The antioxidant effects of butylated hydroxytoluene on cryopreserved goat sperm from a proteomic perspective (#95807)

First submission

Guidance from your Editor

Please submit by 23 Mar 2024 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Author notes

Have you read the author notes on the guidance page?

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

7 Figure file(s)

3 Table file(s)

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

The antioxidant effects of butylated hydroxytoluene on cryopreserved goat sperm from a proteomic perspective

Chunyan Li 1,2,3 , Larbi Allai 1,4 , Jiachong Liang 1,2,3 , Chunrong Lv 1,2,3 , Xiaoqi Zhao 1,3 , Xiaojun Ni 1,3 , Guoquan Wu 1,2,3 , Weidong Deng 5 , Bouabid Badaoui 6 , Guobo Quan $^{\text{Corresp. 1, 2, 3}}$

Corresponding Author: Guobo Quan Email address: waltq20020109@163.com

No studies targeted the proteomics changes provoked by butylated hydroxytoluene (BHT) supplementation on cryopreserved goat semen. The aim of this study was to evaluate the effects of different concentrations of BHT on goat sperm and to study the proteomics changes of adding BHT to cryopreserved goat sperm. Firstly, semen samples were collected from four goats, and frozen in the basic extenders containing different concentrations of BHT and a control without BHT, respectively. After thawing, the protective effects of dose-dependent replenished BHT to the freezing medium on postthaw sperm motility, integrities of plasma membrane and acrosome, ROS levels were confirmed, with 0.5 mM BHT being the best (B group) as compared to the control (without BHT, C group). Afterwards, TMT-based quantitative proteomic technique was performed to investigate changes in protein profiles of the goat sperm be-tween C group and B group. Parallel reaction monitoring was used to confirm reliability of the data. Overall, 2,476 proteins were identified and quantified via this approach. Furthermore, 17 differentially abundant proteins (DAPs) potentially associated with sperm characteristics and functions were identified between the comparable groups (C vs. B), wherein 3 were upregulated and 14 were downregulated, respectively. GO annotation analysis demonstrated the potential involvement of the identified DAPs in metabolic process, multi-organism process, reproduction, reproductive process, and cellular process. KEGG enrichment analysis indicated their potential roles in renin-angiotensin system and glutathione metabolism pathways. Together, BHT can effectively improve quality parameters and fertility potential of post-thawed goat sperm at the optimal concentration, and it's cryoprotection may be realized through regulation of sperm metabolism and antioxidative capability from the

¹ Yunnan Animal Science and Veterinary Institute, Kunming, China

² Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Kunming, China

³ Yunnan Provincial Engineering Research Center of Animal Genetic Resource Con-servation and Germplasm Enhancement, Kunming, China

⁴ Higher School of Technology Sidi Bennour, Chouaib Doukkali University, El Jadida, Morocco

⁵ School of Animal Science and Technology, Yunnan Agricultural University, Kunming, China

⁶ Faculty of Sciences, Mohammed V University, Rabat, Morocco

perspective of sperm proteomic modification.

- 1 The antioxidant effects of butylated hydroxytoluene on cryopreserved goat
- 2 sperm from a proteomic perspective
- 3 Chunyan Li^{1,2,3}, Larbi Allai^{1,4}, Jiachong Liang^{1,2,3}, Chunrong Lv^{1,2,3}, Xiaoqi Zhao^{1,3}, Xiaojun
- 4 Ni^{1,3}, Guoquan Wu^{1,2,3}, Weidong Deng⁵, Bouabid Badaoui⁶, Guobo Quan^{1,2,3}
- 5 Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, China
- 6 ² Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Panlong District,
- 7 Kunming, China
- 8 ³ Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and
- 9 Germplasm Enhancement, Kunming, China
- ⁴ Laboratory of Sustainable Agriculture Management, Higher School of Technology Sidi Bennour,
- 11 Chouaib Doukkali University El Jadida, Morocco
- ¹² School of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- 13 ⁶ Mohammed V University, Faculty of Sciences, Rabat, Morocco
- 14 Corresponding author
- 15 Guobo Quan, waltq20020109@163.com

ABSTRACT

No studies targeted the proteomics changes provoked by butylated hydroxytoluene (BHT) 18 supplementation on cryopreserved goat semen. The aim of this study was to evaluate the effects 19 of different concentrations of BHT on goat sperm and to study the proteomics changes of adding 20 BHT to cryopreserved goat sperm. Firstly, semen samples were collected from four poats, and 21 frozen in the basic extenders containing different concentrations of By and a control without 22 BHT, respectively. After thawing, the protective effects of dose-dependent replenished BHT to the 23 freezing medium on post-thaw sperm motility, integrities of plasma membrane and acrosome, ROS 24 levels were confirmed, with 0.5 mM BHT being the best (B group) as compared to the control 25 (without BHT, C group). Afterwards, TMT-based quantitative proteomic technique was performed 26 to investigate changes in protein profiles of the goat sperm between C group and B group. Parallel 27 reaction monitoring was used to confirm reliability of the data. Overall, 2,476 proteins were 28 identified and quantified via this approach. Furthermore, 17 differentially abundant proteins 29 30 (DAPs) potentially associated with sperm characteristics and functions were identified between the comparable groups (C vs. B), wherein 3 were upregulated and 14 were downregulated, 31 respectively. GO annotation analysis demonstrated the potential involvement of the identified 32 33 DAPs in metabolic process, multi-organism process, reproduction, reproductive process, and cellular process. KEGG enrichment analysis indicated their potential roles in renin-angiotensin 34 35 system and glutathione metabolism pathways. Together, BHT can effectively improve quality 36 parameters and fertility potential of post-thawed goat sperm at the optimal concentration, and it's cryoprotection may be realized through regulation of sperm metabolism and antioxidative 37 38 capability from the perspective of sperm proteomic modification.

39 **Subjects** Agricultural Science, Molecular Biology, Veterinary Medicine, Zoology

40 **Keywords** Semen, cryopreservation, sperm quality, butylated hydroxytoluene, proteome

INTRODUCTION

Semen cryopreservation promotes the development and application of artificial insemination 42 technology (AI), which can preserve and utilize sperm for a long time, facilitating rapid 43 dissemination of excellent genetic material around the world (Lebo wet al., 2000). However, the 44 45 cryopreservation process has a deleterious impact on sperm normal physiology, reducing the quality because of adverse factors such as ultra-low temperature stress, osmotic stress and 46 oxidative stress, ultimately, reducing the longevity and ability to fertilize such as vitality, acrosome 47 reaction rate (Peris-Frau et al., 2020). 48 Among these injuries caused by the cryopreservation process, oxidative lesion has been 49 shown to greatly threaten sperm structures such as acrosome, mitochondria, and nucleus and the 50 functions such as motility and its ability of sion with oocyte (Pariz et al., 2019). Given this, 51 numerous antioxidants, as previously reported, have been tested and added to freezing extenders 52 53 to resist oxidative stress and improve fertility of post-thaw sperm (Dutta et al., 2019). In general, these antioxidants are divided into two types: enzymatic antioxidants such as glutathione catalase 54 (GSH-Px), glutathione reduction enzyme (GR), superoxide dismutase (SOD), glutathione-S-55 56 transferase (GST), melatonin, etc., and non-enzymatic antioxidants such as glutathione (GSH), urate, vitamin, carbohydrate, etc (Amidi et al., 2016; Jia et al., 2021; Li et al., 2023; Riesco et al., 57 2021; Turk et al., 2022). Currently, lots of (s) arch have been performed to assess the 58 59 cryoprotective effects of these antioxidants on sperm during the cryopreservation process (Pezo et 60 al., 2021; Ribas-Maynou et al., 2021; Tiwari et al., 2022). 61 Thereinto, butylated hydroxytoluene (BHT) is being investigated as a component to 62 cryomedia in different animal species, including goat (Memon et al., 2011), human (Merino et al.,

2015), be Trzcinska et al., 2015), cat (Jara et al., 2019), and buffalo (Nain et al., 2022), because of its' safety and strong antioxidative potential. BHT is a synthetic analogue of vitamin E, characterized with the low polarity and high fat solubility (Achar et al., 2020; Yehye et al., 2015). It can be used to check auto-oxidation reaction of lipid bilayer and membrane by converting peroxy radicals into hydroperoxides, thus inhibiting lipid peroxidation (LPO). Besides, BHT also scavenges reactive oxygen species (ROS) from the surroundings of sperm, thereby minimizing the cold shock and increasing antioxidant defense of sperm during the cryopreservation process (Khumran et al., 2019; Merino et al., 2015). Although several studies have showed the beneficial effects of BHT on sperm quality after cryopreservation, the specific cryoprotective mechanisms underlying haven 't been fully elucidated.

It is known that sperm is perialized cell with inactive transcription, and therefore, once sperm has the productive tract, they rely mainly on the static population action of proteins and metabolites to maintain their function, prior to fertilization with oocytes, especially, the principal roles of proteins cannot be neglected (Chauvin et al., 2012; Hermo et al., 2010). Based on these facts that antioxidants play important roles in enhancement of frozen-thawed sperm antioxidative capability and the action mechanisms of most antioxidants remains unclear, taking the BHT as an example, the aim of this study endeavors to: (1) ascertain the optimal BHT concentration conducive to the preservation of post-thaw goat sperm quality, (2) elucidate the potential cryoprotective mechanism of this optimal BHT mainly from the perspective of goat sperm proteome. The identification of differential proteins coupled with their correlative bioinformatic analysis will deepen our understanding on the molecular mechanisms of BHT on mammalian sperm.

MAT IAL AND METHODS

Study design and workflow

Officitive to evaluate cryoprotective effects of different concentrations of BHT on goat sperm during the cryopreservation process, indices related to sperm quality such as the motility, ROS levels, plasma membrane and acrosome integrities were assessed in current study. Thus, the optimal effect concentration of BHT will determined. Afterwards, TMT-based quantitative proteomic technique was used to investigate potential effects of BHT on proteome of cryopreserved goat sperm. Overall workflow was shown in Fig. S1.

Semen preparation

The semen samples were acquired from Yi Xingheng Animal Science and Technology Co. Ltd (Kunming, Yunnan Province, China), all experiments did not involve live animals. Four males of Yunshang black goats with similar sweet selected, and kept in the same condition of feeding and management. Fresh semen (twice culates per male in 10 min) were collected via an artificial vagina method. Then, semen of each male was pooled and kept at 37 °C, and the quality was immediately assessed using a computer-assisted sperm analysis system (CASA, Microptic, Barcelona, Spain). Only semen with the minimum volume of 0.8 mL, sperm with concentration over 2 x 109/mL, and the motility greater than 75% was accepted (*Liu et al., 2019*). All pooled semen of each male was subsequently divided into four aliquots. One was used as sperm source of cryopreserved control group (C group, which was diluted using medium A), while the remaining three were used as sperm sources of cryopreserved experiment groups (Hopups, which were diluted using medium B, respectively).

Semen freezing medium

Above four semen aliquots of each male were lightly diluted with two types of frozen media (media A and B) at RT (25 °C), until a final sperm concentration reached about 3×10⁸ /mL, respectively

120

- 109 (Succu et al., 2011). Medium A was made up of 254 mM Tris, 85 mM citric acid, 70 mM fructose,
- 110 1% (w/v) soybean lecithin, 6% (v/v) glycerin, 1×10⁴ IU penicillin and 1×10⁴ IU streptomycin.
- Medium B consi(s) f three subgroups being made up the medium A and three concentrations of
- butylated hydroxytoluene (BHT, Sigma-Aldrich, USA) with 0.5, 1.0 and 2.0 mM, respectively
- 113 (Merino et al., 2015).

Freezing and thawing process

- Extended semen samples were loaded into the labeled 0.25 mL straws (IMV technologies, L'Aigle,
- France), following by equilibration at 5 °C for 3 h. After that, freezing through being placed in
- liquid nitrogen vapor for 7 min (-80 °C), and directly into liquid nitrogen immediately for at least
- one week (*Ruiz-Diaz et al., 2020*). For the thawing process, frozen semen was thawed in water
- 119 bath at 37 °C for 30 sec (Fang et al., 2019; Li et al., 2023).

Evaluation of sperm-quality associated indices

- Motilities of all post-thaw sperm from the C and B groups were assessed via the CASA system
- (Amann et al., 2014). Plasma membrane integrity was assessed by the hypo-osmotic swelling test
- 123 (HOST) with the GENMED kit (GMS14017, GENMED Scientifics Inc. USA). Briefly, 10 μL of
- sperm sample was mixed with 100 μL of pre-heated hypo-osmotic solution, incubated at 37 °C for
- 125 30 min. 10 μL of the mixture was then smeared onto a pre-heated glass slide with a coverslip. Over
- 200 sperm were counted under a phase-contrast microscope (Axio Vert A1, Germany). Sperm with
- 127 a coiled tail indicated its has intact plasma membrane. Integrity rate of sperm was calculated (*Li*
- 128 et al., 2023; Zou et al., 2021). Additionally, acrosome integrity was evaluated by the fluorescein
- isothiocyanate labeled pea agglutinin (FITC-PSA) test, and the detailed method has been described
- in our previous report (Jia et al., 2022). For analysis of intracellular ROS production, 5 µL of post-
- thaw semen was diluted with 500 μL TALP solution, followed by adding 0.5 μL DCFH-DA and

- 132 5 μL PI, reacting in darkness for 60 min at 25 °C, the mixture was evaluated by flow cytometer
- 133 (Najafi et al., 2018).
- 134 TMT-based proteomic investigation
- 135 Sperm sample preparation
- Post-thawing semen were centrifuged at 3,000 × g for 15 min at 4 °C. Collected sperm pellets were
- washed separately thrice in $1 \times$ phosphate-buffered solution ($1 \times$ PBS; Gibco, Thermo Scientific,
- Wilmington, DE, USA) by centrifugation (3,000 × g, 5 min, 4 °C), the pellets were then stored at
- 139 -80 °C (Zhu et al., 2020).
 - Protein extraction and digestion
- For protein extraction, every 30 mg sperm pellet was resuspended in the lysis buffer containing 8
- 142 M urea, 2 mM EDTA, 10 mM dithiothreitol and 1% protease inhibitor cocktail, and incubated for
- 143 2 min. Subsequently, the samples were sonicated thrice on ice using a high intensity ultrasonic
- processor (Scientz). The residual impurity was removed by centrifugation at $16,000 \times g$ for 10 min
- at 4 °C. Finally, proteins were precipitated with cold 15% trichloroacetic acid for 2 h at -20 °C.
- After centrifugation for 10 min at 4 °C, and the precipitate was further washed with cold acetone
- thrice. Protein concentration was quantified using the BCA protein assay kit (Table S1). The 15
- 148 µg extracted protein was individually separated by 10% SDS-PAGE, and the gel protein profile
- from each sample was presented in Fig. S2 (*Guo et al., 2019*).
- 150 300 μg proteins per sample was used for digestion. Briefly, each sample was added DTT to
- 151 100 mM and incubated for 5 min at 100 °C, followed by cooling and processing with 200 μL UA
- buffer containing 8M urea and 150 mM Tris-HCl. The supernatant was discarded after
- 153 centrifugation at 12,000×g for 15 min. The pellet was further processed with 200 μL UA buffer
- again. After centrifuging, 50 mM iodoacetamide (IAA, Sigma) was added to alkylate the solution

for 30 min at RT in darkness, followed by centrifugation at $12,000 \times g$ for 10 min. $100 \mu L$ UA buffer was added and centrifuged again. This step was followed by a buffer exchange with $100 \mu L$ of NH₄HCO₃ buffer and further centrifugation at $14,000 \times g$ for 10 min. The digestion process involved incubation with $60 \mu L$ of trypsin buffer ($6 \mu g$ trypsin in $40 \mu L$ NH₄HCO₃ buffer) for 16-159 18 h at 37 °C.

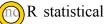
TMT labeling and fractionation of peptides

Peptides were initially desalted by Strata X C18 SPE column (Phenomenex), and subsequently dried by vacuum centrifugation. The peptides (100 μg) from each sample were added to 0.5 M TEAB solution and processed using the 10-plex TMT kit (ThermoFisher Scientific, Waltham, MA, USA). Briefly, the above peptides dissolved solution was incubated with the TMT regent (1 unit of labeling reagent was used for 100 μg of peptide), which was reconstituted in 24 μL anhydrous acetonitrile (CAN) for 2 h at RT. Then, four pooled fractions of C group have been labeled with 126 (C1), 127N (C2), 127C (C3) and 128N (C4) tags, while four pooled fractions of B group have been labeled with 128C (B1), 129N (B2), 129C (B3) and 130N (B4) tags, respectively. The reaction was stopped with 8% ammonium hydroxide. Differently labeled peptides were mixed equally, desalted and vacuum dried (*Huang et al., 2017; Muraoka et al., 2019*), then fractionation into fraction using high pH reverse-phase column from PierceTM high pH reversed-phase peptide fractionation kit (ThermoFisher) according to the manufacturer's protocol. Followed by the peptides were combined into 10 fractions, and dried by vacuum centrification.

LC-MS/MS analysis

Peptides were loaded onto a Trap Column (100 μ m × 20 mm, 5 μ m, C18, Dr. Maisch GmbH) using 0.1% (v/v) solvent A (formic acid, FA). Separation was then performed on a chromatographic column (75 μ m × 150mm, 3 μ m, C18, Dr. Maisch GmbH) using an increase of

199


solvent B (0.1% FA in 95% acetonitrile solution). The increasing profile was as follows: an 178 increase from 2% to 8% for 2 min, 8% to 28% for 69 min, 28% to 40% for 8 min, then a rise to 179 100% for 2 min, and sustained at 100% for an additional 9 min, overall process was conducted at 180 a constant flow rate of 300 nL/min on an EASY-nLC 1200 UPLC system (Thermo Scientific). 181 Then, mass spectrometry (MS) analysis was performed by a Q Exactive HF-X mass spectrometer 182 183 (Thermo Scientific, USA) in the positive ion model and data-dependent acquisition for 90 min. A full scan range of MS was set to 350-1800 m/z at a resolution of 60,000@m/z 200. Automatic gain 184 control (AGC) target was 3E6 ions and the maximum injection time was 50 ms. Afterwards, 185 MS/MS was performed in the same order. The setting parameters as following: resolution of MS2 186 scan was 45,000@m/z 200, AGC target was 1E5, the maximum injection time was 50 ms, 187 activation type was higher energy dissociation (HCD), isolation window was 1.2 m/z, and 188 normalized collision energy was set as 32. 189

Identification and quantification of proteins

- 191 The Proteome Discoverer 2.4 software was used to retrieve and analyze the raw MS/MS data.
- Search parameters were specified as follows: (1) a target-reverse database derived from 192
- https://www.uniprot.org/taxonomy/9925 protein database: Uniprot Capra hircus (goat) 9925 193
- 194 (35503 sequences) fasta; (2) quantitation type: TMT 10-plex isobaric labels; (3) mass tolerance:
- precursor ions tolerance: 10 ppm, and mass error tolerance of fragment ions: 0.02 Da; (4) digestion: 195
- 196 trypsin/P; (5) modifications: fixed modifications: Carbamidomethyl (C), TMT6plex (K),
- 197 TMT6plex (peptide N-term), and variable modifications: oxidation (M), acety (protein N-term);
- (6) FDR setting: $\leq 1\%$; (7) unique peptides per protein setting: ≥ 1 . 198

Bioinformatic analysis

Bioinformatics data were carried out using Perseus software, microsoft excel (1) R statistical 200

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

computing software. Differentially significant abundant proteins (DAPs) were screened base on a fold change (FC) cutoff of >1.20 or <0.833, and P-value < 0.05. Protein abundance data were grouped together via hierarchical clustering. Information of sequence annotation was extracted from UniProtKB/Swiss-Prot, gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG). GO and KEGG enrichment analyses were carried out with the Fisher's exact test, and FDR correction for multiple testing was also performed. Annotation informations of GO function were obtained from the UniProt-GOA database (http://www.ebi.ac.uk/GOA/) combined with Inter-ProScan tool (https://www.ebi.ac.uk/interpro/), which including three categories: biological process (BP), cellular component (CC) and molecular function (MF). The KASS service (https://www.genome.jp/tools/kaas/) combined with DAVID tool (https://david.ncifcrf.gov/) were performed to annotate proteins' KEGG informations (Guan et al., 2021). Enrichment of GO and KEGG pathways was statistically significant at the P-value <0.05 level. WoLF PSORT service (https://www.genscript.com/wolf-psort.html) was used for protein subcellular localization prediction. String database (http://www.string-db.org/) combined with cytoscape software were used for construction of protein-protein interaction (PPI) networks.

Parallel reaction monitoring (PRM) quantification

Quantification verification of sperm samples was performed using Parallel reaction monitoring (PRM) assay, protocols of the sperm samples preparation, total protein extraction and trypsin digestion were the same as the TMT LC-MS/MS procedure. 2 µg peptides of each sample were analyzed using an Easy-nLC 1200 UPLC system (Thermo Scientific). Afterwards, MS/MS analysis was further performed in a Q Exactive HF-X mass spectrometer (Thermo Scientific). Running parameters of the mass spectrometer were set as follows: 1) analysis duration was 60 min in positive ion detection mode. 2) precursor ion scan range of MS was 300-1200 m/z at a resolution

- of 60,000@m/z 200. 3) AGC target was 3E6 ions, and the maximum injection time (MIT) was 50
- 225 ms. Followed by performing the same order during MS2, and the setting parameters as following:
- resolution of MS2 scan was 30,000@m/z 200, AGC target was 1E6, the MIT was 100 ms,
- 227 activation type was HCD, isolation window was 1.6 m/z, and normalized collision energy was 28.
- 228 Raw data of PRM-MS/MS were searched through the MaxQuant search engine, processed by
- 229 Skyline (v.4.1) (*Zhang et al.*, 2022).

Statistical analysis

- IBM SPSS26.0 software (SPSS Inc., Chicago, IL, USA) was used to distinguish differential data.
- Based on equal variance assumption, check of variance homogeneity and the multiple comparison
- 233 analysis by Duncan's test were conducted. Prism 8.0 software (GraphPad) was used to present
- graphs as means \pm standard error of the mean (S.E.M). A two-tailed Fisher's exact test with
- Bonferroni correction (*P*-value < 0.05) was employed to test the enrichment of DAPs. Functional
- enrichment with a corrected *P*-value < 0.05 was considered significant.

237 **RESULTS**

238 Effects of BHT on sperm quality-associated parameters

- Result of the motility and motile parameters in goat sperm were shown in Table 1. Sperm in
- samples frozen with 0.5 mM BHT showed significantly higher total motility ($61.68 \pm 0.58\%$) and
- 241 progressive motility (39.22 \pm 2.98%) than control samples (53.05 \pm 3.84% and 29.22 \pm 2.06%,
- respectively) (1005). Concurrently, sperm in samples frozen with 0.5 mM BHT showed
- significantly higher average velocity (VAP, μ m/s) than the control (P < 0.05). However, other
- 244 motile parameters of post-thaw sperm such as curvilinear velocity (VCL, μm/s), rectilinear
- velocity (VSL, μm/s), sway amplitude (ALH, μm) and whip frequency (BCF, Hz) showed no

246 differences among 0.5 mM, 1.0 mM, 2.0 mM BHT and the control groups (P > 0.05).

Additionally, plasma membrane integrity (PMI, %) of post-thaw sperm was significantly higher in 0.5 mM BHT replenishment than the control (P < 0.01), whereas, there were no difference among 1.0 mM, 2.0 mM BHT-treated and the control groups (Fig. 1A). Similarly, acrosome integrity (ACRI, %) of post-thaw sperm showed the best in 0.5 mM BHT-replenished group as compared to other groups (Fig. 1B). Supplement of 0.5 mM, 1.0 mM and 2.0 mM BHT to cryomedium can reduce ROS content (%) in post-thaw sperm, respectively; thereinto, only the 0.5 mM treated group presented significantly reduced sperm ROS content (P < 0.05) compared to the control group (Fig. 1C). Raw data of this sperm quality-associated indices were shown in Table S2.

Statistical analysis of MS data

- 257 To further explore the underlying molecular effects of 0.5 mM BHT on cryopreserved goat sperm,
- 258 TMT-based proteomic experiments were performed. A total of 21,511 unique peptides were
- 259 identified from 561,255 MS/MS spectrums, with 2,479 corresponding proteins in two groups, of
- which, 2,476 proteins were quantified (Fig. 2, Table S3).

261 Identification of DAPs

According to the screening criteria group ratio (fold change > 1.2 or < 0.833, *P* < 0.05), fold change of the DAPs between the comparable groups (C vs. B) was calculated. These DAPs were effectively separated using RStudio (version 3.6.3), as shown in the volcano plot (Fig. 3A), a total of 17 DAPs were identified, where 3 and 14 proteins were highly expressed abundance in C and B groups, respectively (Fig. 3B). All DAPs of goat spermatozoa in C compared to B groups were given in Table 2. Among these, the characterized protein GST class-pi appeared the highest relative up regulation and the 14-3-3 protein theta showed the highest relative down regulation between

- 269 the comparable groups. These DAPs were mainly distributed in the plasma membrane (23.53%)
- and unknown subcellular sites (23.53%), followed by cytoplasm (17.65%) and acrosome (11.77%)
- based on web-server named Euk-mPLoc 2.0 (Fig. 3C).

272 **PRM quantification**

- For more authentication of TMT LC-MS/MS proteomic data, we performed PRM verification.
- Here, the peptide information used to PRM quantification is shown in Table S4, and 9 target DAPs
- with the changed over 1.20 fold and at least two unique peptides for validation, namely, KRT4,
- 276 KRT5, KRT79, KRT1, ACE, KRT14, SLLP1, KRT3 and IQCF1. Among them, KRT4, KRT5,
- 277 KRT79, KRT1, ACE, KRT14, KRT3 and IQCF1 were downregulated (C/B ratio < 0.833),
- 278 whereas, the expression of SLLP1 was upregulated (C/B ratio > 1.20) (Fig. 4). The PRM results
- showed a similar trend to the TMT results, which indicated that the proteomics data were reliable.

Functional enrichment analysis based on DAPs

- To explore the potential roles of DAPs in the comparable group (C/B), we conducted GO terms
- and KEGG pathway. DAPs were clustered into 11 GO classes, which contains biological process
- 283 (BP), cellular component (CC) and molecular function (MF), each DAP was assigned more than
- one term. Concerning the BP, DAPs were associated with metabolic process, multi-organism
- 285 process, reproduction, reproductive process, and cellular process; while their enrichment
- 286 categories included translation regulator activity, structural molecule activity, catalytic activity,
- and binding in CC terms; and these DAPs were involved in cellular anatomical entity and protein-
- 288 containing complex in MF terms (Fig 5A, Table S5). KEGG was utilized for functional pathway
- annotation of DAPs, there proteins were mapped to the pathways such as renin-angiotensin system
- and glutathione metabolism pathways (Fig. 5B, Table S6). Additionally, DAPs underwent a
- protein-protein interaction (PPI) network in the String database (v.11.5, https://cn.string-db.org/).

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

Notably, KRTs family such as KRT1, KRT3, KRT4, KRT5, KRT14 and KRT79 act "cross-talk" nodes in the functional modules. They played roles as key intermediate filament proteins that interact with various regulatory proteins, aimed to initiate signaling cascades (Fig. 5C, Table S7).

DISCUSSION

Effects of BHT on post-thaw sperm quality are dose dependent

The imbalance between reactive oxygen species (ROS) and antioxidants in favor of the former, it has been known as oxidative stress in the cellular (Sem (Banihani, 2017). In cryopreserved sperm, excessive levels of ROS generated in mitochondria can mediate LPO in the plasma membrane, coupled with exhaustion of antioxidants, resulting in oxidative injuries, which induce damage of structural and functional components such as proteins, membrane, and DNA in spermatozoa, finally leading to decrease of sperm motility (Mislei et al., 2020; Santiani et al., 2014), its ability to approach an egg and successful internal fertilization (Hyakutake et al., 2019; Merino et al., 2015; Merino et al., 2020; Park et al., 2021). Injury to sperm by free radicals generated during the freezing-thawing process could be minimized by supplement of antioxidative protectants in conventional cryo-media, reducing oxidative stress, concurrently, enhanced the motility and membrane integrity while decreased the LPO in sperm (Gharagozloo et al., 2011; Merino et al., 2020; Thuwanut et al., 2008). As a promising antioxidant, BHT has been discussed exclusively in mother parly six thousand publications (Yehye et al., 2015). Thus far, this phenolic compound has been confirmed positive effects on cryopreserved sperm (de Andrade et al., 2023; Jara et al., 2019). Specifically, BHT acts primarily as a proton donor for the free radicals and the regenerate acylglycerol molecule, or it can reduce sites suitable for molecular oxygen attack, thereby terminating oxidation of the free-radical chain reaction (Fasihnia et al., 2020; Fujisawa et al., 2004; Osipova et al., 2016). There are available references on the effects of BHT added to

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

semen freezing extenders to protect sperm during cryopreservation in a dose dependent manner. For example, addition of 0.5 mM and 1.0 mM BHT appears to be optimal for the cryopreservation of human semen, due to its antioxidant property for improving the progressive sperm motility and reducing ROS production compared to the control (Ghorbani et al., 2015; Merino et al., 2015). In canine, supplementation of 0.2-0.8 mM BHT in the cryo-media did not affect the cryopreserved sperm motility, viability and acrosome integrity whilst 1 mM or 1.5 mM BHT significantly improves sperm plasma membrane (Neagu et al., 2010; Sun et al., 2020). Additionally, higher values of the sperm motility, average path velocity, GPx activity, and acrosome integrity in the cryo-medium supplement of 1.5 mM BHT than those in the control (Neagu et al., 2010). However, these characteristics of chilled sperm reversed when BHT concentration reached 1.6 mM in the extender (Sahashi et al., 2011). In Murrah buffalo bull, 0.5-1.0 mM BHT-supplementation in freezing extenders hat een significantly increased the progressive motility, viability, and acrosome integrity of frozen thawed spermatozoa compared to the control (Nain et al., 2022). Expansively, 0.5-2.0 mM BHT-supplementation in extender has boosignificantly decreased lipid peroxidation of cryopreserved boar sperm in relation to the control, thereinto, motility, membrane and acrosome integrities, fertilizing ability of post-thaw sperm were the highest by addition of 1.0 mM BHT (Trzcinska et al., 2015). Nevertheless, our study showed that 0.5 mM BHTsupplementation in semen extender was the optimal concentration for improving the motility (TM, PM), plasma membrane and acrosome integrities, and decreasing levels of ROS in cryopreserved goat sperm compared to the control, which effectively improved the quality of frozen sperm.

BHT modifies the protein profile of goat sperm during cryopreservation

The TMT based quantitative proteomic technique was applied to evaluate effects of BHT on the proteome of cryopreserved spermatozoa in Yunshang black goats. After bioinformatics analysis,

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

overall, 17 DAPs involving in sperm characteristics and functions were screened between C and B groups. Those proteins were mainly involved in sperm-egg binding and fertilization, RNA transport, estrogen signaling, structural molecule activity and glutathione metabolism etc., which may be associated with the decline of sperm quality after cryopreservation, and the molecular role of BHT in reversing this adverse state. For instance, sperm acrosome membrane-associated protein 3 (SLLP1) and GST class-pi (LOC100861197) were more abundant in C group. SLLP1 (also referred to as SPRASA) has been identified firstly in the acrosome of human sperm and involved in immune-mediated infertility (Chiu et al., 2004). As a member of c-type lysozyme/alphalactalbumin family, SPRASA has an exon-intron organization and sequence conservation, similar to c-type lysozymes (Chiu et al., 2004; Wagner et al., 2015). Afterwards, it has been reported that the protein could be a target for anti-sperm antibodies in some infertile male, playing possible roles in sperm-egg bonding process, as well as subsequent development of early embryo in hamster, murine or bovine models (*Prendergast et al., 2014*). In this study, the expression of SPRASA was higher in cryopreserved goat spermatozoa without antioxidant cryo-protection, suggesting that this protein may be a potential infertile marker of frozen-thawed goat sperm, and its specific molecular function is worth further exploration. Glutathione-S-transferases (GSTs) have been demonstrated to be present on the goat sperm surface that serve as zinc-responsive antioxidants to bind oocyte (Aravinda et al., 1995; Chung et al., 2006; Hemachand et al., 2003). Remarkably, the isoform of GSTs, namely GST-Pi has recently been shown to be present primarily in sperm plasma membrane and is responsible for binding to the zona pellucida (*Kumar et al., 2014*). Previous report has been shown that GST-Pi expression in relation to oxidative stress and GST activity (Huang et al., 2004). In goat cryopreserved sperm, GST-Pi was up-regulated and the higher levels of oxidative stress, which suggesting that GST-pi expression in sperm with higher levels of oxidative stress may not

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

be enough to eliminate the harmful effects of ROS.

On the contrary, keratins (KRT1, KRT3, KRT4, KRT5, KRT14, KRT79), IQ motif containing F1 (IQCF1), nucleotide-binding protein like (NUBPL), and angiotensin-converting enzyme (ACE) were more abundant in B group than in C group. Interestingly, Keratins are typical intermediate filament proteins, play roles in protecting cell/tissue from stress, and act as biomarkers for some organ diseases (Moll et al., 2008; Mun et al., 2022). Here, we identified upregulated keratins proteins KRT1, KRT3, KRT4, KRT5, KRT14 and KRT79 in cryopreserved goat sperm which treated with a freezing medium containing BHT antioxidant. These keratins as ropelike structures may be involved in microtubules or tension-bearing role in sperm flagella to maintain sperm motility (*Hinsch et al.*, 2003; *Kierszenbaum*, 2002). As a novel acrosomal protein, IQCF1 is proved to interact with calmodulin on the sperm head and functioned in sperm motility, additionally, this protein is associated with sperm capacitation, especially sperm protein tyrosine phosphorylation and the membrane fusion events during acrosome reaction (Bendahmane et al., 2001; Fang et al., 2015). Although it's tempting to hypothesize that IQCF1 expression is correlated with sperm capacitation, more studies are warranted to confirm this finding. NUBPL is one of the essential subunits for sperm mitochondrial complex I (MCI) assembly, typically, activity of MCI effectively maintains the optimal levels of ROS (Chai et al., 2017; Cheng et al., 2022), we thereby concluded the indirect effect of NUBPL on ROS production. For ACE, which has two isoforms, thereinto, the testicular isoform of ACE (tACE) is expressed in haploid elongating spermatids and sperm. Of note, tACE plays an important role in sperm fertilization because of its' dual activities of dipeptidase and a GPI-anchored protein releasing factor, and correct positioning and distribution in the sperm membrane is prerequisite for the fertility (Deguchi et al., 2007; Pencheva et al., 2021; Sibony et al., 1994). Ojaghi et al., suggested that freezing and thawing process could reduce the

abundance level and activity of tACE in bull sperm (*Ojaghi et al., 2018*). Our finding of tACE has a significant increase in the expression level in highly motile goat cryopreserved sperm which being storage in cryomedium contains BHT. Therefore, we may conclude that tACE indeed associates with sperm fertilization competence, it could serve as marker for fertilizing ability of spermatozoa.

CONCLUSIONS

The utilization of antioxidants during cryopreservation has emerged as a promising approach to mitigate detrimental effects of ROS on sperm quality. Our study underscores the significant enhancement in goat sperm quality parameters after freezing/thawing, when the extender is supplemented with 0.5 mM of BHT. Furthermore, the over-expression of certain proteins, such as SLLP1, GST-Pi, IQCF1, NUBPL and tACE were observed, suggesting their potential as novel biomarkers for appraising post-thaw sperm quality and fertility that. As the field advances, a deeper understanding of these proteins and their interactions with antioxidants like BHT will be crucial for refining cryopreservation protocols and enhancing the success rates of AI in goats.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

- 400 This research was supported by Major Science and Technology Project of Yunnan Province
- 401 (Grant/Award Number: 202102AE090039), Yunnan Applied Basic Research Projects (Grant No.
- 402 202301AS070005), and the Earmarked Fund for China Agriculture Research System (Grant No.
- 403 CARS-39-08).

Competing Interest

The authors declare that they have no conflict of interest.

Author Contributions

- 407 Chunyan Li conceptualized the study, conceived and designed the experiments, performed the
- 408 experiments, analyzed the data, prepared the figures and tables, authored and reviewed drafts of
- 409 the paper, and approved the final draft.
- 410 Larbi Allai performed the experiments, analyzed the data, prepared the figures and tables, authored
- and reviewed drafts of the paper, and approved the final draft.
- 412 Jiachong Liang performed and validated the experiments, prepared the figures and tables, and
- 413 approved the final draft.
- 414 Chunrong Lv performed and validated the experiments, prepared the figures and tables, and
- 415 approved the final draft.
- 416 Xiaoqi Zhao performed the experiments, prepared the figures and tables, and approved the final
- 417 draft.
- 418 Xiaojun Ni performed the experiments, prepared the figures and tables, and approved the final
- 419 draft.
- 420 Guoquan Wu investigated resources, performed the experiments, prepared the figures and tables,
- 421 reviewed drafts of the paper, and approved the final draft.
- 422 Weidong Deng performed the experiments, prepared the figures and tables, analyzed
- 423 formalization, and approved the final draft.
- Bouabid Badaoui analyzed the data, prepared the figures and tables, reviewed and edited the paper,
- and approved the final draft.
- 426 Guobo Quan conceived and designed the experiments, analyzed the data, prepared the figures and
- 427 tables, authored and reviewed drafts of the paper, managed project, and approved the final draft.

428 **Data Availability**

All data generated and analyzed during this study are included in this published article. Raw data 429 of TMT-based proteomics and PRM strategy could search via the iProX partner repository with 430 the dataset identifier PXD043267. 431 **Legends of Figures and Tables** 432 Figure 1 Effects of BHT on levels of PMI%, ACRI% and ROS of post-thaw goat sperm. Values 433 with different lowercase superscripts differ significantly (P < 0.05) and different uppercase 434 superscripts differ significantly extremely (P < 0.01). 435 Figure 2 Quality control results of proteins. A Distribution of peptide number and length, the 436 abscissa represents the peptide length, and the ordinate represents the number of multiple peptides 437 corresponding to the length. B Distribution of unique peptide corresponding to protein, the abscissa 438 represents unique peptide number, and the ordinate represents protein counts corresponding to the 439 unique peptide. C protein coverage, most proteins coverages were under 30%. D Distribution of 440 protein molecular weight and isoelectric point, the abscissa represents isoelectric point of the 441 quantified protein, and the ordinate represents molecular weight of the quantified protein. A large 442 molecular weight range indicates a wide range of quantified proteins. 443 Figure 3 Screening of the DAPs. (A) Volcano plots of the comparison (C vs. B). The horizontal 444 445 coordinate represents the fold change of the DAPs (log2). The vertical coordinate represents the P-value (10 is the logarithmic transformation at the bottom). Red points indicate significantly 446 upregulated DAPs; green points indicate significantly downregulated DAPs, and gray points 447 448 indicate proteins that weren't differential abundance. (B) Counts of DAPs. (C) Subcellular localization of DAPs. 449

- 450 **Figure 4** Expression patterns of selected DAPs using TMT analysis and PRM validation. From
- 451 top to bottom, two dotted lines represent 1.20-fold (up-regulation) and 0.833-fold (down-
- 452 regulation), respectively.
- 453 Figure 5 Functional enrichment analysis of DAPs. (A) GO analysis for DAPs. Three functional
- domains were displayed that including biological process, cellular component and molecular
- 455 function terms. (B) Analysis of KEGG pathways in the comparable group (C vs. B). (C) PPI
- 456 network diagram of DAPs.
- 457 **Table 1** Effects of BHT on the motility and motile parameters of post-thaw goat sperm.
- 458 **Table 2** The proteins that were differentially abundant in comparable group (C vs. B).
- 459 Legends of Supplementary Materials
- 460 **Figure S1** The experimental procedure diagram in this study.
- 461 **Figure S2** The SDS-PAGE electrophoresis diagram.
- Table S1 Protein concentration results of samples using a BCA protein assay kit assay.
- 463 **Table S2** Effects of BHT on the quality associated indices of post-thaw goat sperm.
- Table S3 Informations of sperm quantitative proteins using TMT labeling approach.
- Table S4 Validation data of selected DAPs by PRM.
- 466 **Table S5** Annotation information of GO terms of the DAPs.
- Table S6 Enrichment information of mapped KEGG of the DAPs.
- 468 **Table S7** Output informations of PPI for DAPs based on the string database.
- 469 **REFERENCES**
- 470 Achar JC, Nam G, Jung J, Klammler H, Mohamed MM. 2020. Microbubble ozonation of the
- 471 antioxidant butylated hydroxytoluene: degradation kinetics and toxicity reduction. *Environmental*

472 Research 186: 109496 DOI 10.1016/j.envres.2020.109496. 473 Amann RP, Waberski D. 2014. Computer-assisted sperm analysis (CASA): capabilities and potential developments. Theriogenology 81(1): 5-17 DOI 10.1016/j.theriogenology.2013.09.004. 474 Amidi F, Pazhohan A, Shabani NM, Khodarahmian M, Nekoonam S. 2016. The role of antioxidants 475 in sperm freezing: a review. Cell Tissue Bank 17(4): 745-756 DOI 10.1007/s10561-016-9566-5. 476 477 Aravinda S, Gopalakrishnan B, Dev CS, Totev SM, Pawshe CH, Salunke D, Kaur K, Shaha C. 1995. 478 A testicular protein important for fertility has glutathione S-transferase activity and is localized extracellularly in the seminiferous tubules. J Biol Chem 270(26): 15675-15685 DOI 479 480 10.1074/jbc.270.26.15675. Banihani SA. 2017. Effect of captopril on semen quality. Andrologia 49(4(D)) I 10.1111/and.12641. 481 482 Bendahmane M, Lynch CN, Tulsiani DR. 2001. Calmodulin signals capacitation and triggers the agonist-483 induced acrosome reaction in mouse spermatozoa. Archives of Biochemistry and Biophysics 390(1): 1-8 484 DOI 10.1006/abbi.2001.2364. 485 Chai RR, Chen GW, Shi HJ, O WS, Martin-DeLeon PA, Chen H. 2017. Prohibitin involvement in the 486 generation of mitochondrial superoxide at complex I in human sperm. Journal of Cellular and Molecular Medicine **21(1)**: 121-129 DOI 10.1111/jcmm.12945. 487 Chauvin T, Xie F, Liu T, Nicora CD, Yang F, Camp DN, Smith RD, Roberts KP. 2012. A systematic 488 489 analysis of a deep mouse epididymal sperm proteome. Biology of Reproduction 87(6): 141 DOI 10.1095/biolreprod.112.104208. 490 491 Cheng C, Cleak J, Weiss L, Cater H, Stewart M, Wells S, Columbres RC, Shmara A, Morato TC,

Zafar F, Schule B, Neumann J, Hatchwell E, Kimonis V. 2022. Early embryonic lethality in complex

492

- I associated p.L104P Nubpl mutant mice. *Orphanet Journal of Rare Diseases* **17(1)** OOI 10.1186/s13023-022-02446-y.
- 495 Chiu WW, Erikson EK, Sole CA, Shelling AN, Chamley LW. 2004. SPRASA, a novel sperm protein
- involved in immune-mediated infertility. Human Reproduction 19(2): 243-249 DOI
- 497 10.1093/humrep/deh050.
- 498 Chung MJ, Walker PA, Hogstrand C. 200 etary phenolic antioxidants, caffeic acid and trolox, protect
- rainbow trout gill cells from nitric oxide-induced apoptosis. *Aquatic Toxicology* **80(4)**: 321-328 DOI
- 500 10.1016/j.aquatox.2006.09.009.
- De Andrade A, Balogun K, Machaty Z, Knox RV. 2023. Effects of supplemental antioxidants on in vitro
- fertility measures for cryopreserved boar spermatozoa. Theriogenology 200: 33-42 DOI
- 503 10.1016/j.theriogenology.2023.01.025.
- 504 Deguchi E, Tani T, Watanabe H, Yamada S, Kondoh G. 2007. Dipeptidase-inactivated tACE action in
- 505 vivo: selective inhibition of sperm-zona pellucida binding in the mouse. *Biology of Reproduction* **77(5)**:
- 506 794-802 DOI 10.1095/biolreprod.107.060004.
- 507 Dutta S, Majzoub A, Agarwal A. 2019. Oxidative stress and sperm function: a systematic review on
- evaluation and management. Arab Journal of Urology 17(2): 87-97 DOI
- 509 10.1080/2090598X.2019.1599624
- 510 Fang P, Xu W, Li D, Zhao X, Dai J, Wang Z, Yan X, Qin M, Zhang Y, Xu C, Wang L, Qiao Z. 2015.
- A novel acrosomal protein, IQCF1, involved in sperm capacitation and the acrosome reaction.
- 512 *Andrology* **3(2)**: 332-344 DOI 10.1111/andr.296.
- 513 Fang Y, Zhao C, Xiang H, Zhao X, Zhong R. 2019. Melatonin inhibits formation of mitochondrial

514 permeability transition pores and improves oxidative phosphorylation of frozen-thawed ram sperm. Frontiers in Endocrinology 10: 896 DOI 10.3389/fendo.2019.00896. 515 Fasihnia SH, Peighambardoust SH, Peighambardoust SJ, Oromiehie A, Soltanzadeh M, Peressini D. 516 2020. Migration analysis, antioxidant, and mechanical characterization of polypropylene-based active 517 food packaging films loaded with BHA, BHT, and TBHQ. Journal of Food Science 85(8): 2317-2328 518 519 DOI 10.1111/1750-3841.15337. Fujisawa S, Kadoma Y, Yokoe I. 2004. Radical-scavenging activity of butylated hydroxytoluene (BHT) 520 521 and its metabolites. Chemistry and **Physics** Lipids 130(2): 189-195 DOI 522 10.1016/j.chemphyslip.2004.03.005. 523 Gharagozloo P, Aitken RJ. 2011. The role of sperm oxidative stress in male infertility and the significance 524 of oral antioxidant therapy. Human Reproduction 26(7): 1628-1640 DOI 10.1093/humrep/der132. 525 Ghorbani M, Amiri I, Khodadadi I, Fattahi A, Atabakhsh M, Tavilani H. 2015. Influence of BHT 526 inclusion on post-thaw attributes of human semen. Systems Biology in Reproductive Medicine 61(1): 527 57-61 DOI 10.3109/19396368.2014.968267. 528 Guan K, Li H, Chen H, Qi X, Wang R, Ma Y. 2021. TMT-based quantitative proteomics analysis reveals 529 the effect of bovine derived MFG-E8 against oxidative stress on rat L6 cells. Food and Function 12(16): 7310-7320 DOI 10.1039/d1fo01135a. 530 531 Guo Y, Jiang W, Yu W, Niu X, Liu F, Zhou T, Zhang H, Li Y, Zhu H, Zhou Z, Sha J, Guo X, Chen D. 2019. Proteomics analysis of asthenozoospermia and identification of glucose-6-phosphate 532 isomerase as an important enzyme for sperm motility. Journal of Proteomics 208: 103478 DOI 533 10.1016/j.jprot.2019.103478. 534

535 Hemachand T, Shaha C. 2003. Functional role of sperm surface glutathione S-transferases and extracellular glutathione in the haploid spermatozoa under oxidative stress. Febs Letters 538(1-3): 14-536 18 DOI 10.1016/s0014-5793(03)00103-0. 537 Hermo L, Pelletier RM, Cyr DG, Smith CE. 2010. Surfing the wave, cycle, life history, and 538 genes/proteins expressed by testicular germ cells. Part 2: changes in spermatid organelles associated 539 540 with development of spermatozoa. Microscopy Research and Technique 73(4): 279-319 DOI 541 10.1002/jemt.20787. Hinsch E, Boehm JG, Groeger S, Mueller-Schloesser F, Hinsch KD. 2003. Identification of cytokeratins 542 543 in bovine sperm outer dense fibre fractions. Reproduction in Domestic Animals 8(2): 155-160 DOI 544 10.1046/j.1439-0531.2003.00408.x. 545 Huang FK, Zhang G, Lawlor K, Nazarian A, Philip J, Tempst P, Dephoure N, Neubert TA. 2017. 546 Deep coverage of global protein expression and phosphorylation in breast tumor cell lines using TMT 547 10-plex isobaric labeling. Journal of Proteome Research 16(3): 1121-1132 DOI 548 10.1021/acs.jproteome.6b00374. 549 Huang J, Tan PH, Tan BK, Bay BH. 2004. GST-pi expression correlates with oxidative stress and 550 apoptosis in breast cancer. Oncology Reports 12(4): 921-925 DOI 10.3892/or.12.4.921. Hyakutake T, Sato K, Sugita K. 2019. Study of bovine sperm motility in shear-thinning viscoelastic 551 552 fluids. Journal of Biomechanics 88: 130-137 DOI 10.1016/j.jbiomech.2019.03.035. Jara B, Merino O, Sanchez R, Risopatron J. 2019. Positive effect of butylated hydroxytoluene (BHT) 553 76-81 554 on the quality of cryopreserved cat spermatozoa. Cryobiology **89**: DOI 10.1016/j.cryobiol.2019.05.003. 555

573

574

and validation of ram sperm proteins associated with cryoinjuries caused by the cryopreservation 557 process. Theriogenology 184: 191-203 DOI 10.1016/j.theriogenology.2022.03.015. 558 Jia B, Memon S, Liang J, Lv C, Hong Q, Wu G, Quan G. 2021. Trehalose modifies the protein profile 559 Theriogenology 171: 560 of ram spermatozoa during cryopreservation. 21-29 DOI 561 10.1016/j.theriogenology.2021.05.004. Khumran AM, Yimer N, Rosnina Y, Wahid H, Ariff MO, Homayoun H, Asmatullah K, Bello TK. 562 2019. Butylated hydroxytoluene protects bull sperm surface protein-P25b in different extenders 563 following cryopreservation. Veterinary World 13(4): 649-654 DOI 10.14202/vetworld.2020.649-654. 564 Kierszenbaum AL. 2002. Keratins: unraveling the coordinated construction of scaffolds in spermatogenic 565 566 cells. Molecular Reproduction and Development 61(1): 1-2 DOI 10.1002/mrd.1124. 567 Kumar R, Singh VK, Atreja SK. 2014. Glutathione-S-transferase: role in buffalo (Bubalus bubalis) sperm 568 capacitation and cryopreservation. *Theriogenology* 81(4): 587-598 DOI 569 10.1016/j.theriogenology.2013.11.012. 570 **Leboeuf B, Restall B, Salamon S. 2000.** Production and storage of goat semen for artificial insemination. 571 Animal Reproduction Science **62(1-3)**: 113-141 DOI 10.1016/s0378-4320(00)00156-1. Li C, Ren C, Chen Y, Wang M, Tang J, Zhang Y, Wang Q, Zhang Z. 2023. Changes on proteomic and 572

Jia B, Larbi A, Lv C, Liang J, Xiang D, Zhang B, Fang Y, Shen W, Wu G, Quan G. 2022. Identification

Liu T, Han Y, Zhou T, Zhang R, Chen H, Chen S, Zhao H. 2019. Mechanisms of ROS-induced mitochondria-dependent apoptosis underlying liquid storage of goat spermatozoa. *Aging (Albany NY)*

metabolomic profiling of cryopreserved sperm effected by melatonin. Journal of Proteomics 273:

104791 DOI 10.1016/j.jprot.2022.104791.

577 11(18): 7880-7898 DOI 10.18632/aging.102295. Memon AA, Wahid H, Rosnina Y, Goh YM, Ebrahimi M, Nadia FM, Audrey G. 2011. Effect of 578 butylated hydroxytoluene on cryopreservation of Boer goat semen in tris egg volk extender. Animal 579 Reproduction Science 129(1-2): 44-49 DOI 10.1016/j.anireprosci.2011.10.004. 580 Merino O, Aguaguina WE, Esponda P, Risopatron J, Isachenko E, Isachenko V, Sanchez R. 2015. 581 582 Protective effect of butylated hydroxytoluene on sperm function in human spermatozoa cryopreserved by vitrification technique. Andrologia 47(2): 186-193 DOI 10.1111/and.12246. 583 Merino O, Dumorne K, Leidy SV, Figueroa E, Valdebenito I, Farias JG, Risopatron J. 2020. Short-584 585 term storage sperm of coho salmon (Oncorhynchus kisutch) at 4 degrees C: effect of sperm: extender dilution ratios and antioxidant butyl-hydroxytoluene (BHT) on sperm function. Cryobiology 95: 44-50 586 DOI 10.1016/j.cryobiol.2020.06.007. 587 588 Mislei B, Bucci D, Malama E, Bollwein H, Mari G. 2020. Seasonal changes in ROS concentrations and 589 sperm quality in unfrozen and frozen-thawed stallion semen. Theriogenology 144: 89-97 DOI 590 10.1016/j.theriogenology.2019.12.016. 591 Moll R, Divo M, Langbein L. 2008. The human keratins: biology and pathology. Histochemistry and Cell 592 Biology 129(6): 705-733 DOI 10.1007/s00418-008-0435-6. Mun J, Hur W, Ku NO. 2022. Roles of keratins in intestine. International Journal of Molecular Sciences 593 594 23(14) DOI 10.3390/ijms23148051. Muraoka S, Jedrychowski MP, Tatebe H, DeLeo AM, Ikezu S, Tokuda T, Gygi SP, Stern RA, Ikezu 595 T. 2019. Proteomic profiling of extracellular vesicles isolated from cerebrospinal fluid of former 596 national football league players at risk for chronictraumatic encephalopathy. Frontiers in Neuroscience 597

598	13 : 1059 DOI 10.3389/fmins.2019.01059.
599	Nain D, Mohanty TK, Dewry RK, Bhakat M, Nath S, Gupta VK, Parray MA. 2022. Butylated
500	hydroxytoluene (bht) improves the post-thaw semen quality in low-dose sperm cryopreservation in
501	murrah buffalo bull. Cryo Letters 44(1): 57-65
502	
503	Najafi A, Adutwum E, Yari A, Salehi E, Mikaeili S, Dashtestani F, Abolhassani F, Rashki L, Shiasi
504	S, Asadi E. 2018. Melatonin affects membrane integrity, intracellular reactive oxygen species, caspase3
505	activity and AKT phosphorylation in frozen thawed human sperm. Cell and Tissue Research 372(1):
606	149-159 DOI 10.1007/s00441-017-2743-4.
507	Neagu VR, Garcia BM, Sandoval CS, Rodriguez AM, Ferrusola CO, Fernandez LG, Tapia JA, Pena
608	FJ. 2010. Freezing dog semen in presence of the antioxidant butylated hydroxytoluene improves
509	postthaw sperm membrane integrity. Theriogenology 73(5): 645-650 DOI
610	10.1016/j.theriogenology.2009.10.021.
511	Ojaghi M, Johnson C, Rizzoto G, Kastelic J, Thundathil JC. 2018. Content and activity of the testis-
512	specific isoform of angiotensin-converting enzyme are reduced in frozen-thawed bull spermatozoa.
513	Reproduction Fertility and Development 30(11): 1575-1583 DOI 10.1071/RD17219.
514	Osipova VP, Berberova NT, Gazzaeva RA, Kudryavtsev KV. 2016. Application of new phenolic
515	antioxidants for cryopreservation of sturgeon sperm. Cryobiology 72(2): 112-118 DOI
616	10.1016/j.cryobiol.2016.02.006.
517	Pariz JR, Ranea C, Monteiro R, Evenson DP, Drevet JR, Hallak J. 2019. Melatonin and caffeine
518	supplementation used, respectively, as protective and stimulating agents in the cryopreservation of

619	human sperm improves survival, viability, and motility after thawing compared to traditional test-yolk
620	buffer. Oxidative Medicine and Cellular Longevity 2019: 6472945 DOI 10.1155/2019/6472945.
621	Park YJ, Pang MG. 2021. Mitochondrial functionality in male fertility: from spermatogenesis to
622	fertilization. Antioxidants (Basel) 10(1) 98 DOI 10.3390/antiox10010098.
623	Pencheva M, Keskinova D, Rashev P, Koeva Y, Atanassova N. 2021. Localization and distribution of
624	testicular angiotensin I converting enzyme (ACE) in neck and mid-piece of spermatozoa from infertile
625	men in relation to sperm motility. <i>Cells</i> 10(12) 3572 DOI 10.3390/cells10123572.
626	Peris-Frau P, Martin-Maestro A, Iniesta-Cuerda M, Sanchez-Ajofrin I, Cesari A, Garde JJ, Villar
627	M, Soler AJ. 2020. Cryopreservation of ram sperm alters the dynamic changes associated with in vitro
628	capacitation. Theriogenology 145: 100-108 DOI 10.1016/j.theriogenology.2020.01.046.
629	Pezo F, Yeste M, Zambrano F, Uribe P, Risopatron J, Sanchez R. 2021. Antioxidants and their effect
630	on the oxidative/nitrosative stress of frozen-thawed boar sperm. Cryobiology 98: 5-11 DOI
631	10.1016/j.cryobiol.2020.11.007.
632	Prendergast D, Woad KJ, Chamley LW, Holland OJ, Shelling AN. 2014. SPACA3 gene variants in a
633	New Zealand cohort of infertile and fertile couples. Human Fertility 17(2): 106-113 DOI
634	10.3109/14647273.2014.907506.
635	Ribas-Maynou J, Mateo-Otero Y, Delgado-Bermudez A, Bucci D, Tamanini C, Yeste M, Barranco I.
636	2021. Role of exogenous antioxidants on the performance and function of pig sperm after preservation
637	in liquid and frozen states: a systematic review. Theriogenology 173: 279-294 DOI
638	10.1016/j.theriogenology.2021.07.023.
639	Riesco MF, Alvarez M, Anel-Lopez L, Neila-Montero M, Palacin-Martinez C, Montes-Garrido R,

640	Boixo JC, de Paz P, Anel L. 2021. Multiparametric study of antioxidant effect on ram sperm
641	cryopreservation-from field trials to research bench. Animals (Basel) 11(2) DOI 10.3390/ani11020283.
642	Ruiz-Diaz S, Grande-Perez S, Arce-Lopez S, Tamargo C, Olegario HC, Perez-Cerezales S. 2020.
643	Changes in the cellular distribution of tyrosine phosphorylation and its relationship with the acrosomal
644	exocytosis and plasma membrane integrity during in vitro capacitation of frozen/thawed bull
645	spermatozoa. International Journal of Molecular Sciences 21(8) DOI 10.3390/ijms21082725.
646	Sahashi Y, Otsuki T, Higaki S, Nagano M, Yamashita Y, Hishinuma M. 2011. Effect of butylated
647	hydroxytoluene on dog sperm longevity in chilling storage and cryopreservation. Journal of Veterinary
648	Medical Science 73(7) : 895-899 DOI 10.1292/jvms.10-0460.
649	Santiani A, Evangelista S, Sepulveda N, Risopatron J, Villegas J, Sanchez R. 2014. Addition of
650	superoxide dismutase mimics during cooling process prevents oxidative stress and improves semen
651	quality parameters in frozen/thawed ram spermatozoa. Theriogenology 82(6): 884-889 DOI
652	10.1016/j.theriogenology.2014.07.002.
653	Sibony M, Segretain D, Gasc JM. 1994. Angiotensin-converting enzyme in murine testis: step-specific
654	expression of the germinal isoform during spermiogenesis. Biology of Reproduction 50(5): 1015-1026
655	DOI 10.1095/biolreprod50.5.1015.
656	Succu S, Berlinguer F, Pasciu V, Satta V, Leoni GG, Naitana S. 2011. Melatonin protects ram
657	spermatozoa from cryopreservation injuries in a dose-dependent manner. Journal of Pineal Research
658	50(3) : 310-318 DOI 10.1111/j.1600-079X.2010.00843.x.
659	Sun L, Wu C, Xu J, Zhang S, Dai J, Zhang D. 2020. Addition of butylated hydroxytoluene (BHT) in tris-
660	based extender improves post-thaw quality and motion dynamics of dog spermatozoa. Cryobiology 97:

- 71-75 DOI 10.1016/j.cryobiol.2020.10.006.
- Thuwanut P, Chatdarong K, Techakumphu M, Axner E. 2008. The effect of antioxidants on motility,
- viability, acrosome integrity and DNA integrity of frozen-thawed epididymal cat spermatozoa.
- Theriogenology **70(2)**: 233-240 DOI 10.1016/j.theriogenology.2008.04.005.
- 665 Tiwari S, Dewry RK, Srivastava R, Nath S, Mohanty TK. 2022. Targeted antioxidant delivery
- modulates mitochondrial functions, ameliorates oxidative stress and preserve sperm quality during
- cryopreservation. *Theriogenology* **179**: 22-31 DOI 10.1016/j.theriogenology.2021.11.013.
- 668 Trzcinska M, Bryla M, Gajda B, Gogol P. 2015. Fertility of boar semen cryopreserved in extender
- supplemented with butylated hydroxytoluene. Theriogenology 83(3): 307-313 DOI
- 670 10.1016/j.theriogenology.2014.07.045.
- Turk G, Koca RH, Gungor IH, Dayan CS, Acisu TC, Erdem EF, Arkali G, Ozer KS, Kizil M, Sonmez
- 672 M, Gur S, Yilmaz O, Yuce A, Karatepe M. 2022. Effect of hydrated C (60) fullerene on lipid, vitamin
- and amino acid composition in frozen-thawed ram semen. *Animal Reproduction Science* **238**: 106939
- 674 DOI 10.1016/j.anireprosci.2022.106939.
- Wagner A, Holland OJ, Tong M, Shelling AN, Chamley LW. 2015. The role of SPRASA in female
- 676 fertility. *Reproductive Sciences* **22(4)**: 452-461 DOI 10.1177/1933719114542009.
- 677 Yehye WA, Rahman NA, Ariffin A, Abd HS, Alhadi AA, Kadir FA, Yaeghoobi M. 2015.
- Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): a
- 679 review. European Journal of Medicinal Chemistry 101: 295-312 DOI 10.1016/j.ejmech.2015.06.026.
- 680 Zhang Y, Huang D, Lv N, Zhu G, Peng J, Chou T, Zhu Z, Wang J, Chen Y, Fang X, Qu J, Chen J,
- 681 Liu S. 2022. Global quantification of glutathione S-transferases in human serum using LC-MS/MS

682	coupled with affinity enrichment. Journal of Proteome Research 21(5): 1311-1320 DOI
683	10.1021/acs.jproteome.2c00049.
684	Zhu W, Zhang Y, Ren CH, Cheng X, Chen JH, Ge ZY, Sun ZP, Zhuo X, Sun FF, Chen YL, Jia XJ,
685	Zhang Z. 2020. Identification of proteomic markers for ram spermatozoa motility using a tandem mass
686	tag (TMT) approach. <i>Journal of Proteomics</i> 210 : 103438 DOI 10.1016/j.jprot.2019.103438.
687	Zou J, Wei L, Li D, Zhang Y, Wang G, Zhang L, Cao P, Yang S, Li G. 2021. Effect of glutathione on
688	sperm quality in Guanzhong dairy goat sperm during cryopreservation. Frontiers in Veterinary Science
689	8: 771440 DOI 10.3389/fvets.2021.771440.
690	

Figure 1 Effects of BH \bigcirc n levels of PMI%, ACRI% and ROS of post-thaw goat sperm. Values with different lowercase superscripts differ significantly (P < 0.05) and different uppercase superscripts differ significantly (P < 0.01).

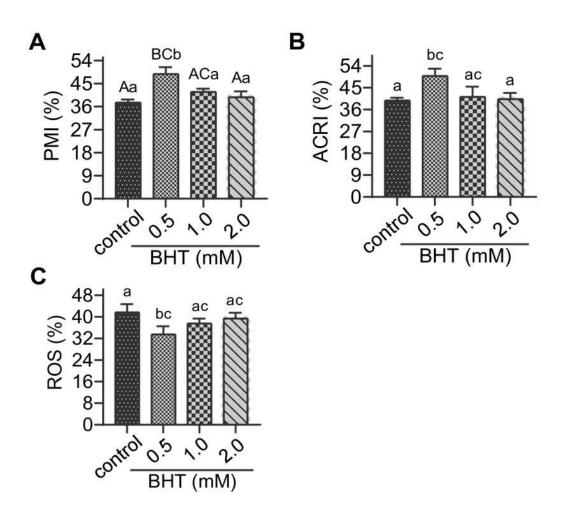


Figure 2 Quality control results of proteins.

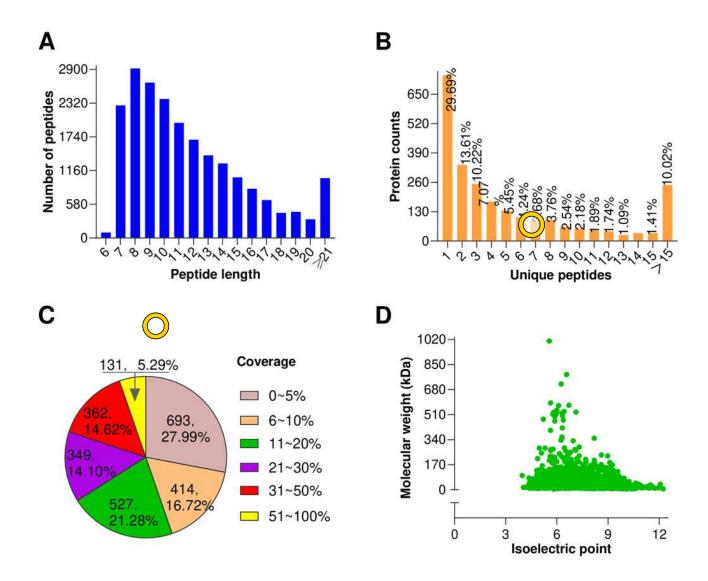


Figure 3 Screening of the DAP

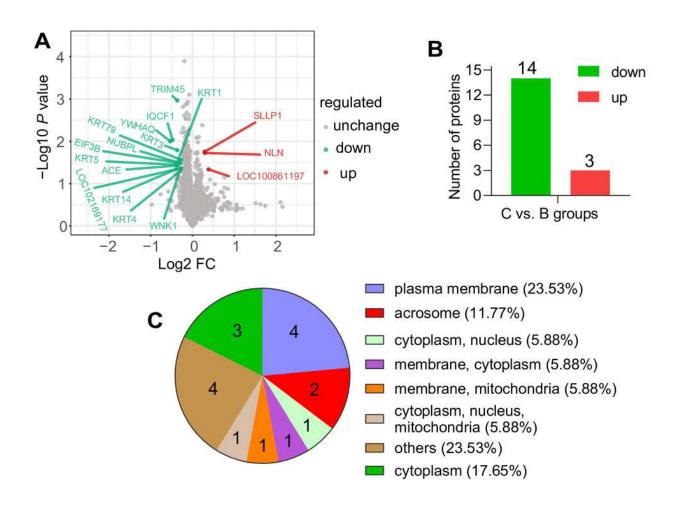


Figure 4 Expression patterns of selected DAPs using TMT analysis and PRM valida-tion. From top to bottom, two dotted lines represent 1.20-fold (up-regulation) and 0.833-fold (down-regulation), respectively.

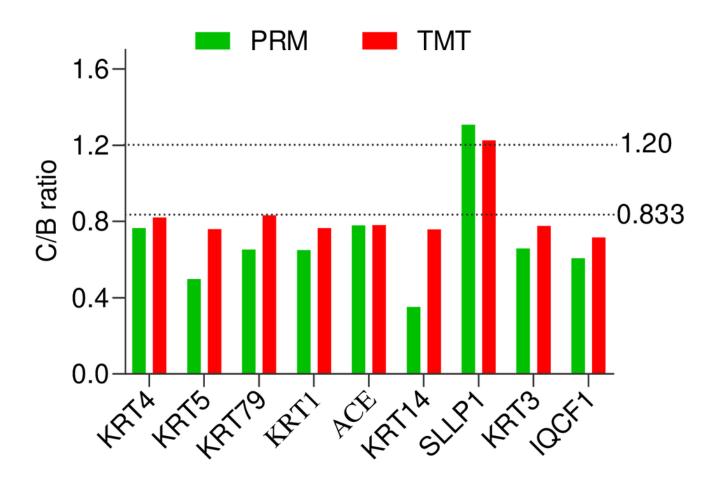
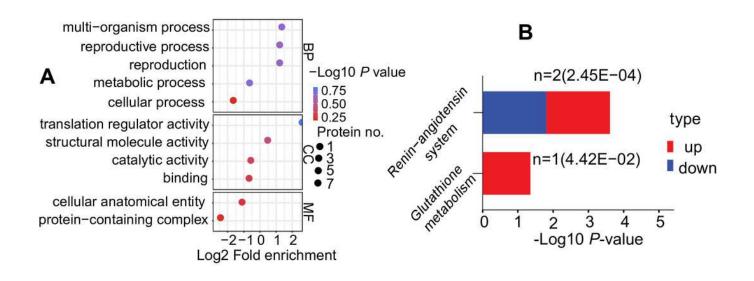
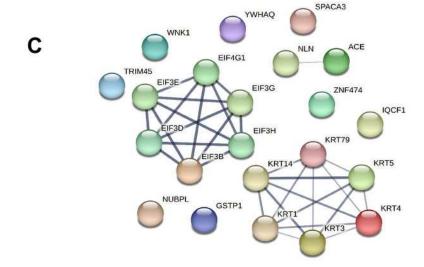




Figure 5 Functional enrichment analysis of DAPs.

Table 1(on next page)

Table 1 Effects of BHT on the motility and motile parameters of post-thaw goat sperm.

Table 1 Effects of BHT on the motility and motile parameters of post-thaw goat sperm

Groups		TM (%)	PM (%)	VCL (μm/s)	VAP (μm/s)	VSL (μm/s)	ALH (μm)	BCF (Hz)
C		53.05±3.84a	29.22±2.06 ^a	79.31±4.32ª	55.75±0.84a	48.54±2.94ª	2.77±0.15 ^a	6.93±0.52ª
	0.5	61.68±0.58b	39.22±2.98 ^b	82.50±4.47a	64.97±1.15 ^b	53.79±0.68a	2.97±0.15 ^a	7.64±0.35a
B (mM)	1.0	54.14±2.33ab	33.91±1.71ab	83.04±2.10a	63.38±3.95ab	51.65±3.29a	2.71±0.18 ^a	6.97±0.31a
	2.0	51.98±3.02a	33.02±2.61ab	82.25±3.76a	61.10±3.76ab	48.70±2.80a	2.72±0.15 ^a	7.35±0.43a

Within the same column, values with different lowercase superscripts differ significantly (P < 0.05).

Table 2(on next page)

Table 2 The proteins that were differentially abundant in comparable group (C vs. B).

Table 2 The proteins that were differentially abundant in comparable groups (C vs. B)

Accession	Description	Gene name	MW [kDa]	Score	Cover age[%	Unique eptide	<i>P-</i> value	FC
A0A452DMF8	Keratin 5	KRT5	60.2	95.13	31	12	0.036	0.760
A0A452DT87	Nucleotide binding protein like	NUBPL	34.8	2.64	3	1	0.032	0.801
A0A452DXG9	Zinc finger protein 474	LOC102 169177	52.1	2.37	2	1	0.043	0.827
A0A452E278	Eukaryotic translation initiation factor 3 subunit B	EIF3B	89.3	2.50	1	1	0.033	0.825
A0A452EAT2	Angiotensin- converting enzyme	ACE	150.5	159.73	17	24	0.037	0.781
A0A452EB32	IQ motif containing F1	IQCF1	23.5	56.42	33	6	0.009	0.717
A0A452EBB3	Non-specific serine/threonine protein kinase	WNK1	246	2.65	0	1	0.046	0.817
A0A452ECX7	14-3-3 protein theta	YWHA Q	27.7	32.54	23	1	0.0100	0.692
A0A452EJW7	GST class-pi	LOC100 861197	23.7	8.06	15	2	0.046	1.306

A0A452EN33	Keratin 14	KRT14	55.9	67.02	23	4	0.046	0.758
A0A452ENV4	Keratin 79	KRT79	57.8	28.53	11	1	0.027	0.831
A0A452F5B0	Tripartite motif containing 45	TRIM45	63.6	3.52	1	1	0.001	0.777
A0A452FN18	Keratin 3	KRT3	64.2	77.34	15	3	0.016	0.777
A0A452FYR1	Neurolysin	NLN	80.4	3.82	3	2	0.019	1.228
A0A452G885	Keratin 4	KRT4	55.9	138.89	37	13	0.049	0.820
A0A452GA47	Cytokeratin-1	KRT1	63.6	73.50	11	4	0.036	0.765
D7R6C7	Sperm acrosome membrane-associated protein 3	SLLP1	18	49.33	31	5	0.018	1.226