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Nine fossil tetrapod footprints from lake-shore deposits in the Lower Jurassic Moenave
Formation at the St. George Dinosaur Discovery Site (SGDS) in southwestern Utah cannot
be assigned to the prevalent dinosaurian (Anomoepus, Eubrontes, Gigandipus, Grallator,
Kayentapus) or crocodyliform (Batrachopus) ichnotaxa at the site. The tridactyl and
tetradactyl footprints are incomplete, consisting of digit- and digit-tip-only imprints. Eight
of the nine are likely pes prints; the remaining specimen is a possible manus print. The pes
prints have digit imprint morphologies and similar anterior projections and divarication
angles to those of Brasilichnium, an ichnotaxon found primarily in eolian
paleoenvironments attributed to eucynodont synapsids. Although their incompleteness
prevents clear referral to Brasilichnium, the SGDS tracks nevertheless suggest a
eucynodont track maker and thus represent a rare, Early Mesozoic occurrence of such
tracks outside of an eolian paleoenvironment.
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Abstract

Nine fossil tetrapod footprints from lake-shore deposits in the Lower Jurassic Moenave
Formation at the St. George Dinosaur Discovery Site (SGDS) in southwestern Utah cannot be
assigned to the prevalent dinosaurian (Anomoepus, Eubrontes, Gigandipus, Grallator,
Kayentapus) or crocodyliform (Batrachopus) ichnotaxa at the site. The tridactyl and tetradactyl
footprints are incomplete, consisting of digit- and digit-tip-only imprints. Eight of the nine are
likely pes prints; the remaining specimen is a possible manus print. The pes prints have digit
imprint morphologies and similar anterior projections and divarication angles to those of
Brasilichnium, an ichnotaxon found primarily in eolian paleoenvironments attributed to
eucynodont synapsids. Although their incompleteness prevents clear referral to Brasilichnium,
the SGDS tracks nevertheless suggest a eucynodont track maker and thus represent a rare, Early
Mesozoic occurrence of such tracks outside of an eolian paleoenvironment.

Introduction

Fossil tetrapod tracks attributed to pre-Cenozoic synapsids have been found throughout
the southwestern United States in strata ranging from Lower Permian (e.g., McKeever &
Haubold, 1996; q.v., Marchetti et al., 2019) through Upper Cretaceous (Lockley & Foster, 2003).
The vast majority of these tracks, particularly from the Early Permian and Late Triassic—Early
Jurassic, occur in eolian facies (the Chelichnus ichnofacies of Hunt & Lucas [2006a]; Hunt &
Lucas [2006b]). In Utah specifically, such synapsid tracks are common in the eolian, Upper
Triassic—Lower Jurassic Nugget Sandstone and correlative (per Sprinkel, Kowallis & Jensen,
2011) Wingate Sandstone and Navajo Sandstone (Lockley, 2011; Lockley & Hunt, 1995;
Lockley et al., 2004, 2011; Tweet & Santucci, 2015; Engelmann & Chure, 2017); they have also
been reported from the roughly correlative Aztec Sandstone of California and Nevada (Reynolds,
2006; Rowland & Mercadante, 2014). In contemporaneous, non-eolian strata in the southwestern
United States, non-synapsid tetrapod tracks otherwise predominate, while synapsid tracks are
rare (e.g., Hunt & Lucas, 2006a; Hunt & Lucas, 2006b; Klein & Lucas, 2021; Lockley &
Gierlinski, 2006, 2014; Lockley, Kirkland & Milner, 2004). Ichnologically, Early Mesozoic
synapsids thus appear to have preferentially inhabited eolian environments. However, synapsid
body fossils are known from Upper Triassic and Lower Jurassic, non-eolian strata in the same
region (e.g., Kligman et al., 2020; Jenkins, Crompton, & Downs, 1983; Sues & Jenkins, 2006),
indicating that the eolian track record is not a complete story, and that synapsid tracks should
occur in other environments as well.

The St. George Dinosaur Discovery Site (SGDS) in southwest Utah (Fig. 1) preserves an
abundant and moderately diverse ichnofauna in lacustrine and marginal lacustrine environments
(the Grallator ichnofacies of Hunt & Lucas [2006a], Hunt & Lucas [2006b]) of the Whitmore
Point Member of the Moenave Formation, including invertebrate, fish, and sauropsida tracks and
trails (Milner et al., 2011). Possible synapsid tracks at the site have been briefly mentioned
(Milner, Lockley, & Johnson, 2006; Milner et al., 2011), but until now have not been studied in
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detail. Their tentative synapsid attribution stemmed from a combination of their small size; a
similarity to some tracks referred to the ichnotaxon Brasilichnium, which has long been
attributed to synapsids; and a general inability to refer them to any of the sauropsid ichnotaxa at
the site, in the region, and from the earliest Jurassic.

Geological Setting

Most of the fossils at the SGDS are from the lowermost Jurassic (Suarez et al., 2017)
Whitmore Point Member of the Moenave Formation. This unit overlies the Dinosaur Canyon
Member, which contains the Triassic—Jurassic boundary, and is overlain by the Springdale
Sandstone Member at the base of the Kayenta Formation (Kirkland & Milner, 2006; Kirkland et
al., 2014; Fig. 2). The Whitmore Point Member consists of multiple fossiliferous horizons, the
most prominent and fossiliferous of which is the Johnson Farm Sandstone Bed (Kirkland et al.,
2014). The Johnson Farm Sandstone Bed is itself divided into a lower Johnson Farm Main Track
Layer, a lower-middle Johnson Farm Split Track Layer, and several thinly bedded, apparently
conformable, fine-grained-sandstone Top Surface horizons (Fig. 2), all of which preserve
abundant vertebrate tracks, invertebrate traces, sedimentary structures, and rare body-fossil
remains (Milner, Lockley & Johnson, 2006; Milner et al., 2011). The fossils and sedimentary
structures reveal the paleoenvironment of the Johnson Farm Sandstone Bed as having been
deposited along the shore of Lake Whitmore (formerly Lake Dixie), a large freshwater lake
Kirkland et al., 2014; Milner, Lockley & Johnson, 2006; Tanner & Lucas, 2009). The tracks
described herein all come from the Top Surface horizons and are in situ, except SGDS 190,
which is ex situ.

Materials and Methods

Measurements of the tracks (Fig. 3) described here were taken using digital calipers on
the specimens or replicas of the specimens. The divarication angles between digit imprints were
measured using photographs taken orthogonal to the planes in which the specimens lay, using a
protractor between straight lines drawn through the long axes of the imprints. For curved digit
imprints, the long axes used in divarication measurements were straight lines drawn through the
proximal, not distal, ends of the imprints. Stereophotos were taken with a Nikon D5200 digital
camera outfitted with an AF-S Nikkor 18-140 mm VR lens under artificial lighting.

Descriptions

Herein we follow Minter, Braddy & Davis (2007) by using the term “imprint” when
discussing a discrete, non-continuous trace, such as a digit or sole imprint, and the term
“impression” when discussing a more continuous trace. Although this descriptive system was
developed for use with arthropod, rather than vertebrate, traces, the system is useful for
describing vertebrate traces as well; its adoption here is simply for the sake of clarity.
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As far as is currently known, all Early Mesozoic synapsids (dicynodonts, non-
mammaliaform eucynodonts [sensu Hopson & Kitching, 2001], and mammaliaforms [sensu
Rowe, 1988]; q.v. Sereno [2006]) had pentadactyl manus and pedes. None of the tracks
described herein, however, possess five digit imprints, making determining which imprints
correspond to which digits impossible. Herein we number the digit imprints using the system
common to other tetrapods in which digit lengths increase from digits [-IV and decrease again in
digit V (i.e., ectaxony). We acknowledge, however, that these relative digit proportions may not
apply to any or all Early Mesozoic synapsids (see below), and that proportions of digit imprints
made by at least some of these taxa are complicated by their apparent possession of digital
arcades (Kiimmell & Frey, 2012).

All the tracks described herein are natural molds (concave/negative epirelief).

SGDS 190 (Fig. 4)

SGDS 190 is a single, ex situ, ectaxonic right track that comprises four moderately deep
digit imprints only, here interpreted as digits II-V using the aforementioned reasoning (Table 1).
The imprints lack discernible digital pad and claw traces. Digit imprints II and III are more
diamond-shaped, but still rounded distally. Imprints IV and V do not taper either proximally or
distally; instead they have rounded proximal and distal ends that are approximately the same
widths as the midpoints of the imprints. The imprints of digits II and III are parallel and straight;
the proximal end of the imprint of digit IV parallels those of II and III, but distally the imprint
curves laterally to parallel the short and straight imprint of digit V. The curvature of digit IV
could be due to some slipping in wet sediment when the track maker pushed off. SGDS 190
lacks a clear sole mark, but the outermost margins of the outermost digit imprints angle inward
toward the bases of the other digit imprints in such a way as to suggest the sole region was short
anteroposteriorly.

SGDS 18-T3 (Figs. 5-8)

SGDS 18-T3 is a short in situ trackway of five apparent pes prints (SGDS 18-T3-1, -2, -
3, -4, & -6) and one possible manus print (SGDS 18-T3-5) (Fig. 5). Tracks T3-1, -2, and -6 have
a slight outward rotation from the trackway axis.

SGDS 18-T3-1 (Fig. 6A), an apparent mesaxonic right pes print, has three subparallel
digit imprints, herein interpreted as digits III-V, The imprints are straight, narrow, and roughly
oblong, tapering distally; digit IV, the longest and centrally placed imprint, tapers proximally as
well. The distal tapers of the imprints suggest short claws. The proximal ends of the imprints all
lie approximately at the same level. As with SGDS 190, the digit imprints lack discernible digital
pads.

SGDS 18-T3-2 (Fig. 6B), an apparent mesaxonic left pes print, has four imprints, herein
interpreted as digits II-V. Unlike those of 18-T3-1, the imprints divaricate markedly (Table 1).
The imprint of digit V is short and curved outward; the other imprints are straight. The imprint of
digit II is faint and short. The both proximally and distally tapering imprint of digit III is the
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deepest and most pronounced trace; it is also the longest and most distally extended, unlike the
apparent pattern in 18-T3-1. The imprints of digits IV and V have rounded proximal and distal
ends. As with 18-T3-1, all imprints lack discernible digital pads. Both 18-T3-1 and 18-T3-2
possess longer digit imprints than the rest of the tracks in the trackway, but otherwise are similar
in relative digit lengths and by tapering on the distal ends.

SGDS 18-T3-3, 18-T3-4, and 18-T3-5 (Fig. 7) are unusual, comprising primary tracks
connected to secondary sets of imprints by clear, linear, but shallow, drag impressions (Figs. 5,
7), each spanning roughly 30 mm between their primary and secondary tracks. The primary track
of SGDS 18-T3-3, a paraxonic to ectaxonic right pes print, comprises four short, relatively
narrow digit-tip imprints (II-V) that, as in SGDS 190, increase in length from digit II to IV and
decrease again in digit V, but unlike in SGDS 190, the imprint of digit II is the shortest (Table 1).
Digit imprints II and III are subparallel, but angle inward whereas digit imprints IV and V angle
outward, giving the track a paraxonic sense. The imprint of digit IV tapers distally into what may
be a short claw trace, but the remaining digit imprints are rounded distally. The secondary track
of SGDS 18-T3-3 (labeled 18-T3-3-2 in Table 1) comprises imprints only of digits III and I'V;
unlike their primary-track counterparts, these imprints taper distally. Their angulations mirror
those of their primary-track counterparts.

The primary track of left pes SGDS 18-T3-4 resembles 18-T3-3 except that its imprints
are shorter and all rounded distally, though that of digit IV is still the longest of the set. The
secondary track of 18-T3-4 (labeled 18-T3-4-2 in Table 1) comprises imprints of all four digits,
but they are shorter and shallower than those of 18-T3-3. Unlike in 18-T3-3, the secondary
imprints of 18-T3-4 appear rounded distally. Tracks 18-T3-3 and 18-T3-4 lie close to their
trackway midline.

The primary track of SGDS 18-T3-5 lies lateral and slightly anterior to 18-T3-4, a
position that suggests it might be a manus print. However, its morphology differs markedly from
those of 18-T3-3 and 18-T3-4. The primary track comprises three faint, narrow, and shallow
digit-tip imprints, likely those of digits III-V. Unlike those of 18-T3-3 and 18-T3-4, each
roughly triangular imprint tapers sharply to a point distally, suggesting they may be claw traces.
Rather than lying in an approximate, shallowly arcuate row, as do the imprints of 18-T3-3 and
18-3-4, the imprints of 18-T3-5 lie at markedly different levels with respect to each other, with
the imprint of digit IV lying far anterior to the imprints of digits Il and V. Their configuration is
reminiscent of a Grallator theropod dinosaur track, but the close association of 18-T3-5 with 18-
T3-4, plus the drag impressions and secondary print shared with 18-T3-3 and 18-T3-4, strongly
suggest it was made by the same track maker as the other SGDS 18-T3 tracks. The imprints of
digit III and V curve slightly distally in opposing directions. The secondary track of 18-T3-5
(labeled 18-T3-5-2 in Table 1) is virtually identical to the primary track, but fainter.

SGDS 18-T3-6 (Fig. 8) is a single apparently right pes print that somewhat resembles
SGDS 190 and 18-T3-1; it is virtually the same size as SGDS 190. It comprises three distally
tapering digit imprints, presumably of digits III-V. The imprints of digit IIl and V are straight;
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that of digit IV curves slightly outward at its tip. Swollen, rounded areas immediately proximal
to the tapered claw imprints could be digital pad imprints.

SGDS 18-T6-2 (Fig. 9)

SGDS 18-T6-2 is an in situ, apparent ectaxonic right track with four digit imprints
(presumably II-V), although the imprint of digit V is faint. The imprints of digits II, III, and V
taper distally, but that of digit IV is rounded. The tapering distal end of the digit II imprint is
proximally attached to an inflated, ovoid proximal end that may be the imprint of a digital pad,
but the imprints of digits III, IV, and V lack such a feature. The imprints of digits II and III both
curve outward toward their distal ends.

SGDS 18-T7 (Fig. 10)

SGDS 18-T7 is a single, in situ, tetradactyl, apparent paraxonic to ectaxonic right pes
print that is similar to SGDS 190, 18-T3-3, and 18-T3-4 in overall morphology. As in SGDS 18-
T3-3 and T3-4, the subequal imprints of digits II and III are subparallel to each other and angle
inward; the shorter imprints of digits IV and V are subparallel to each other and angle outward,
giving the track a paraxonic sense. Digit imprints [V and V appear to curve outward slightly at
their distal ends. All four imprints taper toward their distal ends, but not as sharply as in 18-T6-2.
No obvious digital pad imprints are discernible.

Comparisons

The mostly tetradactyl SGDS tracks described herein are markedly unlike the dominantly
tridactyl, mesaxonic ornithischian (4nomoepus) and theropod (Eubrontes, Gigandipus,
Grallator, Kayentapus) dinosaur tracks, all made primarily by bipedal track makers, known from
Late Triassic—Early Jurassic of North America and that are abundant at the SGDS and in its
geographic and stratigraphic vicinity. Anomoepus can include manus prints, demonstrating
facultative quadrupedality by their track makers, but manus tracks are pentadactyl and entaxonic
(Olsen & Rainforth, 2003), and therefore unlike the SGDS tracks described herein. Additionally,
Anomoepus manus prints unassociated with pes prints are unknown and unexpected given that
the weight-bearing hind limbs of presumed Anomoepus track makers (facultatively quadrupedal
basal ornithischian dinosaurs) would be expected to register much deeper and more pronounced
tracks than the manus. Late Triassic—Early Jurassic sauropodomorph ichnotaxa (Eosauropus,
Evazoum, Kalosauropus, Otozoum, Pseudotetrasauropus), while being tetradactyl to
pentadactyl, are all far larger than the SGDS tracks described herein; they also have markedly
different digit and sole imprint morphologies and proportions (Lallensack et al., 2017,
Mukaddam et al., 2020; Rainforth, 2003), and thus can be readily excluded as possible referrals
for the SGDS tracks.

The number of Mesozoic, non-dinosaurian tetrapod ichnotaxa to which the SGDS tracks
described herein could be compared is substantial. We limit our comparisons below to ichnotaxa,
known from Upper Triassic—Early Jurassic strata of the western United States because those are
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211 temporally and geographically the closest to the SGDS tracks and therefore the most likely to be
212 possibly congeneric. We exclude various Triassic ichnotaxa (e.g., chirotheriid tracks) that are
213 understood to not extend into the Jurassic (Klein & Lucas, 2021).

214
215  Batrachopus Hitchcock, 1845 (Fig. 11A)
216 Batrachopus is particularly important to compare to the SGDS tracks described herein

217  because Batrachopus is one of the most common tetrapod ichnotaxa at the SGDS. The

218 ichnotaxon is attributed to early crocodyliforms, such as Protosuchus (Olsen & Padian, 1986).
219  Batrachopus tracks are found in Lower Jurassic strata of France (Moreau et al., 2019), the

220 northeastern (Hitchcock, 1845; Olsen & Padian, 1986) and southwestern (Lockley, Kirkland &
221  Milner, 2004; Lockley et al., 2018) United States, and possibly southern Africa (Lockley,

222 Kirkland, & Milner, 2004; Lockley et al., 2018) and Colombia (Mojica & Macia, 1987), as well
223 as Middle?—Upper Jurassic strata of Morocco (Masrour et al., 2020) and Lower Cretaceous strata
224  of South Korea (Kim et al., 2020). Batrachopus manus tracks are pentadactyl (though often

225 tridactyl or tetradactyl, as well) with varying digit orientations: usually the digit imprints are

226 spread such that digit II points anteriorly, digit [V points laterally, and digit V points posteriorly
227 (Olsen & Padian, 1986), but numerous referred specimens have more variable digit orientations,
228 including having digit imprints with low divarication angles. Digit imprints are typically short
229 but wide, and may or may not terminate in narrower claw imprints. Batrachopus pes tracks are
230 ectaxonic and tetradactyl (digits I-IV), with digit III being the longest. Digit V, if present,

231  consists of an oval imprint behind that of digit III. Digit imprints are longer than those of the

232 manus, but also relatively wide. Batrachopus trackways demonstrate that the manus and pes

233  prints rotate markedly outward. Numerous Batrachopus tracks at SGDS fit this general

234  description and differ markedly from the tracks described in this paper. However, we note that
235 the sheer diversity of track morphologies that have been attributed to Batrachopus renders

236 comparisons to this ichnotaxon somewhat problematic, and strongly suggests that it requires

237 detailed and updated review and revision.

238 The relative narrowness and separation of digit imprints, as well as the low divarication
239 angles between digit imprints, of all of the SGDS tracks described herein, except for 18-T3-2,
240 preclude them from being classic Batrachopus manus prints. Additionally, the isolated SGDS
241 tracks (190, T6-2, 18-T7) are unlikely to be manus prints because inferred Batrachopus track @
242 makers (protosuchian crocodyliforms) would likely have left more pronounced pes than manus
243 prints, making the absence of associated pes prints with these SGDS tracks bizarre. Also except
244  for 18-T3-2, the anterior projections of the digit imprints of the tetradactyl SGDS tracks (190,
245 T3-3, T3-4, 18-T7) are proportionately more subequal than those of Batrachopus pes tracks, in
246  which the innermost imprint (digit I) is much shorter than the other digit imprints (Lockley et al.,
247 2018; Moreau et al., 2019; Olsen & Padian, 1986). The tridactyl SGDS tracks (T3-1, T3-6, T6-2)
248 are more equivocal in this regard, although T3-1 and T3-6 are part of the T3 trackway, and thus
249 associated with tetradactyl tracks T3-3 and T3-4, so they can be inferred to have had similar

250 overall digit imprint proportions had they been tetradactyl. The absence of distinct claw imprints
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in the relatively deeply impressed SGDS 190, plus its inferred short sole imprint, also further
distinguish that specimen from Batrachopus pes tracks. Overall, a case for attributing the SGDS
tracks to Batrachopus is not well supported.

Ameghinichnus Casamiquela, 1961 (Fig. 11B)

Ameghinichnus tracks are usually attributed to mouse-sized mammaliaforms and have
been found in Upper Triassic—Middle Jurassic strata of Argentina (Casamiquela, 1961; de Valais,
2009), South Africa (Olsen & Galton, 1984), Poland (Gierlinski, Pienkowski & Niedzwiedzki,
2004), and the western (Lockley et al., 2004) and possibly eastern (Olsen, 1988; Olsen &
Rainforth, 2001) United States. Classic Ameghinichnus tracks, as described by de Valais (2009),
comprise quadrupedal trackways with pentadactyl manus and pes tracks that are wider than long.
Digit imprints I[I-V are subequal in length; all digit imprints lack claw imprints (except in
possible specimens from the Newark Supergroup [Olsen & Rainforth, 2001, fig. 59A]) and are
rounded and swollen distally, making them wider than more proximal parts of their imprints.
Symmetrical manus tracks have subequal divarication angles between digit imprints; pes tracks
have markedly greater divarication angles between digits I-II and IV-V than between II-III and
[II-IV. Thus, in both the manus and pes tracks, the digit imprints splay markedly, and are not
subparallel. In 4. patagonicus, smaller manus tracks lie medial to the pes tracks and are rotated
inward, toward the midline, while the somewhat larger pes prints are rotated outward, away from
the midline. Both manus and pes tracks are wider than they are long. Most Ameghinichnus tracks
have distinct sole imprints.

The SGDS tracks described herein are all tridactyl or tetradactyl and lack sole imprints,
unlike Ameghinichnus. Some of the SGDS tracks described herein possess distally tapering digit
imprints, also unlike Ameghinichnus; those that lack claw imprints and are rounded distally lack
distal swellings (though the digit IV imprint of SGDS 190 comes close), also unlike classic
Ameghinichnus. The SGDS tracks generally lack the consistent splay (divarication angles)
exhibited by Ameghinichnus tracks, sometimes possessing subparallel digit imprints. Tracks in
trackway SGDS 18-T3 do not display the degrees of rotation that tracks in Ameghinichnus
trackways do, and the possible manus track in this trackway lies lateral to the pes track, opposite
the configuration in Ameghinichnus. Thus, the SGDS tracks do not fit within the Ameghinichnus
paradigm.

Navahopus Baird, 1980 (Fig. 11C)

Navahopus is an uncommon ichnotaxon thus far reported exclusively from Lower
Jurassic strata of the southwestern United States (Baird, 1980; Hunt & Lucas, 2006¢c; Milan,
Loope & Bromley, 2008; Reynolds, 2006). The Navahopus track maker is unclear: the tracks
have been attributed to sauropodomorph dinosaurs (Baird, 1980; Milan, Loope & Bromley,
2008) and large therapsid synapsids (Lockley & Hunt, 1995; Shibata, Matsukawa & Lockley,
2006). Navahopus manus tracks are tridactyl, with two short, anteriorly oriented digit imprints
and a large, laterally oriented, “falciform” claw imprint (Baird, 1980; Milan, Loope & Bromley,
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2008; g.v., Hunt & Lucas, 2006c). The manus imprints are mediolaterally elongate but
anteroposteriorly short. Navahopus pes tracks are functionally tetradactyl with all digits rotated
slightly laterally; all digit imprints taper distally, terminating in claw marks. They possess
pronounced, posteriorly convex, though irregularly shaped sole imprints.

In addition to its much greater size, Navahopus morphology is distinctly different from
those of the SGDS tracks. None of the SGDS tracks resemble Navahopus manus tracks,
possessing more digits and lacking the “falciform” pollex claw imprint. The SGDS tracks lack
the distinct sole imprint of Navahopus pes prints, but are similar in generally possessing
subparallel digit imprints. However, the digit imprints of Navahopus are quite thin and distally
tapering, while the SGDS track digit imprints are mostly wider, even if they taper distally. The
SGDS tracks thus cannot be readily referred to Navahopus.

Pentasauropus Ellenberger, 1970 (Fig. 11D)

Pentasauropus manus and pes tracks are, as their name implies, pentadactyl, and similar
in size and morphology (D’Orazi Porchetti & Nicosia, 2007). The originally described specimens
from Upper Triassic strata of Lesotho (Ellenberger, 1970, 1972), as well as specimens from
Lower Triassic strata of Argentina (Citton et al., 2018) and Upper Triassic strata of western
North America (Gaston et al., 2003; Lockley & Hunt, 1995) and Argentina (Marsicano &
Barredo, 2004), consist almost exclusively of small, generally ovoid digit-tip imprints arranged
roughly equally spaced in an anteriorly convex, arcuate pattern; the digit-tip imprints are
generally, but not universally, wider than long. Other Late Triassic specimens from Argentina, as
well as subsequently discovered specimens from the Middle Triassic of Argentina (Lagnaoui et
al., 2019), also include large, mediolaterally wide, oval-, kidney-, or D-shaped palm/sole
imprints that are loosely connected or entirely unconnected to the digit imprints. Pentasauropus
trackways are wide gauge and have low pace angulation values. Although initially referred by
Ellenberger (1970) to amphibians and sauropodomorph dinosaurs, and by Haubold (1984) to a
sauropod or therapsid, Pentasauropus has more typically been attributed to dicynodont
therapsids (D’Orazi Porchetti & Nicosia, 2007; Kammerer, 2018; Olsen & Galton, 1984), an
interpretation supported by their restriction to Triassic strata.

Although size is a poor ichnotaxobase, known Pentasauropus tracks dwarf the SGDS
specimens. While some of the SGDS tracks described herein similarly consist of digit-tip-only
imprints, the imprints are all longer than wide and not generally distributed in the neat arc seen in
Pentasauropus; the other SGDS tracks described herein consist of more elongate and narrow
digit imprints, thus also differing from Pentasauropus. Tracks in the SGDS 18-T3 trackway have
higher pace angulation values than do Pentasauropus trackways. The SGDS tracks do not pertain
to Pentasauropus.

Therapsipus Hunt, Santucci, Lockley & Olson, 1993 (Fig. 11E)

Therapsipus tracks, thus far described only from the Middle Triassic of Arizona, were
made by a large, wide-bodied quadruped (Hunt et al., 1993). Tracks are tetradactyl to pentadactyl
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and consist of short, wide, typically blunt digit imprints connected to anteroposteriorly short but
mediolaterally wide palm/sole imprints; this connection, plus the morphologies of the digits and
palm/sole imprints and a greater degree of heteropody between the manus and pes, differentiate
this ichnotaxon from Pentasauropus. Nevertheless, like Pentasauropus, Therapsipus tracks have
been attributed to dicynodont therapsids and are restricted to Triassic strata.

The SGDS tracks described herein differ markedly from Therapsipus for much the same
reasons as they differ from Pentasauropus: their digit imprint morphologies, absence of
palm/sole imprints, and much smaller size all prevent referral to Therapsipus.

Dicynodontipus Riihle von Lilienstern, 1944 (Fig. 11F, G)

Dicynodontipus has been reported from “Middle” Permian—Upper Triassic strata of
Brazil (Francischini et al., 2018), Italy (Conti et al., 1977), South Africa (de Klerk, 2002),
Argentina (Citton et al., 2021; Marsicano et al., 2004; Melchor & de Valais, 2006), Australia
(Retallack, 1996), and Germany (Riihle von Lilienstern, 1944; de Valais et al., 2020).
Dicynodontipus trackways are unknown after the Triassic, although some of the questionable,
Early Jurassic ichnotaxa from Lesotho named by Ellenberger have some similarities (Melchor &
de Valais, 2006). Despite their name and original attribution to dicynodont therapsids (e.g., Conti
et al., 1977; Retallack, 1996; Riihle von Lilienstern, 1944), Dicynodontipus tracks likely were
made by cynodont therapsids (e.g., da Silva et al., 2008; Haubold, 1971, 1984; Marsicano et al.,
2004). If correct, and if all tracks referred to this ichnogenus truly belong in it, then the temporal
extent of this ichnogenus suggests that cynodont manus and pedes were evolutionarily rather
conservative from the Permian through the Triassic.

Both manus and pes tracks are pentadactyl, plantigrade, mesaxonic to slightly ectaxonic,
wider than long, and have short, subequal digit imprint lengths (da Silva et al., 2008); some
referred specimens are tetradactyl or tridactyl (da Silva et al., 2008). Digit imprints are all
oriented anteriorly (Melchor & de Valais, 2006). The tracks resemble those of Therapsipus but
have longer, more tapering digit imprints and longer, more posteriorly extensive, convex, and
rounded sole imprints (da Silva et al., 2008; Riihle von Lilienstern, 1944). Dicynodontipus
trackways also have higher pace angulations than do those of Pentasauropus or Therapsipus
(Melchor & de Valais, 2006).

The SGDS tracks described herein are not pentadactyl or plantigrade, unlike
Dicynodontipus tracks. Some tracks referred to Dicynodontipus have long, tapering digit
imprints (e.g., Marsicano et al., 2004: fig. 5); others (originally placed in the ichnotaxon
Gallegosichnus by Casamiquela [1964]) have shorter, distally rounded digit imprints (e.g.,
Melchor & de Valais, 2006: fig. SA; Fig. 11F); and still others (originally placed in the
ichnotaxon Calibarichnus by Casamiquela [1964]) have shorter, distally tapering digit imprints
(e.g., Melchor & de Valais, 2006: fig. 5B; Fig. 11G). Both of the latter morphologies more
closely resemble those of many of the SGDS tracks described herein. Additionally, the digit
imprints of the SGDS tracks are similar to those of Dicynodontipus in divarication angles and the
relative degrees of anterior projection (Marsicano et al., 2004; Melchor & de Valais, 2006).
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However, the consistent lack of pentadactyly, mesaxony, and sole imprints prevents us from
readily referring the SGDS tracks to Dicynodontipus.

Cynodontipus Ellenberger, 1976

Ellenberger (1976) described a single, incomplete fossil—ostensibly a track that includes
hair imprints—from the Middle Triassic of France as Cynodontipus and attributed it to a
(presumably non-mammaliaform) cynodont therapsid. Additional specimens were reported from
the Middle and Late Triassic of Morocco and eastern North America (Olsen, Et-Touhami &
Whiteside, 2012). Subsequent work, however, demonstrated that the type specimen is not a
singular track at all, though interpretations of it vary. Olsen, Et-Touhami & Whiteside (2012)
and Sues & Olsen (2015) interpreted specimens as procolophonid burrows; Klein & Lucas
(2021) regarded the French specimen as a partial chirotheriid track with microbially induced
sedimentary structures and the ichnotaxon as a nomen dubium. In either case, it is incomparable
to any of the SGDS specimens, but it is mentioned here because it otherwise is one of only a few
Mesozoic ichnotaxa to have been (albeit incorrectly) attributed to a non-mammaliaform
cynodont.

Brasilichnium Leonardi, 1981 (Fig. 11G)

Brasilichnium and Brasilichnium-like tracks have been reported from primarily eolian
deposits of Early Triassic—Late Cretaceous age almost globally (see Leonardi & de Souza
Carvalho [2020] for a review of occurrences). The variety of morphologies that have been
attributed to this ichnotaxon suggest that, like Batrachopus, it may have become something of an
ichnotaxonomic "wastebasket" (Leonardi & de Souza Carvalho, 2020). Brasilichnium and
Brasilichnium-like tracks generally have been attributed to a derived synapsid (derived, non-
mammaliaform eucynodont or basal mammaliaform—see discussion in D'Orazi Porchetti,
Bertini & Langer [2016]); within that interpretation, the general brevity of the digit imprints in
such tracks suggests that their track makers had digital arcades (sensu Kiimmell & Frey, 2012),
supporting a therapsid attribution. However, because most Brasilichnium and Brasilichnium-like
tracks were registered on dune faces in eolian sediments, many, if not most, have been affected
by extramorphological phenomena, such as sediment collapse and deformation features, as well
as asymmetrical push-up rims (e.g., Engelmann & Chure, 2017; Leonardi, de Souza Carvalho &
Fernandes, 2007; q.v. Loope, 2006), that create rather variable track morphologies and
complicate interpretations of the manus and pes morphologies of the track makers.

The type ichnospecies, B. elusivum, as revised by Fernandes & de Souza Carvalho (2008;
g.v., Buck et al., 2016; D'Orazi Porchetti, Bertini & Langer, 2018), comprises quadrupedal
trackways that lack tail traces. Detailed pes prints and less common manus prints typically are
wider mediolaterally than long anteroposteriorly. Both the smaller manus prints, when preserved,
and the larger pes prints are ectaxonic and tetradactyl (digits II-V; digit I is always absent), but
many referred specimens exhibit fewer digit imprints, or even no discreet digit imprints. When
preserved on both the manus and pes, digit imprints are short and teardrop-shaped (typically
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rounded proximally and tapered distally), but imprints can also be rounded distally. Either digit
imprints Il and IV (for B. elusivum; Buck et al., 2016) or II and III (for B. anaiti; D'Orazi
Porchetti, Bertini & Langer, 2018) are longest. Sole marks are rounded and usually wider than
long. Manus prints tend to be located anterior to the pes prints.

The general brevity of the SGDS track digit imprints, the divarication angles, and the
nearly co-equal anterior projections of the digit imprints of the tetradactyl SGDS tracks (190, 18-
T3-3, 18-T3-4, 18-T7) all resemble those of Brasilichnium manus and pes tracks. Even the
possible SGDS manus track (18-T3-5) proportionally bears some resemblance to a Brasilichnium
manus track that lacks a digit II imprint, but its position largely lateral to its associated pes print,
rather than anterior to it, is unlike Brasilichnium. Although it is not a diagnostic feature of the
ichnogenus, some Brasilichnium tracks exhibit apparent paraxony, with imprints of digits II and
IIT angled inward and digits IV and V angled outward (e.g., D’Orazi Porchetti, Bertini & Langer,
2016, fig. 2), as in SGDS 18-T3-3, 18-T3-4, and 18-T7. Further comparisons between the SGDS
specimens and Brasilichnium sensu stricto are limited, however, because the SGDS specimens
lack sole marks, and have variably tapering or rounded distal digit imprints. Furthermore, many
Brasilichnium tracks in trackways are rotated slightly inward (e.g., D’Orazi Porchetti, Bertini &
Langer, 2018, fig. 2), but tracks in the SGDS 18-T3 trackway appear rotated slightly outward, as
are some trackways referred to Brasilichnium from elsewhere in the American Southwest
(Lockley, 2011; Rowland & Mercadante, 2014). These distinctions could arise from anything
from track-making-species idiosyncrasies to differing locomotory strategies, sediments, and
paleoenvironments between those of typical Brasilichnium tracks (loose, coarser sands on dune
slopes) and those of the SGDS tracks (fine-grained, likely wet sand on a flat lake shore).
Nevertheless, of the ichnotaxa compared in this section, the SGDS tracks most closely resemble
Brasilichnium.

Discussion

The enigmatic SGDS tracks described herein cannot be conclusively assigned, or even
referred, to any established ichnotaxon or ichnotaxa. However, they are too few in number, and
too incompletely preserved, to warrant establishing a new ichnotaxon for them. Based on digit-
imprint morphology and overall preserved track morphology, they are better attributed to a
synapsid track maker than a crocodyliform or dinosaurian one. Morphologically overall, they
share more in common with Brasilichnium than with any other ichnotaxon, though in some
respects they also resemble some tracks referred to Dicynodontipus; both of these ichnotaxa have
been attributed to cynodont track makers. Brasilichnium and Brasilichnium-like tracks, however,
are known primarily from coarser, eolian sandstone deposits, whereas the SGDS tracks were
made in wet, lake-shore, fine-grained sand, as were many tracks referred to Dicynodontipus (da
Silva et al., 2008; Melchor & de Valais, 2006). If the SGDS tracks were made by similar track
makers as were Brasilichnium tracks, then the morphological differences between them may
reflect substrate, environmental, and/or behavioral differences. Nevertheless, the SGDS tracks
constitute rare instances of Early Mesozoic—specifically, post-Triassic—synapsid tracks outside
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of an eolian paleoenvironment (i.e., in the Eubrontes ichnocoenose of the Grallator ichnofacies,
rather than in the Brasilichnium ichnocoenose of the Chelichnus ichnofacies [Hunt & Lucas,
2006a; Hunt & Lucas, 2006b]). They raise the question of what Brasilichnium track-maker
tracks made outside of eolian settings might look like. If both Brasilichnium and Dicynodontipus
were made by cynodonts, further comparisons of tracks referred to each ichnotaxon would test
whether they were made by track makers with similar manual and pedal morphologies, and their
differing track morphologies stem largely from environmental factors, or they were made by taxa
with distinct manual and pedal morphologies.

Synapsid—specifically non-mammaliaform eucynodont or mammaliaform—track
makers for the SGDS tracks described herein are plausible for two reasons:

1. Tracks (specifically Brasilichnium) attributed to such animals have been reported
from Lower Jurassic strata elsewhere in the American Southwest (Engelmann & Chure,
2017; Hamblin & Foster, 2000; Lockley, 2011; Reynolds, 2006; Rowland & Mercadante,
2014); and

2. Derived, non-mammaliaform eucynodont (specifically tritylodontid) and basal
mammaliaform skeletal materials are known from both Upper Triassic and Lower
Jurassic strata in the American Southwest, albeit not yet from the Moenave Formation, or
from Utah. Derived, non-mammaliaform eucynodonts (Kligman et al., 2020) and basal
mammaliaforms (Lucas & Luo, 1993) are known from the Upper Triassic Tecovas
Formation (Dockum Group) of west Texas and the Chinle Formation of northern
Arizona. Similarly, and more abundantly, derived, non-mammaliaform eucynodonts
(Hoffman & Rowe, 2018; Kermack, 1982; Lewis, 1986; Sues, 1985, 1986; Sues, Clark,
& Jenkins, 1994; Sues & Jenkins, 2006) and basal mammaliaforms (Crompton & Luo,
1993; Jenkins, Crompton, & Downs, 1983; Sues, Clark, & Jenkins, 1994) are known
from the Lower Jurassic Kayenta Formation of northern Arizona.

The Chinle and Kayenta formations stratigraphically bracket the Moenave Formation (Fig. 2), so
the presence of similar taxa in southwestern Utah during Moenave Formation time can be
assumed. However, known skeletal material of the aforementioned early Mesozoic basal
mammaliaforms does not, as yet, include manual or pedal material, so how the manus and pedes
of these taxa might align with the SGDS tracks cannot be determined. Skeletal material of the
Kayenta Formation tritylodontid Kayentatherium includes manual (Hoffman & Rowe, 2018;
Sues & Jenkins, 2006) and pedal (Lewis, 1986) material; an indeterminate (per Sues, Clark, &
Jenkins, 1994), partial tritylodontid skeleton from the overlying Navajo Sandstone also preserves
manual material (Winkler et al., 1991). Relative digital proportions in these non-mammaliaform
eucynodonts have not been described, however. All are pentadactyl, so understanding their
digital proportions and locomotory postures relates directly to whether or not they could be
predicted to have normally made pentadactyl or tetradactyl tracks and what the nominal,
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expected relative lengths and projections of their digit imprints would be, even incorporating
digital arcades (sensu Kiimmell & Frey, 2012).

Ichnological evidence of a derived, non-mammaliaform eucynodont or basal
mammaliaform (or, conceivably, both) in the Whitmore Point Member of the Moenave
Formation of southwestern Utah increases the known ichnofaunal, and consequent faunal,
diversity of the unit and the region. At the SGDS specifically, tetrapod ichnofossils are, as
present, otherwise limited to those of crocodyliforms (Batrachopus), dinosaurs (Anomoepus,
Characichnos, Eubrontes, Gigandipus, Grallator, Kayentapus), and possibly sphenodontians
(Exocampe) (Milner et al., 2011). Additionally, a diverse invertebrate ichnofauna is also present
(Lucas et al., 2006; Rose, Harris & Milner, 2021), as are Undichna fish swim trails (Milner et al.,
2011). The Whitmore Point Member thus ichnologically preserves a detailed “snapshot” of an
earliest Jurassic terrestrial ecosystem that now likely includes either or both non-mammaliaform
or mammaliaform eucynodont therapsids.

Future excavations of the Top Surface and other track-bearing horizons at the SGDS
potentially may uncover more tracks that may clarify the nature of the enigmatic SGDS track
maker(s) and the ichnotaxon/ichnotaxa to which the tracks described herein pertain.
Additionally, further work exploring the effects of substrate differences and/or slope angles on
synapsid track formation is needed. This could constitute digital modeling and/or
experimentation with extant mammals that possess manual and pedal morphologies similar to
those of derived, non-mammaliaform eucynodonts and basal mammaliaforms. Controlled
experimentation to determine the relationship between substrate characteristics and track
formation has become more common for invertebrate ichnological track work (e.g., Azain, 2006;
Davis, Minter, & Braddy, 2007; Fairchild & Hasiotis, 2011; Schmerge, Riese & Hasiotis, 2013),
but for vertebrates, similar work, while invaluable, often has been observational in natural, rather
than controlled, conditions (e.g., Farlow & Elsey, 2010; Farlow et al., 2017; Genise et al., 2009;
but see Buck et al. [2016], Leonardi [1982], Marchetti et al. [2019], Milan [2006], and Turner &
Gatesy [2021] for experimental examples). This undoubtedly is due to difficulties in handling
and controlling the locomotory behaviors of (especially larger) vertebrates. Nevertheless, small
mammals might be manageable for such experimental work (e.g., Buck et al., 2016).

Conclusions

Several enigmatic, partial fossil tracks from the Lower Jurassic Whitmore Point Member
of the Moenave Formation at the SGDS are most likely attributable to a eucynodont (derived,
non-mammaliaform or basal mammaliaform) track maker. The tracks described herein include a
single possible manus track along with several pes tracks. The possible manus is tridactyl with
only the digits imprints preserved that taper distally. The pes prints are tetradactyl with only
digits imprints preserved. Some taper proximally and/or distally, but others are rounded on both
ends. These tracks are most similar among known and contemporaneous ichnotaxa to
Brasilichnium, which is widely understood to pertain to a derived, non-mammaliaform or basal
mammaliaform track maker. However, morphological differences between the SGDS tracks and
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those of Brasilichnium may be functions of substrate differences: the former were made in
probably wet, fine-grained, lake-shore sands, whereas the latter are known only from coarser,
eolian sands. The discovery of further, more complete specimens and/or experimental work to
better establish a relationship between substrate and track morphology are needed to clarify the
nature of the SGDS tracks.
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Figure 1

Map showing the location of the St. George Dinosaur Discovery Site in Washington
County, St. George, Utah.
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Figure 2

Stratigraphic section at and immediately around the St. George Dinosaur Discovery Site
in St. George, Utah.

Possible synapsid tracks SGDS 18 and 190 come from the Top Surface Tracksite horizon of

the Johnson Farm Sandstone Bed (red arrows).
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Figure 3

Schematic depicting how measurements of possible eucynodont tracks SGDS 18 and
190 were taken.

Diagrams use a tracing of SGDS 18-T7 as a model. (A) Track measurements: dl = digit
length; tl = track length; tw = track width. (B) Measurements of divarication angles between

individual digit traces (lI-V).
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Figure 4

Stereophotograph pair of possible eucynodont track SGDS 190 from the Lower Jurassic
Moenave Formation of St. George, Utah.

Scale bar =1 cm.
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Figure 5

Schematic depicting relative positions of possible eucynodont tracks 1-6 in trackway
SGDS trackway 18-T3.

Scale bar = 5 cm. See Figs. 6-8 for individual track details.
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Figure 6

Stereophotograph pairs of possible eucynodont tracks SGDS 18-T3-1 and 18-T3-2 from
the Lower Jurassic Moenave Formation of St. George, Utah.

(A) SGDS 18-T3-1. (B) SGDS 18-T3-2. Scale bars =1 cm.
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Figure 7

Stereophotograph pairs of possible eucynodont tracks SGDS 18-T3-3, -4, and -5 from
the Lower Jurassic Moenave Formation of St. George, Utah.

Scale bar =1 cm.
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Figure 8

Stereophotograph pair of possible eucynodont track SGDS 18-T3-6 from the Lower
Jurassic Moenave Formation of St. George, Utah.

Scale bar =1 cm.
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Figure 9

Stereophotograph pair of possible eucynodont track SGDS 18-T6-2 from the Lower
Jurassic Moenave Formation of St. George, Utah.

Scale bar =1 cm.

Peer] reviewing PDF | (2023:06:87860:0:1:NEW 24 Jul 2023)


user
Lápiz

user
Línea
Here it is a fouth digit impression. Not noted on the trackway skech. 


PeerJ Manuscript to be reviewed

Figure 10

Stereophotograph pair of possible eucynodont track SGDS 18-T7 from the Lower Jurassic
Moenave Formation of St. George, Utah.

Scale bar =1 cm.
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Figure 11

Schematic morphological comparisons between manus and pes prints of (A)
Batrachopus and (B-H) Mesozoic synapsid ichnotaxa (not to scale).

(A) Composite Batrachopus from the Lower Jurassic Moenave Formation, Arizona (traced from
Olsen & Padian, 1986). (B) Ameghinichnus from the Middle Jurassic La Matilde Formation,
Santa Cruz, Argentina (traced from de Valais, 2009). (C) Navahopus from the Lower Jurassic
Navajo Sandstone, Arizona, USA (traced from Baird, 1980). (D) Pentasauropus from the
Middle Triassic Cerro de las Cabras Formation, Mendoza, Argentina (traced from Lagnaoui et
al., 2019). (E) Therapsipus from the Middle Triassic Holbrook Member of the Moenkopi
Formation, Arizona, USA (traced from Hunt et al., 1993). (F) Dicynodontipus
(“Gallegosichnus” type) from the Upper Triassic Vera Formation, La Rioja, Argentina (traced
from Melchor & de Valais, 2006). (G) Dicynodontipus (“Calibarichnus” type) from the Upper
Triassic Vera Formation, La Rioja, Argentina (traced from Melchor & de Valais, 2006). (H)
Brasilichnium from the Lower Cretaceous Botucatu Formation, Sao Paulo, Brazil (traced from

Fernandes & de Souza Carvalho, 2008).
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Table 1l(on next page)

Measurements for possible eucynodont tracks from the Lower Jurassic Moenave
Formation of St. George, Utah.

L = divarication angle; * = angle anterior, rather than posterior, to track; ? = one digit

impression too vague to accurately determine axis; nfa = not applicable.
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Total Total Digit I |Digit III |Digit IV |Digit V £ Outer-

Length |Width length length length length most Digits
Track (mm) (mm) (mm) (mm) (mm) (mm) 2II-I (°) |2IHI-IV (°) |[£2IV=-V (O) [(®)
190 13.0 15.1 8.6 9.7 10.5 5.8 4.0 27.0 29.0 59.0
18-T3-1 18.7 19.9 n/a 5.1 15.5 9.6 n/a 20.0 12.0 32.0
18-T3-2 12.8 33.9 7.7 11.7 8.2 6.5 ? 36.5 24.0 ?
18-T3-3 16.0 26.5 5.6 7.8 11.0 7.2 11.0 14.0 37.0 61.0
18-T3-3-2 | 11.8 15.6 n/a 8.0 9.0 n/a n/a 32.0 n/a n/a
18-T3-4 14.5 27.0 24 5.7 8.4 9.5 4.0 18.0 21.0 43.0
18-T3-4-2 | 12.0 27.5 n/a 6.0 6.9 6.0 7.0 11.0 9.0 28.0
18-T3-5 23.1 23.0 n/a 9.0 7.3 7.9 n/a 32.0 22.0 53.0
18-T3-5-2 | 18.7 16.9 n/a 7.2 93 6.3 n/a 13.0 17.0 29.0
18-T3-6 12.8 24.6 n/a 12.3 10.4 6.7 n/a 53.0 31.0%* 24.0
18-T6-2 18.6 25.1 6.0 11.5 10.3 12.4 18.0%* 29.0 26.0 37.5
18-T7 10.0 21.7 7.5 8.5 7.8 6.0 8.0 67.0 24.0 98.0
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