassostrea gigas)

0 97

MgCNOT6 KT694359 2,592 864 Exo_ endo_ phos Uncharacterized protein LOC105348954 isoform X1
(Crassostrea gigas)

0 71

MgCNOT7 KT694360 897 299 CAF1 CCR4-NOT transcription complex subunit 7-like
(Crassostrea gigas)

0 84

MgCNOT9 KT694361 927 309 RCD1 Cell differentiation protein RCD1 homolog
(Crassostrea gigas)

0 93

MgCNOT10 KT694356 2,133 711 TPR_ 1 CCR4-NOT transcription complex subunit 10-like
(Crassostrea gigas)

0 71

MgDDX5 KT694371 1,740 538 DEAD+Helic ATP-dependent RNA helicase DDX5 (Crassostrea
gigas)

0 75

MgDDX6 KT694372 1,332 443 DEAD+Helic ATP-dependent RNA helicase me31b (Crassostrea
gigas)

0 88

(continued on next page)
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Table 3 (continued)
Protein
name

GenBank
ID

Transcript
length (bp)

Protein
length (aa)

Identified
domain(s)

Annotation
(first hit)

E-value
(e∧)

Similarity
(%)

MgDDX20 KT694373 1,836 612 DEAD+Helic ATP-dependent RNA helicase DDX20 (Crassostrea
gigas)

0 77

MgDDX42 KT694374 2,196 731 DEAD+Helic ATP-dependent RNA helicase DDX42 (Crassostrea
gigas)

0 72

MgPABP KT694365 1,881 627 4× RRM+ PABP polyadenylate-binding protein 4 (Hydra vulgaris) 0 74

MgeIF4G KT694364 5,019 1,672 MIF4G+MA3+W2 eukaryotic translation initiation factor 4 gamma
(Crassostrea gigas)

0 57

MgPAN2 KT694367 3,606 1,202 UCH_ 1+ RNase_T PAB-dependent poly(A)-specific ribonuclease sub-
unit PAN2 (Lingula anatina)

0 72

MgPAN3 KT694368 2,334 778 None PAB-dependent poly(A)-specific ribonuclease sub-
unit PAN3 (Lingula anatina)

0 67

MgDCP1 KT694362 1,611 536 DCP1 mRNA-decapping enzyme 1A-like (Crassostrea gigas) −126 73

MgDCP2 KT694363 1,313 385 DCP2+ NUDIX m7GpppN-mRNA hydrolase (Lingula anatina) −117 67

MgPRMT5 KT694369 1,893 631 PRMT5 protein arginine N-methyltransferase 5-like
(Crassostrea gigas)

0 72

MgTudor-11 KT694370 2,682 894 4× SNc+ TUDOR Hypothetical protein mRNA (Lottia gigantea) 0 73

O
th
er

in
te
ra
ct
in
g
pr
ot
ei
ns

MgMaelstrom KT694366 1,321 404 HMG+MAEL Protein maelstrom (Crassostrea gigas) −155 62
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P. bachei, M. leidyi, T. adhaerens, N. vectensis, D. pulex, S. mansoni, S. mediterranea, A.
vaga, L. anatine, H. robusta andC. telata) or by local blastn against the downloaded genomes
(A. pisum and L. albipes).

Phylogenetic analysis
The inferred protein sequences were aligned using MUSCLE, release 2014-05-29 (Edgar,
2004). Subsequently, the fasta alignments were analyzed using Gblocks v.0.91 (Castresana,
2000) to extract conserved positions (positions common to 51% of the locally aligned
sequences). Trees were built using neighbor joining or maximus likelihood clustering
methods with 1,000 bootstrap replicates. Bayesian phylogenies were reconstructed using
MrBayes v.3.2.5 (Ronquist et al., 2012), with GTR substitution evolutionary model with
gamma-distributed rate variation across sites, evaluating the convergence after 1,000,000
runs (0.5 was considered as cut-off value). Trees were visualized and edited with FigTree
v1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/).

Digital expression analysis
To analyze the expression of the selected genes in Cg andMg RNA datasets, we retrieved all
available RNA-seq samples from the NCBI SRA archive. For Cg, we analyzed 123 Illumina
RNA-seq samples related to adult tissues or developmental stages. For Mg, we analyzed 13
RNA samples from gills (1), digestive gland (6), haemocytes (2), mantle (2) and muscle
(2). Overall, we included in the expression analysis 2,271 and 453M reads for Cg and Mg,
respectively (File S2). The trimmed reads were mapped to Cg and Mg genes using the
CLC Genomics Workbench v.8.0 (Qiagen, Hilden, Germany) mapping tool, with length
and similarity fractions set at 0.75 and 0.95, respectively, and mismatch/insertion/deletion
penalties at 3/3/3. The number of uniquely mapped reads of each dataset were counted
and used to calculate digital expression values as TPM (Transcripts Per Kilobase Million
mapped reads) as described by (Wagner, Kin & Lynch, 2013), considering 3 TPMs as lower
detection limit.

RESULTS
Mussel transcripts related to the miRNA biogenesis
We identified Mytilus galloprovincialis transcripts involved in the miRNA biogenesis by
systematic searches of diagnostic domains (Table 2) in a transcriptome assembly produced
from 453 million Illumina reads. Thus, we recovered nine transcripts coding for DROSHA,
DGCR8, XPO5, RAN, DICER, TARBP2 and for three Argonaute genes (one Ago and two
Piwi-like proteins, Table 3). We also identified 21 mussel proteins expected to play a role
in the miRNA maturation or involved in RNAi processes (File S3).

Figure 1 relates the general process of eukaryotic miRNA biogenesis to the mussel
proteins identified in this work. MgDROSHA and MgDGCR8 are expected to start the
maturation of pri-miRNAs produced by RNA polymerase II. MgDROSHA codes for
a 1,377 aa length protein containing all the canonical domains (2 RIBOc domains in
positions 959–1,093 and 1,139–1,271 and one DSRM domain in position 1,278–1,351)
whereasMgDGCR8 is a 728 aa length protein having oneWWdomain in position 229–258,
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Figure 1 (A) Graphical reconstruction of mussel miRNA biogenesis process. (Modified from Kapinas
& Delany, 2011). (B) Conserved domains of the mussel miRNA complements.
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necessary for the interaction with DROSHA, and two DSRM domains (positions 472–536
and 578–642) necessary for pri-miRNA binding. MgXPO5 is expected to cooperate
with MgRAN in the pre-miRNA cytoplasmic translocation. MgRAN encodes a 214
aa protein whereas MgXPO5 has a length of 1,201 aa and includes two 5’ conserved
domains (IBN_N and Xpo1) and one conserved region necessary for the interaction
with interleukin enhancer-binding factor 3 (position 525–562). In mussels, the RISC
complex uploading pre-miRNAs is defined by the endoribonuclease MgDICER (1,850
aa) and MgTARBP2 (321 aa). Like in Lophotrocozoa, mussel DICER is encoded by a
unique gene and contains the seven canonical domains, namely two helicase domains,
one DICER-dimer domain, one PAZ, two RIBOc and a final DSRM domain. MgTARBP2
displays three DSRM domains in positions 9–73, 101–166 and 249–314. Moreover,
M. galloprovincialis possess three argonaute proteins ranging from 861 to 941 aa in length
and representative of one AGO (DUF1785, PAZ and PIWI domains) and two PIWI-like
proteins (PAZ and PIWI domains). We considered the above mentioned gene products as
the key complement of the miRNA biogenesis.

Among the possible interacting proteins, we identifiedMgGW182, a transcript encoding
a protein shorter than the human counterparts but holding all the features considered
significant for its interaction with AGOs and the CCR4-NOT complex. In fact, MgGW182
possesses 19 N-terminal GW stretches, followed by one UBA domain, a Q-rich region
(M domain) and a C-terminal RNA recognition motif (RRM domain). Moreover, we
recognized a C-terminal conserved site known as PAM2 (Kozlov et al., 2010), expected to
interact with the poly(A) binding protein 1 (MgPABPC1) through the MLLE motif and
inhibit the mRNA translation by interfering with the mRNA circularization process (Piao
et al., 2010; Van Kouwenhove, Kedde & Agami, 2011). In the mussel transcriptome, we also
found putative homologs for a number of CNOT complex proteins (CNOT1, 2, 3, 6, 7, 9,
and 10), for the eukaryotic translation initiation factor 4 gamma, 1 eIF4G, PAB-dependent
poly(A)-specific ribonuclease subunits PAN2, PAN3, the decapping complex proteins
DCP1 and DCP2, and several RNA helicases demonstrated to be crucial in the miRNA
maturation (DDX5) and RNAi (DDX5- 6- 20 and 42). Finally, we recognized the putative
mussel homologs of protein arginine methyltransferase 5 (MgPRMT5), tudor domain
containing protein (MgTDRD-11) and maelstrom spermatogenic transposon silencer
(MgMAEL).

Mussel genes related to the miRNA biogenesis
Taking advantage of mussel WGS data (Nguyen, Hayes & Ingram, 2014) we investigated the
organization of the main genes involved in the mussel miRNA biogenesis. Fragmentation
of the genomic mussel assembly (2.3 million contigs; 700 bp on average) and considerable
dimension of the analyzed genes (9.6–17.6 kbp gene size in the case of Cg) prevented
the recovery of the full gene sequences. Nevertheless, we can describe the complete gene
structures of DROSHA, DGCR8, EXP5, DICER and TARBP2 (i.e., five of eight searched
sequences) whose length varies between 7.5 and 27 kbp, confirmed by the back-mapping
of 115,377 Illumina paired reads (Fig. 2, File S4). Moreover, these mussel genes showed
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Figure 2 Mussel gene structures of DROSHA (A), DGCR8 (B), EXP5 (C), DICER (D) and TARBP2 (E).Green boxes represent exons, length is
reported as base pair scale.

a remarkable conservation in terms of exon number when compared with a selection of
homolog genes from deuterostome and protostome organisms (Table 4).

Transcripts related to the miRNA biogenesis in bivalve spp
To identify the miRNA biogenesis complements in marine mollusks, we used homologous
genes retrieved from the genomes of C. gigas, L. gigantea and A. californica. Since the
C. gigas genome includes annotations only for the cds regions, we exploited full-length
transcripts obtained from a locally assembled oyster transcriptome to expand the genome
annotations in this species. In particular, we updated the annotation of CgDGCR8 and
CgDICER and we added new annotations for CgPIWI-1 (CGI_10008757: genomic contig
JH815696, position 184178–187825) and CgTARBP2 (JH818440, 414703–419857).

Since many marine bivalve spp. do not have at present a sequenced genome, we used
publicly available RNA-seq data to build 29 specie-specific transcriptome assemblies
and retrieve the homologous sequences of interest. After domain searching, we carefully
considered the high number of positive hits to retain only proteins including all the
expected protein features. Thus, we retrieved 132 complete hits from marine mollusks: 10
DROSHAs, 9 DGCR8s, 14 XPO5s, 34 RANs, 7 DICERs, 13 TARBP2s and 45 Argonaute-like
proteins, the latter classified in 13 AGO and 32 PIWI proteins by phylogenetic analysis
(Table 1, File S5).

Phylogenetic analysis of the miRNA biogenesis proteins
The inferred sequences of single miRNA biogenesis proteins were aligned together with
those retrieved from 34 sequenced genomes. Here, we report the phylogenetic analysis of
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Table 4 Number of exons of five key miRNA biogenesis genes.Metazome 3.0 and Ensembl Metazoa v.29 genome browsers were interrogated with
the previously analyzed hits for each organism. La and Ap genomes were downloaded and analyzed locally. Mg gene structures were retrieved as de-
scribed in Methods. In green are reported Protostomia; in orange Deuterostomia.
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DROSHA 27 24 29 17 24 20 13 14 6 28 3 3 11 9 13 23 1 23 30 23
DGCR8 14 10 15 10 15 13 7 No 11 18 4 5 11 6 6 6 2 11 18 16
XPO5 32 4 8 21 29 31 2 28 No 30 9 2 11 10 9 10 1 32 34 31
DICER 27 23 26 17 14 19 12 10 26 13 7 8 5 9 29 33 19 16 19 18
TARBP2 9 1 6 9 6 2 No No 11 8 4 5 7 7 7 6 7 6 7 6

the five proteins centrally involved in the miRNA biogenesis, namely DROSHA, DGCR8,
DICER, TARBP2 and AGOs (File S5 includes all protein sequences). We back-traced the
presence of a canonical DROSHA up to Cnidaria, although we found only incomplete hits
in Porifera and Placozoa and the genomes of Ctenophora spp. lack of both DROSHA and
DGCR8, as reported by other authors (Maxwell et al., 2012). The DROSHA sequences from
Cnidaria’s appeared as general outgroup whereas those of Chordata clustered as outgroup
of the other protostomes. DROSHAs fromMollusca and Arthropoda clustered consistently
with the different taxa whereas those from Platyhelmintes, Rotifera, Brachiopoda and
Annelida grouped together, with DROSHA from Caenorhabditis elegans (Nematoda) being
the most far-related (Fig. 3A). Contrary to DROSHA, we identified a complete DGCR8
also in the Porifera Amphimedon queenslandica, suggesting that also DROSHA should be
present in this taxa. Following phylogenetic analysis, we highlighted Cnidaria and Porifera
proteins as outgroup, with mollusks (and Annelida) clustering with Arthropoda and more
distantly Platyhelmintes and Rotifera hits. The Chordata sequences clustered as a separate
group (Fig. 3B).

The finding of putative DICER sequences in Ctenophora spp. supports the presence of
this gene through the whole Opisthokonta evolution (Maxwell et al., 2012). Also plants
possess DICER homologues which occur in different copy number among taxa: two genes
in Porifera, Placozoa, Cnidaria, Platyhelminthes and Arthropoda (with the exception of
D. pulex that possess three genes); four genes in plants like A. thaliana and P. trichocarpa
and one gene in Ctenophora, Rotifera, Cephalopoda Mollusca and Chordata. Moreover,
the presence of DICER was reported in some Protozoa and fungi (Mukherjee, Campos
& Kolaczkowski, 2013). Phylogenetic analyses, separate insect DICER-2,plant DICERs
from DICER-1. DICER-1 clade shows a consistent clustering of Arthropoda, Mollusca
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Figure 3 Phylogenetic relationships of four miRNA biogenesis proteins. (A) DROSHA, (B) DGCR8, (C) DICER and (D) TARBP2. Inferred protein sequences were
aligned using MUSCLE, conserved positions were extracted using Gblocks and subjected to MrBayes analysis.
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and Chordata hits, whereas some branches of basal metazoans and Platyhelminthes are
not well resolved (Fig. 3C). Likewise, the phylogenetic tree regarding TARBP2 displays a
clear cut-off between the proteins of mollusks, chordates and arthropods (Fig. 3D). We
back-traced the miRNA cytoplasm export complex composed by RAN and XPO5 in all
analyzed metazoans. Both RAN and XPO5 represent widely expressed sequences since we
found them also in transcriptome assemblies, although with suboptimal sequence coverage.

Several AGO and Piwi proteins can be present in individual organisms and, in fact, we
identified a total of 235 proteins. Whereas humans possess eight proteins, we found four
proteins in the majority of the analyzed insect spp. (with the exception of 15 proteins in
A. pisum) and three or four different proteins in bivalve spp. Also, basal Metazoa possess
Argonaute-like sequences: four in the genomes of Ctenophora and Cnidaria spp., one in
the Placozoa T. adhaerens and two in A. queenslandica. The case of C. elegans is remarkable
since it holds several Argonaute gene families and at least 24 proteins (Hoogstrate et al.,
2014). In agreement with other phylogenetic studies (Swarts et al., 2014), the Argonaute
proteins from plants and the majority of those from C. elegans formed distinct clades
and, moreover, a clear separation was evident between AGO and PIWI proteins. Bivalve
protein sequences clustered always separately forming one cluster for AGO-like hits and
two clusters for PIWI-like proteins (Fig. 4).

Digital expression analysis of mussel and oyster miRNA biogenesis
genes
We used the 13 Mg and 124 Cg RNA-seq samples to evaluate the expression levels of
miRNA biogenesis genes in different tissues and conditions. Based on total mapped
reads, we computed TPM values and we used elongation factor 1 α (El1α) as normalizer
housekeeping gene to compare the expression level of the different genes in each sample.

For Mg, the sequence analysis indicated a scarce basal expression of the genes mentioned
above in five adult tissues: gill, digestive gland, haemolymph, muscle and mantle (below
2% of El1α, except for DDX5, RAN and CNOT9). Mantle and muscle appeared the most
responsive tissues whereas haemolymph was the least responsive one. In particular, the
genes that we considered as the core components of miRNA biogenesis were expressed at
levels below 0.5% of El1α (File S6).

For Cg, we analyzed a considerable number of RNA-seq libraries representative of adult
tissues (85) and developmental stages (39) (File S6). In adult oysters we observed low basal
expression, as detected in the mussel samples. In fact, none of the experimental conditions
reported for the analyzed RNA-seq samples influenced substantially the expression of the
core miRNA pathway genes (expression levels below 2% of El1α), with the exception of the
high levels of CgPIWI-1 levels inmale and female gonads (around 3.5%, Fig. 5). Conversely,
most of the miRNA biogenesis genes were expressed at remarkable levels during the early
stages of the oyster development: mainly from two cells to the rotary movement and, for
some genes, also in the next developmental stages untilD-shaped larvae, with no detectable
signals afterward in spat and juveniles. Hence, these genes are particularly active in the
early development, in particular one AGO (CGI_10020511) and two PIWI transcripts
from the egg to trocophora (Fig. 5). In the same developmental stages we also noticed a
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Figure 4 Phylogenetic relationships of Argonaute-like proteins. Proteins were aligned using MUSCLE and tree was generated using Neighbor
Joining algorithm with 1,000 bootstrap replicates. Plant proteins are highlighted in green, whereas C. elegans hits are reported in grey. Blue lines rep-
resent mollusk hits, red lines represent hits from basal metazoans.
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Figure 5 Digital expression analysis in oyster. The expression of the 8 miRNA biogenesis genes were computed in tissue-specific RNA libraries
and in RNA libraries from different developmental phases. (A) Expression values represented as percentage of El1α. (B) Cumulative TPM expres-
sion values of the 8 genes in the same samples.

remarkable expression of the key miRNA genes, with the co-expression of DROSHA and
DGCR8 evident in all the analyzed samples.

DISCUSSION
Small RNAs are important regulators of the gene expression, as recognized in various
model and non-model organisms (Kim et al., 2014a; Kim et al., 2014b; Martini et al.,
2014; Hussain & Asgari, 2014; Sahoo et al., 2014; Britton et al., 2014; Poole et al., 2014;
Solofoharivelo et al., 2014), including some bivalves (Jiao et al., 2014; Zhou et al., 2014).
In addition to the identification of miRNAs, a general comprehension of the miRNA
biogenesis in itself is also significant (Grimson et al., 2008; Wu et al., 2011; Moran et al.,
2013). However, the main genes involved in miRNA formation in bivalves have not
been described and characterized so far. In this study, we have provided an overview
on the miRNA biogenesis complements in bivalves spp., with particular attention to
M. galloprovincialis and C. gigas. To the best of our knowledge, we report for the first
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time the presence of a complete miRNA biogenesis pathway in M. galloprovincialis, the
full-length transcript sequences of DICER, DGCR8, XPO5, RAN, DROSHA, TARBP2,
three Argonaute genes and the identification of many other components that are
candidate miRNA complement-interacting proteins such as MgGW182. By using local
transcriptome assemblies, we identified these genes also in many other marine bivalves.
The general low expression levels of these transcripts in the adult tissues of both M.
galloprovincialis and C. gigas, and the considerable gene size, have probably prevented a
previous identification of full-length sequences in not-well-covered bivalve transcriptomes.
In fact, we obtained complete transcript sequences only from sequenced genomes or highly-
covered transcriptomes whereas in other transcriptome assemblies we retrieved only few
complete sequences. Overall, we have analyzed 523 miRNA complement sequences, 145
of them belonging to marine mollusks and displaying a consistent sequence clustering
(Ostreoida and Mytiloida proteins generated two distinct clades, located always as sister
group of arthropods).

However, the copy number of Argonaute genes somewhat differs among bivalves, as
C. gigas and A. californica genomes coding for four proteins (2 AGO and 2 PIWI proteins)
whereas M. galloprovincialis and L. gigantea possess three proteins (1 AGO and 2 PIWIs).
We also highlighted the over-expression of the miRNA biogenesis genes during the first
phases of the oyster development. A genome protection mechanism based on piRNA
expression during early developmental stages is well known in mammals (Malone &
Hannon, 2009; Kim et al., 2014a; Kim et al., 2014b) but such mechanism has not been
reported in bivalves and additional investigations are necessary.

Finally, the identification of several mussel proteins either necessary or cooperative
in the miRNA biogenesis, supports the existence of a complete and functional miRNA
pathway in mussels and, probably, in other bivalves. Up to now, protein–protein or
protein-RNA interaction data are not available for bivalve spp. and these topics may
represent a direction of work in the future. Meanwhile, the expression analyses of miRNA
biogenesis genes coupled with the identification of the miRNAs expressed in naturally
infected and laboratory-treated bivalves could provide both validation and new insights on
these interesting processes.
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