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ABSTRACT
The genetic diversity, population structure and gene flow of the Great Bustards (Otis
tarda) living in Austria-Slovakia-West Hungary (West-Pannonian region), one of the
few populations of this globally threatened species that survives across the Palaearc-
tic, has been assessed for the first time in this study. Fourteen recently developed mi-
crosatellite loci identified one single population in the study area, with high values of
genetic diversity and gene flow between two different genetic subunits. One of these
subunits (Heideboden) was recognized as a priority for conservation, as it could be
crucial to maintain connectivity with the central Hungarian population and thus con-
tribute to keeping contemporary genetic diversity. Current conservation efforts have
been successful in saving this threatened population from extinction two decades ago,
and should continue to guarantee its future survival.

Subjects Conservation Biology, Genetics, Zoology
Keywords Conservation, Gene flow, Management, Metapopulation, Population structure,
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INTRODUCTION
The Great Bustard (Otis tarda, Linnaeus 1758) is a globally endangered species, classified
as vulnerable in the Red List of Threatened Species (IUCN, 2015). Today the stronghold
of the species is found in the Iberian Peninsula, with ca. 70% of the world total abun-
dance. Other central European and Asian populations are much smaller and show a
fragmented distribution pattern (Alonso & Palacin, 2010). The German population
and the West-Pannonian population living in Austria-Slovakia-West Hungary suffered
particularly dramatic decreases, respectively from 4,100 birds in 1939 to 65 in 1995,
and from ca. 3,500 birds in 1900 to 130 birds in 1996 (Raab et al., 2010; http://www.
grosstrappe.at; http://www.grosstrappe.de). However, both populations survived and
have even slightly increased in numbers, reaching nowadays 197 birds in Germany and
505 birds in the West-Pannonian population (February 2015 in both cases), thanks to
continued and intensive conservation efforts, centered on habitat management programs
in both countries plus captive breeding in Germany (Langgemach & Litzbarski, 2005; Raab
et al., 2010; Langgemach, 2012; http://www.grosstrappe.at; http://www.grosstrappe.de).
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Specifically for the study population in the West-Pannonian region, conservation efforts
since 2001 have centered on implementing large-scale agri-environmental measures
funded through Austrian and Hungarian Agri-environmental Scheme for Great Bustard
and Austrian, Hungarian and Slovakian Great Bustard LIFE, LEADER, INTERREG and
Rural Development projects to (1) improve the quality of the habitat, (2) increase the
species’ reproductive success (details in Raab, 2013; http://www.grosstrappe.at, Faragó,
Sapkovsky & Raab, 2014; Raab et al., 2014a; Raab et al., 2014b), and (3) reduce power line
collision casualties, by burying powerlines or installing bird collision diverters (Raab et
al., 2012). In spite of all these conservation efforts, the marked decreases in the West-
Pannonian population and in Germany in just a few decades might have caused already
a loss of the original genetic diversity and an increase in inbreeding in these populations.

Genetic analyses have been done in this species not only for its phylogenetic study
(Pitra et al., 2002; Arif et al., 2012; Horreo, Alonso & Mila, 2014), but also for conservation
purposes. These studies have shown that Iberian and central European populations
remain two distinct evolutionary significant units (Pitra, Lieckfeldt & Alonso, 2000)
despite their considerable dispersal and migratory capacity. Moreover, significant genetic
differentiation was suggested among local populations within these two subpopulations,
highlighting the need to conserve not only the Iberian stronghold, but also all other
smaller extant breeding groups of central Europe and Asia, in order to preserve the
current genetic pool of the species. An effective conservation program needs a detailed
knowledge of the genetic structure of the different subpopulations, but such studies
have only been published for the Iberian Peninsula and Morocco (Martin et al., 2001;
Broderick et al., 2003; Alonso et al., 2009; Horreo et al., 2014), with only limited data for
other European populations (Pitra et al., 1996; Pitra, Lieckfeldt & Alonso, 2000).

The aim of this work is to explore for the first time the population structure, genetic
diversity, and gene flow in the Austrian-Slovakian-West Hungarian (known as West-
Pannonian) population of Great Bustards, using fourteen recently developed microsatel-
lite loci (Horreo et al., 2013). The results should be useful not only for the conservation of
this isolated central European population, but also to preserve the genetic diversity of this
globally endangered species.

MATERIALS AND METHODS
During the 2012 and 2013 breeding seasons (between early April and early September),
Great Bustard moulted feathers were searched as DNA source in all areas previously
known to be used by the species in Austria. In Austria, the authors had verbal permission
from hunters to collect feathers in their properties. No other official permit is needed in
this country to collect feathers. As for Hungary, the authors had a permit to collect gene
samples issued for the Hungarian LIFE project (LIFE04 NAT/HU/000109), in which
the Hungarian Ministry of Environment and Water was a co-financier and the regional
competent Fertő–Hanság National Park Directorate was a partner. Single or small groups
of feathers were found at 80 sites, covering the three most important breeding areas in
Austria: Weinviertel, Marchfeld and Heideboden (Fig. 1). To minimize the probability
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Figure 1 Map showing the distribution of the studied Great Bustard breeding areas in Austria-West Hungary-Slovakia (Weinviertel, March-
feld and Heideboden; orange patches), and the location of the study area within central Europe (inset map on the upper right corner). These
three orange areas include, respectively: SPA ‘‘Westliches Weinviertel’’ (AT1209000), ca.7441 ha; a large part of SPA ‘‘Sandboden und Praterter-
rasse’’ (AT1213V00), ca. 11.083 ha; and SPA ‘‘Parndorfer Platte—Heideboden’’ (AT1125129) -ca. 7260 ha- plus the northern part of Hungarian
SPA ‘‘Mosni-sík’’ (HUFH10004) -ca. 3159 ha- and the Slovakian SPA ’’Sysl’ovské polia’’ (SKCHVU029) -ca. 1777 ha-. The black dots indicate the
collection sites of the samples used for genetic analyses. The two capital cities, Vienna and Bratislava (pink patches), the perimeters of the suburban
areas around them (black lines around pink patches), and the initials of the four countries converging in this geographic region (Austria, Czech Re-
public, Slovakia and Hungary), and their national borders (black lines) are also indicated. The inset map shows the distribution in central Europe
in the period 1995–2014 (Source: data base from Rainer Raab, including information from Péter Spakovszky and Miklós Lóránt for Hungary and
Torsten Langgemach and Henrik Watzke for Germany).
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that two of the feathers collected for genetic analysis were of the same individual we
used only a single feather from each group of moulted feathers found at each of these
sites. Another 18 tissue and feather samples from the collections of the Vienna Natural
History Museum (years 2000–2006) were used, totalling 98 individuals. DNA was
extracted from the 80 feather samples and fourteen Great Bustard microsatellite loci were
amplified three independent times following protocols published in Horreo et al. (2014).
Additionally, museum DNA samples were checked for DNA quality before amplification
and their PCRs were done in laminar flow cabinets. These museum samples did not
affect our analyses since the species’ longevity is estimated at 10–15 years (JC Alonso,
2016, unpublished data). Introgressive laser signals from one channel to another during
genotyping were carefully controlled. In order to avoid resampling of individuals, the
genetic Identity Analysis of the Cervus software v.3.0 (Kalinowski, Taper & Marshall,
2007) was carried out.

Microchecker was employed to search for null alleles, scoring errors and large allele
dropout (Van Oosterhout et al., 2004). Linkage disequilibrium was tested with Genepop
on line software (http://genepop.curtin.edu.au). Deviations from Hardy–Weinberg
equilibrium after Bonferroni correction (HWE), the number of alleles per locus (Na),
the expected and observed heterozygosities averaged across loci (respectively, HS and
HO), the inbreeding coefficient (FIS) and the Fixation Indexes (FST ) and their associated
P-values, were calculated with GenoDive 2.0b25 (Merimans & Van Tienderen, 2004).
Allele frequency distribution was plotted with GenAlex v.6.5 (Peakall & Smousse, 2012).
Allelic Richness (AR) was estimated with FSTAT v.2.9.3.2 (Goudet, 1995). The presence of
past genetic bottlenecks was tested with the software Bottleneck v.1.2.02 (Piry, Luikart
& Cornuet, 1999), with the most suitable settings for microsatellite loci data: the two-
phase model (TPM) assumptions estimating P-values with the Wilcoxon signed-rank test
(10,000 interactions).

Several different approaches were used to ensure robust quantification of the pop-
ulation differentiation in the study area. The Bayesian clustering method and Markov
Chain Monte Carlo (MCMC) simulation implemented in STRUCTURE 2.3.4 (Pritchard,
Stephens & Donnelly, 2000) were used to assess population structure. The STRUCTURE
analyses were run by using an admixture model and correlated allele frequencies with a
burn-in period of 50,000 replicates and sampling period of 500,000 replicates for number
of clusters (K ) from 1 to 3. Ten independent runs were performed for each K . We run
two sets of STRUCTURE analyses: one without using sample location as prior, one using
sample location as prior (LocPrior option). To determine the number of genetic clusters
(K ), we used the DK method of Evanno, Regnaut & Goudet (2005) based on the second
order rate of change in log Pr (X |K ) as implemented by the program Structure Harvester
v.0.6.94 (Earl & VonHoldt, 2012). The second approach was BAPS v.6.0 (Corander et
al., 2008), which given a maximum value of partitions, uses a stochastic optimization
procedure to find the clustering solution with the highest marginal likelihood of K (i.e.,
an approximation of the most probable number of differentiated genetic populations
conditional on observed data). Settings: admixture of individuals based on mixture
clustering after clustering of groups of individuals; 1,000 iterations used to estimate the
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admixture coefficients for the individuals; 200 reference individuals from each population
(as recommended by the software developers); 10 genetically diverged maximum groups
used to estimate the admixture coefficients for the reference individuals. The third
approach was a discriminant analysis of principal components (DAPC), a multivariate
method implemented in the adegenet package (v. 1.3-1) for the R software (Jombart,
2008) that identifies clusters of individuals without using any population genetic model.
We used it in two different ways: (1) using the find.clusters function for the identification
of the optimal K with the choose.n.clust option and the Bayesian Information Criterion
(BIC); after that, DAPC was employed to assign individuals into populations, retaining
the n/3 number of principal components (as recommended in the manual) with 80% of
the cumulative deviance (which removes the effect of assigning populations a priori on
the eventual assignment to clusters and offers an unbiased interpretation of population
structure); and (2) without searching and optimal K : each individual was a priori assigned
to its location of origin, obtaining for each individual the probability of assignment
to their populations of samplings. Lastly, Oncor (Kalinowski, Manlove & Taper, 2008)
Leave-One-Out test assignments (default settings) were employed also for searching/-
confirming population structure and for confirming Structure/BAPS/adegenet results.
These analyses delete each individual of the total dataset and try to assign it to one of the
given populations; results show percentages of correct assignations for each population.
The effective sizes (Ne) of the genetic estimated units were calculated with LDNe v.1.31
software (Waples & Do, 2008) employing random mating and 0.05 lowest allele frequency
settings.

Contemporary gene flow among populations was studied under the assignment test
criterion of Rannala & Mountain (1997) with Geneclass 2.0 (Piry et al., 2004), which
detect individuals with immigration ancestry of up to two generations ago. The numbers
of migrants per generation (Nm) among breeding areas were estimated by the mean
frequency of private alleles with the above-mentioned Genepop software.

RESULTS
Two of the fourteen available microsatellite loci were discarded from analyses for different
reasons: the Ot3 locus did not amplify (probably due to mutation(s) in the primer(s)
area(s)) and the Ot6 locus was monomorphic in the dataset. Within the other twelve loci,
amplification success was 87.4% and Microchecker discarded the presence of scoring
errors, large allele dropout and null alleles in the dataset. The Identity Analysis showed
two individuals with the same genotype in the Weinviertel breeding area, one of which
was deleted in order to avoid resampling. The genetic variability (Table 1; Fig. 2) was high:
the mean number of alleles per locus ranged between 3.25 (Marchfeld) and 5.17 (Heide-
boden), and the allelic richness ranged between 3.07 (Marchfeld) and 3.60 (Heideboden).
The smallest observed and expected heterozygosities were found in Heideboden (0.42
and 0.49, respectively), and the highest in Marchfeld (0.50 and 0.52, respectively). The
inbreeding coefficients ranged between 0.03 in Marchfeld and 0.13 in the Heideboden,
being positive in all three breeding areas, and no genetic bottlenecks were found in any
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Table 1 Number of alleles per locus and outcome of tests for deviation fromHardy-Weinberg proportions (*P < 0.05, and **P < 0.01) after Bonferroni correction
in the three sampledWest-Pannonian Great Bustard breeding areas (see Fig. 1) for the 12 studied microsatellite loci.

Ot1 Ot2 Ot4 Ot5 Ot7 Ot8 Ot9 Ot10 Ot11 Ot12 Ot13 Ot14 Na AR HO HE FIS B

Weinviertel
n= 35

3** 2 4 6 4** 2 6 2 6** 2** 5 6 4.00
(1.76)

3.27
(1.37)

0.44
(0.22)

0.49
(0.23)

0.11 0.67

Marchfeld
n= 14

2 2 3 5 2 2** 4* 3 4 2** 5 5 3.25
(1.29)

3.07
(1.22)

0.50
(0.28)

0.52
(0.23)

0.03 0.21

Heideboden
n= 48

3** 2 6 9 5** 1 6** 4** 7** 3** 10 6 5.17
(2.72)

3.60
(1.72)

0.42
(0.29)

0.49
(0.29)

0.13 0.27

Notes.
Acronyms: Na, mean allele number per locus; AR, allelic richness; HO, observed heterozygosity; HE , expected heterozygosity; FIS, inbreeding coefficient; B, P-value for Bottleneck analyses..
Standard deviation is shown between brackets.
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Figure 2 Allele frequency distribution of the twelve analysed microsatellite loci across the three breed-
ing areas.

of them. Non-significant deviations of HWE were found in 8, 9 and 5 out of 12 cases for
Weinviertel, Marchfeld and Heideboden, respectively. Deviations from HWE were caused
by heterozygote deficit. The Ot12 microsatellite locus showed significant HWE deviations
in all the three breeding areas, so all analyses were done including and excluding it, with
identical results in both cases (only results with this microsatellite locus are shown in
the manuscript). Linkage disequilibrium was only statistically significant in a very small
proportion of tests (3.03%).

According to Structure Harvester, Structure results (with and without LocPrior option)
did not reveal a clear population structure across the study area, showing a unique
genetic unit (K = 1) in the whole dataset. Even forcing K = 2 or 3, results did not show
differences among breeding areas, they only showed mixed genotypes across all the three
sampling points. Despite this, BAPS analyses showed the presence of two genetic subunits
(K = 2; Fig. 3A) in the dataset, one composed by Weinviertel and Marchfeld, and another
including the Heideboden individuals. DAPC analyses with the find.clusters function also
revealed K = 2, but membership results showed no correspondence between genetic and
spatial structures/populations (Fig. 3B), indicating the existence of a unique genetic unit
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Figure 3 Output of BAPS (A) and DAPC analysis with (B) and without (C) the find.clusters function
showing the membership fraction (columns) of the inferred genetic units forWest-Pannonian Great
Bustards in each individual of the three studied breeding areas. Same colour in different individuals in-
dicates that they belong to the same cluster.
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Table 2 Genetic differentiation amongWest-Pannonian bustard breeding areas pairs measured with
FST values (below diagonal; **P-value < 0.01) and gene flow among themmeasured as the number of
migrants per generation (Nm; above diagonal).

FST/Nm Weinviertel Marchfeld Heideboden

Weinviertel – 2.39 3.07
Marchfeld 0.014 – 2.59
Heideboden 0.036** 0.055** –

(as STRUCTURE suggested). When each individual was a priori assigned to its location
of origin, obtaining for all individuals the probability of assignment to the populations
where they were sampled, more similar results to the BAPS ones were found (Fig. 3C).
This could mean that K = 2 is a biased interpretation of population structure. However,
Oncor Leave-One-Out tests showed that when the three breeding areas were employed
as independent areas, percentages of correct individual assignments were 64.7, 71.4 and
85.7% in Weinviertel, Marchfeld and Heideboden, respectively, whereas employing two
subunits (following BAPS results) yielded higher assignment values: 95.8% of correct
individual assignment for the genetic subunit composed by Weinviertel and Marchfeld,
and 85.7% of correct individual assignment for the other genetic subunit (Heideboden).
In addition to this, and in accordance with BAPS and Oncor results, FST P-values
were not significant between Weinviertel and Marchfeld and highly significant (P-val
< 0.01) between Heideboden and the other two breeding areas (Table 2). For all these
reasons, the effective population sizes (Ne) were estimated for the two mentioned genetic
subunits, resulting in 30.3 individuals (95% CI [18.4–58.1]) for the subunit composed
by Weinviertel and Marchfeld and 57.1 individuals (95% CI [28.5–247.9]) for the other
subunit (Heideboden).

According to the assignment tests on recent gene flow, 66.3% of the individuals were
residents in the breeding area where they had been sampled when comparing the three
sampling sites, and 81.6% when comparing the two genetic subunits (Heideboden versus
Weinviertel plus Marchfeld). The number of migrants per generation (Nm; Table 2) was
high in all cases (Nm > 2), being higher between Heideboden and the other two breeding
areas (Weinviertel and Marchfeld) than between the two latter. The Nm value between
Heideboden and the genetic subunit including Weinviertel and Marchfeld individuals was
3.62, the highest of all estimated Nm values.

DISCUSSION
Our results show that the West-Pannonian population of Great Bustards displays high
genetic variability (Na= 3.25–5.17, AR= 3.07–3.60, He= 0.49–0.52) in spite of a strong
decrease in numbers of individuals suffered in the past decades, with a slightly smaller
number of alleles per locus but higher allelic richness than the world’s largest populations
of this species (Na= 4.5–5.9, AR= 1.47–1.59, He= 0.50–0.59 without Ot3 and Ot6;
Horreo, Alonso & Mila, 2014 and JC Alonso, 2016, unpublished data). This, together with
the results showing absence of genetic bottlenecks in this area, suggests that the marked
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demographic decline suffered by West-Pannonian Great Bustards during the last century
has not affected them in this respect, partly because the intensive protection measures
probably stopped early enough the population decline (Raab et al., 2010). Overall, the
genetic variability of the West-Pannonian population will probably be useful for avoiding
major genetic changes (as genetic drift) in the near future and thus for maintaining the
favourable trend of this population, provided that current habitat structure, climate
conditions, management practices and other factors affecting this population remain
constant in the future.

The West-Pannonian population showed also to be genetically sub-structured
despite the relatively small area it occupies (Fig. 1). All population structure analyses
used revealed the presence of a single population structure across the study area, with
a hidden subpopulation structure (as found in different geographic regions in other
bustard species; Riou et al., 2012): the birds in Heideboden (the largest, southern breeding
group) were genetically different from the birds in other groups, forming a genetic
subunit on their own, while the other two breeding areas (Weinviertel and Marchfeld)
constitute together a second genetic subunit with a smaller effective size. In addition to
this, subdivision into units with distinct gene frequencies creates a heterozygote deficit, so
deviations from HWE in our dataset, caused precisely by heterozygote deficit, reinforce
the existence of this sub-population structure within the entire population.

The above-mentioned genetic differences cannot be attributed to physical barriers since
there are no such geographic obstacles between Heideboden and the other two breeding
areas (Fig. 1). As in other bustard species (e.g., Idaghdour et al., 2004), contemporary
gene flow (up to two generations) was detected in the dataset, and Nm values were higher
than one migrant per generation (OMPG;Mills & Allendorf, 1996) in all cases, including
both gene flow among breeding areas and between the two genetic subunits. The gene
flow inferred from high Nm values and low genetic differentiation can be the result of
a relatively recent demographic separation, in numbers of generations after the split.
Despite this, the three breeding areas are separated by distances that can easily be covered
by dispersing juveniles (Martín et al., 2008), and an exchange between the different Great
Bustard breeding areas within the study area was indeed suggested based on local field
observations of bird movements (Raab, 2013) as one of the possible causes for the rapid
recovery of this population (Raab et al., 2010). These gene flow values (Nm= 2.09–3.27)
were also in accordance with those found for the species in other areas (Nm= 2.0–7.6
within genetic units in Spain; Horreo, Alonso & Mila, 2014). Genetic differentiation and
gene flow due to recent demographic isolation/gene flow barriers could be therefore
discarded. The results on structure and gene flow patterns lead us to propose the whole
area as a unique Great Bustard population conformed by two genetic subunits.

In addition to this, the whole West Pannonian population is not far from other
Hungarian breeding groups, from which considering again the dispersal capacity of the
species (Martín et al., 2008), dispersing immature individuals could have arrived and
established at any of the breeding groups in Austria as breeding adults, contributing
to keep the genetic diversity high. In particular, this could be the case in Heideboden,
which is the West-Pannonian breeding aggregation closest to the Hungarian groups. Our
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study showed that Heideboden is included within the whole population, but genetically
differs from the other two Austrian subunits, having the highest genetic variability and
effective size. This subunit, the largest among all breeding groups in the study area, seems
to be not only the connection among central Hungarian and Austrian populations,
but also a possible source of individuals for the other West-Pannonian genetic subunit
(Nm between Heideboden and the other Austrian subunit was higher than Nm among
breeding areas). These hypothesised movements could be confirmed through marking
individuals. Therefore, within the conservation and management plan for the future,
all extant breeding groups should be protected, but paying special attention to the
Heideboden subunit, since due to its proximity to central Hungarian populations it could
be crucial. This subunit should be therefore a priority for the conservation of other West-
Pannonian Great Bustard breeding groups, and to guarantee their connection to the main
Hungarian populations further east.

Summing up, our study is the first description of the genetic diversity and gene flow
of the West-Pannonian population of Great Bustards based on analysis of microsatellite
loci. This is one of the few populations that survived the sharp decreases that decimated
this globally endangered species during the last century in central Europe. Our results
identified one population in the study area, formed by two genetic subunits with high
migration rates among them. The current genetic variability is high. Conservation
efforts should be directed not only to preserve all extant breeding groups, but also the
connectivity among them and with central Hungarian populations, in order to keep the
genetic diversity of West-Pannonian Great Bustards at a high level. Current management
and protection actions should therefore be maintained in the study area in order to
guarantee the survival of this Great Bustard population.
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