Possible eucynodont (Synapsida: Cynodontia) tracks from a lacustrine facies in the Lower Jurassic Moenave Formation of southwestern Utah (#87860)

First submission

Guidance from your Editor

Please submit by 1 Sep 2023 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

11 Figure file(s)

1 Table file(s)

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Possible eucynodont (Synapsida: Cynodontia) tracks from a lacustrine facies in the Lower Jurassic Moenave Formation of southwestern Utah

Holly Hurtado Corresp., 1, 2, Jerald D Harris Corresp., 1, Andrew RC Milner 2

Corresponding Authors: Holly Hurtado, Jerald D Harris Email address: hurtadoholly@gmail.com, jerry.harris@utahtech.edu

Nine fossil tetrapod footprints from lake-shore deposits in the Lower Jurassic Moenave Formation at the St. George Dinosaur Discovery Site (SGDS) in southwestern Utah cannot be assigned to the prevalent dinosaurian (*Anomoepus*, *Eubrontes*, *Gigandipus*, *Grallator*, *Kayentapus*) or crocodyliform (*Batrachopus*) ichnotaxa at the site. The tridactyl and tetradactyl footprints are incomplete, consisting of digit- and digit-tip-only imprints. Eight of the nine are likely pes prints; the remaining specimen is a possible manus print. The pes prints have digit imprint morphologies and similar anterior projections and divarication angles to those of *Brasilichnium*, an ichnotaxon found primarily in eolian paleoenvironments attributed to eucynodont synapsids. Although their incompleteness prevents clear referral to *Brasilichnium*, the SGDS tracks nevertheless suggest a eucynodont track maker and thus represent a rare, Early Mesozoic occurrence of such tracks outside of an eolian paleoenvironment.

 $^{^{}m 1}$ Earth and Environmental Sciences, Utah Tech University, St. George, Utah, United States

² St. George Dinosaur Discovery Site, St. George, Utah, United States

Possible eucynodont (Synapsida: Cynodontia) tracks from a

- 2 lacustrine facies in the Lower Jurassic Moenave Formation
- з of southwestern Utah

4

5 Holly M. Hurtado^{1,2}, Jerald D. Harris¹, and Andrew R.C. Milner²

6

7 Department of Earth and Environmental Sciences, Utah Tech University, St. George, UT, USA

8 ²St. George Dinosaur Discovery Site at Johnson Farm, St. George, UT, USA

9

- 10 Corresponding Author:
- 11 Jerald D. Harris
- 12 225 South University Blvd., St. George, UT, 84770, USA
- 13 Email address: jerry.harris@utahtech.edu

14

Abstract

16 Nine fossil tetrapod footprints from lake-shore deposits in the Lower Jurassic Moenave Formation at the St. George Dinosaur Discovery Site (SGDS) in southwestern Utah cannot be 17 assigned to the prevalent dinosaurian (Anomoepus, Eubrontes, Gigandipus, Grallator, 18 19 *Kayentapus*) or crocodyliform (*Batrachopus*) ichnotaxa at the site. The tridactyl and tetradactyl footprints are incomplete, consisting of digit- and digit-tip-only imprints. Eight of the nine are 20 likely pes prints; the remaining specimen is a possible manus print. The pes prints have digit 21 imprint morphologies and similar anterior projections and divarication angles to those of 22 23 Brasilichnium, an ichnotaxon found primarily in eolian paleoenvironments attributed to eucynodont synapsids. Although their incompleteness prevents clear referral to *Brasilichnium*, 24 the SGDS tracks nevertheless suggest a eucynodont track maker and thus represent a rare, Early 25 Mesozoic occurrence of such tracks outside of an eolian paleoenvironment. 26

27

28

48

49

50

51 52

53

Introduction

29 Fossil tetrapod tracks attributed to pre-Cenozoic synapsids have been found throughout the southwestern United States in strata ranging from Lower Permian (e.g., McKeever & 30 31 Haubold, 1996; q.v., Marchetti et al., 2019) through Upper Cretaceous (Lockley & Foster, 2003). 32 The vast majority of these tracks, particularly from the Early Permian and Late Triassic–Early Jurassic, occur in eolian facies (the *Chelichnus* ichnofacies of Hunt & Lucas [2006a]; Hunt & 33 34 Lucas [2006b]). In Utah specifically, such synapsid tracks are common in the eolian, Upper Triassic-Lower Jurassic Nugget Sandstone and correlative (per Sprinkel, Kowallis & Jensen, 35 36 2011) Wingate Sandstone and Navajo Sandstone (Lockley, 2011; Lockley & Hunt, 1995; Lockley et al., 2004, 2011; Tweet & Santucci, 2015; Engelmann & Chure, 2017); they have also 37 been reported from the roughly correlative Aztec Sandstone of California and Nevada (Reynolds, 38 2006; Rowland & Mercadante, 2014). In contemporaneous, non-eolian strata in the southwestern 39 40 United States, non-synapsid tetrapod tracks otherwise predominate, while synapsid tracks are rare (e.g., Hunt & Lucas, 2006a; Hunt & Lucas, 2006b; Klein & Lucas, 2021; Lockley & 41 Gierliński, 2006, 2014; Lockley, Kirkland & Milner, 2004). Ichnologically, Early Mesozoic 42 synapsids thus appear to have preferentially inhabited eolian environments. However, synapsid 43 44 body fossils are known from Upper Triassic and Lower Jurassic, non-eolian strata in the same region (e.g., Kligman et al., 2020; Jenkins, Crompton, & Downs, 1983; Sues & Jenkins, 2006), 45 46 indicating that the eolian track record is not a complete story, and that synapsid tracks should 47 occur in other environments as well.

The St. George Dinosaur Discovery Site (SGDS) in southwest Utah (Fig. 1) preserves an abundant and moderately diverse ichnofauna in lacustrine and marginal lacustrine environments (the *Grallator* ichnofacies of Hunt & Lucas [2006a], Hunt & Lucas [2006b]) of the Whitmore Point Member of the Moenave Formation, including invertebrate, fish, and sauropsida tracks and trails (Milner et al., 2011). Possible synapsid tracks at the site have been briefly mentioned (Milner, Lockley, & Johnson, 2006; Milner et al., 2011), but until now have not been studied in

detail. Their tentative synapsid attribution stemmed from a combination of their small size; a similarity to some tracks referred to the ichnotaxon *Brasilichnium*, which has long been attributed to synapsids; and a general inability to refer them to any of the sauropsid ichnotaxa at the site, in the region, and from the earliest Jurassic.

Geological Setting

Most of the fossils at the SGDS are from the lowermost Jurassic (Suarez et al., 2017) Whitmore Point Member of the Moenave Formation. This unit overlies the Dinosaur Canyon Member, which contains the Triassic–Jurassic boundary, and is overlain by the Springdale Sandstone Member at the base of the Kayenta Formation (Kirkland & Milner, 2006; Kirkland et al., 2014; Fig. 2). The Whitmore Point Member consists of multiple fossiliferous horizons, the most prominent and fossiliferous of which is the Johnson Farm Sandstone Bed (Kirkland et al., 2014). The Johnson Farm Sandstone Bed is itself divided into a lower Johnson Farm Main Track Layer, a lower–middle Johnson Farm Split Track Layer, and several thinly bedded, apparently conformable, fine-grained-sandstone Top Surface horizons (Fig. 2), all of which preserve abundant vertebrate tracks, invertebrate traces, sedimentary structures, and rare body-fossil remains (Milner, Lockley & Johnson, 2006; Milner et al., 2011). The fossils and sedimentary structures reveal the paleoenvironment of the Johnson Farm Sandstone Bed as having been deposited along the shore of Lake Whitmore (formerly Lake Dixie), a large freshwater lake Kirkland et al., 2014; Milner, Lockley & Johnson, 2006; Tanner & Lucas, 2009). The tracks described herein all come from the Top Surface horizons and are in situ, except SGDS 190, which is ex situ.

Materials and Methods

Measurements of the tracks (Fig. 3) described here were taken using digital calipers on the specimens or replicas of the specimens. The divarication angles between digit imprints were measured using photographs taken orthogonal to the planes in which the specimens lay, using a protractor between straight lines drawn through the long axes of the imprints. For curved digit imprints, the long axes used in divarication measurements were straight lines drawn through the proximal, not distal, ends of the imprints. Stereophotos were taken with a Nikon D5200 digital camera outfitted with an AF-S Nikkor 18-140 mm VR lens under artificial lighting.

Descriptions

Herein we follow Minter, Braddy & Davis (2007) by using the term "imprint" when discussing a discrete, non-continuous trace, such as a digit or sole imprint, and the term "impression" when discussing a more continuous trace. Although this descriptive system was developed for use with arthropod, rather than vertebrate, traces, the system is useful for describing vertebrate traces as well; its adoption here is simply for the sake of clarity.

As far as is currently known, all Early Mesozoic synapsids (dicynodonts, non-mammaliaform eucynodonts [sensu Hopson & Kitching, 2001], and mammaliaforms [sensu Rowe, 1988]; q.v. Sereno [2006]) had pentadactyl manus and pedes. None of the tracks described herein, however, possess five digit imprints, making determining which imprints correspond to which digits impossible. Herein we number the digit imprints using the system common to other tetrapods in which digit lengths increase from digits I–IV and decrease again in digit V (i.e., ectaxony). We acknowledge, however, that these relative digit proportions may not apply to any or all Early Mesozoic synapsids (see below), and that proportions of digit imprints made by at least some of these taxa are complicated by their apparent possession of digital arcades (Kümmell & Frey, 2012).

All the tracks described herein are natural molds (concave/negative epirelief).

SGDS 190 (Fig. 4)

SGDS 190 is a single, *ex situ*, ectaxonic right track that comprises four moderately deep digit imprints only, here interpreted as digits II–V using the aforementioned reasoning (Table 1). The imprints lack discernible digital pad and claw traces. Digit imprints II and III are more diamond-shaped, but still rounded distally. Imprints IV and V do not taper either proximally or distally; instead they have rounded proximal and distal ends that are approximately the same widths as the midpoints of the imprints. The imprints of digits II and III are parallel and straight; the proximal end of the imprint of digit IV parallels those of II and III, but distally the imprint curves laterally to parallel the short and straight imprint of digit V. The curvature of digit IV could be due to some slipping in wet sediment when the track maker pushed off. SGDS 190 lacks a clear sole mark, but the outermost margins of the outermost digit imprints angle inward toward the bases of the other digit imprints in such a way as to suggest the sole region was short anteroposteriorly.

SGDS 18-T3 (Figs. 5–8)

SGDS 18-T3 is a short *in situ* trackway of five apparent pes prints (SGDS 18-T3-1, -2, -3, -4, & -6) and one possible manus print (SGDS 18-T3-5) (Fig. 5). Tracks T3-1, -2, and -6 have a slight outward rotation from the trackway axis.

SGDS 18-T3-1 (Fig. 6A), an apparent mesaxonic right pes print, has three subparallel digit imprints, herein interpreted as digits III–V, The imprints are straight, narrow, and roughly oblong, tapering distally; digit IV, the longest and centrally placed imprint, tapers proximally as well. The distal tapers of the imprints suggest short claws. The proximal ends of the imprints all lie approximately at the same level. As with SGDS 190, the digit imprints lack discernible digital pads.

SGDS 18-T3-2 (Fig. 6B), an apparent mesaxonic left pes print, has four imprints, herein interpreted as digits II–V. Unlike those of 18-T3-1, the imprints divaricate markedly (Table 1). The imprint of digit V is short and curved outward; the other imprints are straight. The imprint of digit II is faint and short. The both proximally and distally tapering imprint of digit III is the

deepest and most pronounced trace; it is also the longest and most distally extended, unlike the apparent pattern in 18-T3-1. The imprints of digits IV and V have rounded proximal and distal ends. As with 18-T3-1, all imprints lack discernible digital pads. Both 18-T3-1 and 18-T3-2 possess longer digit imprints than the rest of the tracks in the trackway, but otherwise are similar in relative digit lengths and by tapering on the distal ends.

SGDS 18-T3-3, 18-T3-4, and 18-T3-5 (Fig. 7) are unusual, comprising primary tracks connected to secondary sets of imprints by clear, linear, but shallow, drag impressions (Figs. 5, 7), each spanning roughly 30 mm between their primary and secondary tracks. The primary track of SGDS 18-T3-3, a paraxonic to ectaxonic right pes print, comprises four short, relatively narrow digit-tip imprints (II–V) that, as in SGDS 190, increase in length from digit II to IV and decrease again in digit V, but unlike in SGDS 190, the imprint of digit II is the shortest (Table 1). Digit imprints II and III are subparallel, but angle inward whereas digit imprints IV and V angle outward, giving the track a paraxonic sense. The imprint of digit IV tapers distally into what may be a short claw trace, but the remaining digit imprints are rounded distally. The secondary track of SGDS 18-T3-3 (labeled 18-T3-3-2 in Table 1) comprises imprints only of digits III and IV; unlike their primary-track counterparts, these imprints taper distally. Their angulations mirror those of their primary-track counterparts.

The primary track of left pes SGDS 18-T3-4 resembles 18-T3-3 except that its imprints are shorter and all rounded distally, though that of digit IV is still the longest of the set. The secondary track of 18-T3-4 (labeled 18-T3-4-2 in Table 1) comprises imprints of all four digits, but they are shorter and shallower than those of 18-T3-3. Unlike in 18-T3-3, the secondary imprints of 18-T3-4 appear rounded distally. Tracks 18-T3-3 and 18-T3-4 lie close to their trackway midline.

The primary track of SGDS 18-T3-5 lies lateral and slightly anterior to 18-T3-4, a position that suggests it might be a manus print. However, its morphology differs markedly from those of 18-T3-3 and 18-T3-4. The primary track comprises three faint, narrow, and shallow digit-tip imprints, likely those of digits III–V. Unlike those of 18-T3-3 and 18-T3-4, each roughly triangular imprint tapers sharply to a point distally, suggesting they may be claw traces. Rather than lying in an approximate, shallowly arcuate row, as do the imprints of 18-T3-3 and 18-3-4, the imprints of 18-T3-5 lie at markedly different levels with respect to each other, with the imprint of digit IV lying far anterior to the imprints of digits III and V. Their configuration is reminiscent of a *Grallator* theropod dinosaur track, but the close association of 18-T3-5 with 18-T3-4, plus the drag impressions and secondary print shared with 18-T3-3 and 18-T3-4, strongly suggest it was made by the same track maker as the other SGDS 18-T3 tracks. The imprints of digit III and V curve slightly distally in opposing directions. The secondary track of 18-T3-5 (labeled 18-T3-5-2 in Table 1) is virtually identical to the primary track, but fainter.

SGDS 18-T3-6 (Fig. 8) is a single apparently right pes print that somewhat resembles SGDS 190 and 18-T3-1; it is virtually the same size as SGDS 190. It comprises three distally tapering digit imprints, presumably of digits III–V. The imprints of digit III and V are straight;

that of digit IV curves slightly outward at its tip. Swollen, rounded areas immediately proximal to the tapered claw imprints could be digital pad imprints.

172173174

175

176

177

178

179

171

SGDS 18-T6-2 (Fig. 9)

SGDS 18-T6-2 is an *in situ*, apparent ectaxonic right track with four digit imprints (presumably II–V), although the imprint of digit V is faint. The imprints of digits II, III, and V taper distally, but that of digit IV is rounded. The tapering distal end of the digit II imprint is proximally attached to an inflated, ovoid proximal end that may be the imprint of a digital pad, but the imprints of digits III, IV, and V lack such a feature. The imprints of digits II and III both curve outward toward their distal ends.

180 181 182

183

184

185

186

187

188

SGDS 18-T7 (Fig. 10)

SGDS 18-T7 is a single, *in situ*, tetradactyl, apparent paraxonic to ectaxonic right pes print that is similar to SGDS 190, 18-T3-3, and 18-T3-4 in overall morphology. As in SGDS 18-T3-3 and T3-4, the subequal imprints of digits II and III are subparallel to each other and angle inward; the shorter imprints of digits IV and V are subparallel to each other and angle outward, giving the track a paraxonic sense. Digit imprints IV and V appear to curve outward slightly at their distal ends. All four imprints taper toward their distal ends, but not as sharply as in 18-T6-2. No obvious digital pad imprints are discernible.

189 190

191 192

193

194

195

196

197

198

199

200201

202203

204

205

206207

208209

210

Comparisons

The mostly tetradactyl SGDS tracks described herein are markedly unlike the dominantly tridactyl, mesaxonic ornithischian (Anomoepus) and theropod (Eubrontes, Gigandipus, Grallator, Kayentapus) dinosaur tracks, all made primarily by bipedal track makers, known from Late Triassic-Early Jurassic of North America and that are abundant at the SGDS and in its geographic and stratigraphic vicinity. Anomoepus can include manus prints, demonstrating facultative quadrupedality by their track makers, but manus tracks are pentadactyl and entaxonic (Olsen & Rainforth, 2003), and therefore unlike the SGDS tracks described herein. Additionally, Anomoepus manus prints unassociated with pes prints are unknown and unexpected given that the weight-bearing hind limbs of presumed *Anomoepus* track makers (facultatively quadrupedal basal ornithischian dinosaurs) would be expected to register much deeper and more pronounced tracks than the manus. Late Triassic–Early Jurassic sauropodomorph ichnotaxa (*Eosauropus*, Evazoum, Kalosauropus, Otozoum, Pseudotetrasauropus), while being tetradactyl to pentadactyl, are all far larger than the SGDS tracks described herein; they also have markedly different digit and sole imprint morphologies and proportions (Lallensack et al., 2017; Mukaddam et al., 2020; Rainforth, 2003), and thus can be readily excluded as possible referrals for the SGDS tracks.

The number of Mesozoic, non-dinosaurian tetrapod ichnotaxa to which the SGDS tracks described herein could be compared is substantial. We limit our comparisons below to ichnotaxa known from Upper Triassic–Early Jurassic strata of the western United States because those are

temporally and geographically the closest to the SGDS tracks and therefore the most likely to be possibly congeneric. We exclude various Triassic ichnotaxa (e.g., chirotheriid tracks) that are understood to not extend into the Jurassic (Klein & Lucas, 2021).

213214215

216

217

218

219220

221

222223

224

225

226

227228

229

230

231232

233

234

235

236237

238

239

240241

242

243

244

245

246

247

248249

250

211

212

Batrachopus Hitchcock, 1845 (Fig. 11A)

Batrachopus is particularly important to compare to the SGDS tracks described herein because *Batrachopus* is one of the most common tetrapod ichnotaxa at the SGDS. The ichnotaxon is attributed to early crocodyliforms, such as *Protosuchus* (Olsen & Padian, 1986). Batrachopus tracks are found in Lower Jurassic strata of France (Moreau et al., 2019), the northeastern (Hitchcock, 1845; Olsen & Padian, 1986) and southwestern (Lockley, Kirkland & Milner, 2004; Lockley et al., 2018) United States, and possibly southern Africa (Lockley, Kirkland, & Milner, 2004; Lockley et al., 2018) and Colombia (Mojica & Macia, 1987), as well as Middle?-Upper Jurassic strata of Morocco (Masrour et al., 2020) and Lower Cretaceous strata of South Korea (Kim et al., 2020). Batrachopus manus tracks are pentadactyl (though often tridactyl or tetradactyl, as well) with varying digit orientations: usually the digit imprints are spread such that digit II points anteriorly, digit IV points laterally, and digit V points posteriorly (Olsen & Padian, 1986), but numerous referred specimens have more variable digit orientations. including having digit imprints with low divarication angles. Digit imprints are typically short but wide, and may or may not terminate in narrower claw imprints. *Batrachopus* pes tracks are ectaxonic and tetradactyl (digits I–IV), with digit III being the longest, Digit V, if present, consists of an oval imprint behind that of digit III. Digit imprints are longer than those of the manus, but also relatively wide. Batrachopus trackways demonstrate that the manus and pes prints rotate markedly outward. Numerous Batrachopus tracks at SGDS fit this general description and differ markedly from the tracks described in this paper. However, we note that the sheer diversity of track morphologies that have been attributed to *Batrachopus* renders comparisons to this ichnotaxon somewhat problematic, and strongly suggests that it requires detailed and updated review and revision.

The relative narrowness and separation of digit imprints, as well as the low divarication angles between digit imprints, of all of the SGDS tracks described herein, except for 18-T3-2, preclude them from being classic *Batrachopus* manus prints. Additionally, the isolated SGDS tracks (190, T6-2, 18-T7) are unlikely to be manus prints because inferred *Batrachopus* track makers (protosuchian crocodyliforms) would likely have left more pronounced pes than manus prints, making the absence of associated pes prints with these SGDS tracks bizarre. Also except for 18-T3-2, the anterior projections of the digit imprints of the tetradactyl SGDS tracks (190, T3-3, T3-4, 18-T7) are proportionately more subequal than those of *Batrachopus* pes tracks, in which the innermost imprint (digit I) is much shorter than the other digit imprints (Lockley et al., 2018; Moreau et al., 2019; Olsen & Padian, 1986). The tridactyl SGDS tracks (T3-1, T3-6, T6-2) are more equivocal in this regard, although T3-1 and T3-6 are part of the T3 trackway, and thus associated with tetradactyl tracks T3-3 and T3-4, so they can be inferred to have had similar overall digit imprint proportions had they been tetradactyl. The absence of distinct claw imprints

in the relatively deeply impressed SGDS 190, plus its inferred short sole imprint, also further distinguish that specimen from *Batrachopus* pes tracks. Overall, a case for attributing the SGDS tracks to *Batrachopus* is not well supported.

Ameghinichnus Casamiquela, 1961 (Fig. 11B)

Ameghinichnus tracks are usually attributed to mouse-sized mammaliaforms and have been found in Upper Triassic-Middle Jurassic strata of Argentina (Casamiquela, 1961; de Valais, 2009), South Africa (Olsen & Galton, 1984), Poland (Gierliński, Pieńkowski & Niedźwiedzki, 2004), and the western (Lockley et al., 2004) and possibly eastern (Olsen, 1988; Olsen & Rainforth, 2001) United States. Classic *Ameghinichnus* tracks, as described by de Valais (2009). comprise quadrupedal trackways with pentadactyl manus and pes tracks that are wider than long. Digit imprints II–V are subequal in length; all digit imprints lack claw imprints (except in possible specimens from the Newark Supergroup [Olsen & Rainforth, 2001, fig. 59A]) and are rounded and swollen distally, making them wider than more proximal parts of their imprints. Symmetrical manus tracks have subequal divarication angles between digit imprints; pes tracks have markedly greater divarication angles between digits I-II and IV-V than between II-III and III–IV. Thus, in both the manus and pes tracks, the digit imprints splay markedly, and are not subparallel. In A. patagonicus, smaller manus tracks lie medial to the pes tracks and are rotated inward, toward the midline, while the somewhat larger pes prints are rotated outward, away from the midline. Both manus and pes tracks are wider than they are long. Most *Ameghinichnus* tracks have distinct sole imprints.

The SGDS tracks described herein are all tridactyl or tetradactyl and lack sole imprints, unlike *Ameghinichnus*. Some of the SGDS tracks described herein possess distally tapering digit imprints, also unlike *Ameghinichnus*; those that lack claw imprints and are rounded distally lack distal swellings (though the digit IV imprint of SGDS 190 comes close), also unlike classic *Ameghinichnus*. The SGDS tracks generally lack the consistent splay (divarication angles) exhibited by *Ameghinichnus* tracks, sometimes possessing subparallel digit imprints. Tracks in trackway SGDS 18-T3 do not display the degrees of rotation that tracks in *Ameghinichnus* trackways do, and the possible manus track in this trackway lies lateral to the pes track, opposite the configuration in *Ameghinichnus*. Thus, the SGDS tracks do not fit within the *Ameghinichnus* paradigm.

Navahopus Baird, 1980 (Fig. 11C)

Navahopus is an uncommon ichnotaxon thus far reported exclusively from Lower Jurassic strata of the southwestern United States (Baird, 1980; Hunt & Lucas, 2006c; Milàn, Loope & Bromley, 2008; Reynolds, 2006). The *Navahopus* track maker is unclear: the tracks have been attributed to sauropodomorph dinosaurs (Baird, 1980; Milàn, Loope & Bromley, 2008) and large therapsid synapsids (Lockley & Hunt, 1995; Shibata, Matsukawa & Lockley, 2006). *Navahopus* manus tracks are tridactyl, with two short, anteriorly oriented digit imprints and a large, laterally oriented, "falciform" claw imprint (Baird, 1980; Milàn, Loope & Bromley,

292

293

294295

296

297

298

299300

2008; q.v., Hunt & Lucas, 2006c). The manus imprints are mediolaterally elongate but anteroposteriorly short. *Navahopus* pes tracks are functionally tetradactyl with all digits rotated slightly laterally; all digit imprints taper distally, terminating in claw marks. They possess pronounced, posteriorly convex, though irregularly shaped sole imprints.

In addition to its much greater size, *Navahopus* morphology is distinctly different from those of the SGDS tracks. None of the SGDS tracks resemble *Navahopus* manus tracks, possessing more digits and lacking the "falciform" pollex claw imprint. The SGDS tracks lack the distinct sole imprint of *Navahopus* pes prints, but are similar in generally possessing subparallel digit imprints. However, the digit imprints of *Navahopus* are quite thin and distally tapering, while the SGDS track digit imprints are mostly wider, even if they taper distally. The SGDS tracks thus cannot be readily referred to *Navahopus*.

301 302 303

304

305

306

307 308

309

310

311312

313

314

315

316 317

318

319

320 321

322

323324

325

Pentasauropus Ellenberger, 1970 (Fig. 11D)

Pentasauropus manus and pes tracks are, as their name implies, pentadactyl, and similar in size and morphology (D'Orazi Porchetti & Nicosia, 2007). The originally described specimens from Upper Triassic strata of Lesotho (Ellenberger, 1970, 1972), as well as specimens from Lower Triassic strata of Argentina (Citton et al., 2018) and Upper Triassic strata of western North America (Gaston et al., 2003; Lockley & Hunt, 1995) and Argentina (Marsicano & Barredo, 2004), consist almost exclusively of small, generally ovoid digit-tip imprints arranged roughly equally spaced in an anteriorly convex, arcuate pattern; the digit-tip imprints are generally, but not universally, wider than long. Other Late Triassic specimens from Argentina, as well as subsequently discovered specimens from the Middle Triassic of Argentina (Lagnaoui et al., 2019), also include large, mediolaterally wide, oval-, kidney-, or D-shaped palm/sole imprints that are loosely connected or entirely unconnected to the digit imprints. *Pentasauropus* trackways are wide gauge and have low pace angulation values. Although initially referred by Ellenberger (1970) to amphibians and sauropodomorph dinosaurs, and by Haubold (1984) to a sauropod or therapsid, *Pentasauropus* has more typically been attributed to dicynodont therapsids (D'Orazi Porchetti & Nicosia, 2007; Kammerer, 2018; Olsen & Galton, 1984), an interpretation supported by their restriction to Triassic strata.

Although size is a poor ichnotaxobase, known *Pentasauropus* tracks dwarf the SGDS specimens. While some of the SGDS tracks described herein similarly consist of digit-tip-only imprints, the imprints are all longer than wide and not generally distributed in the neat arc seen in *Pentasauropus*; the other SGDS tracks described herein consist of more elongate and narrow digit imprints, thus also differing from *Pentasauropus*. Tracks in the SGDS 18-T3 trackway have higher pace angulation values than do *Pentasauropus* trackways. The SGDS tracks do not pertain to *Pentasauropus*.

326327328

329

330

Therapsipus Hunt, Santucci, Lockley & Olson, 1993 (Fig. 11E)

Therapsipus tracks, thus far described only from the Middle Triassic of Arizona, were made by a large, wide-bodied quadruped (Hunt et al., 1993). Tracks are tetradactyl to pentadactyl

and consist of short, wide, typically blunt digit imprints connected to anteroposteriorly short but mediolaterally wide palm/sole imprints; this connection, plus the morphologies of the digits and palm/sole imprints and a greater degree of heteropody between the manus and pes, differentiate this ichnotaxon from *Pentasauropus*. Nevertheless, like *Pentasauropus*, *Therapsipus* tracks have been attributed to dicynodont therapsids and are restricted to Triassic strata.

The SGDS tracks described herein differ markedly from *Therapsipus* for much the same reasons as they differ from *Pentasauropus*: their digit imprint morphologies, absence of palm/sole imprints, and much smaller size all prevent referral to *Therapsipus*.

Dicynodontipus Rühle von Lilienstern, 1944 (Fig. 11F, G)

Dicynodontipus has been reported from "Middle" Permian–Upper Triassic strata of Brazil (Francischini et al., 2018), Italy (Conti et al., 1977), South Africa (de Klerk, 2002), Argentina (Citton et al., 2021; Marsicano et al., 2004; Melchor & de Valais, 2006), Australia (Retallack, 1996), and Germany (Rühle von Lilienstern, 1944; de Valais et al., 2020). Dicynodontipus trackways are unknown after the Triassic, although some of the questionable, Early Jurassic ichnotaxa from Lesotho named by Ellenberger have some similarities (Melchor & de Valais, 2006). Despite their name and original attribution to dicynodont therapsids (e.g., Conti et al., 1977; Retallack, 1996; Rühle von Lilienstern, 1944), Dicynodontipus tracks likely were made by cynodont therapsids (e.g., da Silva et al., 2008; Haubold, 1971, 1984; Marsicano et al., 2004). If correct, and if all tracks referred to this ichnogenus truly belong in it, then the temporal extent of this ichnogenus suggests that cynodont manus and pedes were evolutionarily rather conservative from the Permian through the Triassic.

Both manus and pes tracks are pentadactyl, plantigrade, mesaxonic to slightly ectaxonic, wider than long, and have short, subequal digit imprint lengths (da Silva et al., 2008); some referred specimens are tetradactyl or tridactyl (da Silva et al., 2008). Digit imprints are all oriented anteriorly (Melchor & de Valais, 2006). The tracks resemble those of *Therapsipus* but have longer, more tapering digit imprints and longer, more posteriorly extensive, convex, and rounded sole imprints (da Silva et al., 2008; Rühle von Lilienstern, 1944). *Dicynodontipus* trackways also have higher pace angulations than do those of *Pentasauropus* or *Therapsipus* (Melchor & de Valais, 2006).

The SGDS tracks described herein are not pentadactyl or plantigrade, unlike *Dicynodontipus* tracks. Some tracks referred to *Dicynodontipus* have long, tapering digit imprints (e.g., Marsicano et al., 2004: fig. 5); others (originally placed in the ichnotaxon *Gallegosichnus* by Casamiquela [1964]) have shorter, distally rounded digit imprints (e.g., Melchor & de Valais, 2006: fig. 5A; Fig. 11F); and still others (originally placed in the ichnotaxon *Calibarichnus* by Casamiquela [1964]) have shorter, distally tapering digit imprints (e.g., Melchor & de Valais, 2006: fig. 5B; Fig. 11G). Both of the latter morphologies more closely resemble those of many of the SGDS tracks described herein. Additionally, the digit imprints of the SGDS tracks are similar to those of *Dicynodontipus* in divarication angles and the relative degrees of anterior projection (Marsicano et al., 2004; Melchor & de Valais, 2006).

However, the consistent lack of pentadactyly, mesaxony, and sole imprints prevents us from readily referring the SGDS tracks to *Dicynodontipus*.

Cynodontipus Ellenberger, 1976

Ellenberger (1976) described a single, incomplete fossil—ostensibly a track that includes hair imprints—from the Middle Triassic of France as *Cynodontipus* and attributed it to a (presumably non-mammaliaform) cynodont therapsid. Additional specimens were reported from the Middle and Late Triassic of Morocco and eastern North America (Olsen, Et-Touhami & Whiteside, 2012). Subsequent work, however, demonstrated that the type specimen is not a singular track at all, though interpretations of it vary. Olsen, Et-Touhami & Whiteside (2012) and Sues & Olsen (2015) interpreted specimens as procolophonid burrows; Klein & Lucas (2021) regarded the French specimen as a partial chirotheriid track with microbially induced sedimentary structures and the ichnotaxon as a *nomen dubium*. In either case, it is incomparable to any of the SGDS specimens, but it is mentioned here because it otherwise is one of only a few Mesozoic ichnotaxa to have been (albeit incorrectly) attributed to a non-mammaliaform cynodont.

Brasilichnium Leonardi, 1981 (Fig. 11G)

Brasilichnium and Brasilichnium-like tracks have been reported from primarily eolian deposits of Early Triassic—Late Cretaceous age almost globally (see Leonardi & de Souza Carvalho [2020] for a review of occurrences). The variety of morphologies that have been attributed to this ichnotaxon suggest that, like Batrachopus, it may have become something of an ichnotaxonomic "wastebasket" (Leonardi & de Souza Carvalho, 2020). Brasilichnium and Brasilichnium-like tracks generally have been attributed to a derived synapsid (derived, non-mammaliaform eucynodont or basal mammaliaform—see discussion in D'Orazi Porchetti, Bertini & Langer [2016]); within that interpretation, the general brevity of the digit imprints in such tracks suggests that their track makers had digital arcades (sensu Kümmell & Frey, 2012), supporting a therapsid attribution. However, because most Brasilichnium and Brasilichnium-like tracks were registered on dune faces in eolian sediments, many, if not most, have been affected by extramorphological phenomena, such as sediment collapse and deformation features, as well as asymmetrical push-up rims (e.g., Engelmann & Chure, 2017; Leonardi, de Souza Carvalho & Fernandes, 2007; q.v. Loope, 2006), that create rather variable track morphologies and complicate interpretations of the manus and pes morphologies of the track makers.

The type ichnospecies, *B. elusivum*, as revised by Fernandes & de Souza Carvalho (2008; q.v., Buck et al., 2016; D'Orazi Porchetti, Bertini & Langer, 2018), comprises quadrupedal trackways that lack tail traces. Detailed pes prints and less common manus prints typically are wider mediolaterally than long anteroposteriorly. Both the smaller manus prints, when preserved, and the larger pes prints are ectaxonic and tetradactyl (digits II–V; digit I is always absent), but many referred specimens exhibit fewer digit imprints, or even no discreet digit imprints. When preserved on both the manus and pes, digit imprints are short and teardrop-shaped (typically

 rounded proximally and tapered distally), but imprints can also be rounded distally. Either digit imprints III and IV (for *B. elusivum*; Buck et al., 2016) or II and III (for *B. anaiti*; D'Orazi Porchetti, Bertini & Langer, 2018) are longest. Sole marks are rounded and usually wider than long. Manus prints tend to be located anterior to the pes prints.

The general brevity of the SGDS track digit imprints, the divarication angles, and the nearly co-equal anterior projections of the digit imprints of the tetradactyl SGDS tracks (190, 18-T3-3, 18-T3-4, 18-T7) all resemble those of *Brasilichnium* manus and pes tracks. Even the possible SGDS manus track (18-T3-5) proportionally bears some resemblance to a *Brasilichnium* manus track that lacks a digit II imprint, but its position largely lateral to its associated pes print, rather than anterior to it, is unlike Brasilichnium. Although it is not a diagnostic feature of the ichnogenus, some Brasilichnium tracks exhibit apparent paraxony, with imprints of digits II and III angled inward and digits IV and V angled outward (e.g., D'Orazi Porchetti, Bertini & Langer, 2016, fig. 2), as in SGDS 18-T3-3, 18-T3-4, and 18-T7. Further comparisons between the SGDS specimens and *Brasilichnium sensu stricto* are limited, however, because the SGDS specimens lack sole marks, and have variably tapering or rounded distal digit imprints. Furthermore, many Brasilichnium tracks in trackways are rotated slightly inward (e.g., D'Orazi Porchetti, Bertini & Langer, 2018, fig. 2), but tracks in the SGDS 18-T3 trackway appear rotated slightly outward, as are some trackways referred to Brasilichnium from elsewhere in the American Southwest (Lockley, 2011; Rowland & Mercadante, 2014). These distinctions could arise from anything from track-making-species idiosyncrasies to differing locomotory strategies, sediments, and paleoenvironments between those of typical Brasilichnium tracks (loose, coarser sands on dune slopes) and those of the SGDS tracks (fine-grained, likely wet sand on a flat lake shore). Nevertheless, of the ichnotaxa compared in this section, the SGDS tracks most closely resemble Brasilichnium.

Discussion

The enigmatic SGDS tracks described herein cannot be conclusively assigned, or even referred, to any established ichnotaxon or ichnotaxa. However, they are too few in number, and too incompletely preserved, to warrant establishing a new ichnotaxon for them. Based on digit-imprint morphology and overall preserved track morphology, they are better attributed to a synapsid track maker than a crocodyliform or dinosaurian one. Morphologically overall, they share more in common with *Brasilichnium* than with any other ichnotaxon, though in some respects they also resemble some tracks referred to *Dicynodontipus*; both of these ichnotaxa have been attributed to cynodont track makers. *Brasilichnium* and *Brasilichnium*-like tracks, however, are known primarily from coarser, eolian sandstone deposits, whereas the SGDS tracks were made in wet, lake-shore, fine-grained sand, as were many tracks referred to *Dicynodontipus* (da Silva et al., 2008; Melchor & de Valais, 2006). If the SGDS tracks were made by similar track makers as were *Brasilichnium* tracks, then the morphological differences between them may reflect substrate, environmental, and/or behavioral differences. Nevertheless, the SGDS tracks constitute rare instances of Early Mesozoic—specifically, post-Triassic—synapsid tracks outside

of an eolian paleoenvironment (i.e., in the *Eubrontes* ichnocoenose of the *Grallator* ichnofacies, rather than in the *Brasilichnium* ichnocoenose of the *Chelichnus* ichnofacies [Hunt & Lucas, 2006a; Hunt & Lucas, 2006b]). They raise the question of what *Brasilichnium* track-maker tracks made outside of eolian settings might look like. If both *Brasilichnium* and *Dicynodontipus* were made by cynodonts, further comparisons of tracks referred to each ichnotaxon would test whether they were made by track makers with similar manual and pedal morphologies, and their differing track morphologies stem largely from environmental factors, or they were made by taxa with distinct manual and pedal morphologies.

Synapsid—specifically non-mammaliaform eucynodont or mammaliaform—track makers for the SGDS tracks described herein are plausible for two reasons:

 1. Tracks (specifically *Brasilichnium*) attributed to such animals have been reported from Lower Jurassic strata elsewhere in the American Southwest (Engelmann & Chure, 2017; Hamblin & Foster, 2000; Lockley, 2011; Reynolds, 2006; Rowland & Mercadante, 2014); and

2. Derived, non-mammaliaform eucynodont (specifically tritylodontid) and basal mammaliaform skeletal materials are known from both Upper Triassic and Lower Jurassic strata in the American Southwest, albeit not yet from the Moenave Formation, or from Utah. Derived, non-mammaliaform eucynodonts (Kligman et al., 2020) and basal mammaliaforms (Lucas & Luo, 1993) are known from the Upper Triassic Tecovas Formation (Dockum Group) of west Texas and the Chinle Formation of northern Arizona. Similarly, and more abundantly, derived, non-mammaliaform eucynodonts (Hoffman & Rowe, 2018; Kermack, 1982; Lewis, 1986; Sues, 1985, 1986; Sues, Clark, & Jenkins, 1994; Sues & Jenkins, 2006) and basal mammaliaforms (Crompton & Luo, 1993; Jenkins, Crompton, & Downs, 1983; Sues, Clark, & Jenkins, 1994) are known from the Lower Jurassic Kayenta Formation of northern Arizona.

The Chinle and Kayenta formations stratigraphically bracket the Moenave Formation (Fig. 2), so the presence of similar taxa in southwestern Utah during Moenave Formation time can be assumed. However, known skeletal material of the aforementioned early Mesozoic basal mammaliaforms does not, as yet, include manual or pedal material, so how the manus and pedes of these taxa might align with the SGDS tracks cannot be determined. Skeletal material of the Kayenta Formation tritylodontid *Kayentatherium* includes manual (Hoffman & Rowe, 2018; Sues & Jenkins, 2006) and pedal (Lewis, 1986) material; an indeterminate (per Sues, Clark, & Jenkins, 1994), partial tritylodontid skeleton from the overlying Navajo Sandstone also preserves manual material (Winkler et al., 1991). Relative digital proportions in these non-mammaliaform eucynodonts have not been described, however. All are pentadactyl, so understanding their digital proportions and locomotory postures relates directly to whether or not they could be predicted to have normally made pentadactyl or tetradactyl tracks and what the nominal,

492

493

494 495

496

497

498

499

500

501

502 503

504

505

506

507 508

509

510 511

512 513

514

515

516 517

518

519 520

521 522

523

524

525

526

527

528 529

530

expected relative lengths and projections of their digit imprints would be, even incorporating digital arcades (sensu Kümmell & Frey, 2012).

Ichnological evidence of a derived, non-mammalia form eucynodont or basal mammaliaform (or, conceivably, both) in the Whitmore Point Member of the Moenave Formation of southwestern Utah increases the known ichnofaunal, and consequent faunal, diversity of the unit and the region. At the SGDS specifically, tetrapod ichnofossils are, as present, otherwise limited to those of crocodyliforms (*Batrachopus*), dinosaurs (*Anomoepus*, Characichnos, Eubrontes, Gigandipus, Grallator, Kayentapus), and possibly sphenodontians (Exocampe) (Milner et al., 2011). Additionally, a diverse invertebrate ichnofauna is also present (Lucas et al., 2006; Rose, Harris & Milner, 2021), as are *Undichna* fish swim trails (Milner et al., 2011). The Whitmore Point Member thus ichnologically preserves a detailed "snapshot" of an earliest Jurassic terrestrial ecosystem that now likely includes either or both non-mammaliaform or mammalia form eucynodont therapsids.

Future excavations of the Top Surface and other track-bearing horizons at the SGDS potentially may uncover more tracks that may clarify the nature of the enigmatic SGDS track maker(s) and the ichnotaxon/ichnotaxa to which the tracks described herein pertain. Additionally, further work exploring the effects of substrate differences and/or slope angles on synapsid track formation is needed. This could constitute digital modeling and/or experimentation with extant mammals that possess manual and pedal morphologies similar to those of derived, non-mammaliaform eucynodonts and basal mammaliaforms. Controlled experimentation to determine the relationship between substrate characteristics and track formation has become more common for invertebrate ichnological track work (e.g., Azain, 2006; Davis, Minter, & Braddy, 2007; Fairchild & Hasiotis, 2011; Schmerge, Riese & Hasiotis, 2013), but for vertebrates, similar work, while invaluable, often has been observational in natural, rather than controlled, conditions (e.g., Farlow & Elsey, 2010; Farlow et al., 2017; Genise et al., 2009; but see Buck et al. [2016], Leonardi [1982], Marchetti et al. [2019], Milàn [2006], and Turner & Gatesy [2021] for experimental examples). This undoubtedly is due to difficulties in handling and controlling the locomotory behaviors of (especially larger) vertebrates. Nevertheless, small mammals might be manageable for such experimental work (e.g., Buck et al., 2016).

Conclusions

Several enigmatic, partial fossil tracks from the Lower Jurassic Whitmore Point Member of the Moenave Formation at the SGDS are most likely attributable to a eucynodont (derived, non-mammaliaform or basal mammaliaform) track maker. The tracks described herein include a single possible manus track along with several pes tracks. The possible manus is tridactyl with only the digits imprints preserved that taper distally. The pes prints are tetradactyl with only digits imprints preserved. Some taper proximally and/or distally, but others are rounded on both ends. These tracks are most similar among known and contemporaneous ichnotaxa to Brasilichnium, which is widely understood to pertain to a derived, non-mammaliaform or basal mammaliaform track maker. However, morphological differences between the SGDS tracks and

those of *Brasilichnium* may be functions of substrate differences: the former were made in probably wet, fine-grained, lake-shore sands, whereas the latter are known only from coarser, eolian sands. The discovery of further, more complete specimens and/or experimental work to better establish a relationship between substrate and track morphology are needed to clarify the nature of the SGDS tracks.

536

537538

539

540

Acknowledgements

Spencer Lucas (New Mexico Museum of Natural History & Sciences) was the first to suggest the possibility of these tracks pertaining to cynodonts. Thank you the reviewers for the taking the time to make valuable comments that greatly improved the paper. We also thank the SGDS for allowing us to use their resources.

541542543

555 556

References Cited

- Azain JS. 2006. The effect of temperature and slope on the morphology of experimental spider
 and scorpion trackways. Unpublished Masters thesis. Denver: University of Colorado at
 Denver.
- Baird D. 1980. A prosauropod dinosaur trackway from the Navajo Sandstone (Lower Jurassic)
 of Arizona. In: Jacobs LL, ed. *Aspects of Vertebrate History: Essays in Honor of Edwin Harris Colbert*. Flagstaff: Museum of Northern Arizona Press, 219–230.
- Buck PV, Ghilardi AM, de CPeM Peixoto B, Bueno dos Reis Fernandes L, Fernandes MA.
 2016. A new tetrapod ichnotaxon from Botucatu Formation, Lower Cretaceous
 (Neocomian), Brazil, with comments on fossil track preservation on inclined planes and
 local paleoecology. *Palaeogeography, Palaeoclimatology, Palaeoecology* 466:21–37
 DOI 10.1016/j.palaeo.2016.11.009.
 - **Casamiquela RM. 1961.** Sobre la presencia de un mamífero en el primer elenco (icnológico) de vertebrados del Jurásico de la Patagonia. *Physis* **22**:225–233.
- Casamiquela RM. 1964. Estudios Icnológicos. Buenos Aires: Gobierno de la Prov. de Rio
 Negro, Ministerio de Asuntos Sociales.
- Citton P, de Valais S, Díaz-Martínez I, González SN, Greco GA, Cónsole-Gonella C,
 Leonardi G. 2021. Age-constrained therapsid tracks from a mid-latitude upland
 (Permian-Triassic transition, Los Menucos Complex, Argentina). *Journal of South* American Earth Sciences 110:103367 DOI 10.1016/j.jsames.2021.103367.
- Citton P, Díaz-Martínez I, de Valais S, Cónsole-Gonella C. 2018. Triassic pentadactyl tracks
 from the Los Menucos Group (Río Negro province, Patagonia Argentina): possible
 constraints on the autopodial posture of Gondwanan trackmakers. *PeerJ* 6:e5358 DOI
 10.7717/peerj.5358.
- Conti MA, Leonardi G, Mariotti N, Nicosia U. 1977. Tetrapod footprints from the "Val
 Gardena Sandstone" (north Italy). Their paleontological, stratigraphic and
 paleoenvironmental meaning. *Palaeontolographia Italica* 70 (n.s. 40):1–91.

- Crompton AW, Luo Z. 1993. Relationships of the Liassic mammals Sinoconodon,
 Morganucodon oehleri, and Dinnetherium. In: Szalay FS, Novacek MJ, McKenna MC,
 eds. Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes,
 Early Therians, and Marsupials. New York: Springer-Verlag, 30–44.
 da Silva RC, de Souza Carvalho I, Sequeira Fernandes AC, Ferigolo J. 2008. Pegadas
 teromorfóides do Triássico Superior (Formação Santa Maria) do Sul do Brasil. Revista
- Davis RB, Minter NJ, Braddy SJ. 2007. The neoichnology of terrestrial arthropods.
 Palaeogeography, Palaeoclimatology, Palaeoecology 255:284–307 DOI
 10.1016/j.palaeo.2007.07.013.

Brasileira de Geociências 38:98-113.

- de Klerk WJ. 2002. A dicynodont trackway from the *Cistecephalus* Assemblage Zone in the
 Karoo, east of Graaff-Reinet, South Africa. *Palaeontologia Africana* 38:73–91.
- de Valais S. 2009. Ichnotaxonomic revision of *Ameghinichnus*, a mammalian ichnogenus from
 the Middle Jurassic La Matilde Formation, Santa Cruz province, Argentina. *Zootaxa* 2203:1–21.
- de Valais S, Díaz-Martínez I, Citton P, Cónsole-Gonella C, Jalil N-E, Pereda Suberbiola X,
 Francischini H. 2020. Updated description of the *Dicynodontipus* and *Chirotherium* bearing slab from the Solling Formation, Hildburghausen Town, Germany. In: Vlachos
 E, Manzanares E, Crespo VD, Martínez-Pérez C, Ferrón HG, Herráiz JL, Gamonal A,
 Arnal FAM, Gascó F, Citton P, eds. *2nd Palaeontological Virtual Congress Book of Abstracts*, 127.
- D'Orazi Porchetti D, Bertini RJ, Langer MC 2016. Walking, running, hopping: analysis of
 gait variability and locomotor skills in *Brasilichnium elusivum* Leonardi, with inferences
 on trackmaker identification. *Palaeogeography, Palaeoclimatology, Palaeoecology* 465:14–29 DOI 10.1016/j.palaeo.2016.10.009.
- D'Orazi Porchetti D, Bertini RJ, Langer MC 2018. Proposal for ichnotaxonomic allocation of
 therapsid footprints from the Botucatu Formation (Brazil). *Ichnos* 25:192–207 DOI
 10.1080/10420940.2017.1308929.
- D'Orazi Porchetti S, Nicosia U. 2007. Re-examination of some large early Mesozoic tetrapod
 footprints from the African collection of Paul Ellenberger. *Ichnos* 14:219–245 DOI
 10.1080/10420940601049990.
- Ellenberger P. 1970. Les niveaux paléontologiques de première apparition des mammifères primordiaux en Afrique du Sud et leur ichnologie. Establissement de zones stratigraphiques detaillées dans le Stormberg du Lesotho (Afrique du Sud) (Trias Supérieur à Jurassique). In: International Union of Geological Sciences Commission on Stratigraphy, Sub-Commission on Gondwana Stratigraphy and Palaeontology, ed. Second Gondwana Symposium, Proceedings and Papers. Pretoria: Council for Scientific and Industrial Research, 343–370.

- Ellenberger P. 1972. Contribution à la classification des pistes de vertébrés du Trias: les types
 du Stormberg d'Afrique du Sud (I). *Palaeovertebrata Memoire Extraordinaire* 1972:1–
 104.
- Ellenberger P. 1976. Une piste avec traces de soies épaisses dans le Trias Inférieur a moyen de Lodève (Hérault, France): *Cynodontipus polythrix* nov. gen., nov. sp. Les cynodontes en France. *Geobios* 9:769–787 DOI 10.1016/S0016-6995(76)80078-2.
- Engelmann GF, Chure DJ. 2017. Morphology and sediment deformation of downslope
 Brasilichnium trackways on a dune slipface in the Nugget Sandstone of northeastern
 Utah, USA. *Palaeontologia Electronica* 20.2.22A:1–21.
- Fairchild JM, Hasiotis ST. 2011. Terrestrial and aquatic neoichnological laboratory
 experiments with the freshwater crayfish *Orconectes*: trackways on media of varying
 grain size, moisture, and inclination. *Palaios* 26:790–804 DOI 10.2110/palo.2011.p11 066r.
- Farlow JO, Elsey RM. 2010. Footprints and trackways of the American alligator, Rockefeller
 Wildlife Refuge, Louisiana. In: Milàn J, Lucas SG, Spielmann JA, eds. *Crocodyle Tracks* and Traces. Vol 51. Albuquerque: New Mexico Museum of Nature and Science Bulletin,
 31–39.
- Farlow JO, Robinson NJ, Kumagai CJ, Paladino FV, Falkingham PL, Elsey RM, Martin
 AJ. 2017. Trackways of the American crocodile (*Crocodylus acutus*) in northwestern
 Costa Rica: implications for crocodylian ichnology. *Ichnos* 25:30–65 DOI
 10.1080/10420940.2017.1350856.
- Fernandes MA, de Souza Carvalho I. 2008. Revisão diagnóstica para a icnoespécie de
 tetrápode Mesozóico *Brasilichnium elusivum* (Leonardi, 1981) (Mammalia) da Formação
 Botucatu, Bacia do Paraná, Brasil. *Ameghiniana* 45:167–173.
- Francischini H, Dentzien-Dias P, Lucas SG, Schultz CL. 2018. Tetrapod tracks in Permo Triassic eolian beds of southern Brazil (Paraná Basin). *PeerJ* 6:e4764 DOI
 10.7717/peerj.4764.
- Gaston R, Lockley MG, Lucas SG, Hunt AP. 2003. *Grallator*-dominated fossil footprint
 assemblages and associated enigmatic footprints from the Chinle Group (Upper Triassic),
 Gateway area, Colorado. *Ichnos* 10:153–163 DOI 10.1080/10420940390256258.
- Genise JF, Melchor RN, Archangelsky M, Bala LO, Straneck R, de Valais S. 2009.
 Application of neoichnological studies to behavioural and taphonomic interpretation of fossil bird-like tracks from lacustrine settings: the Late Triassic–Early Jurassic? Santo Domingo Formation, Argentina. *Palaeogeography, Palaeoclimatology, Palaeoecology* 272:143–161 DOI 10.1016/j.palaeo.2008.08.014.
- Gierliński G, Pieńkowski G, Niedźwiedzki G. 2004. Tetrapod track assemblage in the
 Hettangian of Sołtyków, Poland, and its paleoenvironmental background. *Ichnos* 11:195–
 213 DOI 10.1080/10420940490444861.
- Hamblin AH, Foster JR. 2000. Ancient animal footprints and traces in the Grand Staircase–
 Escalante National Monument, south-central Utah. In: Sprinkel DA, Chidsey TC, Jr,

- Anderson, PB, eds. *Geology of Utah's Parks and Monuments*. Vol. 28. Salt Lake City: *Utah Geological Association Publication*, 1–12.
- Haubold H. 1971. Ichnia Amphibiorum et Reptiliorum fossilium. In: Kuhn O, ed. *Handbuch der Paläoherpetologie*. Vol. 18. Stuttgart: Gustav Fischer Verlag.
- 652 **Haubold H. 1984.** Saurierfährten. Wittenberg Lutherstadt: A. Ziemsen Verlag.
- Hitchcock E. 1845. An attempt to name, classify, and describe, the animals that made the fossil
 footmarks of New England. Abstract of the Proceedings of the Sixth Annual Meeting of
 the Association of American Geologists and Naturalists: 23–25.
- Hoffman EA, Rowe TB. 2018. Jurassic stem-mammal perinates and the origin of mammalian reproduction and growth. *Nature* 561:104–108 DOI 10.1038/s41586-018-0441-3.
- Hopson JA, Kitching JW. 2001. A probainognathian cynodont from South Africa and the
 phylogeny of nonmammalian cynodonts. *Bulletin of the Museum of Comparative Zoology* 156:5–35.
- Hunt AP, Lucas SG. 2006a. Triassic–Jurassic tetrapod ichnofacies. In: Harris JD, Lucas SG,
 Spielmann JA, Lockley MG, Milner ARC, Kirkland JI, eds. *The Triassic–Jurassic* Terrestrial Transition. Vol. 37. Albuquerque: New Mexico Museum of Nature and
 Science Bulletin, 12–22.
- Hunt AP, Lucas SG. 2006b. Tetrapod ichnofacies: a new paradigm. *Ichnos* 14:59–68 DOI
 10.1080/10420940601006826.
- Hunt AP, Lucas SG. 2006c. The taxonomic status of *Navahopus falcipollex* and the ichnofauna
 and ichnofacies of the Navajo lithosome (Lower Jurassic) of western North America. In:
 Harris JD, Lucas SG, Spielmann JA, Lockley MG, Milner ARC, Kirkland JI, eds. *The Triassic–Jurassic Terrestrial Transition*. Vol. 37. Albuquerque: *New Mexico Museum of* Nature and Science Bulletin, 164–169.
- Hunt AP, Santucci VL, Lockley MG, Olson TJ. 1993. Dicynodont trackways from the
 Holbrook Member of the Moenkopi Formation (Middle Triassic: Anisian), Arizona,
 USA. In: Lucas SG, Morale M, eds. *The Nonmarine Triassic*. Vol. 3. Albuquerque: *New Mexico Museum of Nature and Science Bulletin*, 213–218.
- Jenkins FA, Jr, Crompton AW, Downs WR. 1983. Mesozoic mammals from Arizona: new evidence on mammalian evolution. *Science* 222:1233–1235 DOI 10.1126/science.222.4629.1233.
- 679 **Kammerer CF. 2018.** The first skeletal evidence of a dicynodont from the lower Elliot Formation of South Africa. *Palaeontologia Africana* **52**:102–128.
- Kermack DM. 1982. A new tritylodontid from the Kayenta Formation of Arizona. Zoological
 Journal of the Linnean Society 76: 1–17 DOI 10.1111/j.1096-3642.1982.tb01953.x.
- Kim KS, Lockley MG, Lim JD, Bae SM, Romilio A. 2020. Trackway evidence for large
 bipedal crocodylomorphs from the Cretaceous of Korea. *Scientific Reports* 10:8680 DOI
 10.1038/s41598-020-66008-7.
- Kirkland JI, Milner ARC. 2006. The Moenave Formation at the St. George Dinosaur
 Discovery Site at Johnson Farm, St. George, southwestern Utah. In: Harris JD, Lucas SG,

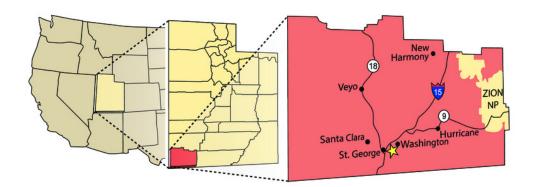
688	Spielmann JA, Lockley MG, Milner ARC, Kirkland JI, eds. The Triassic-Jurassic
689	Terrestrial Transition. Vol. 37. Albuquerque: New Mexico Museum of Nature and
690	Science Bulletin, 289–309.
691	Kirkland JI, Milner ARC, Olsen PE, Hargrave JE. 2014. The Whitmore Point Member of the
692	Moenave Formation in its type area in northern Arizona and its age and correlation with
693	the section in St. George, Utah: evidence for two major lacustrine sequences. In:
694	MacLean JS, Biek RF, Huntoon JE, eds. Geology of Utah's Far South. Vol. 43. Salt Lake
695	City: <i>Utah Geological Association Publication</i> , 321–356.
696	Klein H, Lucas SG. 2021. The Triassic tetrapod footprint record. New Mexico Museum of
697	Natural History & Science Bulletin 83 : 1–194.
698	Kligman BT, Marsh AD, Sues H-D, Sidor CA. 2020. A new non-mammalian eucynodont from
699	the Chinle Formation (Triassic: Norian) and implications for the early Mesozoic
700	equatorial cynodont record. <i>Biology Letters</i> 16 :20200631 DOI 10.1098/rsbl.2020.0631.
701	Kümmell SB, Frey E. 2012. Digital arcade in the autopodia of Synapsida: standard position of
702	the digits and dorsoventral excursion angle of digital joints in the rays II–V.
703	Palaeobiodiversity and Palaeoenvironments 92 :171–196 DOI 10.1007/s12549-012-0076-
704	6.
705	Lagnaoui A, Melchor RN, Bellosi ES, Villegas PM, Espinoza N, Umazano AM. 2019.
706	Middle Triassic <i>Pentasauropus</i> -dominated ichnofauna from western Gondwana:
707	ichnotaxonomy, palaeoenvironment, biostratigraphy and palaeobiogeography.
708	Palaeogeography, Palaeoclimatology, Palaeoecology 524 :41–61 DOI
709	10.1016/j.palaeo.2019.03.020.
710	Lallensack JN, Klein H, Milàn J, Wings O, Mateus O, Clemmensen LB. 2017.
711	Sauropodomorph dinosaur trackways from the Fleming Fjord Formation of east
712	Greenland: evidence for Late Triassic sauropods. Acta Palaeontologica Polonica,
713	62 :833–843 DOI 10.4202/app.00374.2017.
714	Leonardi G. 1981. Novo icnogênero de tetrápode Mesozóico da Formação Botucatu,
715	Araraquara, SP*. Anais da Academia Brasileira de Ciências 53:793–805
716	Leonardi G. 1982. News. Ichnology Newsletter 13:14.
717	Leonardi G, de Souza Carvalho I. 2020. Review of the early mammal Brasilichnium and
718	Brasilichnium-like tracks from the Lower Cretaceous of South America. Journal of South
719	American Earth Sciences 106:102940 DOI 10.1016/j.jsames.2020.102940.
720	Leonardi G, de Souza Carvalho I, Fernandes MA. 2007. The desert ichnofauna from
721	Botucatu Formation (Upper Jurassic-Lower Cretaceous), Brazil. In: de Souza Carvalho I,
722	de Cassia Tardin Cassab R, Schwanke C, de Araujo Carvalho M, Fernandes ACS, da
723	Conceição Rodrigues MA, de Carvalho MSS, Arai M, Oliveira MEQ, eds.,
724	Paleontologia: Cenários de Vida, Vol. 1. Rio de Janeiro, Editora Interciência, 371-383.
725	Lewis GE. 1986. Nearctylodon broomi, the first Nearctic tritylodont. In: Hotton N III, MacLean
726	PD, Roth JJ, Roth EC, eds. The Ecology and Biology of Mammal-like Reptiles.
727	Washington, Smithsonian Institution Press, 295–303.

- Lockley MG. 2011. The ichnotaxonomic status of *Brasilichnium* with special reference to
 occurrences in the Navajo Sandstone (Lower Jurassic) in the western USA. In: Sullivan
 RM, Lucas SG, Spielmann JA, eds. *Fossil Record 3*. Vol. 53. Albuquerque: *New Mexico Museum of Natural History & Science Bulletin*, 306–315.
- Lockley MG, Cart K, Foster J, Lucas SG. 2018. Early Jurassic *Batrachopus*-rich track
 assemblages from interdune deposits in the Wingate Sandstone, Dolores Valley,
 Colorado, USA. *Palaeogeography, Palaeoclimatology, Palaeoecology* 491:185–195 DOI
 10.1016/j.palaeo.2017.12.008.
- 736 Lockley MG, Foster JR. 2003. Late Cretaceous mammal tracks from North America. *Ichnos* 737 10:269–276 DOI 10.1080/10420940390257923.
- Lockley MG, Gierliński GD. 2006. Diverse vertebrate ichnofaunas containing *Anomoepus* and other unusual trace fossils from the Lower Jurassic of the western United States:
 implications for paleoecology and palichnostratigraphy. In: Harris JD, Lucas SG,
 Spielmann JA, Lockley MG, Milner ARC, Kirkland JI, eds. *The Triassic–Jurassic Transition*. Vol. 37. Albuquerque: *New Mexico Museum of Natural History & Science Bulletin*, 176–191.
- Lockley MG, Gierliński GD. 2014. A new *Otozoum*-dominated tracksite in the Glen Canyon
 Group (Jurassic) of eastern Utah. In: Lockley MG, Lucas SG, eds. *Fossil Footprints of* Western North America. Vol. 62. Albuquerque: New Mexico Museum of Natural History
 & Science Bulletin, 211–214.
- Lockley MG, Hunt AP. 1995. Dinosaur tracks and other fossil footprints of the western United
 States. New York: Columbia University Press.
- Lockley MG, Kirkland JI, Milner ARC. 2004. Probable relationships between the Lower
 Jurassic crocodilomorph trackways *Batrachopus* and *Selenichnus*: evidence and
 implications based on new finds from the St. George area southwestern Utah. *Ichnos* 11:143–149 DOI 10.1080/10420940490442340.
- Lockley MG, Lucas SG, Hunt AP, Gaston R. 2004. Ichnofaunas from the Triassic–Jurassic
 boundary sequences of the Gateway area, western Colorado: implications for faunal
 composition and correlations with other areas. *Ichnos* 11:89–102 DOI
 10.1080/10420940490442331.
- Lockley MG, Tedrow AR, Chamberlain KC, Minter NJ, Lim, J-D. 2011. Footprints and invertebrate traces from a new site in the Nugget Sandstone (Lower Jurassic) of Idaho: implications for life in the northern reaches of the great Navajo–Nugget erg system in the western USA. In: Sullivan RM, Lucas SG, Spielmann JA, eds. Fossil Record 3. Vol. 53.
 Albuquerque: New Mexico Museum of Natural History & Science Bulletin, 344–356.
- Loope DB. 2006. Dry-season tracks in dinosaur-triggered grainflows. *Palaios* 21:132–142 DOI 10.2110/palo.2005.p05-55.
- Lucas SG, Lerner AJ, Milner ARC, Lockley MG. 2006. Lower Jurassic invertebrate
 ichnofossils from a clastic lake margin, Johnson Farm, southwestern Utah. In: Harris JD,
 Lucas SG, Spielmann JA, Lockley MG, Milner ARC, Kirkland JI, eds. *The Triassic*–

- Jurassic Terrestrial Transition. Vol. 37. Albuquerque: New Mexico Museum of Nature
 and Science Bulletin, 128–136.
- Lucas SG, Luo Z. 1993. Adelobasileus from the Upper Triassic of west Texas: the oldest
 mammal. Journal of Vertebrate Paleontology 13:309–334 DOI
 10.1080/02724634.1993.10011512.
- Marchetti L, Voigt S, Lucas SG, Francischini H, Dentzien-Dias P, Sacchi R, Mangiacotti
 M, Scali S, Gazzola A, Ronchi A, Milhouse A. 2019. Tetrapod ichnotaxonomy in eolian
 paleoenvironments (Coconino and De Chelly formations, Arizona) and late Cisuralian
 (Permian) sauropsid radiation. *Earth-Science Reviews* 190:148–170 DOI
 10.1016/j.earscirev.2018.12.011.
- 778 Marsicano CA, Arcucci AB, Mancuso A, Caselli AT. 2004. Middle Triassic tetrapod
 779 footprints of southern South America. *Ameghiniana* 41: 171–184.
- Marsicano CA, Barredo SP. 2004. A Triassic tetrapod footprint assemblage from southern
 South America: palaeobiogeographical and evolutionary implications. *Palaeogeography*,
 Palaeoclimatology, *Palaeoecology* 203:313–335 DOI 10.1016/S0031-0182(03)00689-8.
- Masrour M, Boutakiout M, Gascón JH, Ruiz De Zuazo JS, Martínez RO, Pérez-Lorente F.
 2020. Footprints of *Batrachopus* isp. from the Imilchil megatracksite. Middle?—Upper
 Jurassic, central High Atlas (Morocco). *Journal of African Earth Sciences* 172:103980
 DOI 10.1016/j.jafrearsci.2020.103980.
- McKeever PJ, Haubold H. 1996. Reclassification of vertebrate trackways from the Permian of
 Scotland and related forms from Arizona and Germany. *Journal of Paleontology* 70:
 1011–1022 DOI 10.1017/S0022336000038713.
- Melchor RN, de Valais S. 2006. A review of Triassic tetrapod track assemblages from
 Argentina. *Palaeontology* 49:355–379 DOI 10.1111/j.1475-4983.2006.00538.x.
- Milàn J. 2006. Variations in the morphology of emu (*Dromaius novaehollandiae*) tracks
 reflecting differences in walking patterns and substrate consistency: ichnotaxonomic
 implications. *Palaeontology* 49:405–420 DOI 10.1111/j.1475-4983.2006.00543.x.
- Milàn J, Loope DB, Bromley RG. 2008. Crouching theropod and *Navahopus* sauropodomorph
 tracks from the Early Jurassic Navajo Sandstone of USA. *Acta Palaeontologica Polonica* 53:197–205.
- Milner ARC, Birthisel TA, Kirkland JI, Breithaupt BH, Matthews NA, Lockley MG,
 Santucci VL, Gibson SZ, DeBlieux DD, Hurlbut M, Harris JD, Olsen PE. 2011.
 Tracking Early Jurassic dinosaurs across southwestern Utah and the Triassic–Jurassic
 transition. In: Bonde JW, Milner ARC, eds. Field Trip Guide Book for the 71st Annual
 Meeting of the Society of Vertebrate Paleontology. Vol. 1. Reno: Nevada State Museum
 Paleontological Papers, 1–107.
- Milner ARC, Lockley MG, Johnson SB. 2006. The story of the St. George Dinosaur Discovery
 Site at Johnson Farm: an important new Lower Jurassic dinosaur tracksite from the
 Moenave Formation of southwestern Utah. In: Harris JD, Lucas SG, Spielmann JA,
 Lockley MG, Milner ARC, Kirkland JI, eds. *The Triassic–Jurassic Terrestrial*

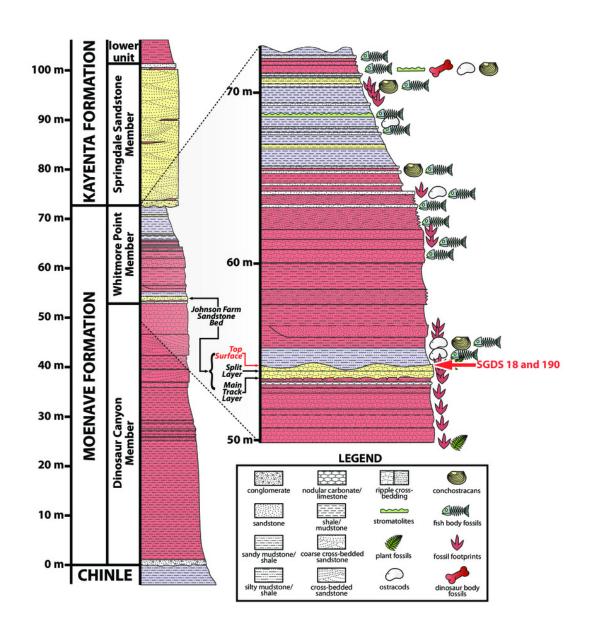
- Transition. Vol. 37. Albuquerque: New Mexico Museum of Nature and Science Bulletin, 329–345.
- Minter NJ, Braddy SJ, Davis RB. 2007. Between a rock and a hard place: arthropod trackways and ichnotaxonomy. *Lethaia* 40:365–375 DOI 10.1111/j.1502-3931.2007.00035.x.
- Mojica J, Macia C. 1987. Nota preliminar sobre la ocurrencia de improntas de vertebrados
 (*Batrachopus* sp.) en sedimentitas de la Formacion Saldaña, region de Prado-Dolores,
 Valle Superior del Magdalena, Colombia. *Geología Colombiana* 16:89–94.
- Moreau J-D, Fara E, Néraudeau D, Gand G. 2019. New Hettangian tracks from the Causses
 Basin (Lozère, southern France) complement the poor fossil record of earliest Jurassic
 crocodylomorphs in Europe. *Historical Biology* 31:341–352 DOI
 10.1080/08912963.2017.1370587.
- Mukaddam R, Bordy EM, Lockley MG, Chapelle KEJ. 2020. Revising *Kalosauropus*, an
 Early Jurassic sauropodomorph track from southern Africa (Lesotho). *Historical Biology*,
 33:2908–2930 DOI 10.1080/08912963.2020.1834542.
- Olsen PE. 1988. Paleontology and paleoecology of the Newark Supergroup (early Mesozoic,
 eastern North America). In: Manspeizer W, ed. *Triassic–Jurassic Rifting and the* Opening of the Atlantic Ocean. Amsterdam: Elsevier, 185–230.
- Olsen PE, Et-Touhami M, Whiteside JH. 2012. Cynodontipus: a procolophonid burrow—not a
 hairy cynodont track (Middle–Late Triassic: Europe, Morocco, eastern North America).
 Geological Society of America Abstracts with Programs 44:92.
- 828 **Olsen PE, Galton PM. 1984.** A review of the reptile and amphibian assemblages from the Stormberg of southern Africa, with special emphasis on the footprints and the age of the Stormberg. *Palaeontologia Africana* **25**:87–110.
- Olsen PE, Padian K. 1986. Earliest records of *Batrachopus* from the southwestern United
 States, and a revision of some Early Mesozoic crocodylomorph ichnogenera. In: Padian
 K, ed, *The Beginning of the Age of Dinosaurs: Faunal Change Across the Triassic–* Jurassic Boundary. Cambridge: Cambridge University Press, 259–273.
- Olsen PE, Rainforth EC. 2001. The "Age of Dinosaurs" in the Newark Basin, with special
 reference to the Lower Hudson Valley. In: Gates AE, ed. *Geology of the Lower Hudson* Valley: 2001 New York State Geological Association Field Trip Guide Book. New York:
 New York State Geological Association, 59–176.
- Olsen PE, Rainforth EC. 2003. The Early Jurassic ornithischian dinosaurian ichnogenus
 Anomoepus. In: LeTourneau PM, Olsen PE, eds., The Great Rift Valleys of Pangea in
 Eastern North America, Vol. 2: Sedimentology, Stratigraphy, and Paleontology. New
 York: Columbia University Press, 314–367.
- Rainforth EC. 2003. Revision and re-evaluation of the Early Jurassic dinosaurian ichnogenus
 Otozoum. Palaeontology 46:803–838.
- Retallack GJ. 1996. Early Triassic therapsid footprints from the Sydney Basin, Australia.
 Alcheringa 20:301–314 DOI 10.1080/03115519608619473.

- Reynolds R. 2006. Way out west: Jurassic tracks on the continental margin. In: Harris JD, Lucas
 SG, Spielmann JA, Lockley MG, Milner ARC, Kirkland JI, eds. *The Triassic–Jurassic* Terrestrial Transition. Vol. 37. Albuquerque: New Mexico Museum of Nature and
 Science Bulletin, 232–237.
- Rose M, Harris JD, Milner ARC. 2021. A trace fossil made by a walking crayfish or crayfish like arthropod from the Lower Jurassic Moenave Formation of southwestern Utah, USA.
 PeerJ 9:e10640 DOI 10.7717/peerj.10640.
- **Rowe T. 1988.** Definition, diagnosis, and origin of Mammalia. *Journal of Vertebrate*855 *Paleontology* **8**:241–264 DOI 10.1080/02724634.1988.10011708.
- Rowland SM, Mercadante JM. 2014. Trackways of a gregarious, dunefield-dwelling, Early
 Jurassic therapsid in the Aztec Sandstone of southern Nevada. *Palaios* 29:539–552 DOI
 10.2110/palo.2013.067.
- Rühle von Lilienstern H. 1944. Eine Dicynodontierfährte aus dem Chirotheriumsandstein von
 Hessberg bei Hildburghausen. *Paläontologische Zeitschrift* 23:368–385 DOI
 10.1007/BF03160445.
- Schmerge JD, Riese DJ, Hasiotis ST. 2013. Vinegaroon (Arachnida: Thelyphonida:
 Thelyphonidae) trackway production and morphology: implications for media and
 moisture control on trackway morphology and a proposal for a novel system of
 interpreting arthropod trace fossils. *Palaios* 28:116–128 DOI 10.2110/palo.2012.p12-012r.
- Sereno PC. 2006. Shoulder girdle and forelimb in multituberculates: evolution of parasagittal
 forelimb posture in mammals. In: Carrano MT, Gaudin TJ, Blob RW, Wible JR, eds.
 Amniote Paleobiology: Perspectives on the Evolution of Mammals, Birds, and Reptiles.
 Chicago: University of Chicago Press, 315–370.
- Shibata K, Matsukawa M, Lockley MG 2006. Energy flow modeling applied to data from the
 Lower Jurassic Navajo Sandstone, western North America: implication for ecological
 replacement between the Late Triassic and Early Jurassic ecosystems. In: Harris JD,
 Lucas SG, Spielmann JA, Lockley MG, Milner ARC, Kirkland JI, eds. *The Triassic– Jurassic Terrestrial Transition*. Vol. 37. Albuquerque: *New Mexico Museum of Nature* and Science Bulletin, 29–34.
- Sprinkel DA, Kowallis BJ, Jensen PH. 2011. Correlation and age of the Nugget Sandstone and
 Glen Canyon Group, Utah. In: Sprinkel DA, Yonkee WA, Chidsey, TC, Jr, eds. Sevier
 Thrust Belt: Northern End and Central Utah and Adjacent Areas. Vol. 40. Salt Lake
 City: Utah Geological Association Publication, 131–149.
- Suarez CA, Knobbe TK, Crowley JL, Kirkland JI, Milner ARC. 2017. A chronostratigraphic assessment of the Moenave Formation, USA using C-isotope chemostratigraphy and detrital zircon geochronology: implications for the terrestrial end Triassic extinction.
 Earth and Planetary Science Letters 475:83–93 DOI 10.1016/j.epsl.2017.07.028.



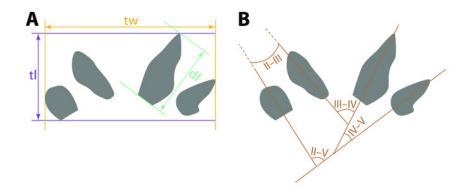
- Sues H-D. 1985. First record of the tritylodontid *Oligokyphus* (Synapsida) from the Lower
 Jurassic of western North America. *Journal of Vertebrate Paleontology* 5:328–335 DOI
 10.1080/02724634.1985.10011869.
- Sues H-D. 1986. Dinnebitodon amarali, a new tritylodontid (Synapsida) from the Lower
 Jurassic of western North America. Journal of Paleontology 60:758–762 DOI
 10.1017/S0022336000022277.
- Sues H-D, Clarke JM, Jenkins, FA, Jr. 1994. A review of the Early Jurassic tetrapods from the
 Glen Canyon Group of the American Southwest. In: Fraser NC, Sues H-D, eds. *In the* Shadow of the Dinosaurs. New York: Cambridge University Press, 284–294.
- Sues H-D, Jenkins FA, Jr. 2006. The postcranial skeleton of *Kayentatherium wellesi* from the
 Lower Jurassic Kayenta Formation of Arizona and the phylogenetic significance of
 postcranial features in tritylodontid cynodonts. In: Carrano MT, Gaudin TJ, Blob RW,
 Wible JR, eds., *Amniote Paleobiology: Perspectives on the Evolution of Mammals, Birds,* and Reptiles. Chicago: The University of Chicago Press, 114–152.
- Sues H-D, Olsen PE. 2015. Stratigraphic and temporal context and faunal diversity of Permian–
 Jurassic continental tetrapod assemblages from the Fundy rift basin, eastern Canada.
 Atlantic Geology 51:139–205 DOI 10.4138/atlgeol.2015.006.
- Tanner LH, Lucas SG. 2009. The Whitmore Point Member of the Moenave Formation: Early
 Jurassic dryland lakes on the Colorado Plateau, southwestern USA. *Volumina Jurassica* 6:11–21.
- Turner ML, Gatesy SM. 2021. Alligators employ intermetatarsal reconfiguration to modulate
 plantigrade ground contact. *Journal of Experimental Biology* 224:jeb242240 DOI
 10.1242/jeb.242240.
- Tweet JS, Santucci, VL. 2015. An inventory of Mesozoic mammals and non-mammalian therapsids in National Park Services areas. In: Sullivan RM, Lucas SG, eds. Fossil
 Record 4. Vol. 67. Albuquerque: New Mexico Museum of Nature and Science Bulletin, 297–302.
- Winkler DA, Jacobs LL, Congleton JD, Downs WR. 1991. Life in a sand sea: biota from
 Jurassic interdunes. *Geology* 19:889–892 DOI 10.1130/0091 7613(1991)019<0889:LIASSB>2.3.CO;2.

Map showing the location of the St. George Dinosaur Discovery Site in Washington County, St. George, Utah.



Stratigraphic section at and immediately around the St. George Dinosaur Discovery Site in St. George, Utah.

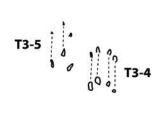
Possible synapsid tracks SGDS 18 and 190 come from the Top Surface Tracksite horizon of the Johnson Farm Sandstone Bed (red arrows).



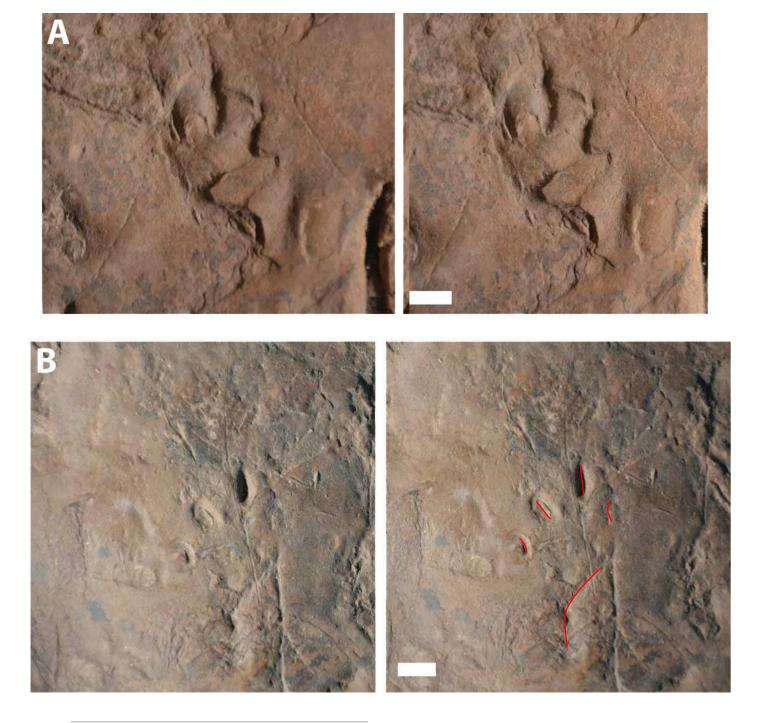
Schematic depicting how measurements of possible eucynodont tracks SGDS 18 and 190 were taken.

Diagrams use a tracing of SGDS 18-T7 as a model. (A) Track measurements: dl = digit length; tl = track length; tw = track width. (B) Measurements of divarication angles between individual digit traces (II-V).

Stereophotograph pair of possible eucynodont track SGDS 190 from the Lower Jurassic Moenave Formation of St. George, Utah.



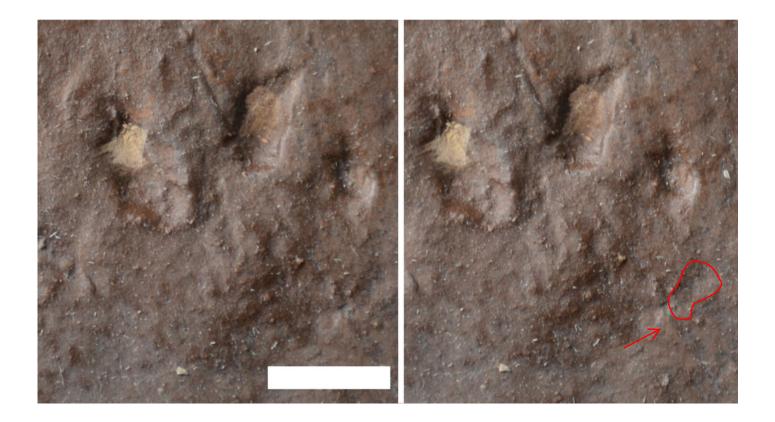
Schematic depicting relative positions of possible eucynodont tracks 1-6 in trackway SGDS trackway 18-T3.


Scale bar = 5 cm. See Figs. 6-8 for individual track details.

T3-6 000

Stereophotograph pairs of possible eucynodont tracks SGDS 18-T3-1 and 18-T3-2 from the Lower Jurassic Moenave Formation of St. George, Utah.

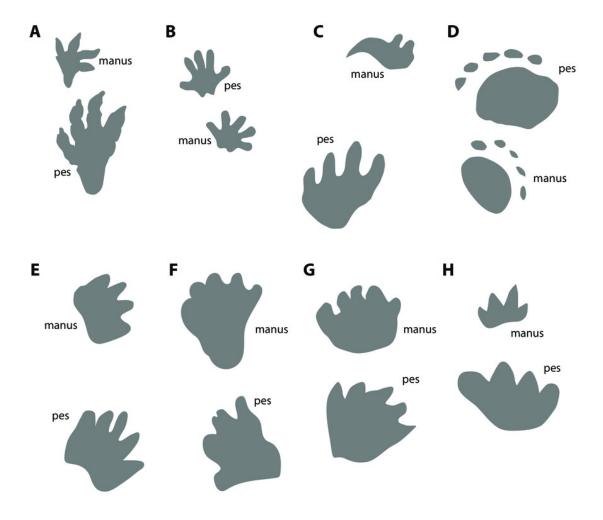
(A) SGDS 18-T3-1. (B) SGDS 18-T3-2. Scale bars = 1 cm.



Stereophotograph pairs of possible eucynodont tracks SGDS 18-T3-3, -4, and -5 from the Lower Jurassic Moenave Formation of St. George, Utah.

Stereophotograph pair of possible eucynodont track SGDS 18-T3-6 from the Lower Jurassic Moenave Formation of St. George, Utah.

Stereophotograph pair of possible eucynodont track SGDS 18-T6-2 from the Lower Jurassic Moenave Formation of St. George, Utah.


Stereophotograph pair of possible eucynodont track SGDS 18-T7 from the Lower Jurassic Moenave Formation of St. George, Utah.

Schematic morphological comparisons between manus and pes prints of (A) Batrachopus and (B-H) Mesozoic synapsid ichnotaxa (not to scale).

(A) Composite *Batrachopus* from the Lower Jurassic Moenave Formation, Arizona (traced from Olsen & Padian, 1986). (B) *Ameghinichnus* from the Middle Jurassic La Matilde Formation, Santa Cruz, Argentina (traced from de Valais, 2009). (C) *Navahopus* from the Lower Jurassic Navajo Sandstone, Arizona, USA (traced from Baird, 1980). (D) *Pentasauropus* from the Middle Triassic Cerro de las Cabras Formation, Mendoza, Argentina (traced from Lagnaoui et al., 2019). (E) *Therapsipus* from the Middle Triassic Holbrook Member of the Moenkopi Formation, Arizona, USA (traced from Hunt et al., 1993). (F) *Dicynodontipus* ("*Gallegosichnus*" type) from the Upper Triassic Vera Formation, La Rioja, Argentina (traced from Melchor & de Valais, 2006). (G) *Dicynodontipus* ("*Calibarichnus*" type) from the Upper Triassic Vera Formation, La Rioja, Argentina (traced from Melchor & de Valais, 2006). (H) *Brasilichnium* from the Lower Cretaceous Botucatu Formation, São Paulo, Brazil (traced from Fernandes & de Souza Carvalho, 2008).

Table 1(on next page)

Measurements for possible eucynodont tracks from the Lower Jurassic Moenave Formation of St. George, Utah.

 \angle = divarication angle; * = angle anterior, rather than posterior, to track; ? = one digit impression too vague to accurately determine axis; n/a = not applicable.

Track	Total Length (mm)	Total Width (mm)	Digit II length (mm)	Digit III length (mm)	Digit IV length (mm)	Digit V length (mm)	∠ II–III (°)	∠ III–IV (°)	∠ IV–V (°)	∠ Outer- most Digits (°)
190	13.0	15.1	8.6	9.7	10.5	5.8	4.0	27.0	29.0	59.0
18-T3-1	18.7	19.9	n/a	5.1	15.5	9.6	n/a	20.0	12.0	32.0
18-T3-2	12.8	33.9	7.7	11.7	8.2	6.5	?	36.5	24.0	?
18-T3-3	16.0	26.5	5.6	7.8	11.0	7.2	11.0	14.0	37.0	61.0
18-T3-3-2	11.8	15.6	n/a	8.0	9.0	n/a	n/a	32.0	n/a	n/a
18-T3-4	14.5	27.0	2.4	5.7	8.4	9.5	4.0	18.0	21.0	43.0
18-T3-4-2	12.0	27.5	n/a	6.0	6.9	6.0	7.0	11.0	9.0	28.0
18-T3-5	23.1	23.0	n/a	9.0	7.3	7.9	n/a	32.0	22.0	53.0
18-T3-5-2	18.7	16.9	n/a	7.2	9.3	6.3	n/a	13.0	17.0	29.0
18-T3-6	12.8	24.6	n/a	12.3	10.4	6.7	n/a	53.0	31.0*	24.0
18-T6-2	18.6	25.1	6.0	11.5	10.3	12.4	18.0*	29.0	26.0	37.5
18-T7	10.0	21.7	7.5	8.5	7.8	6.0	8.0	67.0	24.0	98.0