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While the significance of Immunogenic Cell Death (ICD) in oncology is acknowledged, its
specific impact on colorectal carcinoma remains underexplored. In this study, we delved
into the role of ICD in colorectal carcinoma, a topic not yet comprehensively explored. A
novel ICD quantification system was developed to forecast patient outcomes and the
effectiveness of immunotherapy. Utilizing single-cell sequencing, we constructed an ICD
score within the Tumor Immune Microenvironment (TIME) and examined Immunogenic Cell
Death Related Genes (ICDRGs). Using data from TCGA and GEO, we discovered two
separate molecular subcategories within 1184 patients diagnosed with Colon
adenocarcinoma/Rectum adenocarcinoma Esophageal carcinoma (COADREAD). The ICD
score was established by Principal Component Analysis (PCA), which classified patients
into groups with low and high ICD scores. Further validation in three independent cohorts
confirmed the model's accuracy in predicting immunotherapy success. Patients with higher
ICD scores exhibited a "hot" immune phenotype and showed increased responsiveness to
immunotherapy. Key genes in the model, such as AKAP12, CALB2, CYR61, and MEIS2, were
found to enhance COADREAD cell proliferation, invasion, and PD-L1 expression. These
insights offered a new avenue for anti-tumor strategies by targeting ICD, marking
advances in colorectal carcinoma treatment.
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22 Abstract

23 While the significance of Immunogenic Cell Death (ICD) in oncology is acknowledged, its 

24 specific impact on colorectal carcinoma remains underexplored. In this study, we delved into the 

25 role of ICD in colorectal carcinoma, a topic not yet comprehensively explored. A novel ICD 

26 quantification system was developed to forecast patient outcomes and the effectiveness of 

27 immunotherapy. Utilizing single-cell sequencing, we constructed an ICD score within the Tumor 

28 Immune Microenvironment (TIME) and examined Immunogenic Cell Death Related Genes 

29 (ICDRGs). Using data from TCGA and GEO, we discovered two separate molecular 

30 subcategories within 1184 patients diagnosed with Colon adenocarcinoma/Rectum 

31 adenocarcinoma Esophageal carcinoma (COADREAD). The ICD score was established by 

32 Principal Component Analysis (PCA), which classified patients into groups with low and high 

33 ICD scores. Further validation in three independent cohorts confirmed the model's accuracy in 

34 predicting immunotherapy success. Patients with higher ICD scores exhibited a "hot" immune 

35 phenotype and showed increased responsiveness to immunotherapy. Key genes in the model, 

36 such as AKAP12, CALB2, CYR61, and MEIS2, were found to enhance COADREAD cell 

37 proliferation, invasion, and PD-L1 expression. These insights offered a new avenue for anti-

38 tumor strategies by targeting ICD, marking advances in colorectal carcinoma treatment.
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39

40 Introduction

41 Colorectal carcinoma ranks as a leading gastrointestinal cancer and holds the third position in 

42 global cancer mortality. It presents a 5-year survival rate near 65% 1. Surgical resection remains 

43 the cornerstone for treating early-stage colorectal cancer, while advanced stages often benefit 

44 from a regimen combining chemotherapy and targeted therapies 2. The advent of immune 

45 checkpoint inhibitors (ICI) has marked a revolutionary shift in oncological treatments, offering 

46 substantial clinical advantages 3. Despite these advancements, the response to ICI is limited to a 

47 small patient subset 4,5, underscoring the urgency to better predict outcomes and responses in 

48 COADREAD, and to develop integrated approaches for overcoming immune resistance.

49 Historically, biomarker research in oncology predominantly utilized RNA sequencing (RNA-

50 Seq) of whole tumor tissues 6, capturing only a generalized genetic snapshot from a diverse cell 

51 population. This approach resulted in ICI biomarkers with suboptimal predictive accuracy. The 

52 introduction of scRNA-Seq has transformed this area by allowing for the dissection of gene 

53 expression on a cellular level, opening up possibilities for discovering improved new biomarkers 

54 7.

55 ICD is a form of programmed cell death that enhances adaptive immunity by considering its 

56 physical, chemical, and operational aspects 8. Tumor cell death, induced by external stimuli, 

57 releases various danger signals including high mobility group protein B1, surface-exposed 

58 calreticulin, type I interferon. These molecules convert non-immunogenic cells into 

59 immunogenic ones and serve as ligands for pattern recognition receptors. This interaction 

60 triggers the recruitment and activation of antigen-presenting cells, thereby initiating tumor-

61 specific immune responses 9,10. Primary stressors inducing ICD include chemotherapy drugs, 

62 targeted agents, radiotherapy, and intracellular pathogens 11. Researches indicated that the 

63 synergistic application of chemotherapy and immunotherapy can enhance tumor cell 

64 immunogenicity, boost anti-cancer immune reactions 12. This interplay positions ICD as a 

65 promising biomarker, intricately linked to patient prognosis and immunotherapy responsiveness.

66 Previous studies have begun exploring ICD's clinical utility, particularly as a prognostic 

67 biomarker in cancers like clear cell renal cell carcinoma, melanoma13,14. However, there remains 

68 unknown in leveraging ICD for predicting responses to immunotherapy and chemotherapy in 

69 colorectal cancer. Addressing this gap was the focal point of our study, marking a step forward in 

70 this research domain.

71 In this investigation, our objective was to amalgamate single-cell and bulk RNA sequencing 

72 data to decipher the nuances of immune cell death in COADREAD patients, assessing its 

73 biomarker potential for predicting ICI outcomes. Additionally, we sook to elucidate the 

74 molecular and immune profiles associated with immune cell death and their implications for 

75 COADREAD prognosis. By analyzing ICDRGs, we have distinguished two subtypes and 

76 developed a robust predictive model, the ICD Score. This scoring system not only quantifies 

77 immune cell death but also holds promise as an instrumental marker in the realm of personalized 

78 precision medicine.
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80 Materials & Methods

81 Data Sources and Acquisition

82 The single cell data for this research was acquired from the GEO Database (http 

83 //www.ncbi.nlm.nih.gov/geo/) 15, datasets GSE166555, which consisted of 12 samples of 

84 colorectal carcinoma. The TCGA database at https //portal.gdc.cancer.gov 16 provided bulk 

85 RNA-seq data and clinical details for 380 COADREAD patients, GEO database also provided 

86 additional datasets, GSE17538 (n=238) and GSE39582 (n=566).

87

88 Examining RNA sequencing at the individual cell level

89 The scRNA-seq data in R was analyzed using Seurat (v4.1.1) 17. Initial quality control was 

90 performed using the �Seurat� package to filter out cells that did not meet specific criteria. The 

91 criteria for selecting the dataset included nFeature_RNA between 200 and 7500, nCount_RNA 

92 between 200 and 35,000, and a mitochondrial gene percentage below 10%. After these criteria, 

93 the dataset consisted of 66,050 cells and 21,753 genes. The dataset was then batch corrected 

94 using the 'harmony' package. Normalization of the data was achieved by the 'ScaleData' function. 

95 PCA was performed to extract the top 28 principal components using the top 2,000 genes with 

96 high variability. Unsupervised clustering and visualization of cell subpopulations on a two-

97 dimensional map was carried out using Uniform Manifold Approximation and Projection 

98 (UMAP) 18. 

99 To compare gene expression differences between clusters, the 'FindAllMarkers' function was 

100 used. Marker genes for each cluster were determined based on a log2 (fold change) value greater 

101 than 1, an adjusted P-value lower than 0.05, and a resolution of 0.8. Finally, the cell 

102 subpopulations in the various clusters were annotated using the 'SingleR' package along with the 

103 CellMarker database 19 and PanglaoDB database 20.

104 Using the R function 'FindAllMarkers', we examined genes that were expressed differently in 

105 various cell types. In order to evaluate the diversity in sets of genes, we employed Gene Set 

106 Variation Analysis (GSVA) (version 1.40.1) 21. Scores were computed for 50 hallmark gene sets 

107 acquired from MSigDB (https://www.gsea-msigdb.org/gsea/msigdb) 22 and 34 ICD genes from 

108 the publication referenced by PMID 27057433 23. Cell clusters were classified into high and low 

109 ICD score groups based on the median scores. Heatmaps were used to visualize the correlations 

110 between ICD and Hallmark scores, generated using the R packages 'pheatmap' and 'corrplot' with 

111 default thresholds.

112

113 Bulk RNA-Sequencing Data Integration 

114 For the bulk RNA-seq datasets, we integrated the data and corrected batch effects using the 

115 �limma� and �sva� packages. Subsequently, a log2 transformation was applied to all datasets. The 

116 integration process's effectiveness, before and after, was visualized using PCA plots, created 

117 with the �FactoMineR� and �factoextra� packages in R.

118
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119 Development of ICDRGs Prognostic Signature

120 We initially examined correlations between ICDRGs in COADREAD patients. Genes associated 

121 with prognosis were identified by univariate Cox regression analysis using the survival package. 

122 The analysis was conducted with a significance threshold of p < 0.05, as stated in the source 

123 https://rdocumentation.org/packages/survival/versions/2.42-3.

124

125 Molecular Subtyping via Consensus Clustering

126 To categorize molecular subtypes based on ICD prognostic signature genes, we employed the 

127 �ConsensusClusterPlus� package (1.59.0) in R. This involved utilizing the K-means algorithm for 

128 clustering with a range of k = 2-10 to determine the optimal cluster number. To ensure stability, 

129 this clustering process was iteratively conducted 1,000 times.

130

131 ICDRGs Prognostic Signature Development

132 By conducting univariate Cox regression analysis using the survival package at a significance 

133 level of p < 0.05, we identified genes linked to prognosis in COADREAD patients, while 

134 examining the correlations among ICDRGs.

135

136 Molecular Subtypes and Clinicopathological Correlation

137 We conducted an analysis to assess the clinical significance of molecular subtypes in 

138 COADREAD by examining their correlation with clinicopathological characteristics such as age, 

139 gender, grade, and TNM stage. The correlation was visualized through heatmaps using the 

140 'pheatmap' package in R. Additionally, we performed survival analysis using the 'survminer' 

141 package to evaluate the prognostic implications of these subtypes.

142

143 Pathway Enrichment and Immune Infiltration Analysis

144 In order to understand the TIME in different molecular subtypes, we employed GSVA using 

145 hallmark, KEGG, and Reactome gene sets obtained from the MSigDB database. By utilizing the 

146 'estimate' package in R, the ESTIMATE algorithm 

147 (https://sourceforge.net/projects/estimateproject/)24 computed stromal, immune, and ESTIMATE 

148 scores in tumor tissues. In addition, we utilized single-sample gene set enrichment analysis 

149 (ssGSEA) to investigate the immune infiltration pattern in COADREAD, specifically targeting 

150 23 types of immune cells. The distribution of these immune cells in the samples was quantified 

151 and visualized using box plots.

152

153 Molecular Analysis and DEGs Identification

154 The GSCA datasets 25 were used to analyze prognostic genes, including mutation, SNV, CNV, 

155 and Methylation. DEGs between clusters were identified using the 'limma' package, with a 

156 threshold of |log2 (Fold Change)| > 1 and an adjusted p-value < 0.05. Subsequently, the R 

157 package 'clusterProfiler' was employed for conducting GO and KEGG analyses. Significant 

158 DEGs with prognostic value were detected using univariate Cox regression and presented in a 
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159 forest plot.

160

161 ICD Score System Development

162 The ICD Score system was created through the use of PCA 26. This score represents the level of 

163 individual ICD regulation and is derived by summing the values of PC1 and PC2, which capture 

164 the most significant variances in the expression data. The ICD score was calculated for each 

165 sample, and an optimal threshold value was determined to maximize the accuracy of prognostic 

166 predictions. Based on this threshold, patients from the datasets were categorized into either low 

167 or high ICD score groups. Survival analyses were conducted to evaluate the prognostic 

168 significance of the ICD score in COADREAD. Box and bar diagrams were used to visualize the 

169 correlation between the ICD score and clinical features.

170

171 Immune landscape analysis of ICD score

172 To demonstrate the connections between the ICD score and the infiltration of immune cells, as 

173 well as the expression of cytokines, chemokines, and their corresponding receptors, we utilized 

174 heatmaps. The relationship between the ICD score and hallmark pathways was evaluated using 

175 GSVA. Furthermore, we analyzed the mRNA expression of immune checkpoints and gene 

176 mutations in COADREAD patients from the TCGA database. We identified and visualized 

177 somatic mutations in different ICD score groups using waterfall plots and forest plots, providing 

178 insights into the genetic variations associated with ICD scores.

179

180 Immunotherapy prediction and chemotherapy sensitivity analysis

181 The predictive value of the ICD score for immunotherapy response and chemotherapy sensitivity 

182 was assessed in our study. We analyzed the IMvigor210 cohort, which included 298 patients 

183 with urothelial carcinoma, to predict the immunotherapy response based on the ICD score. The 

184 data was processed using the R package 'IMvigor210CoreBiologies'. Additionally, we included 

185 the GSE61676 group, which consisted of transcriptomic data from advanced non-squamous non-

186 small cell lung tumors treated with erlotinib and bevacizumab, to evaluate the predictive ability 

187 of the ICD score. Furthermore, information on the response of patients with Kidney Renal Clear 

188 Cell Carcinoma (KIRC) to nivolumab (anti-PD-1) was obtained from Checkmate-KIRC (PMID 

189 32472114) 27. Kaplan-Meier analysis was used to examine the prognostic significance of the ICD 

190 score in COADREAD. The ICD score was also employed to estimate the IC50 of commonly 

191 targeted therapeutic drugs using the 'pRRophetic' R package and data from the Genomics of 

192 Drug Sensitivity in Cancer (GDSC) database 28.

193

194 RNA Extraction and PCR Analysis

195 Total RNA was extracted from colorectal cells using the Trizol method (Invitrogen), followed by 

196 cDNA synthesis using the Prime Script RT reagent Kit (Takara). Gene expression was quantified 

197 using TB Green Premix Ex Taq (Takara) and normalized to GAPDH. Supplementary Table 1 

198 provides primer details.
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199

200 Cell Culture

201 Human colorectal cell lines including NCM460, HCT116, HT29, and LOVO were cultured in 

202 RPMI 1640 or DMEM (Gibco) supplemented with 10% FBS. The cells were incubated at 37°C 

203 in a 5% CO2 environment. To validate their authenticity, the cell lines obtained from the Chinese 

204 Academy of Sciences underwent STR profiling and mycoplasma testing, which can be verified at 

205 http://www.cellbank.org.cn/.

206

207 siRNA Transfection

208 siRNAs were used to target AKAP12, CALB2, CYR61, MEIS2, or a control, which were then 

209 transfected into HCT116 and HT29 cells. The cells were seeded at a density of 3×10^5 cells per 

210 dish (60 mm). Transfection was performed using Lipofectamine RNAiMax, followed by a 24-

211 hour culture in RPMI 1640 or DMEM supplemented with 10% FBS. The siRNA sequences can 

212 be found in Supplementary Table 1.

213

214 Proliferation Assay

215 A total of 3000 cells were placed in 96-well plates. The cells' viability was assessed every 24 

216 hours using a CCK-8 kit manufactured by Dojindo. The microplate reader (Thermo Fisher, USA) 

217 was used to measure the absorbance at 450 nm. The obtained data was then analyzed using 

218 GraphPad Prism 9.5.0.

219

220 Transwell Migration Assay

221 A total of 100,000 cells were positioned in the top compartment on a membrane coated with 

222 Matrigel. RPMI 1640 or DMEM (without FBS) was added above, while a medium containing 20% 

223 FBS was placed below. Post 24-hour incubation, cells were fixed, stained with Giemsa crystal 

224 violet, and imaged. Non-migrated cells from the upper chamber were removed.

225

226 Statistical Analysis 

227 The R software (version 4.1.2) was utilized for data analysis. Correlations were assessed using 

228 Pearson or Spearman methods, and the Wilcoxon test was employed to compare two groups. 

229 Survival outcomes among different subgroups were analyzed using Kaplan�Meier and log-rank 

230 tests. The prognostic significance of ICDRGs and clinicopathologic attributes was evaluated 

231 through univariate Cox regression. The Student's t-test was used to analyze the qRT-PCR results. 

232 A p-value less than 0.05 indicated statistical significance, denoted as *p < 0.05, **p < 0.01, and 

233 ***p < 0.001.

234

235 Ethical Considerations

236 The research did not involve human participants or animals as per the authors' confirmation.

237

238 Results
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239 Single Cell Sequencing Data Interpretation

240 Reducing Complexity 

241 Our analysis commenced with the single-cell sequencing dataset GSE166555, focusing on 

242 COADREAD. We integrated data from 12 distinct samples, ensuring minimal batch effect. 

243 Employing the Uniform Manifold Approximation and Projection (UMAP) algorithm, we 

244 segregated the cells into 28 identifiable clusters. By scrutinizing the expression of surface marker 

245 genes across these clusters, we pinpointed eight cell types: B cells, dendritic cells, mono-

246 macrophages, natural killer (NK) cells, T cells, malignant cells, endothelial cells, and fibroblasts. 

247 These cell types were distinctively represented in different clusters, as illustrated in Figure 2 A.

248

249 Transcriptomic Landscape Analysis

250 Our analysis revealed the most influential genes, with the top five contributors detailed in Figure 

251 2 B. In malignant cells, the highest expressed marker genes were KRT8, LGALS4, PIGR, ELF3, 

252 and CLDN4, while the least expressed were SRGN, VIM, TSC22D3, CXCR4, and RGS1. For 

253 monocyte-macrophages, the most abundantly expressed markers included AIF1, TYROBP, IL1-

254 B, CXCL8, and S100A9, contrasting with the lowest expressed markers KRT8, LGALS4, 

255 PHGR1, PIGR, and JCHAIN. In NK cells, the highest expressed genes were TPSAB1, CPA3, 

256 MS4A2, HPGDS, and KIT, with the least expressed being KRT8, PHGR1, FXYD3, CLDN4, 

257 and IFI27. T cells exhibited high expression of CD3D, IL7R, CD2, CD3E, and TRAC, and low 

258 expression of LGALS4, KRT8, PIGR, IFI27, and CLDN3. Gene Set Variation Analysis (GSVA) 

259 further delineated the Hallmark pathways enriched in each cell type, as shown in Figure 2 C. B 

260 cells and T cells demonstrated similar pathway enrichment patterns, while fibroblasts and 

261 monocyte-macrophages shared a different, yet comparable pattern. B cells and T cells 

262 demonstrated similar pathway enrichment patterns, while fibroblasts and monocyte-macrophages 

263 shared a different, yet comparable pattern.

264

265 Expression Profiles of ICDRGs

266 In our analysis, 34 genes associated with ICD were identified using the "FindAllMarkers" 

267 function, enabling us to discern the expression patterns of ICDRGs across various cell types. 

268 These expression patterns were effectively visualized through bubble plots (Fig. 2 D). Notably, 

269 HSP90AA1 exhibited high expression in B cells, T cells, and NK cells, while showing lower 

270 expression in dendritic cells, monocyte-macrophages, malignant cells, endothelial cells, and 

271 fibroblasts. Conversely, HMGB1 was predominantly expressed in NK cells, T cells, and 

272 fibroblasts, but less so in B cells, dendritic cells, monocyte-macrophages, malignant cells, and 

273 endothelial cells. CALR expression was significantly elevated in B cells compared to other cell 

274 types. PDIA3 showed a similar pattern, with heightened expression in B cells and NK cells, but 

275 lower levels in other cell types. Additionally, IFNGR1, CD4, LY96, and IL1B were 

276 predominantly expressed in monocyte-macrophages, while IFNGR1 and CD4, along with 

277 MYD88, were highly expressed in dendritic cells.

278
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279 ICD Score Elucidation and Implications

280 In our analysis, cells were scored for expression of ICDRGs using the GSVA method, as shown 

281 in Figure 2 E. This led to categorization into low and high ICD score clusters (Figure 2 F), with 

282 the score distribution visualized in box plots (Figure 2 G). Monocyte-macrophages exhibited the 

283 highest ICD scores, in contrast to tumor cells, which scored the lowest. Composition charts 

284 displayed the cell type distribution in these clusters, based on count and proportion (Figure 2 H), 

285 highlighting a prevalence of tumor cells in low-score and T cells in high-score clusters.

286 Correlations between ICD scores and Hallmark pathway scores (Figure 2 I) revealed positive 

287 associations with allograft rejection, complement, and inflammatory response pathways in 

288 monocyte-macrophages, NK cells, and endothelial cells. B cells, dendritic cells, and T cells 

289 showed negative correlations with pathways like KRAS signaling DN and WNT beta-catenin 

290 signaling. High TLS score group exhibited elevated expression of immune activation pathways 

291 (Figure 2 J), with inflammatory response associated pathways markedly enriched.

292

293 Comprehensive analysis of Bulk-Seq Data 

294 Data from 1184 patients were aggregated from the TCGA (TCGA-COADREAD) and GEO 

295 databases (GSE39582, GSE17538). We addressed batch effects using the "limma" and "sva" 

296 methods. Figure 3 A-B showed a notable reduction in the dimensions of components 1 and 2 

297 from 76.3% to 15.6%. 

298

299 Delineation of ICD Molecular Subtypes and Their Clinical Relevance

300 Our survival analysis identified 12 ICDRGs - PIK3CA, P2RX7, NT5E, ENTPD1, IL1R1, LY96, 

301 BAX, CASP1, CASP8, IL17A, FOXP3, CXCR3 - significantly correlated with overall survival 

302 (OS) in COADREAD patients (Figures 3 D, p < 0.05). Univariate Cox regression highlighted 

303 that PIK3CA, P2RX7, NT5E, ENTPD1, IL1R1, LY96 positively impacted survival, whereas 

304 BAX, CASP1, CASP8, IL17A, FOXP3, CXCR3 had a negative association. We constructed an 

305 ICD network to elucidate these genes' interrelationships and prognostic significance (Figure 3 C).

306 COADREAD patients were divided into two molecular subtypes, A and B, based on ICDRG 

307 expression profiles using a consensus clustering algorithm. Optimal separation (k=2) indicated 

308 distinct survival probabilities between these subtypes, with subtype A showing higher survival 

309 (log-rank test, p = 0.001; Figure 3 F). Most TLRGs were highly expressed in B cluster (Figure 3 

310 G). Additionally, the variances between ICDRG expression and clinical features like age, stage, 

311 gender, recurrence, metastasis, fustat, and futime across the two molecular subtypes had no 

312 significant differences (Figure 3 H).

313

314 Analyzing ICD Subtypes Through GSVA

315 GSVA enrichment analyses on molecular subtypes using Hallmark, KEGG, and Reactome 

316 pathways showed subtype B's significant enrichment in inflammation-related pathways, 

317 including interferon gamma and alpha, IL2-STAT5, IL-6-JAK-STAT3, and Toll-like receptor 

318 and B cell receptor signaling (Figure 3 I-K), further establishing the link between subtype B and 
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319 inflammation, a key aspect of immunogenic cell death.

320

321 ICDRGs Analysis via GSCA Database

322 We analyzed ICDRGs through the GSCA database (http://bioinfo.life.hust.edu.cn/GSCA/#/). 

323 The analysis covered SNV percentages (Sup-Figure 1 A), mutation frequencies (Sup-Figure 1 B), 

324 CNVs (Sup-Figure 1 C), and correlations between CNV, methylation, and mRNA expression 

325 (Sup-Figures 1 D-F) in COADREAD. This provided insights into genetic and epigenetic 

326 variations of ICD signature genes.

327

328 Investigating Immune Infiltration in ICD Subtypes

329 PCA analysis demonstrated distinct ICD transcription profiles between subtypes A and B (Figure 

330 4 A). Investigating ICDRGs' roles in the TIME of COADREAD, we found subtype B showed 

331 higher stromal, immune, and ESTIMATE scores (Figure 4 B). The estimate algorithm was used 

332 to calculate human immune cell subsets for each COADREAD sample in immune cell 

333 infiltration between the subtypes via ssGSEA (Figure 4 C). Specifically, cells like activated B 

334 and CD4 T cells, dendritic cells, MDSC, macrophages, and various T-helper cells showed lower 

335 infiltration levels in subtype A compared to subtype B. These findings suggested that subtype B 

336 is enriched in immune pathways and closely associated with TIME.

337

338 Exploring ICD-DEGs: Functional and Pathway Enrichment

339 We identified 448 differentially expressed genes (DEGs) between ICD molecular subtypes A and 

340 B, visualized in a volcano plot (Figures 4 D, |logFC|>1, P < 0.05). GO and KEGG analyses were 

341 conducted to identify associated biological pathways. GO enrichment revealed DEGs 

342 predominantly involved in cytokine production regulation, leukocyte migration and mediated 

343 immunity, cell and leukocyte chemotaxis, immune receptor and chemokine activity, and pattern 

344 recognition receptor pathways (Figures 4 E). KEGG enrichment highlighted DEGs in cytokine-

345 cytokine receptor interaction, chemokine signaling, viral protein interaction with cytokine and 

346 cytokine receptor (Figures 4 F). A cnetplot elucidated specific gene networks in these pathways, 

347 with the top 5 pathways shown in Figure 4 G. This enrichment analysis suggested ICD's 

348 significant role in immune activation and cytokine-chemokine interactions in COADREAD.

349

350 Development and Implications of ICD Score

351 Univariate Cox regression analysis was employed on the 448 DEGs to assess their prognostic 

352 significance, leading to the identification of 25 OS-related genes. These genes were represented 

353 in a forest plot (Figure 4 H). Subsequently, PCA was conducted on these 25 prognostic ICD-

354 DEGs, dividing patients into low and high ICD score genomic subtypes (score=PCA1-PCA2).

355

356 Examining the Association with Somatic Mutations

357 The somatic mutations in the two ICD score clusters were further analyzed. The top ten mutated 

358 genes in the high ICD score cluster included TP53, APC, TTN, and KRAS (Figures 4 I upper), 
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359 while the low ICD score cluster showed a different gene mutation profile (Figures 4 I under), 

360 indicating a higher overall mutation frequency in the high score cluster. A forest plot highlighted 

361 the top 12 genes with the most significant variation in mutation frequency between the clusters 

362 (Figures 4 J). This analysis suggested a positive correlation between higher gene mutation 

363 frequency and variation in the high ICD score cluster.

364

365 ICD Score Correlation with TIME and Pathways

366 The relationship between the ICD score and hallmark pathway scores, analyzed using GSVA, 

367 revealed a positive correlation with immune activation pathways, including interferon gamma 

368 and alpha responses, inflammatory response, IL-2-STAT5 signaling, and TNFA signaling via 

369 NFKB. Conversely, a negative correlation was observed with pathways related to malignancy 

370 like peroxisome, MYC targets, oxidative phosphorylation, and the reactive oxygen species 

371 pathway (Fig. 4 K). This suggests the ICD score's alignment with immune-activated pathways.

372 Further analysis of cytokine-chemokine networks highlighted significant enrichment of 

373 chemokines, interleukins, and interferons along with their receptors in the high-ICD cluster (Fig. 

374 4 L). Spearman correlation analysis indicated a positive correlation of the ICD score with the 

375 infiltration of 23 immune cell types, suggesting a more robust immune component in the TIME 

376 of the high-score cluster and potentially better immune prognosis (Fig. 5 B).

377

378 ICD Score's Impact on COADREAD Prognosis

379 Survival analysis revealed that COADREAD patients in the low-score ICD cluster exhibited 

380 higher survival rates than those in the high-score cluster (Figure 5 A, p < 0.001). Significant 

381 variations in recurrence, metastasis, and disease stage were observed between the clusters, with 

382 advanced stages showing higher ICD scores (Fig. 5 C-J). Further analysis demonstrated elevated 

383 expression of immune checkpoints like PDCD1, CTLA4, TIGIT, and LAG3 in the high-score 

384 group (Figures 5 K-N), suggesting a potential for better response to immune checkpoint 

385 inhibitors in this group. This underlined the ICD score's relevance in predicting immunotherapy 

386 efficacy and regulating the tumor immune microenvironment in COADREAD.

387

388 Efficacy of ICD Score in Predicting Response to Immunotherapy

389 We assessed the prognostic value of the ICD score for immunotherapies, including PD-L1 

390 blockade, in various cohorts. In the GSE61676 cohort, a higher response rate to bevacizumab 

391 combined with erlotinib was observed in the high-ICD cluster (57%) compared to the low cluster 

392 (36%) (Figure 5 P). This cluster also showed significantly longer overall survival (OS) (Figure 5 

393 O, p=0.03). In the IMvigor210 cohort, patients� responses to anti-PD-L1 therapy varied. Patients 

394 with stable or progressive disease had lower ICD scores compared to those with complete or 

395 partial responses (Figure 5 R). The high-ICD cluster demonstrated significant clinical benefits 

396 and longer OS (Figure 5 Q, p=0.0036). Similarly, in the Checkmate cohort, the high-ICD cluster 

397 had significantly longer OS (Figure 5 S, p=0.0061) and a higher percentage of complete/partial 

398 responses (Figure 5 T). These findings indicated that the ICD score was a potential predictor of 
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399 immunotherapy efficacy in COADREAD.

400

401 Drug Sensitivity Analysis Based on ICD Score

402 Patients in the high-score cluster exhibited lower IC50 values for drugs like AP.24534, A.770041, 

403 ABT.263, AG.014699, AICAR, and AMG.706 (Figures 5 U-Z), indicating a higher sensitivity to 

404 these treatments. These findings suggested the utility of the ICD score as a predictor for selecting 

405 effective anticancer drugs.

406

407 ICDRGs' Role in COADREAD Cellular Behaviors

408 Our research involved RT-qPCR analysis of AKAP12, CALB2, CYR61, and MEIS2 in normal 

409 colon and COADREAD cell lines, revealing significant overexpression in tumor cells (Figure 6 

410 A-D). We further investigated these genes' roles in COADREAD using siRNA knockdown in 

411 HCT116 and HT29 cells, with siRNA-1 and siRNA-2 selected for their high transfection 

412 efficiency (Sup-Figure 2 A-H). The impact on cell proliferation and invasion was assessed 

413 through CCK8 and Transwell assays, respectively. Knockdown of these four genes markedly 

414 inhibited proliferation and invasion in both cell lines (Figures 6 E-N). Additionally, their 

415 knockdown significantly reduced PD-L1 expression, suggesting potential in combining ICD 

416 inducers with PD-L1 inhibitors (Figure 6 P-Q). Immunohistochemical analysis from the HPA 

417 database further confirmed higher protein expression levels of these genes in COADREAD 

418 stroma (Figure 6 O).

419 In summary, AKAP12, CALB2, CYR61, and MEIS2 were key regulators significantly 

420 influencing the biological behaviors of COADREAD cells.

421

422 Discussion

423 Colorectal adenocarcinoma, a leading malignancy globally, is witnessing a surge in incidence 

424 across various regions. Despite recent advancements, its heterogeneous nature and aggressive 

425 behavior pose challenges in prognostic assessment2. Identifying novel biomarkers for 

426 personalized therapy development and prognosis improvement is thus a pressing need.

427 The pro-inflammatory immune microenvironment and neoantigen development in 

428 COADREAD have been linked to heightened immunotherapy response 29,30. ICD involves 

429 pathways triggering intense inflammatory responses, potentially reshaping the tumor 

430 microenvironment and releasing tumor neoantigens 8. Given the high heterogeneity of colorectal 

431 cancers and specific molecular subtypes' sensitivity to immunotherapy 31, ICD offers insights 

432 into predicting and identifying patient groups suited for immunotherapy, including those with 

433 low response rates.

434 Therefore, exploring ICD in COADREAD presents a novel approach to understanding its 

435 microenvironmental impacts, prognostic significance, and predictive value. Addressing the 

436 unclear role of ICD in COADREAD research is vital for advancing therapeutic strategies and 

437 patient management.

438 scRNA-seq stands out from traditional bulk RNA-seq by providing detailed insights into 
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439 individual gene expression levels across cell subpopulations. This technique is instrumental in 

440 identifying specific biomarkers and understanding cellular heterogeneity in various cancers, 

441 including COADREAD 32.

442 In our study, we merged the insights gained from both bulk RNA-seq and scRNA-seq to 

443 perform a thorough analysis of COADREAD. This included examining ICD expression profiles, 

444 conducting clustering analyses, assessing immune infiltration, exploring the mutation landscape, 

445 and screening for prognostic signature genes. The culmination of these analyses was the 

446 development of the ICD score, which has demonstrated considerable prognostic and predictive 

447 utility for immunotherapy responses in COADREAD.

448 In COADREAD, scRNA-seq analysis identified two ICD score clusters. The high-score 

449 cluster showed enriched inflammatory and TNFA signaling via NF-κB, indicating enhanced 

450 immune activation. Contrarily, these pathways were suppressed in the low-score cluster. 

451 Predominant in the high-score group were monocyte-macrophages and CD4+/CD8+ T cells, 

452 suggesting a robust anti-tumor immune response. These findings align with the concept that 

453 higher ICD scores correlate with more immunologically active "hot tumors."

454 We identified 12 ICD-related prognostic genes and divided COADREAD patients into two 

455 clusters based on these genes. Our analysis highlighted significant differences in prognosis, 

456 clinicopathological characteristics, immune infiltration, and pathway enrichment between the 

457 clusters, emphasizing ICD's role in regulating immune interactions in COADREAD.

458 In our study, we identified 448 differentially expressed genes (DEGs) between ICD score 

459 clusters in COADREAD, using univariate Cox regression analysis to pinpoint 25 OS-related 

460 genes. These genes, integral to the ICD score model developed via Principal Component 

461 Analysis, included SCG2, CALB2, HOXC6, CRYAB, ZNF532, and others, each substantiating 

462 their roles in tumor progression, metastasis, and response to therapy.

463 For instance, SCG2, known for its prognostic value in immune infiltration and macrophage 

464 polarization, aligns with its role in chemotherapy and immunotherapy in colorectal cancer 33. 

465 CALB2's modulation of 5-fluorouracil sensitivity 34, HOXC6's association with poor OS and 

466 immunogenicity 35, and CRYAB's involvement in CSC formation via the Wnt/β-catenin pathway 

467 36 all highlighted their significance. Similarly, ZNF532's role in oncogenic chromatin 

468 propagation in NUT midline carcinoma 37 and AKAP12's influence on colon cancer metastasis 38 

469 were noteworthy. Additionally, FABP4's influence on colon cancer invasion 39, MEIS2's role in 

470 cell migration 40, and SLC2A3's correlation with prognosis and immune signature 41 were pivotal. 

471 Other genes like SPARCL1, CYR61, CYP1B1, and COLEC12 have been implicated in various 

472 cancer dynamics, from tumor microenvironment modulation to disease progression and 

473 treatment response 42-45.

474 Our study, for the first time, reported the comprehensive effect of these ICD-regulated genes 

475 in COADREAD, offering new insights into their potential as therapeutic targets and prognostic 

476 markers in this complex disease.

477 Our study revealed stark differences in intrinsic properties between high and low ICD score 

478 groups in COADREAD. The high-score group, despite a poorer prognosis, exhibited more 
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479 immune cell infiltration, a higher tumor mutation load, and elevated levels of immune 

480 checkpoint expression, including increased cytokines, chemokines, and their receptors. 

481 Furthermore, a positive correlation was observed between the ICD score and immune-activated 

482 pathways.

483 Interestingly, the response to immunotherapy varied based on the ICD score. Patients in the 

484 high-ICD score cluster showed a potential benefit from ICIs and targeted therapies. This aligns 

485 with their higher immune mutational load and more active immune environment, as confirmed 

486 by previous studies highlighting the role of both immunotherapy and chemotherapy in inducing 

487 ICD and bolstering anti-tumor immunity 8,9,12.

488 Our findings underscored that a high ICD score, indicative of increased immune cell 

489 infiltration and activated anti-tumor pathways, was predictive of a favorable response to 

490 immunotherapy. This suggested the close relationship between ICD status and the effectiveness 

491 of immunotherapy and other immunogenic treatments in COADREAD.

492 Our study faced limitations such as its retrospective nature and reliance on public sequencing 

493 data. Future studies should validate our findings in larger, prospective clinical trials, and include 

494 proteomic cross-validation for clinical applicability. Further basic research is needed to 

495 understand how ICD-related genes affect prognosis and response to therapy. Additionally, 

496 examining single-cell changes during anti-PD1 treatment could provide insights into treatment 

497 response heterogeneity in colorectal cancer 46.

498

499 Conclusions

500 In summary, our analysis of ICDRGs offers insights into the TIME and could guide future 

501 COADREAD research, particularly in drug development and personalized immunotherapy 

502 therapy.
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Figure 1
Flowchart of this study.

Flowchart of this study.

PeerJ reviewing PDF | (2023:12:94967:0:1:NEW 12 Jan 2024)

Manuscript to be reviewed



PeerJ reviewing PDF | (2023:12:94967:0:1:NEW 12 Jan 2024)

Manuscript to be reviewed



Figure 2
Elaboration of ICD score and cellular diversity in COADREAD via scRNA-seq.

(A) The COADREAD cell dataset was delineated into 8 distinct clusters via UMAP, featuring
varied cell types: B cells, dendritic cells, endothelial cells, fibroblasts, malignant cells, mono-
macrophages, NK cells, and T cells. (B) A volcano plot delineated differentially expressed
genes among these cell types, highlighting the top five. (C) Displayed through a heatmap,
this illustrated the enrichment levels of Hallmark pathways in each tumor-infiltrating cell
type, with a bar indicating the relative pathway enrichment. (D) A dot plot revealed the
expression levels of 34 ICDRGs across these varied cell types. (E) GSVA was used to compute
the ICD score for each cell type, visualized through a UMAP plot indicating the expression of
ICD gene clusters. (F) Cell clusters were categorized into high and low ICD score groups,
illustrated via UMAP plot. (G) Box plots represented the ICD scores across cell clusters,
organized in ascending order. (H) A composition chart compared the number and proportion
of cells in high versus low ICD score groups. (I) A heatmap demonstrated the relationship
between ICD score and Hallmark pathway scores across all clusters. (J) This heatmap
contrasted Hallmark pathway scores between high and low ICD score groups.
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Figure 3
Delineation and biological characterization of ICD molecular subtypes in colorectal
carcinoma.

(A) Illustrating the distribution of transcriptional expressions of 34 ICDRGs in three colorectal
adenocarcinoma cohorts. (B) Enhanced visualization post-adjustment, clarifying
transcriptional diversity. (C) Spearman correlation analyses depicted the interactions among
ICDRGs in 1184 colorectal cancer samples, with line thickness indicating correlation strength-
pink for positive and green for negative. (D) Log-rank tests evaluated the survival impact of
specific ICDRGs (PIK3CA, P2RX7, NT5E, ENTPD1, IL1R1, LY96, BAX, CASP1, CASP8, IL17A,
FOXP3, CXCR3). (E) Consensus clustering analysis revealed two distinct subtypes (k = 2) in
colorectal cancer samples. (F) Highlights significant survival differences between molecular
subtypes A and B. (G) Analyzed the abundance of ICD signature genes within the two
identified clusters. (H) A heat-map demonstrated the association of clinicopathologic
characteristics with each subtype, using red to indicate up-regulation and green for down-
regulation. (I-K) GSVA analysis of Hallmark (I), KEGG (J), and Reactome (K) pathways between
molecular subtypes A and B, with red denoting more enriched and green denoting less
enriched pathways.
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Figure 4
Comprehensive ICD score analysis in colorectal carcinoma.

(A) PCA illustrating notable distribution differences among ICD molecular subtypes. (B)
Comparison of stromal, immune, and ESTIMATE scores in different ICD clusters. (C) Analysis
of immune cell infiltration in clusters A and B. (D) Volcano plot presenting 448 ICD-DEGs from
varied molecular subtypes. (E) GO enrichment analysis for ICD-DEGs, with plot size indicating
gene counts, categorized by BP, CC, and MF. (F) KEGG enrichment analysis of ICD-DEGs,
detailing gene enrichment. (G) Chord graph highlighting five key KEGG pathways and
associated genes. (H) PCA-based ICD score construction from 25 ICD-DEGs and subsequent
survival analysis of two score clusters. (I) Waterfall plots of somatic mutations in high and low
ICD score groups. (J) Forest plot comparing mutational variation and HRs in high and low-
score clusters. (K) GSVA correlation of ICD score with 50 hallmark pathways. (L) GSVA for
cytokines, chemokines, and their receptors in high and low ICD score clusters.
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Figure 5
Assessment of clinical impact, immunotherapy response, and drug sensitivity in relation
to ICD score.

(A) Survival analysis examined the prognostic differences between high and low ICD score
groups. (B) Analysis of the positive relationship between ICD score and tumor-infiltrating
immune cells. (C-J) Investigates the differences in tumor type (C, D), recurrence and
metastasis (E, F), stage (G, H), and survival status (I, J) across ICD score clusters. (K-N)
Examined the variance in immune checkpoint levels between high and low score groups. (O-
P) Targeted therapy response in lung cancer (GSE61676). Comparison of responses and
survival outcomes between low and high ICD score clusters. (Q-R) Immunotherapy efficacy in
urothelial carcinoma (IMvigor210). Analysis of response and survival differences in low versus
high ICD score clusters. (S-T) Anti-PD-1 therapy response in KIRC cohort (Checkmate).
Evaluated therapeutic response and survival rates between low and high ICD score groups.
(U-Z) Box diagrams depicting the differences in drug sensitivity to targeted therapy between
high and low ICD score clusters.
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Figure 6
Experimental validation of gene expression and functional assays.

(A-D) Assessing expression levels of AKAP12 (A), CALB2 (B), CYR61 (C), and MEIS2 (D) in
normal colon cells (NCM460) and COADREAD cell lines (HCT116, HCT29, VOLO). (E-L) Post-
knockdown viability reduction in HCT116 and HT29 cells were measured for AKAP12 (E, I),
CALB2 (F, J), CYR61 (G, K), and MEIS2 (H, L). (M-N) Demonstrating decreased invasion
capacity in HCT116 and HCT29 cells following AKAP12, CALB2, CYR61, and MEIS2 knockdown.
(O) Immunohistochemistry data from HPA database showed protein expressions of AKAP12,
CALB2, CYR61, and MEIS2. (P-Q) Significant reduction in PD-L1 expression in HCT116 (P) and
HT29 (Q) cells after knockdown of the respective genes.

PeerJ reviewing PDF | (2023:12:94967:0:1:NEW 12 Jan 2024)

Manuscript to be reviewed



PeerJ reviewing PDF | (2023:12:94967:0:1:NEW 12 Jan 2024)

Manuscript to be reviewed


