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ABSTRACT
Background. Fibroblast growth factor 21 (FGF21) is a key hormone factor that regu-
lates glucose and lipid homeostasis. Exercise may regulate its effects and affect disease
states. Therefore, we sought to determine how exercise affects FGF21 concentrations
in adults.
Methods. The review was registered in the International Prospective Systematic Review
(PROSPERO, CRD42023471163). The Cochrane Library, PubMed, andWeb of Science
databases were searched for studies through July 2023. Studies that assessed the effects
of exercise training on FGF21 concentration in adults were included. The random effect
model, data with standardized mean difference (SMD), and 95% confidence intervals
(CI) were used to evaluate the pooled effect size of exercise training on FGF21. The risk
of heterogeneity and bias were evaluated. A total of 12 studies involving 401 participants
were included.
Results. The total effect size was 0.3 (95% CI [−0.3–0.89], p = 0.33) when comparing
participants who exercised to those who were sedentary. However, subgroup analysis
indicated that concurrent exercise and a duration ≥10 weeks significantly decreased
FGF21 concentrations with an effect size of −0.38 (95% CI [−0.74–−0.01], p < 0.05)
and −0.38 (95% CI [−0.63–−0.13], p < 0.01), respectively.
Conclusion. Concurrent exercise and longer duration may be more efficient way to
decrease FGF21 concentrations in adults with metabolic disorder.

Subjects Biochemistry, Diabetes and Endocrinology, Obesity, Sports Medicine
Keywords Exercise training, Metabolic disorder adults, FGF-21, Meta-analysis

INTRODUCTION
Fibroblast growth factor 21 (FGF21) is a recently discovered hormone that plays key roles
in regulating energy homeostasis, glucose and lipid metabolism, and insulin sensitivity
(Geng et al., 2019). It has potential applications in clinical medicine for obesity and related
diseases such as cardiovascular diseases and type 2 diabetes (T2D) as it can independently
predict aortic stiffness in patients with T2D (Huang et al., 2021). Drug development
for these disease states has shifted focus from glucose metabolism to lipid metabolism,
especially NAFLD, and analogs are now entering Phase 3 clinical research (Talukdar &
Kharitonenkov, 2021).
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FGF21 is expressed in liver (Nishimura et al., 2000),muscle, pancreas, (Fisher & Maratos-
Flier, 2016; Oost et al., 2019) and adipose tissues (Zhang et al., 2008) as well as in the brain
where it crosses the blood–brain barrier (Hung, Weihong & Abba, 2007). FGF21 acts
through FGF receptors (FGFRs) and its co-receptor, β-klotho (KLB), which is expressed
(Fisher & Maratos-Flier, 2016) in the muscle, liver, pancreas, WAT (white adipose tissue),
BAT (browning adipose tissue) and heart (Fisher & Maratos-Flier, 2016). FGF21 knock-
out (KO) mice showed weight gain, body composition changes, and impaired glucose
homeostasis (Badman et al., 2009) with the over-expression of FGF21 (Fujii et al., 2019).
The exogenous administration of FGF21 in obese mice (Hale et al., 2012) may prevent or
improve obesitywith an increased. Overweight, obesity, aging, T2D, and non-alcoholic fatty
liver disease (NAFLD) are all associated with the progression of chronic metabolic diseases,
especially those related to glucose-lipid metabolism. Paradoxically, FGF21 concentrations
increase in conditions such as overweight, obesity, T2D (Fève et al., 2016) and NAFLD
(Headland, Clifton & Keogh, 2019). These conditions are marked by high glucose and lipid
levels (fat free acids, FFAs) with chronic inflammation, which may decrease FGFR or
KLB expression in target tissues and lead to FGF21 resistance (Fisher et al., 2010; Gallego-
Escuredo et al., 2015). Proteolytic cleavage may alter the form of FGF21 itself (Markan,
2018).

Regular physical activity may prevent numerous chronic diseases, including obesity,
T2D and cardiovascular diseases (Steven & Tim, 2004) that are associated with metabolic
disorders. Exercise has been shown to improve glucose homeostasis and lipid profiles,
reduce fat mass (Egan & Zierath, 2013), increase arterial distensibility (Currie, Thomas &
Goodman, 2009), and decrease inflammation in tissues and blood (Metsios, Moe & Kitas,
2020). However, the mechanisms underlying these changes are still not well understood.
Studies have investigated the effect of exercise on circulating FGF21 levels and signaling
pathways. Some studies have shown that moderate-to-vigorous intensity physical activity
decreases serum FGF21 levels in older individuals (Matsui et al., 2020) and obese women
(Yang et al., 2011). However, serum FGF21 increased in young health women after 2
weeks of exercise (Cuevas-Ramos et al., 2012). Besse-Patin et al. (2014) found that 8-week
endurance training did not significantly change resting plasma concentrations of FGF21.
Animal studies have determined that exercise increased FGF21 with 12 weeks of aerobic and
resistance exercise (Yang et al., 2019). However, FGF21 decreased with 4 weeks of aerobic
exercise (Geng et al., 2019). Thus, the effect of exercise on FGF21 in blood or tissues is still
not well-understood.

A meta-analysis by Khalafi et al. (2021) found that acute exercise significantly increased
circulating FGF21 levels in overweight and obese populations. Another review reported the
effect of only aerobic exercise on the FGF21 protein or gene expression in overweight and
obese individuals and animals (Porflitt-Rodríguez et al., 2022), emphasizing the mechanism
of exercise and FGF21. In addition, most aerobic exercise studies reported that aerobic
exercise decreased FGF21 levels (Porflitt-Rodríguez et al., 2022), while resistance training
increased FGF21 levels (Kruse et al., 2017). The combination of aerobic exercise and
resistance training decreased (Motahari Rad et al., 2020) or did not change FGF21 levels
(da Silveira Campos et al., 2018). The effect of consistent exercise on FGF21 levels remains
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unclear. Recently, Kim et al. (2023) determined that non-randomized controlled trials
(RCTs) and RCT increased FGF21 levels, however their effect is not significant across
different populations or types of exercise. This outcome was not in line with the current
results and that analysis did not including both forms of exercise (Kim et al., 2023).
Therefore, we conducted a systematic review and meta-analysis of the evidence on the
effect of multiple types of exercise on FGF21 levels in adults to improve the clarity of the
information in this field.

METHODS
We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) statement. The protocol was registered in the International Prospective
Systematic Review (PROSPERO, CRD42023471163).

Search strategy
We searched in TheCochrane Library, PubMed, andWeb of Science databases published up
to July 2023 for all language articles using the search terms ‘‘FGF-21 OR fibroblast growth
factor-21 OR fibroblast growth factor 21’’ AND ‘‘exercise OR training OR exercise training
OR activity OR activities OR physical activity OR physical activities’’. Duplicate articles
were removed using EndNote X9. Studies that were not related or non-experimental were
removed based on their titles and abstracts. Two authors collected and synthesized data
independently, and necessary information for our analysis. In case of any disagreement, a
third author was consulted.

Inclusion and exclusion criteria
The inclusion criteria were: (1) participants ≥ 18 years old; (2) only exercise intervention;
(3) contorl group without exercise or other intervention; (4) detection of FGF21 in blood
(serum or plasma) and (5) RCTs.

The exclusion criteria were: (1) proceedings article, non-full text, dissertations and
reports; (2) animal studies; (3) non-RCTs; (4) uncontrolled and cross-sectional studies;
(5) exercise and other pattern combined intervention; (6) acute exercise study and (7) no
data.

Data extraction
Data were extracted using a standardized assessment table that included the following
categories: author, year, population (age, gender, BMI), sample, details of exercise and
outcomes. Moreover, two studies (Pérez-López et al., 2021) depicted the data with the Get
Data software in their graphics.

Quality assessment
Two reviewers independently evaluated the quality of studies according to the inclusion
standards. Review Manager 5.4 software was used, and any methodological quality
discrepancies were discussed with the third reviewer. The quality assessment was executed
according to the Cochrane criteria, following the item: random sequence generation,
allocation concealment, blinding of participants and personnel, blinding of outcome
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assessment, incomplete outcome data, selective reporting (for randomized controlled
trials), and other biases.

Statistical analyses
The results were continuous variables with mean and standard deviation (SD), and
statistical analysis was conducted using Review Manager 5.4 with effect sizes (ES) were
measured using mean, SD and sample size. Summary estimates with 95% confidence
intervals (CI) were pooled applying the random effect model or fixed effect model. The
degree of heterogeneity of the effect sizes was quantified using the I2 statistic as follows:
<25% indicated low; 25–50% is moderate, 51–75% is substantial, and >75% is high
heterogeneity.

Subgroup analyses followed exercise types, exercise intensity, duration, and exercise
time, with the aim of discussing the effect of exercise on FGF21 in individuals in adults.
The risk of publication bias was estimated using sensitivity analysis tests in Stata 15. A p
value less than 0.05 was considered significant for all analyses. The detailed results of the
statistical analyses can be found in the Supplementary Files.

RESULTS
Search results
We identified 1,899 articles in all databases, and after removing duplicates and screening
titles and abstracts, 157 full-text articles were further reviewed for eligibility. A total of 12
randomized controlled trials were included in the meta-analysis, with a total of 18 eligible
sets of data (Fig. 1).

Characteristics of included studies
Table 1 shows the characteristics of the available articles. The studies included a total of 401
participants with obesity, overweight, aging, T2D, NAFLD, nonalcoholic steatohepatitis
(NASH), metabolic syndrome, and post/premenopausal obese women with metabolic
disorders. The control group was sedentary or had only light physical activity. The
individuals range from 19 to 78 years old, and the mean body mass index (BMI) was
greater than 24 kg/m2; the highest being 60 kg/m2. The FGF21 levels ranged from 128 to
600 pg/mL.

The studies included in themeta-analysis were RCTs that involved aerobic exercise (Kong
et al., 2016; Taniguchi et al., 2016; Banitalebi et al., 2019; Keihanian, Arazi & Kargarfard,
2019; Pérez-López et al., 2021; Haghighi et al., 2022; Stine et al., 2023), resistance exercise
(Keihanian, Arazi & Kargarfard, 2019; Saeidi et al., 2019; Takahashi et al., 2020; Shabkhiz et
al., 2021; Haghighi et al., 2022), or combined exercises (aerobic and resistance) (Banitalebi
et al., 2019; Motahari Rad et al., 2020; Chang & Namkung, 2021; Pérez-López et al., 2021).
The intensity of aerobic exercise ranged from 45 to 95% of maximum heart rate (HRmax)
or VO2 peak, the intensity of the resistance exercise was more than 55% of one-repetition
maximum (1RM) for multiple movements (including squat, chest press, leg press, standing
military press, knee extension, seated cable rowing, knee curl, biceps curl, standing calf
raise, triceps press, back-extension, and abdominal crunch). A total of seven articles focused
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Figure 1 Flow diagram of studies search, selection and inclusion process.
Full-size DOI: 10.7717/peerj.17615/fig-1

on an exercise duration of more than 10 weeks, and five studies included exercise periods
of less than 10 weeks; training frequency was three or four times per week, with 30 to
60 min per session. Four available studies included an exercise intensity over 80%, 12 less
than 80%, and two articles did not mention the exercise intensity.

Secondary outcomes included glucose (glucose, insulin, HbA1c, andHomeostaticModel
Assessment of Insulin Resistance (HOMA-IR)), lipid (cholesterol, triglycerides, HDL, LDL,
and FFAs), and anthropometric parameters (weight, BMI, and body fat percent). These
data may be related to metabolic diseases and FGF21 (Headland, Clifton & Keogh, 2019).

Risk of bias
Figure 2 shows the percentage risk of bias from all of the included studies. Most studies
shown low and unclear risk in major standard. Low risk appeared in a high percentage
of incomplete outcome, selective reporting and other bias. Studies (Kong et al., 2016;
Keihanian, Arazi & Kargarfard, 2019; Takahashi et al., 2020; Haghighi et al., 2022) used
single blinding had a high risk. Mostly, all the studies (Kong et al., 2016) were considered
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Table 1 Characteristics of the studies and exercise intervention included in this meta-analysis.

Study Population N. Age BMI
(kg/m2)

Intervention FGF21
(pg/mL)

Second
outcomes

Exercise
performance

Exercise type Duration Frequency Intensity

Banitalebi et al. (2019) T2D 52
C:17
T1:17
T2:18

49.7–62.1 24.3–33.64 T1: Con-E (AT (treadmill
or cycle ergometer)
+RT (8 motion))
T2: SIT exercise

10 W AT: 50 min/b
RT: 12-10R
for 2–3 sets
SIT: 4b*
30s(),
3ds/w

AT: 70%
HRmax
RT: NR
SIT: All-out

Serum
C: 235.96± 69.74
T1:229.63
± 94.89
T2:204.67
± 111.36

BF% n.s.
Weight↓,
BMI↓,
Insulin↓,
HbA1c↓,
HOMA-
IR↓,
FPG↓††

VO2 peak↑
for T1

Chang & Namkung (2021) Metabolic syndrome
women

42
C:30
T:12

45.3–68.1 25.9–33.9 Combined endurance
and strength exercise

12 W 50 min/b;
3dsw

NR Serum
C:219.7± 123.9
T:176.3± 107.4

BMI↓,
WC↓,B
F%↓†

NR

Keihanian, Arazi & Kargarfard (2019) T2DMmen 34
C:12
T1:11
T2:11

50.6–54.1 29.1–35.7 AT (running);
RT (7 motion)

8 W AT: 30-45
min/b RT:
45 min/b,
3ds/w;

AT: 75%–
85%
HRmax
RT: 10RM-
max

Serum
C:128.2± 1.9
T1:250.1± 6.7
T2:184± 4.6

FBS↓,
Insulin↓,
HbA1c↓,
Cholesterol↓
Triglyceride↓,
HDL↑,
LDL↓,
HOMA-
IR↓††

VO2 peak
for T1/T2↑;
Strength
perfor-
mance for
T1/T2↑

Kong et al. (2016) Obese women 18
C:10
T:8

17.8–22 23.8–28.6 AT (cycling) 5 W HIIT: 20
min/b
MICT: 40
min/b; 4ds/w

HIIT: 95%
MICT: 65%
V̇O2peak
continuing
training

Serum
C:0.6± 0.6
T:0.5± 0.4

Weight,
BMI n.s.

VO2 peak↑

Motahari Rad et al. (2020) T2DMmen 51
C:17
T1:17
T2:17

41.7–47.7 27.8–31.3 AT+RT
RT+AT
RT: 6 motion
AT: (walking/running
by treadmill)

12 W RT: 8-10R
for 3 sets
AT:10 min;
3ds/w

RT: 70–80%
1RMmax
AT: 90–95%
HRmax

Serum
C:510.9± 106.1
T1:441.7± 110
T2:449± 98.8

Body
mass↓,
BMI↓,
HOMA-
IR↓,
HbA1c↓††

VO2 peak
for T1/T2↑;
UB
strength/
LB strength
for T1/T2↑

Pérez-López et al. (2021) Post/pre menopausal
women with obesity

35
C:13
T1:10
T2:12

40.3–61.6 28.7–39.8 AT (running on
a treadmill)
RT(6 motion)
Con-E(AT+RT)

12 W AT: 60 min/b
RT:8-12R
for 3 sets
Con-E:20
min AT +
40 min RT,
3ds/w

AT: 55–
75%HRR
RT: 65%
1RMmax
Con-E:
same as AT
and RT

Serum
C:205.2± 64.35
T1:146.09
± 56.96
T2:196.52
± 80

Body
mass n.s.;
Glucose
pro-
file:(Glucose,
insulin,HOMA-
IR,HbA1c)
n.s.
Lipid pro-
file:(Cholesterol,
Triglyc-
erides,
HDL,
LDL) n.s.
BMI↓††
Body
composition↓† for
AE

NR

Saeidi et al. (2019) Postmenopausal women 24
C:12
T:12

51–63 25.4–30.1 RT (12 motion) 8 W 30s for each
session,
3ds/w

55% 1RM-
max.

Plasma
C:252.7± 5.5
T:281.6± 5.5

Body mass,
BMI n.s.

NR

Shabkhiz et al. (2021) Elderly men with/
without T2D

44
C1:12
C2:10
T1:12
T2:10

Without T2D:
66.78–77.38
With T2D: 71.85–73.05

Without T2D:
23.45–31.49
With T2D:
22.62–29.68

RT (7 motion) 12 W 10R/b
for 3 sets,
3ds/w

70% 1RM-
max

Serum
C1:285.05
± 100.19
T1:253.24
± 116.1
C2:403.22
± 175.41
T2:324.07
± 107.7

Weight,
BMI, In-
sulin n.s.
Glucose↓,
HOMA-
IR↓††

Leg press
strength
for both
T1/T2↑

Takahashi et al. (2020) Patients with NAFLD 50
C:27
T:23

35.9–67.7 23.2–33.7 RT (push-ups and squats) 12 W 3 sets for 20–
30 min/b;
3ds/w

NR Serum
C:184.6± 113.3
T:142.9± 105.9

BMI n.s. NR

(continued on next page)
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Table 1 (continued)
Study Population N. Age BMI

(kg/m2)
Intervention FGF21

(pg/mL)
Second
outcomes

Exercise
performance

Exercise type Duration Frequency Intensity

Taniguchi et al. (2016) Elderly men 33
C:15
T:17

65.4–73.8 20.5–25.7 AT (cycling) 5 W 30 min for
1–2 week,
45 min for
3–5 min,
3ds/w

60%VO2max
for first
week,
70%VO2max
for 2–3
week,
75%VO2max
for 4-5
week.

Serum
C:255.9± 88.5
T:218.5± 65.1

BMI,BF%,
FFA, Fast-
ing insulin,
HOMA-
IR n.s.
HbA1c↓†

VO2 peak↑

Haghighi et al. (2022) overweight and obesity 30
C:10
T1:10
T2:10

30-45 29.41± 3.02 AT(running)
RT(8 motion)

8W AT: 15 min
per session,
RT:50-60
min per
session;
both 3ds/w

AT: 85–95%
HRmax
RT:85–95%
1RM

Serum
C: 300.1± 24.2
T1:371.1± 66.49
T2:380.9± 49.08

BMI n.s.
Weight,
FPB%↓††

VO2 peak –

Stine et al. (2023) NASH 24
C:8
T:16

25-69 32.8± 5.2 AT 20W 30 min per
session,
5ds/w

45–55%
VO2peak

Serum
C:320.06± 354.3
T:240.06± 351.7

BMI, WC,
body fat n.s.
Weight↓,
HC↓†

VO2 peak –

Notes.
AT, aerobic exercise; b, bout; BMI, body mass index; BF%, body fat percent; C, control group; Con-E, concurrent of aerobic and resistance exercise; d, day; F, female; FPG, fasting blood glucose;
FBS, fasting blood sugar; DL, high-density lipoprotein; HIIT, high intensity interval training; HR, heart rate; HRR, heart rate reserve; LDL, low-density lipoprotein; MICT, moderate intensity con-
tinuous training; NAFLD, nonalcoholic fatty liver disease; NASH, Nonalcoholic Steatohepatitis; NR, not report; n.s., no significant; RM, repetition maximum; RT, resistance exercise; SIT, sprint
interval training; T2D, type 2 diabetes; T, training group; VO2 peak, maximal oxygen consumption; W, week; WC, waist circumference.

†T1 is significant.
††T1/T2 are both significant (p < 0.05).
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Figure 2 Risk of bias of included studies.
Full-size DOI: 10.7717/peerj.17615/fig-2

Figure 3 Overall analysis forest plot of exercise on FGF21.
Full-size DOI: 10.7717/peerj.17615/fig-3

to have a high risk of performance bias based on the lack of non-blinding of participants
and personnel.

Impact of exercise on FGF21 concentration
Overall, themeta-analysis found no significant effect of total exercise training on circulating
levels of FGF21 after exercise training with high heterogeneity (SMD = 0.3, 95% CI
[−0.3–0.89], p = 0.33) (Fig. 3).

We conducted subgroup analyses according to the exercise protocol factors (exercise
type, duration, and intensity have available data) and analyzed the relevant data. Figure 4
shows the subgroup analysis of resistance exercise with a high heterogeneity (1.1.2: SMD
= 2.01, 95% CI [0.23–3.8], p = 0.03). The concurrent practice of resistance and aerobic
showed significant effects with low heterogeneity at the FGF21 level exercises (1.1.1: SMD=
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Figure 4 Subgroup analysis of exercise type forest plot on FGF21.
Full-size DOI: 10.7717/peerj.17615/fig-4

−0.38, 95% CI [−0.74 to−0.01], p < 0.05). In addition, aerobic exercise has no significant
effect (1.1.3: SMD = −0.44, 95% CI [−0.61–1.48], p = 0.41).
Figure 5 shows the subgroup of exercise duration. Exercise durations ≥ 10 weeks were

shown to decrease the FGF21 levels with low heterogeneity (1.2.1: SMD = −0.38, 95% CI
[−0.63 to −0.13], p < 0.01). Exercise durations <10 weeks increased the FGF21 with high
heterogeneity levels (1.2.2: SMD= 1.67, 95% CI [0.01–3.34], p= 0.05). Figure 6 shows the
subgroup of exercise intensity and there were no significant effects from exercise intensities
over 80% (1.3.1: SMD = 0.27, 95% CI [−0.91–1.45], p = 0.43) or less than 80% (1.3.2:
SMD = 0.25, 95% CI [−0.42–0.92], p = 0.47).

DISCUSSION
The review included 12 studies; we focused on the effects of exercise on FGF21 levels in
adults as the results of previous studies have been inconclusive. Most available studies
present improved lipid and glucose profiles and a significant increase VO2 peak. Aerobic
exercise, resistance exercise, and a combination of both resistance and aerobic exercises
were studied.

In this meta-analysis, exercise training had no significant effect on FGF21 with high
heterogeneity across all available studies. Subgroup analysis found that exercise type
of concurrent exercise (aerobic plus resistance) and the term of duration ≥ 10 weeks
could significantly decrease FGF21 levels (p< 0.05) in adults, including those with with
obesity, T2D, NASH, etc. Based on these findings, we unexpectedly observed an effect
from exercise durations of over 10 weeks for the concurrent exercise period. Therefore,
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Figure 5 Subgroup analysis of exercise duration forest plot on FGF21.
Full-size DOI: 10.7717/peerj.17615/fig-5

Figure 6 Subgroup analysis of exercise intensity forest plot on FGF21.
Full-size DOI: 10.7717/peerj.17615/fig-6

using the proper exercise model or practicing a longer training duration may effectively
decrease FGF21 concentrations, increase cardiovascular health and muscle strength, and
decrease weight, BMI and body fat percent. This may, in turn, affect the glucose (glucose,
insulin, HOMA-IR and Hb1Ac) and lipid profiles (cholesterol, triglycerides, HDL, LDL
and FFAs). FGF21 levels are rarely low in healthy individuals, however, adults who are
overweight or who have metabolic diseases have high levels. Therefore, a lower FGF21
level may indicate a more healthful state. Interestingly, resistance training and an exercise
duration <10 weeks (p< 0.05) significantly increased FGF21 levels with high heterogeneity,
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which was consistent with 2 week exercise interventions in healthy women (Cuevas-Ramos
et al., 2012). This may be explained by the presence of a middle state between health and
disease, like a sub-clinical stage or FGF21 compensatory response. The overall effects
of single aerobic, resistance or different intensity outcomes of available studies showed
no significant changes in FGF21 levels. Previous studies have reported its effects on
promoting fatty acid oxidation, increasing energy expenditure, and improving insulin
sensitivity (Owen, Mangelsdorf & Kliewer, 2015; Angelin, Larsson & Rudling, 2012), which
are particularly important effects for individuals with metabolic disorders (Kong et al.,
2016; Taniguchi et al., 2016; Banitalebi et al., 2019; Keihanian, Arazi & Kargarfard, 2019;
Saeidi et al., 2019; Matsui et al., 2020; Motahari Rad et al., 2020; Chang & Namkung, 2021;
Shabkhiz et al., 2021). However, these individuals have higher circulating levels of FGF21
than healthy individuals, which contradicts FGF21’s physiological function (Markan,
2018). Furthermore, FGF21 levels have been linked to BMI, fat mass, waist circumference,
and visceral adipose tissue, which may contribute to the elevation of circulating FFAs,
glucose, and lipids (LDL and triglyceride) levels.

We know that aerobic exercise primarily benefits cardiovascular health and weight
loss, while resistance training helps maintain muscle mass and strength, and may prevent
osteoporosis and falls in menopausal women and the elderly (Winters-Stone et al., 2013).
Moreover, American College of Sports Medicine (ACSM) recommends combining aerobic
and resistance exercises, which may yield greater exercise benefits. Physical activity and
structured exercise training are the cornerstone of therapy for various diseases (Pedersen
& Saltin, 2015). Evidence from previous studies suggests that active individuals have fewer
symptoms of T2D, including lower fasting blood sugar (FBS), lower LDL cholesterol,
and homeostasis of glucose, lipids, triglycerides, and cholesterol (Alberga et al., 2013).
Currently, endurance training is the primary mode of improving cardiovascular fitness
by increasing VO2max (Guadalupe-Grau et al., 2018); resistance training aims to enhance
neuromuscular connections and muscle strength (Laurens, Bergouignan & Moro, 2020).
Both types of exercise have their advantages and disadvantages. However, researchers have
recommended that a concurrent exercise program can provide greater improvement and
prevent more adverse effects than a single-type program among individuals with obesity
or the elderly (Ferrari et al., 2016).

Our systematic review and meta-analysis aimed to investigate the impact of exercise
on FGF21 concentration in adults with chronic metabolic disorders. However, regarding
the complex characteristics of population, age, gender, exercise protocols, or FGF21
timing, considerable heterogeneity (I2 >50%) was detected in most of the included studies.
To address this issue, we performed a sub-analysis considering exercise type (aerobic,
resistance, and concurrent exercise), exercise intensity (high intensity and middle or
light intensity), and duration (≥ 10 weeks and <10 weeks). Although the population
characteristics such as age and BMI had no set limit, we confined our subgroup analysis to
intensity, exercise duration, and exercise type since the timing was approximately the same.
We found that the subgroup results of intensity analysis did not significantly contribute to
the heterogeneity.
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Analysis showed that combined exercise training led to a marked decrease, consistent
with the study by da Silveira Campos et al. (2018) that investigated moderate intensity
combined exercise in obese women. However, single aerobic and resistance exercise
training did not lead to significant changes in circulating FGF21, and we could not
perform further meta-analysis due to insufficient data. Surprisingly, Kruse et al. (2017)
found that resistance training for 10 weeks did not lead to significant changes in FGF21
concentration. Moreover, our analysis showed that the FGF21 concentrations did not
change in young or older populations who engaged in habitual activity, nor did it change
other hormones, such as adiponectin (Lee et al., 2020). Several studies included in our
analysis reported conflicting results, with some studies reporting a significant decrease
in FGF21 concentration (Cuevas-Ramos et al., 2012; Willis et al., 2019; Yang et al., 2019),
while others reported a significant increase (Fletcher et al., 2012; Geng et al., 2019). We
noted that the timing of blood collection was not always clear in these studies. It is worth
mentioning that FGF21 has a circadian rhythm, and special stress (fasting, feed) can
increase FGF21 concentrations (Inagaki et al., 2007; Andersen, Beck-Nielsen & Højlund,
2011). Therefore, this may contribute to the discrepancy in the reported outcomes.

The mechanisms underlying the decrease in FGF21 levels following aerobic, resistance,
or combined exercises are dependent on the loss of fat mass in humans or the depletion
of liver and adipose tissue, and the elevation of circulating FFAs that enhance fatty acid
oxidation (Bajer et al., 2015), activated the peroxisome proliferator-activated receptor
alpha (PPARα) pathway (Yu et al., 2011). One of the reasons for increased FGF21 levels
following exercise is the production of more FGF21 by the muscles, along with other
myokines such as growth differentiation factor 15, interleukin-6, and irisin (Kim & Song,
2017;Motahari Rad et al., 2020;Chang & Namkung, 2021), particularly at higher intensities
with high FGF21. In addition, exercise can increase FGFRs and KLB expression in animals
(Geng et al., 2019) , by decreasing FFAs, glucose, and TNF-α in target tissues enhancing
the physiological effects FGF21 (Salminen, Kaarniranta & Kauppinen, 2017; Salminen,
Kauppinen & Kaarniranta, 2017b). Conversely, individuals with obesity or type 2 diabetes
have higher FGF21 concentrations and decreased expression of the FGFR1c receptor and
co-receptor KLB/β-klotho (Fisher et al., 2010). Therefore, there should be greater focus
on the expression of these receptors in future research (Yang et al., 2019). Notably, there
are acute effects of exercise on FGF21 levels, however, under conditions of low receptor
expression, this may exacerbate FGF21 resistance (Shabkhiz et al., 2021).

Despite the critical role of FGF21 in assessing health outcomes, this review and meta-
analysis had some limitations. The available studies are relatively few, limiting the scope
of further data meta-analysis. Our meta-analysis focused on FGF21 as a crucial factor in
determining health outcomes. We listed the second outcomes but did not analyze their
relationship and the available studies did not request precise exercise and blood sampling
times to account for differences in outcomes. Publication bias may have been a factor since
we excluded studies with grey literature, through our sensitivity analyses result was robust.
Lastly, exercise training is a complex intervention and nutrition was not considered here,
although nutrition affects FGF21 levels and health states, therefore, there are discrepancies
in the baseline measurements of FGF21 levels.
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CONCLUSION
Our findings suggest that exercise training, particularly concurrent aerobic and resistance
training over a long period (at least 10 weeks), may be a viable approach for improving
FGF21 levels and health parameter outcomes in individuals with obesity, T2D, andNAFLD.
Further research is needed to determine the timing, nutrition, and training patterns of
FGF21 levels and to investigate themechanisms underlying these effects in order to optimize
programs for affected populations.
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