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Abstract

Imagery has become one of the main data seureesources for investigating seascape spatial
patterns. This is particularly true in deep-sea environments, which are only accessible with

underwater vehicles. On the one hand, using collaborative web-based tools and machine learning
algorithms, biological and geological features can now be massively annotated on 2D images

with the support of experts. On the other hand, geomorphometrics such as slope or rugosity

derived from 3D models built with structure from motion (sfm) methodology can then be used to
answer spatial distribution questions. However, precise georeferencing of 2D annotations on 3D
models has proven challenging fremfor deep-sea images, due to a large mismatch between the

ravw-navigation heritedobtained from underwater vehicles and the reprojected navigation

inherited-frombundle-adjustment.computed in the process of 3B-building 3D models. In

addition, although 3D models can be directly annotated, the process becomes challenging due to

the low resolution of textures and the large size of the models. In this article, we propose a

newstreamlined. open-access processing pipeline to reproject 2D image annotations onto 3D
models using ray tracing. Using four underwater image H&&ﬁe& ata sets, we evaluatedassessed

the accuracy of annotation reprojection on 3D models and eompared-itto-annotationgeolocation

available fromthe rawnavigationFeatureswere-georeferencedachieved successful
georeferencing to centimetric accuracy;-a+00-fold-improvement-overgeoloeation-. The

combination of photogrammetric 3D models and accurate 3D2D annotations would allow the

construction of a 3D representation of the landscape and could provide new insights into
understanding species microdistribution and biotic interactions.

Introduction

The-developmentofrRemote cameras, towed by research vessels or mounted on underwater
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platforms, was-used-early-enhave been used for decades for underwater exploration especially in
the deep sea (e.g. Lonsdale, 1977). Compared to physical sampling of the fauna, imaging is non-

intrusive and non-
destructive, and allows direct observation of the seabed over continuous areas (Tunnicliffe, 1990

: Beisiegel et al., 2017). As a result, imaging has become a primary source of data to investigate

interactions between seabed geomorphology and benthic megafaunal communities across spatial

scales (i.e. 10s of m to kms). The method is particularly relevant for poorly accessible and/or

vulnerable deep-sea ecosystems such as hydrothermal vents, cold seeps, canyons or coral reefs
(e.g. Marcon et al., 2014: van den Beld, 2017; Robert et al., 2017; Girard et al., 2020). Typical
ecological investigations make use of geological and biological annotations from images
(Matabos et al., 2017; Schoening et al., 2017). This annotation task is complicated by the fact
that, in most cases, fauna cannot be identified down to the species level, making it susceptible to
annotator bias (Durden et al., 2016). The recent development of image-based catalogues of fauna
and seascape features (e.g. Althaus et al., 2015; Howell et al., 2019) and the integration of these
typologies into web-based annotation tools for 2D images has been widely used to mitigate

identification bias by standardizing and remotely reviewing the categorization of large

annotation sets (e.g.. Langenkdmper et al., 2017).

For spatial investigation, image-based data needs to be located in a georeferenced system. In the

deep sea, the location of the image is given by the navigation data of the submarine platform (i.e.
AUV, ROV or towed camera)-—This-navigationis-determined, which are provided relative to the
position of the accompanying ship on the surface by a combination of|dead reckoning hnd

acoustic navigation. The vehicle's position is calculated from its speed, heading and attitude
usually provided by an Inertial Navigation System (INS) aided with a Doppler Velocity Log
(DVL). To compensate for the drift of the inertial system and to provide a more accurate hybrid
navigation, the dead reckoning navigation is periodically reset with the ship’s position using an
acoustic signal, typically the Ultra Short Baseline system (USBL) (Kwasnitschka et al., 2013).
While the ship gets its position from global navigation satellite systems with metric accuracy
USBL accuracy decreases with depth and distance. Depending on the system used and its

calibration, the accuracy can range from 1% to 0. 1% of the slant distance. At 1000 m depth the
position accuracy is in the order of 10 m. -

may further be compromised by the horrzontal distance between the transponder and the camera

as well as the horizontal distance between the camera and the scene, |i

into consideration, The accumulation of inaccuracies in ship positioning, submarine platform
positioning and scene positioning means that image-based data are theereticallyseemingly
inadequate to resolve abiotic and biotic processes operating at spatial scales lower than meters to
decameters.

using recent advances in computer vision photogrammetry, overlapping images can be
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reassembled-tightly aligned using a feature-matching algorithm while also refining a posteriori
the position of the underwater camera. As-a-result; This allows the reconstruction of underwater
scenes in three dimensions (i.e., including overhang and cavities), advancing seascape ecology
from 2.5D to 3D (Kwasnitschka et al., 2013; Lepczyk et al., 2021).Furthermore, the relative
positioning of features over the resulting 3D model of the seabed can be as precise as 1 cm or
even less (Palmer et al., 2015: Isteni¢ et al., 2019). It should be noted however that while
positions within a 3D model are internally consistent, the positioning of the 3D model itself still

suffers from the inaccuracies of the navigation. But a 3D model also provides a digital terrain
model (DTM) of a centimetric to millimetric precision, enabling a high-resolution mapping of
the seabed bathymetry from which geomorphometric descriptors, such as slope and rugosity, can
be rapidly and quantitatively derived (Wilson et al., 2007: Gerdes et al., 2019). Those terrain
metrics are especially of importance when considering them as driving ecological variables

(Robert et al., 2017; Price et al 2019) H—H—adétﬁeﬂ—mﬂa—th&de%leameﬂ&eﬁeemﬁu%er—ﬂﬁeﬂ—aﬂd
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A remaining problem, hHowever. is that the georeferencing system-of the 3D models conflicts

with the acoustic-based relocation of annotations made on the 2D images, hence producing two

spatiall misaligned data sets. A possible solution to cope with the mismatch

between an acoustic-based positioning obtained from vehicle navigation and an optical-based

positioning obtained from photogrammetry would still be to annotate the 3D model or the

derived orthomosaics, instead of raw images. Some freely available software such as Potree
(Schiitz, 2015), 3DMetrics (Arnaubec et al., 2023) or commercial software such as VRGS
(Hodgetts et al., 2015) or Agisoft Metashape (AgiSoft, 2016) already allow the direct annotation
of 3D models. However, due to the additional reprojection step involved in their calculation, 3D

textured models and associated orthomosaics typically have alslightly lower resolution than the
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raw 2D images, thus reducing the detectability of small organisms, and possibly, biasing the
observed community composition (Thornton et al., 2016). While going back to the original

image to identify the organism and then adding the annotation back to the 3D model is possible,
this can take a significant amount of time. Annotations of 3D models can also be challenging due
to the difficulty of displaying large high-resolution models and because of the longer duration
required for drawing 3D geometries compared to 2D annotations. As a result, photogrammetry

investigation typically focused on a subset of easily discernible organisms (e.g., Thornton et al.
2016) or on areas of a few 10s of m2 (e.g., Lim et al., 2020; Mitchell & Harris, 2020). Moreover,

even if several 2D image annotation platforms exist (Biigle: Langenkdmper et al., 2017, Squidle
+: Bewley et al., 2015, VARS: Schlining & Stout, 2006), equivalent collaborative software for
3D annotations are yet to emerge.

Because we identified the lack of open-access and open-source methods to mutualize the benefits

of 2D image annotation on web-based annotation tools and photogrammetric outcomes (i.e.

internally accurate navigation and objective terrain descriptors), we propose an ‘innovative\
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workflow to transferm-project 2D annotations #onto a georeferrenced3D georeferencing
systemmodel (Marcillat et al., 2023). This involves the development of a function that allows re-
projection of annotations made in the open-access web-based image annotation tool Biigle
(Langenké@mper et al., 2017) onto 3D models produced with the freely available photogrammetry
software Matisse3D (Arnaubec et al.. 2023). Hsueha A similar process had already been
implemented in the commercial software Agisoft Metashape (Pasumansky, 2020), but our
implementation is fully open-source and the entire workflow relies on open-access software.

Here we explain the workflow and assess its accuracyThe precision-of the method-has been

assessed in different deep seascapes, with two different submarine vehicles. \ Commented [GC8]: It is customary to end the Intro with
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Materials & Methods
Study sites

Four datasetsdata sets were used to assess the accuracy of annotation reprojection onto 3D
models (Table 1). The four datasetsdata sets represented different geological settings acquired
using two different vehicles-and-eameras-—Downward. A downward-looking eameras-wereNikon
D5500 camera was mounted on the remotely operated vehicle (ROV) Victor 6000 to map three

{

hydrothermal vent sites and on the hybrid remotely operated vehicle (HROV) Ariane to map a

cold-water coral (CWC) reef.
On Victor and Ariane vehicles, underwater navigation is achieved through advanced sensor

fusion techniques. Both vehicles employ a suite of similar equipment. A 600kHz RDI DVL
(Doppler Velocity Log) is utilized for precise velocity measurements and altitude estimation

from the seabed. Absolute acoustic positioning is achieved using either the Posidonia 6000 or
GAPS systems. Gyrofiber INS technology, such as the Phins from EXAIL, is employed to
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capture angle, angular velocity, and acceleration data. Depth measurements are obtained using

Paroscientific sensors. These various navigation sensors are seamlessly integrated and processed
by the INS Kalman filter,

resulting in state-of-the-art acoustic/inertial navigation accuracyl

The underwater vehicles were ]ﬂownl at a constant altitude to acquire parallel photo transects to

map the active-vent-chimneys-and periphery-as-well-asthe CWCreefrespective seafloor

structures of the four sites. Tui Malila is a hydrothermal vent field surrounded by a complex
basalt ficld and issubstratar-located on a fast dersalspreading ridge in the center of the Lau
back-arc basin (South-West Pacific; ref)-Hourdez & Jollivet, 2019). The modelled area is a
rectangle of 250 m by 10 m (Fig. 1.C). Eiffel Tower and White Castle are two vent edifices
surrounded-byon a mild-gentle slope terrain-eensisting-mainly made up of slabvolcanic talus and
are located in the Lucky Strike vent field on the Mid-Atlantic Ridge (Onédréas-et-al;
2009)(Ondréas et al., 2009). At the periphery of the Eiffel Tower edifice, the modelled area is a
rectangle of 120 m by 10 m (Fig. 1.D) and at the periphery of White Castle a rectangle of 115 m
by 30 m (Fig. 1.B). The mestreecentlast datasetdata set was acquired in a cold-water coral reef

located on a large (+09s-efmeters1 50 m by 50 m), and mostly flat terrace in a submarine canyon
of the Bay of Biscay. The modelled area is a linear transect of 65 m long by 2.5 m width (Fig.
1.A). The reef consists of isolated colonies of Madrepora oculata growing on a matrix of dead
eeralcorals infilled with soft sediments.

A

Table 1: Different datasetsdata sets used during the reprojection error evaluation.

3D reconstructions and-image-annotations

For each of the four data sets, 3D models (i.e. textured 3D meshes) were reconstructed in

Matisse3D using the 3D Sparse FASTEST processing (Arnaubec et al., 2023). Prior to
reconstruction and annotation, the images were corrected for underwater attenuation and non-
uniform illumination using the Matisse3D preprocessing module in order to improve feature
matching outcome. Images were also resizeddownscaled to 4 Mpx to speed up the reconstruction

process.
Matisse3D performs feature detection and matching using the, SIFT algorithm and removes

outliers using the RANSAC model based on the fundamental matrix {see-Arnaubeeet-al;
2045)(Arnaubec et al., 2015)., Bundle adjustment then uses the images to reconstruct the 3D
points detected by the SIFT algorithm. During bundle adjustment, the position of the camera
relative to the scene is medeledmodelled and georeferenced by fitting-minimizing the difference
between, these camera positions te-and, those provided by the navigation system without altering

e

the relative positions of the cameras in the bundle, IT he georeferenced camera positions,
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computed-duringresulting from the bundle adjustment is-are hereafter referred to here-as the

optical navigation. The number of points in the model is then increased using the dense matching
method in openMVS (Cernea, 2020) to create a dense cloud. Finally, the-a 3D mesh surface-is

reconstructed-generated using the Poisson surface reconstruction algorithm using the default

values of the user parameters in openMVS and then textured using.... The resulting 3D models

(textured mesh) have an average resolution of 5 mm.

Image annotations

Two sets of image annotations were used for two different purposes. To build the first data-set

only images from the Tui Malila vent site were used. Disjoint images (images whose footprint do

not overlap) were selected using the disjoint mosaic function of Matisse3D. The function uses
the hybrid navigation and the altitude of the ROV to map all images, then maximizes the number
of theoretically non-overlapping images based on ROV-navigation. All these disjoint images

were annotated for visible fauna (i.e. on each image, all recognizable individuals were tagged

with points, and all faunal patches were delimited with polygons) using the image annotation

web service Biigle (Langenkdmper et al., 2017). This disjoint-image dataannotation set was used

to illustrate the mismatch in image positioning between the acoustic navigation and the optical

navigation, and its consequences on annotation georeferencing [(e.g., double counting of some
individual organisms and unnecessarily duplicating the annotation effort).)

To build the second data-annotation set, a subset of 20 images was randomly selected #from
each of the four datasetstudy sites and manuatlyvisually checked for non-overlap. On each
image, four recognizable features were annotated with points using Biigle. AnnotationsThese
points have-beenwere chosen carefully to ensure that they are evenly distributed throughout the
image. Coordinates for all annotations in the image were then exported from Biigle usingthe
esvin a format that provides individual positional information (i.e. the CSV report scheme-, see
Biigle manual). These points are hereafterhereinafter referred to as “ground2D control” points™.

This control data set was used to assess the accuracy of the reprojection method (see below).

Figure 1: 3D reconstructions used during this study
A: Coral Garden, B: Periphery of White Castle vent site, C: Tui Malila vent site, D: Periphery of
Eiffel Tower vent site.
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Annotation reprojection

Figure1The images and/or the annotations from the disjoint and control data sets were re-

projected onto the 3D models using the camera position and rotation information (the extrinsic

parameters) and the optical characteristics of the camera (the intrinsic parameters) resulting from
the photogrammetric reconstruction. This information is stored in|a sfs_data binary-file |

generated by OpenMVG (Moulon et al., 2016), that-which is the 3D reconstruction library
implemented in Matisse3D. For the reprojection of each camera’s line of sight, we used the
Blender Python Library (BPL, Blender Community, 2018) and the Blender Photogrammetry
Importer (Bullinger, Bodensteiner & Arens, 2023). In this process, the annotation features were

then projected onto the 3D models using the ray tracing implementation in BPL (Fig. 2). For
each of these features, a ray is launehedshot from the camera viewpoint towards the 3D model
based on the image coordinates of the feature. [The 3D reprojected position of a 2D feature

corresponds to the first intersection between the ray and the model. If the reprojected annotation

is a polygon, each vertex of the polygon is reprojected. If a ray does not hit the model, for

example if the corresponding area in the image is not properly modelled, the annotation is
discarded (Fig. 2). A Python implementation of this process has-been-developed{Mareillatetal:
2023)is available from https://github.com/marinmarcillat/ CHUBACAPP.

Figure 2: Principle of annetationsannotation reprojection
The camera corresponding to an annotated image is positioned and oriented in the 3D model

referential and its optical characteristics are set according to the sfm_data binary file. For each
annotation on the 2D image, a corresponding ray is taunehedshot towards the 3D model. Green:
Successful point annotation reprojection. Blue: Successful polygon reprojection (each point of

the polygon contour is reprojected). Orange: The ray missed the 3D model, the reprojection is
unsuccessful.
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The local 2D uv coordinates of the annetations-(in-pixels; 2Djfeatures in the images were thus
transformed into global coordinates (georeferenced: using the WGS84:3D datum). The
%mpfi—ﬁ#footprint\ of each image enfrom the 3B-medeldisjoint data set was also determined as a

3D pelygenspolygon by reprojecting the image edge-pixelscorner coordinates in the same way as
the annotation points.

St ovnlontion
o
Evaluation of annotation duplicates and reprojection, accuracy was
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assessed by finding back
The analysis of the greunddisjoint image data set and control data set was conducted using the
open-source visualization software Blender (Blender Community, 2018). In both cases, the

corresponding textured 3D models were imported.

To determine the percentage of duplicates in the fauna annotations of the disjoint image data set,

these annotations were reprojected onto the 3D model and imported into Blender. When two

reprojected annotations of the same species were in close proximity, the annotations on the

original images were compared to assess whether they were of the same individual. The
percentage of duplicated annotations was then calculated. To illustrate the areas of overlap, the
smafootprint of each image (i.e. a polygon corresponding to the entire image) was also reprojected
onto the 3D model.

To evaluate the accuracy of reprojections, the 2D reprojected control points from the control data<

set were imported into Blender. The features in the images corresponding to these 2D control
points were visually identified within the \t@&ufedél}meéel&texture of the models| These points
are hereinafter referred to as 3D control points. The distance between features-on-the-textured 3D
model-and-the samefeatures-after reprojection-was-measured2D reprojected control points and
3D control points was determined by comparing the 3D coordinates in Python using the
Euclidean distance in-3D-(Figure2(Fig. 3). The distance is used as a proxy for the error
measurement of the annotation reprojection\. For each dive|, the median Euclidean distance

between 2D control points and 3D control points was computed together with the interquartile
range (i.e., IQR, the difference between the first and third quartile). The IQR is a measure of

statistical dispersion. ,

Figure 2:Error3: Reprojection accuracy evaluation process.

A: Annotation of a recognizable feature (2D control point) on the 2D raw image in Biigle-
Measurement-on-the 3D- (here, a cubic shape of the Tui Malila dive site). B: Reprojection of this
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2D control point onto the textured 3D model-ofthe-reprojection-error-as-the-distance between-the
reprojected-annotation-peint-and-thereferenee. C: The position of the feature en-the-annotated as

a 2D control point is localized on the textured 3D model (“3D control point”, red point), and the

distance with the 2D reprojected control point (green point) determined.

Results

RawHybrid versus optical navigation
The comparison-discrepancy in image georeferencing between the lhybrid and optical and-raw

navigation #Fem—the—@h&baeaf&dwels 1llustrated on M—Mah%—vem—s&e—aﬂews—kﬂghhglmﬁg—ﬂg_

4 with the & awdisjoint data set. According
to the hybrid nav1gat10n images were allgned along three roughly parallel transects (Fig. 4.A and
3D-medel positioning based-onB). According to the optical navigation (Figure 3)—Transeets-that

sheuld-be-parallelhowever, the relative-distance between #mages-and-separated-bythe supposedly
parallel-transects decreases towards the [West knd (Fig. 4A). As a fixed-distanceareactually

everlappingin-seme-eases—Consequenthyresult, the #mfootprint of images that were supposedly

non-overlappingdisjointed according to the rawhybrid navigation (Fig. 4.B) actually overlapped
on the textured 3D model-(Figure-3);, and Q9% of the annotations were duplicated:

ﬂ*‘igure 3&:\ Impact of navigational inaccuracies.

(A) Discrepancy between rawhybrid navigation and optical navigation (from photogrammetry).
(B) 2D disjoint mosaic obtained fremrawwith Matisse3D using hybrid navigation data. Three
annotations, visible across several images, are shown separated by colored lines with the
corresponding horizontal distance in meters. (C) hmprints-Footprints of the same images

reprojected onto the photogrammetric model. Bisjointimages-ofthe 2D-mesaic-actually

everlapThe duplicated annotations are represented with corresponding color crosses.

Annotation reprojections

Figure 5: Distribution of log-transformed distances between annotations of ground2D

control points on raw images and their referenee-positienscorresponding 3D control points
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on 3D models for different sites;-aceording-to-twe-georeferencing-methods:(A)

S = 5

A total of 320 greund-2D-control points-that were annotated on the raw images to assess the
precision of reprojections, off which 293 could be successfully reprojected onto the 3D

modelmodels. The reprojection computing took less than [10 seconds to complete| Points that {Commented [GC26]: Per point or per dataset? Pl }
failed to reproject mostly corresponded to fimperfections in the 3D models (17 missing points at specify
Tui Malila, 5 at Eiffel Tower, 3 at the coral garden, and 2 at White Castle). Forinstancewhere ~ | Commented [GC27]: Before you were saying these
. s K . K imperfections were data gaps, which does happen often
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The distance between the reprojected greund-eontrols2D-control points and their reference “n { Formatted: Normal1 }
position on the 3D models emphasize the preeisienaccuracy achieved by reprojection (Figtre
4Fig. 5). The median distances at the coral garden (1.1%+0e-2-s cm), White Castle (9-6*10e-3
#0.96 cm), and Eiffel Tower (1.3%#10e-2-m cm) were similar, as well as their IQR, ranging from
1.2%10e-2-m cm at White Castle to 2.3*+0e-2-m cm at Eiffel Tower. At Tui Malila, which is the
mest-topographically most complex site, the median distance and the IQR were higher, at
respectively 8.6%10e-2-s cm and 2+ 10e—+m-21 cm, Formatted: Font: Times, 12 pt, Not Bold, English

(United States)
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etat—2020)Ontep-et-thatannetations-ef 3D-medelsean

The advent of junderwater] photogrammetry has offered a powerful tool to study seascapes, with a

resolution hardly achievable by means of acoustic mapping of the deep seafloor. The same
images acquired with an AUV or an ROV can now be used to map biological and
geomorphological features as well as to build DTM with a resolution in the order of centimeters

to millimeters. However, while there exist powerful open-access tools for image annotation and
3D model building, we found it difficult to merge data from these two processing pipelines

because of their mismatch in georeferencing. We illustrated this discrepancy by reprojecting the

#mfootprint of supposedly disjoint images onto a 3D model. The images, and the annotations on
these images, were georeferenced using the navigation of the ROV, as is usually done when
processing such data. Even though images were georeferenced using a state-of-the-art
navigation system combining acoustic and dead-reckoning positioning, the supposedly disjoint
images were in fact overlapping on the 3D model, resulting in aredundaneyduplication of almost
a third of the annotations made on these images. This is due to the well-known inaccuracy of

even the most accurate positioning systems. The consequences are three-folds. First, the absolute
positioning of a feature is known within a radius that equals the accuracy of the positioning, that
is to say in the range of 1 m to 10 m. In the framework of seascape ecology, this may not be an
issue if the accuracy is still higher than the resolution of the DTM on which the image data are
mapped and against which they are analysed (Swanborn et al., 2022). But it becomes critical
when the resolution of the DTM is an order of magnitude tewerhigher than the accuracy of
annotation positioning. In addition, the relative distance between images is also approximate,
which is limiting the #terest-application of spatial autocorrelation analyses. Finally, simailarthe
same features may be annotated several times, which is a loss of time and can lead to lspurious
results if unnoticed,

Commented [GC28]: Aerial photogrammetry has
existed for almost a century, so you have to add this
qualifier.

To cope with this discrepancy we developed an open-access solution to reproject image
annotations onto 3D models. Here, the position of the camera computed during the process of
model building is used instead of the position of the camera given by the ROV navigation. In

three of our study sites, image annotations, once reprojected, are positioned onto the 3D model

with a median accuracy of about 1 cm compared to annotations made directly on the 3D model.

Since the accuracy we achieved is similar to the resolution of the 3D model, the method allows
to get the best of the two worlds, both annotations on images at full resolution with powerful
annotation tools, and a true 3D DTM at very high resolution. \Ultimatelv, this will facilitate

exhaustive megafaunal community characterizations over large continuous spatial extents of
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‘spurious results’
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100s of m2, as those large image sets are increasingly collected with autonomous underwater

vehicles (Thornton et al., 2016).

models—ntact—the-higher-distanec-crror-(—n-observed-for the Tui Malila site dataset-could-be
related-to-a-highertopegraphie-eomplexityhowever, the median accuracy was close to 10 cm and

more variable than at the three other sites. Tui Malila is also topographically more complex than

the other sites because of the rocky basaltic terrain exhibiting faults. Those faults could clearly
limit the ‘hit’ of the ray light-traced from the downward-looking camera in near vertical setting,
heneethus reprojecting the annotations a few decimeters away infrom the fault. In-the-nearfuture;
speeifie 3D-mapping-instramentsThe accuracy and precision of the reprojection are thus
dependent on the roughness of the terrain, and fit would be best practice to assess its
effectiveness|
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Terrain roughness also has an influence on the quality of the 3D model. In our data sets, 3% of

image annotations could not be reprojected on 3D models due to model imperfections, most of

which at the Tui Malila site. The ROV was pre-programmed to run along parallel paths to
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optimize the image overlap needed for 3D reconstruction. In this “survey” mode, the ROV
heavily relies on the DVL for its navigation but in complex terrains with large bathymetric
variations bottom tracking may be lost, thus compromising the integrity of the survey. New
technological developments such as LIDAR, multibeam scanning sonars or stereo camera willare
now significantly #mpreveimproving the speed and the accuracy of the3D reconstruction and the
overall quality of 3D mapping, as well as providing an-aeeurate-epticalnavisationa simultancous
mapping and imaging of the seafloor at centimetric scales (Caress et al., 2018). These methods

produce 3D models, bathymetry and [photomosaics] that fully overlap, allowing the precise

evaluation of species distribution in relation to topography (Barry et al., 2023). But while this
mapping system requires specialized and costly equipment, reprojection can be utilized directly

on most ROV, making it cost-effective.

A strong bottleneck that remains in image analysis is the time needed for annotations (Matabos

etal., 2017). For image and video annotation, many online and collaborative tools have emerged
.g. Biigle: Langenkdmper et al., 2017, Squidle+: Bewley et al., 2015, VARS: Schlining &

Stout, 2006), and the latest developments in assisted feature annotation have been integrated
(Zurowietz et al., 2018). Citizen science platforms (Deep sea spy: Matabos et al., 2018
Zooniverse: Simpson, Page & De Roure, 2014) also allow a significant increase in the amount of
images processed. Our ability to adapt the workflow to Biigle demonstrates that in principle it is
flexible-againstany-efcould also be adapted to the annotation platforms mentioned above.
Reprojection could also be useful for disjoint image selection. Overlapping images can be
detected before annotation by reprojecting the image #mfootprints and checking for
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interseetionsoverlap between these reprojections. Furthermore, automated detection by machine
learning looks very promising to speed up the process. Although some experiments on automatic
recognition of 3D features have been carried out (De Oliveira et al., 2021), most detection
models remain actually developed for 2D images and videos (Katija et al., 2022). Reprojection

may allow the use of well-proven generic 2D image detection ‘Convolutedional Neural Networks

(CNN) for 3D annotation generation and vice-versa. On the one hand, 3D reprojection positions
could generate 3D annotation sets for machine learning training. On the other hand, once a
feature has been manually annotated on a single image and reprojected onto the 3D model, that
3D position can be used to locate that feature back on images taken from different angles.
Multiple crops of the same object could then be generated and serve as a training data set.‘ 777777777777777777
Ultimately, fully 3D open-access and collaborative annotation of high-resolution textured 3D
models appear as an ideal solution in terms of accuracy for the analysis of species

microdistribution and biotic interactions. This is already possible with some commercial

solutions such as VRGS (Hodgetts et al., 2015). However, the cost of manipulating 3D models in
terms of computational and lenergy [requirements must be taken into account. Large 3D models

require significant amounts of memory and graphics processing power to manipulate, which may
require dedicated computers and/or servers. By removing the need for 3D annotation and thus

reducing the number of 3D models manipulations, our solution could provide a trade-off between

accuracy and computational requirements.

Conclusions
This study demonstrated that 3D-underwater photogrammetry and reprejeeted-2D annotations
projected onto a 3D seascape model have several advantages when combined, in particular:-

o Annetated-Instead of working on orthophotomosaics of lower quality, the raw seascape
images_can be annotated; using the popular and collaborative Biigle software; are-raw-and
at full seale-resolution, allowing optimal morphospecies categorization.

. lImage overlap and annotation duplicates are-aveided-thanksto-optical navigation:
Annetations-are-preeiselygeoreferenced-to-a-centimetrie seale-can be avoided by filtering

overlapping images prior to annotations. ‘

o The annetation-positional accuracy of the 3D projection of the 2D annotations is
compatible with the analysis of intraspecific and interspecific |interactions.

e The 3D model provides access to high-resolution topographic metrics to explain
annotationsquantify annotation| distribution over continuousseveral spatial scales. This
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technique could be applied on a }very large scale to particularly complex terrains such as

hydrothermal vents, canyons, cliffs, or coral reefs.

e By removing the need of annotating and manipulating 3D models, Wwe expect the
developed workflow to considerably fastenspeed up the generation of annotation setsets
for 3D and for deep-learning purposes.
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Supplementary Materials

The Python implementation of annotation reprojection, as well as other useful tools such as 3D
topographic metrics calculation, disjoint image selection or model inference import into Biigle,
are available on GitHub (Mareilatet-al;2023)(Marcillat et al., 2023). Images, navigation data
and 3D reconstructions are available at https://www.seanoe.org/data/00879/99108/enrequest.
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