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Background: Glutamine synthetase (GS), Glutamate synthase (GOGAT), and nitrate
reductase (NR) are key enzymes involved in nitrogen assimilation and metabolism in
plants .However , the systematic analysis of these gene families lacked reports in soybean
(Glycine max (L.) Merr.), one of the most important crops worldwide. Methods: In this
study, we performed genome-wide identification and characterization of GS, GOGAT, and
NR genes in soybean under abiotic and nitrogen stress conditions. Results: We identified a
total of 10 GS genes, 6 GOGAT genes, and 4 NR genes in the soybean genome.
Phylogenetic analysis revealed the presence of multiple isoforms for each gene family,
indicating their functional diversification. The distribution of these genes on soybean
chromosomes was uneven, with segmental duplication events contributing to their
expansion. Within the NAGs group, there was uniformity in the exon-intron structure and
the presence of conserved motifs in NAGs. Furthermore, analysis of cis-elements in NAG
promoters indicated complex regulation of their expression. RT-qPCR analysis of seven
soybean NAGs under various abiotic stresses, including nitrogen deficiency, drought-
nitrogen, and salinity, revealed distinct regulatory patterns. Most NAGs exhibited up-
regulation under nitrogen stress, while diverse expression patterns were observed under
salt and drought-nitrogen stress, indicating their crucial role in nitrogen assimilation and
abiotic stress tolerance. These findings offer valuable insights into the genomic
organization and expression profiles of GS, GOGAT, and NR genes in soybean under
nitrogen and abiotic stress conditions, with potential applications in developing. stress-
resistant soybean varieties through genetic engineering and breeding.
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Abstract

Background: Glutamine synthetase (GS), Glutamate synthase (GOGAT), and nitrate reductase
(NR) are key enzymes involved in nitrogen assimilation and metabolism in plants .However , the
systematic analysis of these gene families lacked reports in soybean (Glycine max (L.) Merr.),

one of the most important crops worldwide.

Methods: In this study, we performed genome-wide identification and characterization of GS,

GOGAT, and NR genes in soybean under abiotic and nitrogen stress conditions.

Results: We identified a total of 10 GS genes, 6 GOGAT genes, and 4 NR genes in the soybean
genome. Phylogenetic analysis revealed the presence of multiple isoforms for each gene family,
indicating their functional diversification. The distribution of these genes on soybean

chromosomes was uneven, with segmental duplication events contributing to their expansion.
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Within the NAGs group, there was uniformity in the exon-intron structure and the presence of
conserved motifs in NAGs. Furthermore, analysis of cis-elements in NAG promoters indicated
complex regulation of their expression. RT-qPCR analysis of seven soybean NAGs under
various abiotic stresses, including nitrogen deficiency, drought-nitrogen, and salinity, revealed
distinct regulatory patterns. Most NAGs exhibited up-regulation under nitrogen stress, while
diverse expression patterns were observed under salt and drought-nitrogen stress, indicating their
crucial role in nitrogen assimilation and abiotic stress tolerance. These findings offer valuable
insights into the genomic organization and expression profiles of GS, GOGAT, and NR genes in
soybean under nitrogen and abiotic stress conditions, with potential applications in developing’.J

stress-resistant soybean varieties through genetic engineering and breeding.
Keyword: Soybean; Glutamine synthetase; Glutamate synthase; Nitrate reductase; Abiotic stress
Introduction:

Nitrogen is an essential nutrient for plant growth and development, playing a key role in various
physiological processes such as protein synthesis, nucleic acid production, and regulation of
enzyme activity. The availability of nitrogen greatly influences crop productivity [1]. Nitrogen
use efficiency (NUE) is a vital aspect of crop productivity, relying on the plant's capacity to
extract inorganic nitrogen from the soil, assimilate nitrate and ammonium, and recycle organic

nitrogen [2].

Glutamine synthetase (GS), Glutamate synthase (GOGAT), and Nitrate reductase (NR) are
essential and interrelated genes in plant nitrogen metabolism, playing key roles in nitrogen
assimilation, remobilization, storage, reutilization and stress resistance [3, 4]. NR is essential for
converting nitrate (NOj5°) to nitrite (NOj;"), initiating the process of inorganic nitrogen utilization
[5]. GS and GOGAT play a crucial role in converting inorganic ammonium salts into organic
nitrogen compounds through the GS/GOGAT cycle [6, 7]. .Plants typically have cytoplasmic
(GS1) and chloroplast (GS2) forms of GS, along with ferredoxin-dependent GOGAT (Fd-
GOGAT) in chloroplasts and plastids, while NADH-dependent GOGAT (NADH-GOGAT) in
the cytoplasm[8]. These enzymes facilitate the transfer of an amino group from glutamine to 2-

oxoglutarate, producing two molecules of glutamate [9].
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Soil salinity, drought, and high temperatures are common environmental stresses that have a
significant impact on plant growth and global crop yield [10]. Under stress conditions, plants
activate specific nitrogen assimilation genes (NAGs) to improve nitrogen uptake, assimilation,
and remobilization. This adaptive response helps plants efficiently utilize nitrogen, allowing
them to survive and thrive in challenging conditions. Numerous studies have emphasized the role
of NAGs in plant reactions to abiotic and nitrogen stresses. For instance, increasing G:S genes in
rice have been shown to provide resistance to salt, drought and cold stress [11], while
introducing pine cytoplasmic glutamine synthetase (GS1) into transgenic poplar has enhanced
tolerance to drought stress [12]. Additionally, the induction of 7aGS2 expression by NO;~ was
observed in wheat leaves. In Zostera marina L., the expression of the NR gene increased in

response to NaCl treatment [13].

Soybean (Glycine max (L.) Merr.) is a highly valued crop known for its economic and
nutritional benefits, including its high oil content (18%) and quality proteins (~40%), as well as
positive effects on soil fertility, productivity, and profitability. It is often referred to as a miracle
crop [14-16]. Environmental stressors such as drought, salinity, extreme temperatures, and
nitrogen stress, can have a significantly impact the growth of soybean plant Growth, leading to
reduced yields and cultivation challenges [17, 18]. While the GS, GOGAT, and NR gene families
have been studied in other plant species, like rice, pecan, and rapeseed [19-21], a comprehensive
genome-wide analysis of these gene families in soybean is still lacking. This study aims to fill
this gap by identifying and analyzing these gene families in six legume species (G max, C._

arietinum, L. japonicas, P. lunatus P. vulgaris, and V._unguiculata) Cncluding soybean) using

bioinformatics techniques. Various analysis were conducted, including phylogenetic tree

construction, gene structure and motif analysis, chromosomal location analysis, gene duplication,
synteny analysis, cis-element identification, and protein structure prediction specifically in
soybean genes. Additionally, the response of these genes to abiotic and nitrogen stresses was
analyzed using RT-qPCR. This research will enhance our understanding of nitrogen utilization

and stress tolerance in soybean, providing valuable insights for crop improvement strategies.
Materials and Methods

Identification of NAGs in Glycine max
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The amino acid sequences of Arabidopsis GS, GOGAT, and NR genes were retrieved from the
Arabidopsis Information Resource (TAIR) database. These sequences were used as queries for a
BLASTP search against the Glycine max reference genome (a4.v1 version) to identify members
of the soybean GS, GOGAT, and NR gene families. Subsequently, domain analysis tools such as
CD search (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi), PFAM

(http://pfam.xfam.org/), and SMART (http://smart.embl-heidelberg.de/ ) were employed with

default cut-off parameters were used to validate the accuracy of these genes. All candidate genes
were aligned with Arabidopsis homologous genes. Genomic DNA, cDNA, CDS, and protein
sequences of the GS, GOGAT, and NR genes were obtained from Phytozome. The same methods
were applied to identify the GS, GOGAT, and NR genes. The confirmed novel NAGs genes were

then renamed using a combination of the species abbreviation and the chromosome position.
Analysis of physicochemical properties

Amino acid properties and physicochemical traits, including molecular weight (MW), aliphatic
index, instability index (II), and isoelectric point (pl) of GmGS, GmGOGAT, and GmNR proteins

were calculated using the ProtParam tool (https://web.expasy.org/protparam). Subcellular

localization was predicted using an advanced protein prediction tool WOLF PSORT (
https://wolfpsort.hgc.jp/ ).

Phylogenetic relationship and sequence alignment

The protein sequences of G.max, C. arietinum, L. japonicas, P. lunatus, P. vulgaris, and V.
unguiculata were aligned using the MUSCLE tool with default settings. Evolutionary
relationships of the NAGs were illustrated through neighbor-joining (NJ) trees for each gene
family, constructed with MEGA 11 software using 1000 bootstraps [22]. The resulting trees in
Newick format were visualized with iTOL v4 (http://itol.embl.de/ ) [23].

Analysis of conserved motifs and gene structure

The motif-based sequence analysis tool MEME (https://meme-suite.org/meme/db/motifs) [24]

was used to predict the conserved motifs of each protein. Furthermore, details regarding the

distribution of exons, introns, and coding sequences were extracted from the GFF3 files of
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soybean genome annotation data. The gene architectures were visualized using the TBtools

software [25].
Chromosome localization, gene duplication, and syntenic analysis of soybean NAGs

The GS, GOGAT, and NR genes were mapped to specific chromosomes of G. max by comparing
their physical distances using GFF3 genome files from the Phytozome V13 database

(https://phytozome-next.jgi.doe.gov/) [26]. Gene position on the chromosomes was visualized

with TBtools software. Collinearity and gene duplication events were examined and presented
using the Multiple Collinearity Scan toolkit (MCScanX) with default settings. The collinearity
between the homologous gene pairs was visualized using the Circos tool in TBtools. To explore
the mechanism behind the amplification of NAGs, gene synteny analysis was conducted between
G. max and C. arietinum, G. max and V. unguiculata, and G. max and A. thaliana, and the

syntenic relationships were visualized using TBtools software.
Selection pressure and promoter analysis of soybean NAGs

The Ka/Ks ratio was estimated using TBtools software to analyze the selection pressure among
soybean NAGs genes within the G.max genome. Additionally, we examined the cis-regulatory
elements in the promoter regions of NAGs by analyzing the upstream sequences (1500) of NAG
proteins ~ downloaded  from  Phytozome  through the  PlantCARE  database
(https://bioinformatics.psb.ugent.be/webtools/plantcare/html/) [27].The distribution of putative

cis-elements was visualized using TBtools.
Gene expression pattern of the NAGs in soybean tissues

To examine the expression patterns of NAGs, we analyzed the FPKM values obtained from
Phytozome across eight different tissues: root, root tip, lateral root, stem, leaf, shoot tip, open
flower, and unopened flower. Further analysis of these expression patterns was carried out using

the heatmap function in TBtools.
Protein-protein interaction network

To investigate the interactions among soybean NAGs proteins, researchers utilized STRING

V12 ( https://string-db.org/) [28]
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to analyze the protein sequences. The resulting protein-protein interaction (PPI) networks were

then visualized using Cytoscape V3.10.1 [29].
Plant materials and treatments

Williams 82 seeds with uniform size were sterilized using a chlorine gas method [30], and were
germinated in a hydroponic system under controlled conditions in a growth chamber with a 16-
hour light and 8-hour dark cycle at 25°C. Once the seedlings reached the V1 developmental stage,
they were moved to a modified MS liquid medium [31] to assess the impact of different nitrate

levels - high (54.3 mM NO;-HN), normal (18.81 mM NO;-NN), and low (6.27 mM NO5-LN

N
is it sufficient f!i “itake and showing symptoms/ expression of genes? provide) reference.

concentrations - for a duration o ‘m To impose drought-nitrate (D-N) stress, the seedlings

were subjected to the specified ]gbove glitrate concentrations along with 15% PEG6000_for
reference

drought stress overéwo day® Furthermore, for salt stress experiments, the seedlings were

exposed to 150 mM NaCl for 24 and 48 hours. The control treatment exclusively utilized MS

medium. Following each treatment, the roots of five plants from three separate biological

. - . .. .. Justity the selection of root only? .
replicates were harvested and quickly frozen in liquid nitrogen. The samples were ground into

powder using a sterilized mortar and pestle in liquid nitrogen. The powdered samples were
promptly transferred into 1.5 ml RNase-free micro tubes (Corning Incorporated, Corning,

Jiangsu province, China) and stored at -80°C.
Total RNA extraction and qRT-PCR analysis

Total RNA was isolated from roots using the RNA Pure Plant Kit (DNasel) (Cat#CW0559S,
CWBIO, Taizhou, Jiangsu, China). The quality of the RNA samples was assessed for

degradation or contamination by 1% agarose gel electrophoresis. Additionally, the purity
(A260/A280 ratio) and concentration of the RNA samples were determined using a Nanodrop
ND-1000 spectrophotometer (V3.7.9). The primers for quantitative real-time PCR (qRT-PCR)
were designed using the IDT online software (https://sg.idtdna.com/) (Table S1). Specificity

screening was performed using Phytozome BLAST with the Glycine max Wm82.a4.vl genome

as the reference.

To generate cDNA, 1 pg of total RNA was reverse transcribed utilizing HiScript 1II RT
SuperMix for qPCR (Cat# R323-01, Vazyme, Nanjing, Jiangsu, China) following the

manufacturer's instructions, reverse transcription reactions are performed at 50°C for 15 min
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following by 85°C for 5sec. The qRT-PCR was performed on a CFX96 real-time PCR system
(Bio-Rad, USA) using ChamQ SYBR qPCR Master Mix (Cat# Q311, Vazyme Nanjing, Jiangsu,
China) which includes SYBR Greenl and other components as specified by the manufacturer.
The quantification was performed in triplicate with 10 pl reactions containing 5 pl of 2x ChamQ
SYBR gqPCR Master mix, 1 pl of primer 10 uM (forward +reversed), 3 ul RNase-free water, and
1 pl cDNA. The PCR conditions involved an initial denaturation at 95°C for 30 s, followed by 40
cycles of 95°C for 5 s, and 60°C for 30 s. A melting curve analysis was conducted by gradually

increasing the temperature to 95°C (increment rates of 0.5°C/s) after cooling to 65°C for 5 s.

The raw quantification cycle (Cq) values for each reaction were generated by the Bio-Rad
CFX Maestro (version 4.1) as shown in Table S2. The relative expression of the target genes was
normalized to the housekeeping gene Actinl1 (Glymal8g290800) and calculated using the 2-44Ct
method. Ct values were obtained from three biological replicates, each with three technical
replicates. Statistically significant differences in gene expression were determined using a t-Test

in Excel. Additional qPCR specifics are provided in a MIQE checklist table (Table S3).
Results
Identification and phylogenetic analysis of soybean NAGs

Utilizing bioinformatics techniques, we identified 20, 9, 7, 11, 10, and 10 NAGs in the entire G.
max, C. arietinum, L. japonicas, P. lunatus, P. vulgaris, and V. unguiculata genomes,
respectively. ProtParam tool analysis using the ProtParam tool revealed significant differences in
molecular weights of GS (ranging from 17.23 to 92.67 kDa), GOGAT (177.20 to 482.52 kDa),
and NR (98.27 to 100.08 kDa) proteins in G. max. The amino acid sequence length varied from
155 bp to 4395 bp, with a notable diversity in genes encoding GS, GOGAT, and NR. The pl
values of all NAGs were less than 7 except GmGS1, indicating acidic nature of these proteins.
Most soybean NAG proteins exhibited an instability index (II) value below 40, suggesting their
stability. Subcellular location predications suggested that the majority of the NAGs are located in
the cytoplasm and chloroplast, with a few genes also present in the mitochondria and nucleus, as

shown in Table S4.

The phylogenetic relationships of NAGs in six legumes, including soybean, were investigated

using the neighbor joining method. The GS genes were divided into four groups based on the
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phylogenetic tree, with groups 1 and 2 consisting of cytoplasmic GS genes, and groups 3 and 4
containing chloroplast GS genes (Fig. 1A). The phylogenetic analysis revealed that GOGAT
family genes could be classified into three groups with group A consisting 7 GOGAT genes, all
from the Fd-GOGAT subfamily and groups B and C containing Fd-GOGAT subfamily genes
from various plants (Fig. 1B). Additionally, NR genes were categorized into three groups (Fig.
1C).

Chromosomal location and gene duplication analysis of soybean NAGs

The distribution of the 20 NAGs in soybean was uneven across 13 out of the 20 soybean
chromosomes. Chromosomel4 was notable for containing four genes, while the other
chromosomes generally contained one or two genes each. To investigate the role of gene
duplication in the expansion of soybean NAGs, we conducted an annotation and analysis of the
intraspecific collinearity of these genes. Our analysis revealed that within the GmGS,
GmGOGAT, and GmNR genes, there were 14, 4, and 3 segmental duplications, respectively
(Fig.2). Additionally, we identified two tandem duplications. One was located on chromosome
Gm02 (GmGS1/GmGS?2), and the other on chromosome Gml4 (GmNIA3/GmNIA4). These
tandem duplications involved genes from the same family and were positioned very close to each

other on their respective chromosomes (Fig.S1).

Our research was further supported by the observation that the tandem duplication-arranged
NAGs, such as GmNIA3 and GmNIA4, clustered together in the phylogenetic tree (Fig. 1),
indicating a close evolutionary relationship between these duplicated genes. The presence of
segmental and tandem duplications highlights the significance of these mechanisms in molding
the genetic landscape of soybean and potentially contributing to its adaptation and functional

diversity in nitrogen assimilation processes.

To explore whether selective constraints influenced the duplicated genes, we analyzed the
Ka/Ks ratio using the full-length protein sequences of the NAGs. The pairwise comparison
revealed a Ka/Ks ratio range of 0.04-0.19, which is notably less than 1, indicating that the
soybean NAGs underwent purifying selection pressure with limited functional divergence.

Moreover, the average Ka/Ks value for the GS gene family members was lower than that of the
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GOGAT and NR gene families, implying a slower evolution of GmGSs and highlighting their

higher conservation level. (Table S5).
Structure of genes and conserved motifs in NAGs encoded proteins

The structures of the GmGS, GmGOGAT, and GmNR genes are illustrated in Figure 3 to
emphasize their structural diversity. GmGS genes exhibit significant variation in the number and
length of introns, with GmGS1 having 5 introns and GmGS5 containing 17 introns, while other
GmGS genes typically have 11-13 introns (Fig. 3A). The arrangement of introns differs among
phylogenetic groups, enhancing the structural and functional diversity of GmGS genes. Moreover,
cytoplasmic GmGS genes feature two types of introns (phase-0, phase-1), whereas chloroplastic

GmGS genes contain phase-0, phase-1, and phase-2 introns, except for GmGS|.

In contrast, the distribution of introns in GmGOGAT genes reveals that all GmNADH-
GOGAT genes have 21 introns, whereas GmFd-GOGAT genes have 32 introns with three
different phase types (Fig. 3B). The GmNR genes, on the other hand, have a relatively small
number of introns compared to the GS and GOGAT gene families, typically possessing 3—4
introns with phase-0 and phase-2 introns (Fig. 3C).

In addition, the conserved motifs of the NAGs in soybean were identified based on their
amino acid sequences using MEME software. Each family had 10 motifs identified. Genes with
close phylogenetic relationships exhibited high similarity conserved motif composition. As
shown in Fig3B, all genes in GOAGT family contained the 10 motifs, implies that this family
may exhibit_h;ghly conserved functions or possibly functional redundancy among its genes,
similar to the NR gene family (Figf23C). Notably, the GS gene family displayed some variation
in motif arrangement, with GmGS1 and GmGS5 deviating from the pattern. GmGS!I had Motif 1
and Motif 3, while GmGS5 only had Motif 6. These findings suggest functional divergence

among nitrogen assimilation genes in soybean.
Synteny analysis of soybean NAGs

To investigate the evolutionary relationships of GS, GOGAT, and NR gene families across
different species, we carried out an interspecies collinearity analysis involving G. max, A.

thaliana, C.arietinum, and P. acutifolius (Fig. 4). The GmGS family members showed the
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highest number of collinear pairs with P. acutifolius, totaling 16 pairs, indicating a close
evolutionary relationship between these two species. Additionally, five collinear gene pairs were
identified between the GmGOGAT and AtGOGAT genes. Conversely, the syntenic relationships
of GmNR genes with genes from other species were predominantly observed on two or three
chromosomes. These results show that the presence of multiple collinear gene pairs among the

three species were inferred to be genetic copies with lineage-specific amplification.
Analysis of cis-acting elements in the promoter regions of the soybean NAGs

An analysis was conducted on the 1500 bp upstream of the transcription start site of GS, GOGAT,
and NR genes in soybean using the PlantCARE database (Fig. 5). The study revealed that these
promoter regions contain three main types of cis-acting elements: light-responsive elements,
hormone-responsive elements, and stress-responsive elements. ¥} Additionally, five types of
hormone-responsive elements were identified, including gibberellin, abscisic acid, auxin,
salicylic acid and jasmonic acid-responsive elements. Functional elements related to stress, such
as low-temperature responsive elements, were also found. These findings indicate that the GmGS,
GmGOGAT, and GmNR genes likely play crucial roles in various physiological processes in

soybeans, such as plant growth, development, and responses to different stresses.
Protein-protein interaction network

As shown in Figure 6, NAGs engage in interactions with one another. The most effective
interaction was observed between GmGSs and GmNRs. PPl enrichment p-value <1.0e-16
indicates that the proteins are at least partially biologically connected, as a group. The potential

interactions among NAGs could offer valuable insights for investigating their biological roles.
Tissue-specific expression profiles of soybean NAGs

Transcriptomic data from the Phytozome database was utilized to investigate the constant
expression of the GmGS, GmGOAGT, and GmNR genes. The analysis involved transcriptome
profiles fromdistinct tissue samples of soybean. The resulting expression data of GmGS,
GmGOAGT, and GmNR were log-transformed and visualized in a heatmap. Among the genes
examined, GmFd-GOGATI, GmGS6, GmGS10, and GmNIAI showed relatively distinct high

expression patterns across all eight tissues, suggesting potential involvement in the vegetative
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organs of G. max (Fig.7). In addition, GmNADH-GOGATI exhibits an unique expression pattern
with significant tissue specificity, primarily in root regions such as root tip, lateral root, and
flowers (Fig. 7B). In contrast, its expression level is significantly lower in the stem, shoot, and
leaf. On the other hand, certain genes like GmNADH-GOGAT2, GmGS7, GmGSY9, GmFd-
GOGAT2, and GmNIA3 displayed tissues-specific high expression level in the stem—er leaf.
These results highlight tissue-specific regulation and potential functional roles of these genes in

soybean.
Analysis of GS, GOGAT, and NR gene expression under abiotic and nitrogen stresses

The study aimed to investigate the response of seven soybean NAGs to nitrate, salt, and nitrate-
drought stress conditions using qRT-PCR. Results showed that GmNADH-GOGAT3, GmGS4,
and GmGS6 did not exhibit significant changes in transcript levels under nitrate stress, while
GmGS10 was significantly induced under both high and low nitrate treatments. These results
suggest that NAGs in soybean may play a potential role in responding to nitrate stress (Fig. 8A).
GmNADH-GOGATI and GmGS4 were significantly up-regulated in response to salt stress over
time. In addition, GmNADH-GOGAT3 showed time-dependent regulation patterns, which were
initially significantly up-regulated at 24 hours and later down-regulated at 48 hours, suggesting a

possible time-dependent regulation mechanism in response to salt stress (Fig. 8B).

Under drought-nitrate stress treatments (D-HN, D-NN, and D-LN), the expression pattern of
these genes was complex (Fig. 8C). For example, GmNADH-GOGATI, GmGS4, GS6, and
GmNIA2 were significantly down-regulated in response to all drought-nitrate treatments.
Additionally, GmNADH-GOGAT3 was down-regulated under D-HN treatment but up-regulated
under D-NN treatment. Interestingly, GmFd-GOGATI and GmGSI0 were significantly up-
regulated after all drought-nitrate treatments compared to the control, suggesting a diverse stress
response mechanism among NAG genes in soyabean. Overall, these findings highlight the

crucial role of NAGs in nitrogen and abiotic stress responses in soybean.
Discussion:

The GS, GOGAT, and NR, which are among the most crucial NAGs, have been confirmed to be
involved in various biological processes, including plant stress tolerance [19, 32]. While these

gene families have been extensively studied in several plant species, knowledge of their
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functions in soybean remains limited [33, 34]. In this study, 10 GS, 6 GOGAT, and 4 NR genes
were identified and characterized through a comprehensive analysis of the soybean genome. We
also investigated their phylogeny, duplication patterns, protein sequences, and expression
profiles under nitrogen, drought-nitrogen, and salt stress conditions. A comparative phylogenetic
analysis revealed a high degree of conservation in NAGs across various legume species
including G.max, emphasizing the close relationship among nitrogen assimilation genes in
diverse crops. The classification of NAGs was consistent with gene structures, motif

distributions, and existing literature [20, 21].

Tandem and segmental duplications are thought to have played a significant role in the
expansion of gene families over course of evolution [35]. The studies in B. napus has shown that
the expansion of the NAGs family was mainly driven by segmental duplication [19]. These
findings are in line with our current study. A majority of duplicated NAGs pairs were identified
as a result of segmental duplication, indicating that it was the primary mechanism driving the
expansion of NAGs in soybean during evolution (Figure 2; Table S2). Additional examination of
the evolutionary selective pressure revealed that NAGs experienced a strong purifying selection

during evolution, implying that their functions may have been conserved over time (Table S2).

The analysis of exon-intron organization and motif patterns within gene families can provide
valuable insights into evolutionary relationships [36]. In the current study, the gene structure and
motif analysis revealed that genes within the same group tended to have a similar number of
introns, similar intron phases, and shared conserved motifs, indicating a pattern of clustering
based on these features and strongly supporting the results of the phylogenetic analysis. This
observation suggests that these genes share common functions and have evolved from a common

ancestor [37, 38].

The interaction between RNA polymerase and the promoter is a crucial event at the onset of
transcription, a crucial process in gene expression. The structure of the promoter influences both
the binding affinity of the RNA polymerase and gene expression level [37, 39]. The analysis of
cis-acting elements in the promoter regions of the GS, GOGAT, and NR genes in soybean
provides valuable insights into the potential regulatory mechanisms of these genes. Numerous
cis-elements related to light responsiveness were identified, suggesting that these genes might be

light-regulated and in plant growth and development processes that are influenced by light
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conditions. Previous studies have highlighted the role of light in regulating nitrogen
accumulation [34]. Additionally, hormone responses and stress tolerance cis-elements were
found in soybean NAGs. This implies a role for the soybean NAGs in modulating hormone
response and stress tolerance. Our observations align with previous research on rice and pecan

[21, 40].

Moreover, we assessed the expression patterns of GS, GOGAT, and NR genes in different
tissues, such as root, stem, and flower, using RNA-seq data. The results revealed that these
NAGs have a wide range of expression across these tissues, with GmGS6 exhibiting the highest
expression levels across all tissues. Previous studies have reported the widespread expression of
NAG family members in various tissues and organs, indicating their involvement in regulating

plant growth and development [33].

Furthermore, the expression patterns of NAGs were validated using RT-qPCR (Fig. 9),
indicating that the NAGs might play a crucial role in responding to a wide range of abiotic
stresses and contributing to the development of resistance mechanisms, aligning with previous
study [20]. The expression of selected GmGS, GmGOGAT, and GmNR genes in response to
different nitrate treatments highlights their potential crucial role in soybean plants' nitrate
response. Specifically, under high nitrate (HN) treatment conditions, all selected NAGs showed
up-regulated expression patterns, aligning with the results of Balotf et al. [41], who observed up
regulation of wheat NAG expression in response to high nitrate (50 mM KNOj;) treatment.
Similarly, Qiao et al. [21]reported significant up regulation of pecan GS genes under high nitrate
concentrations. These studies collectively suggest that these genes may play a vital role in the
response of plants to high nitrate levels, potentially through their involvement in the assimilation
and metabolism of nitrogen compounds. In contrast, the NAGs showed complex expression
under low nitrate treatments (6 mM KNO3); GmGSs were up-regulated while GmGOGAT s were
down-regulated, similar to studies in B. napus. The observed different expression patterns of
NAGs genes under different nitrogen treatments suggest that these genes have distinct reactions
and regulatory mechanisms in response to varying nitrogen treatment conditions. However, the
precise mechanisms underlying these differential gene expression patterns and their implications
for plant adaptation to nitrate stress require further elucidation. This would contribute to our

understanding of plant stress responses and may facilitate the development of strategies for
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367 enhancing crop resilience to nitrate stress. From the above, we can make a hypothesis that up-
368 regulated genes are positively regulated and down-regulated genes are negatively regulated

369 under different stresses.

370 The analysis of gene expression under salt and drought-nitrate stress conditions reveals
371 interesting patterns and potential mechanisms of plant response to these environmental stresses.
372 The majority of the selected genes exhibited increased expression under salt stress over time,
373 which aligns with previous research highlighting the up regulation of GS, GOGAT, and NR gene
374 in rice and Arabidopsis in responses to salt stress [5, 20]. In contrast, the response of NAGs to
375 drought-nitrate stress appears to be more complex. The significant down-regulation of
376  GmNADH-GOGATI, GmNIA2, GmGS4, and GmGSI10 under drought-nitrate treatments is
377 suggestive of a common stress response mechanism. Drought stress can affect the uptake and
378 transport of nitrate in plants. Under drought conditions, the expression of nitrate transporters may
379 be down regulated, reducing the availability of nitrate. This can further contribute to the decrease
380 in GS, NR, and GOGAT activity observed during drought-nitrate interaction treatment. However,
381 the up-regulation of GmFd-GOGATI and GmGSI10 under all drought-nitrate treatments is
382 particularly intriguing. This deviates from the general trend observed in other genes and hints at
383 a unique stress response mechanism. This is a novel finding that has not been reported in

384 previous studies and warrants further investigation.
385 Conclusions:

386 The study analyzed the GS, GOGAT, and NR genes in Glycine max, including their phylogenetic
387 relationships, chromosomal distribution, gene structure, and tissue-specific expression. The study
388 also explored the interaction of the nitrogen pathway with abiotic stresses using RT-qPCR under
389 nitrogen, salt, and drought-nitrogen stresses. The findings suggest these genes play a crucial role

390 in nitrogen metabolism and are significantly influenced by abiotic stress factors. The differential

391 expression of these genes under different stress conditions suggests their potential role in stress
392 tolerance mechanisms. This research opens new avenues for understanding the complex interplay
393 between nitrogen metabolism and stress response in plants, with further studies needed to
394 understand the precise regulatory mechanisms and explore the potential of these genes in

395 improving stress tolerance in crops. mention specific problem/stress the present study going to address.
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List of abbreviations

Fd-GOGAT: Ferredoxin glutamate synthase; FPKM: Fragments per kilobase of transcript per
Million mapped reads; GS: Glutamine synthetase; GOGAT: Glutamate synthase ; MW:
Molecular weight; MS: Murashige and Skoog liquid medium; NADH-GOGAT: Nicotinamide
adenine dinucleotide (NAD) + hydrogen (H) glutamate synthetase; NAG: Nitrogen assimilation
gene; NR: Nitrate reductase; NUE: Nitrogen use efficiency; qRT-PCR: Quantitative real-time

polymerase chain reaction; II: Instability index; pI: Isoelectric point .
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Figure 1

Unrooted phylogenetic tree of GS genes (A) GOGAT genes (B), and NR genes (C) in
G.max, C. arietinum, L. japonicas, P. lunatus, P. vulgaris, and V. unguiculata.

The deduced full-length amino acid sequences were utilized to construct the phylogenetic
tree using MEGA 11 software through a neighbor-joining method with 1000 bootstrap

replicates. Various groups are distinguished by different colors.
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Figure 2

Genomic distribution and duplication of the GmGS, GmGOGAT, and GmNR genes across
20 chromosomes of soybean.

The colorful lines indicate duplicated GmGS, GmGOGAT, and GmNR genes pairs.
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Figure 3

(I) Phylogenetic relationships, (lI) Motif compositions, (lll) Gene structure of GmGS (A),
GmGOGAT (B), and GmNR (C).

Different colored boxes represent different motifs. The green boxes represent UTR and the
yellow boxes represent exons. In terms of introns, a phase 0 intron does not disrupt a codon,
a phasel disrupts a codon between the first and second bases, and the phase 2 intron

located after second nucleotide of a codon.
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Figure 4

Synteny analysis of NAGs between Glycine max and A. thaliana, C.arietinum, and
P.acutifolius.

The gray lines in the background represent the collinear blocks within the soybean and other
plant genomes. Pink lines highlight syntenic glutamine synthetase (GS) gene pairs, blue lines
indicate syntenic glutamate synthase (GOGAT) gene pairs, and yellow lines represent

syntenic nitrate reductase (NR) genes pairs.

A. thaliana |
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Figure 5

Cis-element analysis on the promoter region of GmGS (A) GmGOGAT (B), and GmNR (C).

The potential cis-regulatory elements in the 1500 bp promoter regions were predicted by
PlantCARE software. The elements related to different functional categories were

represented by different colors.
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Figure 6

The protein-protein interaction network for soybean NAGs.

Various active interaction sources were indicated by different line colors: blue for databases,

pink for experiments, green for neighborhood, yellow for text mining, black for co-expression,

and blue for protein homology.
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Figure 7

Expression patterns of GmGS (A), GmGOGAT (B), and GmNR(C) genes in eight soybean
tissues.

RNA-Seq data were used to construct the expression patterns using the FPKM values. The

color scale bars on the right represent the gene expression levels.
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Figure 8

Expression profile of seven selected GmGS, GmGOGAT, and GmNR genes in response to
various stress treatments.

(A) different nitrate concentrations. (B) 24 h and 48 h NaCl stress. (C) drought-nitrate stress.
Gene expression levels were determined using gRT-PCR and normalized with soybean
Actin11 (Glymal8g290800) as a reference gene. Statistically significant expression

differences were identified using t-tests (P<.01).
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note: if possible, provide figure showing symptoms of stress or an
experimental setup.
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note: if possible, provide figure showing symptoms of stress or an experimental setup. 




