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Determining the genetic diversity and source rookeries of turtles collected from feeding
grounds could facilitate eûective conservation initiatives. To ascertain the genetic
composition and source rookery, we examined a partial sequence of the mitochondrial
control region (CR, 796 bp) of 40 green turtles (Chelonia mydas) collected from feeding
grounds around the Korean Peninsula between 2014 and 2022. We conducted genetic and
mixed-stock analyses (MSA) and identiûed ten CR haplotypes previously reported in
Japanese populations. In the haplotype network, six, three, and one haplotypes were
grouped with the Japan, Indo-Paciûc, and Central South Paciûc clades, respectively. The
primary rookeries of the green turtles were two distantly remote sites, Ogasawara (OGA)
and Central Ryukyu Island (CRI), approximately 1,300 km apart from each other, in the
Japan management unit (MU). Comparing three parameters (season, maturity, and speciûc
feeding ground), we noted that OGA was mainly related to summer and the Jeju Sea,
whereas CRI was related to fall and the East (Japan) Sea ground. The maturity did not show
a distinct pattern. Our results indicate that green turtles in the feeding grounds around the
Korean Peninsula originate mainly from the Japan MU and have genetic origins in the
Japan, Indo-Paciûc, and Central South Paciûc clades. Our results provide crucial insights
into rookeries and MUs, which are the focus of conservation eûorts of South Korea and
potential parties to collaborate for green turtle conservation.
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22 Abstract

23 Determining the genetic diversity and source rookeries of turtles collected from feeding grounds 

24 could facilitate effective conservation initiatives. To ascertain the genetic composition and 

25 source rookery, we examined a partial sequence of the mitochondrial control region (CR, 796 bp) 

26 of 40 green turtles (Chelonia mydas) collected from feeding grounds around the Korean 

27 Peninsula between 2014 and 2022. We conducted genetic and mixed-stock analyses (MSA) and 

28 identified ten CR haplotypes previously reported in Japanese populations. In the haplotype 

29 network, six, three, and one haplotypes were grouped with the Japan, Indo-Pacific, and Central 

30 South Pacific clades, respectively. The primary rookeries of the green turtles were two distantly 

31 remote sites, Ogasawara (OGA) and Central Ryukyu Island (CRI), approximately 1,300 km apart 

32 from each other, in the Japan management unit (MU). Comparing three parameters (season, 

33 maturity, and specific feeding ground), we noted that OGA was mainly related to summer and 

34 the Jeju Sea, whereas CRI was related to fall and the East (Japan) Sea ground. The maturity did 

35 not show a distinct pattern. Our results indicate that green turtles in the feeding grounds around 

36 the Korean Peninsula originate mainly from the Japan MU and have genetic origins in the Japan, 
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37 Indo-Pacific, and Central South Pacific clades. Our results provide crucial insights into rookeries 

38 and MUs, which are the focus of conservation efforts of South Korea and potential parties to 

39 collaborate for green turtle conservation.

40

41 Introduction

42 Management of sea turtle breeding and feeding grounds under the regional management unit 

43 framework is an effective approach to conserving endangered sea turtles (Wallace et al., 2010). 

44 The management unit (MU) exhibits distinct demographic processes, such as genetic 

45 composition and life history, and is a functionally independent unit for turtle conservation 

46 (Moritz, 1994). Various conservation efforts have been conducted in breeding populations, such 

47 as protecting breeding sites, releasing captive-breeding turtles, and running educational programs 

48 (Hamann et al., 2010; Barbanti et al., 2019).  Considering the frequent site fidelity of sea turtles 

49 for both breeding and feeding grounds over their lifespan, the protection of feeding grounds is 

50 also crucial for the conservation of sea turtles, in addition to the successful management of 

51 breeding grounds (Hamann et al., 2010). Sea turtles from different rookeries often gather on 

52 feeding grounds, making it important to protect multiple rookeries (Nishizawa et al., 2013; 

53 Piovano et al., 2019). So, conservation efforts for feeding grounds need to be increased. 

54 Understanding the interaction between their breeding and feeding grounds can be difficult due to 

55 their wide distribution and complex life cycle. However, recent advancements in genetic markers 
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56 have enabled researchers to gain information about the turtles� genetic variability, composition, 

57 and origin. To assess these, both genetic analyses and mixed stock analysis (MSA) have been 

58 conducted on turtles captured or incidentally collected (e.g., bycatch or stranded) (Nishizawa et 

59 al., 2013; Piovano et al., 2019). Previous studies on feeding grounds were mainly conducted in 

60 easily accessible or abundant areas where breeding grounds were nearby (Shamblin et al., 2012; 

61 Read et al., 2015). Among the seven known sea turtles, green turtles (Chelonia mydas) are the 

62 most common and are found across tropical and subtropical oceans worldwide (Seminoff et al., 

63 2015). The species is listed as an endangered species in the IUCN Red List of Threatened 

64 Species (IUCN, 2023) and highly migratory. A recent study (Jensen et al., 2019) identified 11 

65 phylogenetic clades of green turtles worldwide; it showed that clade VIII, which includes most 

66 turtles in rookeries in the Indo-Pacific and South Western Indian Ocean MU, has the widest 

67 distribution range in the Pacific and Indian Oceans. In the Western Pacific Ocean, six clades (III, 

68 IV, V, VI, VII, and VIII) were defined, and clades VII, VIII, III, V, and VI have main haplotypes 

69 for Japan, Indo-Pacific, Central Western Pacific, South Western Pacific, and Central South 

70 Pacific MU, respectively (Jensen et al., 2019). The regional boundaries of these genetic clades 

71 aligned well with the existing MU of green turtle rookeries (Wallace, 2010), probably because of 

72 their high level of loyalty to breeding and feeding grounds (Nishizawa et al., 2011). Some turtles 

73 in the Japan MU also had genetic components belonging to clades III and VIII (Hamabata et al., 

74 2014), which were found in the Indo-Pacific and Central Western Pacific MU, while those in the 
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75 Indo-Pacific MU also had components of clades III and VII. To understand the demographic 

76 structure of sea turtle populations in breeding and feeding grounds, and their connectivity with 

77 nearby MUs, studies on their phylogenetic origins are also necessary.

78 In the northwestern Pacific, several green turtle rookeries exist, namely, Ogasawara (OGA), 

79 Central Ryukyu Island (CRI), and Yaeyama Island (YI) in the Japan MU, and Taiwan, Hong 

80 Kong, Lanyu Island, and Xisha Island (XI) in the Indo-Pacific MU (Fig. 1). According to 

81 Okuyama et al. (2009), the dispersion of turtles that hatch in these rookeries occurs through 

82 passive transport facilitated by the Kuroshio Current, Kuroshio branches, and other components 

83 of the northwestern Pacific Gyre. The green turtles observed at the feeding grounds located in the 

84 East China Sea, specifically the YI and CRI, originated from the YI, Southeast Asia, Micronesia, 

85 and Marshall Island rookeries in the Western Pacific region (Nishizawa et al., 2013). In contrast, 

86 turtles found at feeding grounds located in the northwestern region of mainland Japan, such as 

87 Nomaike, Muroto, Kanto, and Sanriku, originated mainly from the OGA, although some 

88 originated from the CRI and YI (Hamabata et al., 2015). The Sanriku feeding ground in the 

89 northernmost region also reported the presence of some Hawaiian turtles (Nishizawa et al., 

90 2014). Within the northwestern Pacific region, there are additional important feeding grounds for 

91 green turtles, namely the Northeast China Sea, which spans Japan, China, and Korea, including 

92 the West (Yellow), South, East (Japan), and Jeju Seas. Nevertheless, the current understanding of 

93 the genetic composition and source rookeries of turtle populations in this region remains elusive.
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94 Green turtles (C. mydas) are the most frequently observed species in Korean waters (Kim et 

95 al., 2017). Juvenile and adult green turtles were observed at an average rate of 5-10 turtles per 

96 year. Ecological and radiotracking studies have been conducted to gain insights into the physical 

97 attributes, habitat preferences, and movement and migration patterns of green turtles (Jang et al., 

98 2018; Kim et al., 2022; Kim et al., 2023). Such studies have shown that green turtles actively use 

99 the sea around the Korean Peninsula and migrate to breeding grounds in both the Japan MU and 

100 the Indo-Pacific MU. Nevertheless, the current understanding of the genetic composition, genetic 

101 diversity, and source rookeries remains limited and requires immediate investigation. Most sea 

102 turtles inhabiting the marine ecosystems surrounding the Korean Peninsula are acquired through 

103 the processes of by-catch and stranding (Kim et al., 2017). Local feeding populations of these 

104 turtles are jeopardized by a variety of issues, including fishing, construction, and pollution 

105 (Moon et al., 2009; Kim et al., 2017). Understanding the source rookeries and MUs of green 

106 turtles, for which the Republic of Korea has implemented various government conservation 

107 efforts (Kim et al., 2022; Moon et al., 2022; Kim et al., 2023), is crucial for the long-term 

108 conservation of sea turtles. The inclusion of relevant studies was crucial and required immediate 

109 attention.

110 To evaluate the genetic vulnerability of the Korean population, we verified genetic 

111 composition and genetic diversity, as well as mixed stock analysis (MSA) to know about the 

112 source rookery of green turtles caught as bycatch or found stranded in feeding grounds around 
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113 the Korean Peninsula.  Our results provide crucial insights into the rookeries and MUs that are 

114 the focus of conservation efforts for endangered green turtles in the northwestern Pacific.

115

116 Materials & Methods

117 Sampling

118 Between August 5, 2014, and August 26, 2022, we sampled green turtles (C. mydas) that were 

119 reported to the National Marine Biological Resources Center (NMBRC) as being stranded in 

120 Korean territorial seas or caught unintentionally (e.g., bycatch) during fishery work. For 

121 deceased turtles, we collected a small portion of the pectoral muscle during postmortem 

122 examination at NMBRC. For live turtles, 1 mL of blood was collected from the dorsal cervical 

123 vessels located in the lateral dorsal cervical region using a 23-gauge needle.

124 Blood samples were kept on ice, transported to NMBRC, and centrifuged to separate blood 

125 cells. After sampling, we released the live turtles to the ocean following appropriate recovery 

126 treatments such as trauma, malnutrition, exhaustion, and external parasites at institutions 

127 specializing in rescuing and treating marine animals. The final release decision was approved by 

128 the Marine Animal Protection Committee of South Korea based on the Marine Animal Release 

129 Evaluation Checklist (Legal notice #2020-198, Ministry of Oceans and Fisheries, South Korea). 

130 The collected samples were kept either at �20°C or at 4°C in 99.5% ethanol until the DNA 

131 extraction. The voucher number was allocated to all samples stored in dry or refrigerated storage 
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132 at the National Marine Biodiversity Institute of Korea (MABIK).

133 We acquired supplementary individual data during field sampling. The curved carapace 

134 length (CCL) was measured up to 0.1 cm using a tape measure (KMC-32, Komelon, Korea), and 

135 the body weight was measured up to 0.5 kg using a CAS precision scale (CPS PLUS, CAS, 

136 Korea). The sex of the turtles was determined based on the well-developed tail and front claws of 

137 males. If this was not possible, the sex was designated as unknown. Turtles were categorized into 

138 two maturity groups, juveniles and adults, based on their CCL measurement of 700 mm (Green 

139 1993). We also documented the location of sample acquisition, including GPS coordinates, if 

140 accessible, the year and month of capture, and the capture area (Table S1). However, the 

141 information on some turtles is incomplete, as certain details are missing due to the limitations of 

142 the eight-year study period. 

143

144 DNA amplification and sequencing

145 Genomic DNA was extracted from the tissue and blood samples using the Qiagen DNeasy Blood 

146 and Tissue Kit according to the manufacturer�s protocol (Qiagen, Hilden, Germany). For the 

147 genetic study, we amplified a partial sequence of the control region (CR, 860 bp) of 

148 mitochondrial DNA, a regularly used marker for studying genetic variation in green turtles 

149 (Hamabata et al., 2015; Li et al., 2023).
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150 We conducted the polymerase chain reaction (PCR) using the primers LCM15382 (5'-

151 GCTTAACCCTAAAGCATTGG-3') and H950 (5'-GTCTCGGATTTAGGGGTTT-3,� Abreu-

152 Grobois et al., 2006) to amplify the gene in a SimpliAMP Thermal Cycler (Applied Biosystems, 

153 California, USA). The PCR solution consisted of 10 ¿L of 2×TOPsimpleTM PreMIX-nTaq 

154 (Enzynomics, Incheon, South Korea), 1 ¿L of template DNA, and 0.5 ¿L of each 10 pmol 

155 forward and reverse primers, and finally adjusted with molecular biology-grade water (HyClone, 

156 Massachusetts, USA) to the final volume of 20 ¿L. PCR products were confirmed on a 1% 

157 agarose gel and sequenced by Macrogen (Macrogen Inc., Seoul, South Korea). We visually 

158 inspected and aligned the obtained sequences using MUSCLE (Edgar, 2004) and trimmed the 

159 sequences using Geneious Prime v.2022.0.2 (https://www.geneious.com). We finally used 796 

160 bp sequences of the CR gene in the analyses.

161

162 Genetic composition analysis

163 We determined the haplotypes of the 40 green turtles by conducting a nested BLAST within the 

164 NCBI in Geneious Prime v.2022.0.2. We assigned the names of haplotypes based on the Pacific 

165 haplotype (CmP) and Atlantic haplotype (CmA) nomenclature as specified by the Archie Carr 

166 Center for Sea Turtle Research (ACCSTR). We subsequently calculated the number of 

167 polymorphic sites, haplotype diversity (h), and nucleotide diversity (Ã) of the samples using 

168 DnaSP v.6 (Rozas et al. 2017).
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169 To evaluate the genetic relationships between the sampled turtles and other turtles within the 

170 known 34 breeding (rookery) populations worldwide, we constructed a median-joining haplotype 

171 network of the CR haplotypes using PopART v.1.7 (https://popart.maths. otago.ac.nz/, Bandelt et 

172 al., 1999; Leigh & Bryant, 2015). Haplotype sequences and the number of turtles for each 

173 haplotype in the populations were obtained from GenBank and ACCSTR, as well as from 

174 published papers (Table S2). After aligning all the sequences used in the haplotype network, they 

175 were aligned to 754bp, unlike the sequences aligned for 40 Korean green turtles (794bp). 

176 In this study, we assigned the clade name regionally (Table S2) based on previous studies 

177 (Wallace et al., 2010; Jensen et al., 2019) because the regional boundary of these genetic clades 

178 aligns well with the existing MU of green turtles in our study region. Three breeding populations 

179 were included in the Eastern Caribbean, North Western Atlantic, and South Atlantic clades, one 

180 in the Mediterranean clade, five each in the South Western Pacific and Central Western Pacific 

181 clades, two in the Central South Pacific clade, five in the Central and Eastern Pacific clades, four 

182 in the Indo-Pacific clade, and three in the Japan clade (Shamblin et al., 2012; Dutton et al., 2014; 

183 Hamabata et al., 2014; Read et al., 2015; Shamblin et al., 2015a; Shamblin et al., 2015b; Joseph 

184 & Nishizawa, 2016; Hamabata et al., 2020; Barbanti et al., 2019; Dolfo et al., 2023; Li et al., 

185 2023).

186

187 Mixed stock analysis
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188 The Mixed Stock Analysis (MSA) method uses Bayesian approaches to estimate the contribution 

189 of multiple source populations to the feeding ground for knowing their origin (Bolker et al., 

190 2007). For the MSA study, we utilized a many-to-many approach while simultaneously 

191 considering the various characteristics of the study population and the many source rookeries 

192 (Bolker et al., 2007; Co_ier & Petrescu-Mag, 2013; Hamabata et al., 2015). Both flat MSA 

193 methods, which evenly weigh contributions from all rookeries, and a weighted MSA based on 

194 rookery size, were applied. Population size data for the seven rookeries examined (Table S3) 

195 were obtained from previous studies and available reports (Dethmers et al., 2006; SWOT, 2011, 

196 Hamabata et al., 2014; Hamabata et al., 2020). We did not conduct a weighted MSA on the 

197 rookery distance because the migration route of green turtles in this region remains unclear.

198 We categorized the available source rookeries in the Western Pacific Ocean into seven 

199 rookeries, considering the MUs and genetic clades of green turtles (Wallace et al., 2010; Jensen 

200 et al., 2019) and as well as our preliminary MSA results and haplotype network analyses. Of the 

201 34 breeding (rookery) populations used in the haplotype network analysis, we included 17 

202 rookeries within four regional MUs (Fig. 1, Table S3): the South Western Pacific (SWP), Central 

203 Western Pacific (CWP), Indo-Pacific (IP), and the Japan MU. Four rookeries (Xisha Island [XI] 

204 in the Indo-Pacific MU; Yaeyama Island [YI], Central Ryukyu Island [CRI], and Ogasawara 

205 [OGA] in the Japan MU) were used as independent units in our MSA analyses because they were 
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206 geographically close to the study area. We expected to obtain a better resolution in the results of 

207 the source rookery investigation.

208 We performed MSA based on the combined group, sexual maturity group (juveniles and 

209 adults), seasonal group (spring, summer, fall, and winter), and specific feeding ground group 

210 where the turtles were collected (West [Yellow] Sea, South Sea, East Sea, and Jeju Sea). Such 

211 detailed analyses can provide better information regarding where and when conservation efforts 

212 should be undertaken for specific target groups. The demarcation between the West and South 

213 Seas and between the South and East Seas was established based on imaginary maritime 

214 boundaries along Jindo Island and Ulsan City, respectively (Fig. 1). For seasonal analysis, we 

215 conducted MSA with only summer and fall data because we had only two samples in spring and 

216 one in winter. Because of the low temperatures during winter and spring, observations of sea 

217 turtles are rare in the Republic of Korea (Kim et al., 2017). In addition, we removed the West Sea 

218 from the analysis of specific feeding grounds because only one sample was available.

219 All MSA models were created with 100,000 iterations of Markov chain Monte Carlo (MCMC) 

220 using the mixstock package in R version 4.3.1, and the first 50,000 runs were removed as burn-in 

221 (Bolker et al., 2007; R Core Team, 2016). All MSA analyses were conducted exclusively when 

222 the convergence value in the Gelman and Rubin Shrink Factor was less than 1.2, indicating that 

223 the data reached a stable state (Pella & Masuda, 2001).

224

PeerJ reviewing PDF | (2024:01:95706:0:1:NEW 30 Jan 2024)

Manuscript to be reviewed



225 Results

226 We collected 40 turtles, comprising 21 adults, 15 juveniles, and 4 of unknown maturity. Among 

227 these, 24 were females, 3 were males, and the sex of the 13 turtles remained undetermined. Of 

228 the 40.9% were sampled between June and October, with the highest in August (25%). 

229 Seasonally, 23 turtles were sampled in summer (June�August), 14 in fall (September�

230 November), 2 in spring (March�May), and 1 in winter (December�February) (Table 1). 

231 Geographically, the East Sea accounted for 14 turtles, followed by 13 in the Jeju Sea, 12 in the 

232 South Sea, and 1 in the West (Yellow) Sea (Tables 1 and S1).

233

234 Genetic composition analysis

235 Among CR, ten distinct haplotypes were identified from 41 polymorphic sites (15 singleton 

236 variable sites and 26 parsimony-informative sites) (796 bp, Table 1). All haplotypes were 

237 concordant with previously documented haplotypes in this species (Hamabata et al., 2014; 

238 Hamabata et al., 2015; Hamabata et al., 2020). Orphan haplotypes were not observed. 

239 Haplotype Cmp39.1, found in 18 turtles (45.0%), exhibited the highest frequency, followed by 

240 haplotype Cmp50.1, detected in six turtles (15.0%). Each of the three turtle species (7.5%) had 

241 haplotypes Cmp49.1, Cmp121.1, or Cmp128.1. Two (5.0%) and one (2.5%) turtles possessed the 

242 remaining five haplotypes (Cmp53.1, Cmp54.1, Cmp70.1, Cmp79.1, and Cmp127.1, Table 1). 
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243 The haplotype diversity of the green turtles was 0.771 ± 0.060, whereas the nucleotide diversity 

244 was 0.01338 ± 0.00190.

245 Within the haplotype network, six haplotypes (CmP39.1, CmP70.1, CmP79.1, CmP121.1, 

246 CmP127.1, and CmP128.1) were assigned to the Japan clade (Fig. 2). The other three haplotypes 

247 (CmP49.1, CmP50.1, and CmP53.1) were associated with the Indo-Pacific clade but were 

248 exclusively found in the Japanese population except CmP49.1 which haplotype widespread in 

249 the Indo-Pacific MU. The last haplotype (CmP54.1) grouped with the CWP clade and was 

250 previously found only in the Japanese population (Fig. 2).

251

252 Mixed stock analysis

253 In the flat MSA results, rookeries (YI, CRI, and OGA) in the Japan MU accounted for 87.7% of 

254 the 40 turtles examined (Fig. 3A, Table S4). Rookeries (IP and XI) in the Indo-Pacific MU 

255 contributed 7.4% of the total. A closer look at the Japan MU, OGA, and CRI rookeries 

256 contributed 41.9% and 37.8% of the 40 turtles examined, respectively. When considering 

257 rookery size, the contribution ratio changed slightly to 46.1% for CRI and 38.7% for OGA.

258 In the flat MSA results of the season, OGA and CRI contributed 48.0% and 17.5% of the 23 

259 turtles in the summer, respectively, whereas CRI, OGA, and YI contributed 38.6%, 14.9%, and 

260 14.7% of the 14 turtles in the fall, respectively (Fig. 3B, Table S4). When considering rookery 

261 size, the contribution of OGA increased to 51.0% in summer, whereas CRI increased to 57.2% in 
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262 autumn. In the comparison of specific feeding grounds, OGA mainly explained the turtles in the 

263 Jeju Sea (35.0%), whereas CRI did so in the South Sea (32.5%) and East Sea (20.8%) (Fig. 3C, 

264 Table S4). Specifically, 20.4% of the 14 turtles in the East Sea came from the Indo-Pacific 

265 rookery, and 17.8% came from the YI rookery. When considering rookery size, the contribution 

266 of OGA increased to 40.6% in the Jeju Sea and 22.6% in the East Sea. The contribution of the 

267 CRI increased in all feeding grounds.

268 In addition, we conducted MSA based on the maturity groups of the juveniles and adults. We 

269 have presented the results as supplementary materials because the contribution patterns were 

270 similar between juveniles and adults and overall to the combined data (Fig. S1, Table S4).

271

272 Discussion

273 Green turtles near the Korean Peninsula mainly came from two large rookeries (OGA and CRI) 

274 in the Japan MU, which are approximately 1,300 km away from each other, whereas few turtles 

275 were expected to come from rookeries in the Indo-Pacific or Central Western Pacific MU. The 

276 OGA is well-linked to the study area through the Kuroshio recirculation in the northwestern 

277 Pacific. The main Kuroshio Current and its branch currents offer good transportation options for 

278 the CRI (Park et al., 2013; Zhong et al., 2021). We noted that the green turtles from the OGA 

279 and CRI varied with season and feeding grounds. Based on their genetic composition, green 

280 turtles in the study region were associated with Japan, Indo-Pacific, and Central Western Pacific 
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281 clades. According to our findings, juvenile and adult green turtles, which mainly come from 

282 Japan MU, use feeding grounds around the Korean Peninsula and have genetic origins in the 

283 Japan, Indo-Pacific, and Central Western Pacific clades.

284 Most green turtles in the feeding grounds around the Korean Peninsula have a genetic 

285 composition belonging to the Japan clade, although some have sources from the Indo-Pacific and 

286 Central Western clades. This result is consistent with that of a previous phylogenetic study 

287 (Jensen et al., 2019). Haplotype network analysis revealed that six haplotypes were associated 

288 with the Japan clade, whereas the other four haplotypes were grouped with either the Indo-

289 Pacific or Central Western clade. However, three of these four haplotypes have previously been 

290 identified in the Japanese population. Only one haplotype (Cmp49.1) was found across the 

291 populations in Japan and the Indo-Pacific MU. Overall, 9 of the 10 haplotypes (37 of 40 turtles) 

292 were found in the Japanese MU. This implies that the majority of sea turtles in the study area 

293 come from the Japan MU and have a genetic composition belonging to the Japan clade (Jensen et 

294 al., 2019). However, two pieces of evidence suggest that some turtles also originate from either 

295 the Indo-Pacific or Central Western Pacific MU and have a genetic composition. First, as 

296 previously described, one haplotype (3 of 40 turtles, Cmp49.1) was found in populations across 

297 Japan, Indo-Pacific, CWP, and SWP MUs, and was the main haplotype in the Indo-Pacific clade 

298 (Jensen et al., 2019). Second, previous satellite tracking studies have shown that green turtles in 

299 Korean waters have migrated to Hainan Island in the Indo-Pacific (Kim et al., 2022). The genetic 
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300 diversity of green turtles (0.77) in the study area was similar to the reported genetic diversity 

301 (0.65 � 0.88) in seven Japanese feeding grounds (Nishizawa et al., 2013; Nishizawa et al., 2014; 

302 Hamabata et al., 2015), showing that protecting the feeding population in the Republic of Korea 

303 could be meaningful to conserve genetic diversity of green turtles in northwestern Pacific.

304 Green turtles in the feeding grounds in the vicinity of the Korean Peninsula originated from 

305 two geographically distant rookeries, accounting for 79.7% of the total turtles: the OGA, situated 

306 in the northern area of the North Western Pacific gyre, and the CRI, located in the Central 

307 Western Pacific gyre. The OGA rookery made the largest contribution to the feeding ground, 

308 accounting for 41.9% of the total, although this decreased to 38.7% when the rookery size was 

309 considered. The CRI had the second-largest contribution at 37.8%, which increased to 46.1% 

310 when considering rookery size. YI and Indo-Pacific rookeries contributed 8.0% and 4.6% to the 

311 flat MSA model, respectively. Hamabata et al. (2015) reported that most turtles in feeding 

312 grounds along the southeastern coast of mainland Japan originated from the OGA rookery. In 

313 contrast, turtles in the southern Ryukyu feeding grounds come from geographically close 

314 southern Ryukyu or the Indo-Pacific regions (Nishizawa et al., 2013). Unlike these previous 

315 studies, our results show that feeding grounds around the Korean Peninsula are simultaneously 

316 used by green turtles from two remote rookeries in the North Western Pacific, so they have 

317 unique demographic and genetic compositions.
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318 The contribution of rookeries to feeding grounds was influenced by the season and specific 

319 feeding grounds in the study area. First, there was a clear seasonal pattern in the number of 

320 turtles collected and the influx from different rookeries. The majority of the turtles were 

321 collected between June and November. Conversely, only three turtles were collected between 

322 December and May, indicating that the majority of turtles came from summer and fall, possibly 

323 because of low temperatures during winter (Kim et al., 2017). It is well known that the feeding 

324 activity of sea turtles largely depends on water temperature (Reisser et al., 2013). In summer, 

325 most turtles originated from the OGA. The Kuroshio recirculation, generated by the Kuroshio 

326 Current in the OGA region, may facilitate the movement of green turtles toward the west or 

327 north direction (Hurlburt et al., 1996). This allows them to reach the Kuroshio Current, which 

328 flows into the northern parts of the Ryukyu Islands or the southeastern sea of mainland Japan. 

329 The turtles then arrive at feeding grounds in the Republic of Korea. In particular, given that the 

330 dispersion of post-breeding green turtles at OGA occurs in summer (Kondo et al., 2017), there is 

331 a potential for augmentation in the westward and northward migrations of these turtles. 

332 In contrast, the CRI rookery accounted for the largest proportion of turtles in the fall. When 

333 considering rookery size, it increased by more than 50%. There were two potential variables for 

334 this pattern. First, during this time of year, the Kuroshio Current, which aligns with the 

335 northward surface wind direction and monsoon activity in the area, increases in speed and 

336 volume (Isobe, 1999; Zhong et al., 2021). Moreover, the current ran closer to the shores of the 
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337 Ryukyu Islands. Such changes could increase the chance of green turtles moving northward 

338 owing to currents in the East China Sea. The Kuroshio Current is widely recognized for its 

339 substantial influence on the migration patterns of diverse marine organisms in the Western 

340 Pacific (Andres et al., 2015). Second, typhoons are often generated in July and August (Choi et 

341 al., 2012). Typhoons originating in the southern Pacific Ocean travel northerly and pass across 

342 the southern and central Ryukyu Islands (Choi et al., 2012). Typhoons could potentially enhance 

343 the chances of green turtles migrating to the feeding grounds in the study area.  Previous studies 

344 have shown that typhoons transport diverse flora and fauna from the East China Sea to the 

345 Korean Peninsula (Osazawa et al., 2020; Lee et al., 2023). Our findings suggest that the 

346 contributions of the OGA and CRI rookeries to the study area have distinct seasonal patterns, 

347 largely based on the activity of the Kuroshio Current and its branches.

348 The influx of green turtles into the study area fluctuated depending on the specific feeding 

349 grounds within the study area. The OGA rookery primarily contributed to the Jeju Sea regardless 

350 of rookery size, whereas the CRI rookery explained more turtles in the South and East Seas than 

351 the OGA. In particular, the YI and rookeries in the Indo-Pacific MU contributed some of the 

352 turtles (46.2%) in the East Sea in the flat model. The observed pattern could also be attributed to 

353 regional water influx by ocean currents, such as the Kuroshio Current and its branch currents, 

354 including the Tsushima Current, as well as the Kuroshio recirculation near the OGA. The 

355 Kuroshio branch currents, such as the Tsushima Current, receive water from the Kuroshio 
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356 Current and, in autumn, transport the water more directly to the East Sea (Isobe, 1999). This flow 

357 of water may bring turtles to the South Sea and East Sea from rookeries such as the YI and CRI 

358 on Ryukyu Island and/or the Indo-Pacific MU. From the OGA to the Jeju and South Seas, the 

359 southeastern coastal migration route of mainland Japan has the potential to transport turtles to the 

360 feeding grounds studied. The Kuroshio recirculation may first transport OGA turtles to the 

361 southeastern shore of mainland Japan (Hurlburt et al., 1996) and then follow the coastline 

362 westward to reach the Jeju Sea. In a satellite tracking study, green turtles released in the Jeju Sea 

363 in the Republic of Korea moved to the southwestern shore of Kyushu Island, including Tanega, 

364 Fukue, and Uji Islands (Kim et al., 2023). Our findings indicate that ocean currents, particularly 

365 in the northwestern Pacific, significantly impact the movement of green turtles from their 

366 breeding sites to faraway feeding grounds

367

368 Conclusions

369 In summary, the feeding grounds in the study area were utilized by both juvenile and adult green 

370 turtles, originating primarily from the Japan MU and partially from the Indo-Pacific and Central 

371 Western Pacific MU in the northwestern Pacific Ocean. The turtle population in the study 

372 area consisted of a distinct combination of two main geographically distant rookeries, the OGA 

373 and the CRI. The influx from these two rookeries differed based on the season and specific 

374 feeding grounds in the area. In addition, we suggest that the Kuroshio Current and its branches 
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375 are crucial for the migration of green turtles to the northwest Pacific Ocean. The results of our 

376 study provide crucial insights into rookeries and MUs, which are the focus of conservation 

377 efforts in the Republic of Korea. They also shed light on potential collaboration between local 

378 governments and national parties in demographic information exchange and recovery projects to 

379 conserve green turtles effectively.

380
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568 Table 1. Distribution of control region haplotypes (CR, 796bp) of 40 green turtles (Chelonia 

569 mydas) based on the maturity, season, and specific feeding ground in the study area.

570
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571 Figure 1.  Map of the study area, location of the rookeries, and feeding grounds within Chelonia 

572 mydas management units.

573 (A) Location of Chelonia mydas rookeries in Pacific regions for Mixed stock analysis. The circle 

574 represents the location of Chelonia mydas rookeries. Dashed circles indicate rookeries that are 

575 used in MSA as independent units. Purple represents the Japan Clade, blue represents the Indo-

576 Pacific Clade, pink represents the Central Western Pacific Clade, and orange represents the 

577 South Western Pacific Clade. The arrow on the map indicates the direction of the ocean current. 

578 (B) A map of the Chelonia mydas feeding grounds in South Korea and Japan. Green space 

579 indicates feeding grounds in this study area. They categorize by location using the black dashed 

580 line. Green rhombus indicates Japanese feeding grounds. The Kuroshio Current and its branch 

581 currents are also shown in (B). Ocean currents direction in (A) and (B) reference to Imawaki et 

582 al. (2001), Mitsuguchi et al. (2007), and Hu and Wang (2016).

583
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584 Figure 2. Haplotype network of the mitochondrial control region (CR) sequences (754 bp) of 

585 Chelonia mydas among 34 rookery populations worldwide. 

586 A number of mutations between haplotypes are illustrated by dashes in connecting lines. The 

587 size of the circle means the sample size of each haplotype. We presented regional clade names 

588 on the network, considering known management units of green turtles (Jensen et al., 2019; 

589 Wallace et al., 2010).

590
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591 Figure 3. The contributions of seven rookeries on the stock of the feeding grounds were studied 

592 based on the combined data (A), season (B), and specific feeding ground (C), in the mixed-stock 

593 analysis (MSA). 

594 We categorized the rookery unit based on known genetic clades (Jensen et al. 2019) and the 

595 management unit (Wallace et al. 2010) of green turtles (Chelonia mydas) and included 17 

596 individual breeding populations (Table S3). Points are mean estimates, and whiskers indicate 

597 2.5% and 97.5% credibility intervals. Flat MSA results are indicated black and weighted 

598 (rookery size) MSA results are indicated white. SWP, South Western Pacific; CWP, Central 

599 Western Pacific; IP, Indo-Pacific; XI, Xisha Island; YI, Yaeyama Island; CRI, Central Ryukyu 

600 Island; OGA, Ogasawara.
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Table 1. Distribution of control region haplotypes (CR, 796bp) of 40 green turtles
(Chelonia mydas) based on the maturity, season, and speciûc feeding ground in the
study area.
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1 Table 1. Distribution of control region haplotypes (CR, 796bp) of 40 green turtles (Chelonia 

2 mydas) based on the maturity, season, and specific feeding ground in the study area.

PeerJ reviewing PDF | (2024:01:95706:0:1:NEW 30 Jan 2024)

Manuscript to be reviewed



Maturity (n=36) Season (n=37) Specific feeding ground (n=39)

Haplotype
Total 

(n=40) Juvenile 

(n=15)

Adult 

(n=21)

Summer

(n=23)

Autumn 

(n=14)

East Sea 

(n=14)

South Sea 

(n=12)

Jeju Sea 

(n=13)

CmP39.1 18 6 10 10 7 4 9 5

CmP49.1 3 1 1 2 1 3

CmP50.1 6 3 3 2 3 2 2 2

CmP53.1 2 2 1 1 1

CmP54.1 1 1 1 1

CmP70.1 1 1 1 1

CmP79.1 1 1 1 1

CmP121.1 3 2 1 2 1 1 1

CmP127.1 2 2 1 1 1

CmP128.1 3 2 1 3 0 1 0 2
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Figure 1
Figure 1. Map of the study area, location of the rookeries, and feeding grounds within
Chelonia mydas management units.

(A) Location of Chelonia mydas rookeries in Paciûc regions for Mixed stock analysis. The
circle represents the location of Chelonia mydas rookeries. Dashed circles indicate rookeries
that are used in MSA as independent units. Purple represents the Japan Clade, blue
represents the Indo-Paciûc Clade, pink represents the Central Western Paciûc Clade, and
orange represents the South Western Paciûc Clade. The arrow on the map indicates the
direction of the ocean current. (B) A map of the Chelonia mydas feeding grounds in South
Korea and Japan. Green space indicates feeding grounds in this study area. They categorize
by location using the black dashed line. Green rhombus indicates Japanese feeding grounds.
The Kuroshio Current and its branch currents are also shown in (B). Ocean currents direction
in (A) and (B) reference to Imawaki et al. (2001), Mitsuguchi et al. (2007), and Hu and Wang
(2016).
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Figure 2
Figure 2. Haplotype network of the mitochondrial control region (CR) sequences (754
bp) of Chelonia mydas among 34 rookery populations worldwide.

A number of mutations between haplotypes are illustrated by dashes in connecting lines. The
size of the circle means the sample size of each haplotype. We presented regional clade
names on the network, considering known management units of green turtles (Jensen et al.,
2019; Wallace et al., 2010).
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Figure 3
Figure 3. The contributions of seven rookeries on the stock of the feeding grounds were
studied based on the combined data (A), season (B), and speciûc feeding ground (C), in
the mixed-stock analysis (MSA).

We categorized the rookery unit based on known genetic clades (Jensen et al. 2019) and the
management unit (Wallace et al. 2010) of green turtles (Chelonia mydas) and included 17
individual breeding populations (Table S3). Points are mean estimates, and whiskers indicate
2.5% and 97.5% credibility intervals. Flat MSA results are indicated black and weighted
(rookery size) MSA results are indicated white. SWP, South Western Paciûc; CWP, Central
Western Paciûc; IP, Indo-Paciûc; XI, Xisha Island; YI, Yaeyama Island; CRI, Central Ryukyu
Island; OGA, Ogasawara.
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