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Abstract 15 

Imagery has become one of the main data sourcesources for investigating seascape spatial 16 

patterns. This is particularly true in deep-sea environments, which are only accessible with 17 

underwater vehicles. On the one hand, using collaborative web-based tools and machine learning 18 

algorithms, biological and geological features can now be massively annotated on 2D images 19 

with the support of experts. On the other hand, geomorphometrics such as slope or rugosity 20 

derived from 3D models built with structure from motion (sfm) methodology can then be used to 21 

answer spatial distribution questions. However, precise georeferencing of 2D annotations on 3D 22 

models has proven challenging fromfor deep-sea images, due to a large mismatch between the 23 

raw navigation inheritedobtained from underwater vehicles and the reprojected navigation 24 

inherited from bundle adjustment.computed in the process of 3D building 3D models. In 25 

addition, although 3D models can be directly annotated, the process becomes challenging due to 26 

the low resolution of textures and the large size of the models. In this article, we propose a 27 

newstreamlined, open-access processing pipeline to reproject 2D image annotations onto 3D 28 

models using ray tracing. Using four underwater image datasetsdata sets, we evaluatedassessed 29 

the accuracy of annotation reprojection on 3D models and compared it to annotation geolocation 30 

available from the raw navigation. Features were georeferencedachieved successful 31 

georeferencing to centimetric accuracy, a 100-fold improvement over geolocation.. The 32 

combination of photogrammetric 3D models and accurate 3D2D annotations would allow the 33 

construction of a 3D representation of the landscape and could provide new insights into 34 

understanding species microdistribution and biotic interactions.  35 

 36 

Introduction 37 

The development of rRemote cameras, towed by research vessels or mounted on underwater 38 
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platforms, was used early onhave been used for decades for underwater exploration especially in 39 

the deep sea (e.g. Lonsdale, 1977). Compared to physical sampling of the fauna, imaging is non-40 

intrusive and non- 41 

destructive, and allows direct observation of the seabed over continuous areas (Tunnicliffe, 1990 42 

; Beisiegel et al., 2017). As a result, imaging has become a primary source of data to investigate 43 

interactions between seabed geomorphology and benthic megafaunal communities across spatial 44 

scales (i.e. 10s of m to kms). The method is particularly relevant for poorly accessible and/or 45 

vulnerable deep-sea ecosystems such as hydrothermal vents, cold seeps, canyons or coral reefs 46 

(e.g. Marcon et al., 2014; van den Beld, 2017; Robert et al., 2017; Girard et al., 2020). Typical 47 

ecological investigations make use of geological and biological annotations from images 48 

(Matabos et al., 2017; Schoening et al., 2017). This annotation task is complicated by the fact 49 

that, in most cases, fauna cannot be identified down to the species level, making it susceptible to 50 

annotator bias (Durden et al., 2016). The recent development of image-based catalogues of fauna 51 

and seascape features (e.g. Althaus et al., 2015; Howell et al., 2019) and the integration of these 52 

typologies into web-based annotation tools for 2D images has been widely used to mitigate 53 

identification bias by standardizing and remotely reviewing the categorization of large 54 

annotation sets (e.g., Langenkämper et al., 2017). 55 

For spatial investigation, image-based data needs to be located in a georeferenced system. In the 56 

deep sea, the location of the image is given by the navigation data of the submarine platform (i.e. 57 

AUV, ROV or towed camera). This navigation is determined, which are provided relative to the 58 

position of the accompanying ship on the surface by a combination of dead reckoning and 59 

acoustic navigation. The vehicle's position is calculated from its speed, heading and attitude 60 

usually provided by an Inertial Navigation System (INS) aided with a Doppler Velocity Log 61 

(DVL). To compensate for the drift of the inertial system and to provide a more accurate hybrid 62 

navigation, the dead reckoning navigation is periodically reset with the ship’s position using an 63 

acoustic signal, typically the Ultra Short Baseline system (USBL) (Kwasnitschka et al., 2013). 64 

While the ship gets its position from global navigation satellite systems with metric accuracy, 65 

USBL accuracy decreases with depth and distance. Depending on the system used and its 66 

calibration, the accuracy can range from 1% to 0.1% of the slant distance. At 1000 m depth, the 67 

position accuracy is in the order of 10 m. . Depending on the system used and its calibration, the 68 

accuracy may range from 1% to 0.1% of the slant distance. The accuracy of image positioning 69 

may further be compromised by the horizontal distance between the transponder and the camera 70 

as well as the horizontal distance between the camera and the scene, if those factors are not taken 71 

into consideration. The accumulation of inaccuracies in ship positioning, submarine platform 72 

positioning and scene positioning means that image-based data  are theoreticallyseemingly 73 

inadequate to resolve abiotic and biotic processes operating at spatial scales lower than meters to 74 

decameters.  75 

Recent advances in computer vision can provide access to an optimal repositioning (i.e. precision 76 

< 1 m) of underwater vehicles based on sequences of overlapping images. For instanceHowever, 77 

using recent advances in computer vision photogrammetry, overlapping images can be 78 
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reassembled tightly aligned using a feature-matching algorithm while also refining a posteriori 79 

the position of the underwater camera. As a result,This allows the reconstruction of underwater 80 

scenes in three dimensions (i.e., including overhang and cavities), advancing seascape ecology 81 

from 2.5D to 3D (Kwasnitschka et al., 2013; Lepczyk et al., 2021).Furthermore, the relative 82 

positioning of features over the resulting 3D model of the seabed can be as precise as 1 cm or 83 

even less (Palmer et al., 2015; Istenič et al., 2019). It should be noted however that while 84 

positions within a 3D model are internally consistent, the positioning of the 3D model itself still 85 

suffers from the inaccuracies of the navigation. But a 3D model also provides a digital terrain 86 

model (DTM) of a centimetric to millimetric precision, enabling a high-resolution mapping of 87 

the seabed bathymetry from which geomorphometric descriptors, such as slope and rugosity, can 88 

be rapidly and quantitatively derived (Wilson et al., 2007; Gerdes et al., 2019). Those terrain 89 

metrics are especially of importance when considering them as driving ecological variables 90 

(Robert et al., 2017; Price et al., 2019). In addition, with the development of computer vision and 91 

photogrammetry, an overlapping image set allows reconstruction of underwater scenes in three 92 

dimensions (i.e., including overhang and cavities), advancing seascape ecology from 2.5D to 3D 93 

(Kwasnitschka et al., 2013; Lepczyk et al., 2021). 94 

A remaining problem, hHowever, is that the georeferencing system of the 3D models conflicts 95 

with the acoustic-based relocation of annotations made on the 2D images, hence producing two 96 

spatially incompatiblemisaligned data sets. A possible solution to cope with the mismatch 97 

between an acoustic-based positioning obtained from vehicle navigation and an optical-based 98 

positioning obtained from photogrammetry would still be to annotate the 3D model or the 99 

derived orthomosaics, instead of raw images. Some freely available software such as Potree 100 

(Schütz, 2015), 3DMetrics (Arnaubec et al., 2023) or commercial software such as VRGS 101 

(Hodgetts et al., 2015) or Agisoft Metashape (AgiSoft, 2016) already allow the direct annotation 102 

of 3D models. However, due to the additional reprojection step involved in their calculation, 3D 103 

textured models and associated orthomosaics typically have a slightly lower resolution than the 104 

raw 2D images, thus reducing the detectability of small organisms, and possibly, biasing the 105 

observed community composition (Thornton et al., 2016). While going back to the original 106 

image to identify the organism and then adding the annotation back to the 3D model is possible, 107 

this can take a significant amount of time. Annotations of 3D models can also be challenging due 108 

to the difficulty of displaying large high-resolution models and because of the longer duration 109 

required for drawing 3D geometries compared to 2D annotations. As a result, photogrammetry 110 

investigation typically focused on a subset of easily discernible organisms (e.g., Thornton et al., 111 

2016) or on areas of a few 10s of m2 (e.g., Lim et al., 2020; Mitchell & Harris, 2020). Moreover, 112 

even if several 2D image annotation platforms exist (Biigle: Langenkämper et al., 2017, Squidle 113 

+: Bewley et al., 2015, VARS: Schlining & Stout, 2006), equivalent collaborative software for 114 

3D annotations are yet to emerge. 115 

Because we identified the lack of open-access and open-source methods to mutualize the benefits 116 

of 2D image annotation on web-based annotation tools and photogrammetric outcomes (i.e. 117 

internally accurate navigation and objective terrain descriptors), we propose an innovative 118 
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workflow to transform project 2D annotations inonto a georeferrenced3D georeferencing 119 

systemmodel (Marcillat et al., 2023). This involves the development of a function that allows re-120 

projection of annotations made in the open-access web-based image annotation tool Biigle 121 

(Langenkämper et al., 2017) onto 3D models produced with the freely available photogrammetry 122 

software Matisse3D (Arnaubec et al., 2023). If such a A similar process had already been 123 

implemented in the commercial software Agisoft Metashape (Pasumansky, 2020), but our 124 

implementation is fully open-source and the entire workflow relies on open-access software. 125 

Here we explain the workflow and assess its accuracyThe precision of the method has been 126 

assessed in different deep seascapes, with two different submarine vehicles.  127 

The development of remote cameras, towed by research vessels or mounted on underwater 128 

platforms, was used early on for underwater exploration especially in the deep sea (e.g. Lonsdale 129 

et al. 1977). Compared to physical sampling of the fauna, imaging is non-intrusive and non-130 

destructive, while allowing direct observation of the seabed over continuous areas (Tunnicliffe, 131 

1990; Beisiegel et al., 2017). As a result, imaging has become a primary source of data to 132 

investigate scales of spatial patterns (i.e. 10s of m to kms) of seabed geomorphology and benthic 133 

megafaunal communities, especially those poorly accessible and/or vulnerable  (e.g. Girard et al., 134 

2020; Marcon et al., 2014; Robert et al., 2017; van den Beld et al., 2017). Typical ecological 135 

investigations make use of geological and biological annotations made in images (Matabos et al., 136 

2017; Schoening et al., 2017). This annotation task is complicated by the fact that, in most cases, 137 

the fauna cannot be identified down to the species level, making it susceptible to annotator bias 138 

(Durden et al., 2016). The recent development of image-based catalogues of fauna and seascape 139 

features (e.g. Althaus et al., 2013; Howell et al., 2020) and, the integration of these typologies 140 

into web-based annotation tools of 2D images has been widely used to mitigate identification 141 

bias by standardizing and remotely reviewing the categorization of large annotation sets (e.g., 142 

Langenkämper et al., 2017). 143 

For spatial investigation, the compilation of those annotations into space requires coordinates 144 

typically measured by a georeferencing device (e.g. GPS for terrestrial studies; ref). However, 145 

the lack of precision of image positioning inherited from underwater vehicle navigation 146 

considerably lowers the spatial resolution at which deep-sea investigations are performed. 147 

Commonly, a submarine platform gets its position from the ship through an acoustic signal 148 

(usually the Ultra Short Baseline system, USBL), whose precision decreases with depth. 149 

Depending on the system used and its calibration, the accuracy may range from 1% to 0.1% of 150 

the slant distance. At 1,000 m depth, the accuracy of the position is in the range of 1 m to 10 m. 151 

Recent advances in computer vision can provide access to an optimal repositioning (i.e. precision 152 

< 1 m) of underwater vehicles based on sequences of overlapping images. For instance, using 153 

photogrammetry, images can be re-assembled using feature-matching algorithm also refining a 154 

posteriori the position of the underwater camera.  As a result, the relative positioning of features 155 

over the resulting 3D model of the seabed can be as precise as 1 cm or even less (Palmer et al., 156 

2015; Istenič et al., 2019). Furthermore, a 3D model provides a numerical terrain model (NTM) 157 

from a centimetric to millimetric precision, enabling a high-resolution mapping of the seabed 158 
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bathymetry from which geomorphometric descriptors, such as slope and rugosity, can be rapidly 159 

and mathematically derived (Wilson et al., 2007; Gerdes et al., 2019). Those objectives terrain 160 

metrics are especially of importance when considering them as explanatory variables for 161 

ecological investigation (Robert et al., 2017; Price et al., 2019). In addition, with the 162 

development of computer vision and photogrammetry, an overlapping image set allows 163 

reconstructing underwater scenes in three dimensions, advancing seascape ecology from 2D to 164 

3D (Kwasnitschka et al., 2013; Lepczyk et al., 2021).  165 

However, the georeferencing system of 3D models conflicts with the acoustic-based relocation of 166 

annotations made on 2D images, hence producing two spatially incompatible datasets. A possible 167 

solution to cope with the mismatch between an acoustic-based positioning inherited from vehicle 168 

navigation and an optical-based positioning inherited from photogrammetry would still be to 169 

annotate the 3D model or the derived orthomosaics, instead of raw images. However, 3D models 170 

and associated orthomosaics typically lower the resolution of the raw 2D images, eventually 171 

flattened over the mesh, hence reducing the detectability of small organisms and possibly, biasing 172 

the observed community composition (Thornton et al., 2016). Because we identified the lack of 173 

existing method to mutualize the benefit of 2D image annotation on web-based annotation tool 174 

and photogrammetric outcomes (i.e. optimal navigation and objective terrain descriptors), we 175 

propose a new and innovative workflow to transform 2D annotations in a 3D georeferencing 176 

system (Marcillat et al., 2023). This involves the development of a function allowing re-projection 177 

of annotations made in the open-access web-based image annotation tool Biigle (Langenkämper 178 

et al., 2017) onto 3D models produced with the freely available photogrammetry software 179 

Matisse3D (Arnaubec et al., 2023). The precision of the method has been assessed in different 180 

deep seascapes, with different camera settings and vehicles, and has been compared to an available 181 

georeferencing method from Biigle. Furthermore, we explored the use of this workflow for overlap 182 

management in image set building. 183 

 184 

Materials & Methods 185 

Study sites 186 

 187 

Four datasetsdata sets were used to assess the accuracy of annotation reprojection onto 3D 188 

models (Table 1). The four datasetsdata sets represented different geological settings acquired 189 

using two different vehicles and cameras. Downward. A downward-looking cameras wereNikon 190 

D5500 camera was mounted on the remotely operated vehicle (ROV) Victor 6000 to map three 191 

hydrothermal vent sites and on the hybrid remotely operated vehicle (HROV) Ariane to map a 192 

cold-water coral (CWC) reef.  193 

On Victor and Ariane vehicles, underwater navigation is achieved through advanced sensor 194 

fusion techniques. Both vehicles employ a suite of similar equipment. A 600kHz RDI DVL 195 

(Doppler Velocity Log) is utilized for precise velocity measurements and altitude estimation 196 

from the seabed. Absolute acoustic positioning is achieved using either the Posidonia 6000 or 197 

GAPS systems. Gyrofiber INS technology, such as the Phins from EXAIL, is employed to 198 
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capture angle, angular velocity, and acceleration data. Depth measurements are obtained using 199 

Paroscientific sensors. These various navigation sensors are seamlessly integrated and processed 200 

by the INS Kalman filter, resulting in state-of-the-art acoustic/inertial navigation accuracy.  201 

The underwater vehicles were flown at a constant altitude to acquire parallel photo transects to 202 

map the active vent chimneys and periphery as well as the CWC reef.respective seafloor 203 

structures of the four sites. Tui Malila is a hydrothermal vent field surrounded by a complex 204 

basalt field and is substratum located on a fast dorsalspreading ridge in the center of the Lau 205 

back-arc basin (South-West Pacific; ref).Hourdez & Jollivet, 2019). The modelled area is a 206 

rectangle of 250 m by 10 m (Fig. 1.C). Eiffel Tower and White Castle are two vent edifices 207 

surrounded byon a mild-gentle slope terrain consisting mainly made up of slabvolcanic talus and 208 

are located in the Lucky Strike vent field on the Mid-Atlantic Ridge (Ondréas et al., 209 

2009)(Ondréas et al., 2009). At the periphery of the Eiffel Tower edifice, the modelled area is a 210 

rectangle of 120 m by 10 m (Fig. 1.D) and at the periphery of White Castle a rectangle of 115 m 211 

by 30 m (Fig. 1.B). The most recentlast datasetdata set was acquired in a cold-water coral reef 212 

located on a large (10s of meters150 m by 50 m) and mostly flat terrace in a submarine canyon 213 

of the Bay of Biscay. The modelled area is a linear transect of 65 m long by 2.5 m width (Fig. 214 

1.A). The reef consists of isolated colonies of Madrepora oculata growing on a matrix of dead 215 

coralcorals infilled with soft sediments. 216 

 217 

Table 1: Different datasetsdata sets used during the reprojection error evaluation. 218 

 219 

3D reconstructions and image annotations 220 

For each of the four datasets, 3D models were reconstructed using Matisse3D (Arnaubec et al., 221 

2023). Prior to reconstruction and annotation, the images were corrected for underwater 222 

attenuation and non-uniform illumination using the Matisse3D preprocessing module in order to 223 

improve feature matching outcome. For the reconstruction, images were also resized to 4 Mpx to 224 

improve reconstruction speed. 225 

For each of the four data sets, 3D models (i.e. textured 3D meshes) were reconstructed in 226 

Matisse3D using the 3D Sparse FASTEST processing (Arnaubec et al., 2023). Prior to 227 

reconstruction and annotation, the images were corrected for underwater attenuation and non-228 

uniform illumination using the Matisse3D preprocessing module in order to improve feature 229 

matching outcome. Images were also resizeddownscaled to 4 Mpx to speed up the reconstruction 230 

process. 231 

Matisse3D performs feature detection and matching using the SIFT algorithm and removes 232 

outliers using the RANSAC model based on the fundamental matrix (see Arnaubec et al., 233 

2015).(Arnaubec et al., 2015).  Bundle adjustment then uses the images to reconstruct the 3D 234 

points detected by the SIFT algorithm. During bundle adjustment, the position of the camera 235 

relative to the scene is modeledmodelled and georeferenced by fitting minimizing the difference 236 

between these camera positions to and those provided by the navigation system without altering 237 

the relative positions of the cameras in the bundle. The georeferenced camera positions 238 
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computed duringresulting from the bundle adjustment is are hereafter referred to here as the 239 

optical navigation. The number of points in the model is then increased using the dense matching 240 

method in openMVS (Cernea, 2020) to create a dense cloud. Finally, the a 3D mesh surface is 241 

reconstructed generated using the Poisson surface reconstruction algorithm using the default 242 

values of the user parameters in openMVS and then textured using…. The resulting 3D models 243 

(textured mesh) have an average resolution of 5 mm.  244 

Optical navigation can differ significantly from the raw navigation. Disjoint images were 245 

selected from the ROV dive on Tui Malila vent site using the disjoint mosaic function of 246 

Matisse3D (non-overlapping image georeferencing using raw navigation and altitude data). All 247 

disjoint images were annotated for fauna (e.g. on each images, all recognizable individuals were 248 

tagged with points, and all patches delimited with polygons) using the image annotation web 249 

service Biigle (Langenkämper et al., 2017). We then investigated the effect of inaccuracies in the 250 

raw navigation on the quality of the annotations by estimating image overlap and annotation 251 

duplicates. 252 

For the purpose of reprojection error evaluation 253 

Image annotations 254 

Two sets of image annotations were used for two different purposes. To build the first data set, 255 

only images from the Tui Malila vent site were used. Disjoint images (images whose footprint do 256 

not overlap) were selected  using the disjoint mosaic function of Matisse3D. The function uses 257 

the hybrid navigation and the altitude of the ROV to map all images, then maximizes the number 258 

of theoretically non-overlapping images based on ROV-navigation. All these disjoint images 259 

were annotated for visible fauna (i.e. on each image, all recognizable individuals were tagged 260 

with points, and all faunal patches were delimited with polygons) using the image annotation 261 

web service Biigle (Langenkämper et al., 2017). This disjoint-image dataannotation set was used 262 

to illustrate the mismatch in image positioning between the acoustic navigation and the optical 263 

navigation, and its consequences on annotation georeferencing (e.g., double counting of some 264 

individual organisms and unnecessarily duplicating the annotation effort). 265 

 266 

To build the second data annotation set, a subset of 20 images was randomly selected infrom 267 

each of the four datasetstudy sites and manuallyvisually checked for non-overlap. On each 268 

image, four recognizable features were annotated with points using Biigle. AnnotationsThese 269 

points have beenwere chosen carefully to ensure that they are evenly distributed throughout the 270 

image. Coordinates for all annotations in the image were then exported from Biigle using the 271 

csvin a format that provides individual positional information (i.e. the CSV report scheme., see 272 

Biigle manual). These points are hereafterhereinafter referred to as “ground2D control”. points”. 273 

This control data set was used to assess the accuracy of the reprojection method (see below). 274 

 275 

Figure 1: 3D reconstructions used during this study  276 

A: Coral Garden, B: Periphery of White Castle vent site, C: Tui Malila vent site, D: Periphery of 277 

Eiffel Tower vent site. 278 
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 279 

Annotation reprojection 280 

The annotations were re-projected onto the 3D model using the camera position and rotation 281 

information from the 3D model and the intrinsic characteristics of the camera. This information 282 

is stored in a sfm_data binary file generated by 3D reconstruction  library implemented in 283 

Matisse3D, OpenMVG (Moulon et al., 2016). For the reprojection, the cameras line of sight 284 

were simulated using the Blender python library (Blender Community, 2018) and the Blender 285 

Photogrammetry Importer (Bullinger, Bodensteiner & Arens, 2023). The annotation pixels were 286 

then projected onto the 3D model using ray tracing (Figure 1). For each of these pixels, a ray is 287 

launched from the viewpoint in the 3D scene containing the 3D model. The 3D reprojected 288 

position corresponds to the first intersection between the ray and the model. If the reprojected 289 

annotation is a polygon, each vertex of the polygon is reprojected. If the ray does not hit the 290 

model, e.g. if the corresponding area in the image is not properly modeled, the annotation is 291 

discarded (Figure 1).  A Python implementation of this process has been develloped: (Marcillat 292 

et al., 2023). 293 

 294 

Figure 1The images and/or the annotations from the disjoint and control data sets were re-295 

projected onto the 3D models using the camera position and rotation information (the extrinsic 296 

parameters) and the optical characteristics of the camera (the intrinsic parameters) resulting from 297 

the photogrammetric reconstruction. This information is stored in a sfm_data binary file 298 

generated by OpenMVG (Moulon et al., 2016), that which is the 3D reconstruction library 299 

implemented in Matisse3D. For the reprojection of each camera’s line of sight, we used the 300 

Blender Python Library (BPL, Blender Community, 2018) and the Blender Photogrammetry 301 

Importer (Bullinger, Bodensteiner & Arens, 2023). In this process, the annotation features were 302 

then projected onto the 3D models using the ray tracing implementation in BPL (Fig. 2). For 303 

each of these features, a ray is launchedshot from the camera viewpoint towards the 3D model 304 

based on the image coordinates of the feature. The 3D reprojected position of a 2D feature 305 

corresponds to the first intersection between the ray and the model. If the reprojected annotation 306 

is a polygon, each vertex of the polygon is reprojected. If a ray does not hit the model, for 307 

example if the corresponding area in the image is not properly modelled, the annotation is 308 

discarded (Fig. 2). A Python implementation of this process has been developed (Marcillat et al., 309 

2023)is available from https://github.com/marinmarcillat/CHUBACAPP. 310 

 311 

Figure 2: Principle of annotationsannotation reprojection 312 

The camera corresponding to an annotated image is positioned and oriented in the 3D model 313 

referential and its optical characteristics are set according to the sfm_data binary file. For each 314 

annotation on the 2D image, a corresponding ray is launchedshot towards the 3D model. Green: 315 

Successful point annotation reprojection. Blue: Successful polygon reprojection (each point of 316 

the polygon contour is reprojected). Orange: The ray missed the 3D model, the reprojection is 317 

unsuccessful. 318 
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 319 

The local 2D uv coordinates of the annotations (in pixels, 2D)features in the images were thus 320 

transformed into global coordinates (georeferenced: using the WGS84, 3D datum). The 321 

imprintfootprint of each image onfrom the 3D modeldisjoint data set was also determined as a 322 

3D polygonspolygon by reprojecting the image edge pixelscorner coordinates in the same way as 323 

the annotation points. 324 

 325 

Error evaluation 326 

Reprojection 327 

Evaluation of annotation duplicates and reprojection accuracy was 328 

assessed by finding back 329 

The analysis of the grounddisjoint image data set and control data set was conducted using the 330 

open-source visualization software Blender (Blender Community, 2018). In both cases, the 331 

corresponding textured 3D models were imported. 332 

To determine the percentage of duplicates in the fauna annotations of the disjoint image data set, 333 

these annotations were reprojected onto the 3D model and imported into Blender. When two 334 

reprojected annotations of the same species were in close proximity, the annotations on the 335 

original images were compared to assess whether they were of the same individual. The 336 

percentage of duplicated annotations was then calculated. To illustrate the areas of overlap, the 337 

imfootprint of each image (i.e. a polygon corresponding to the entire image) was also reprojected 338 

onto the 3D model. 339 

To evaluate the accuracy of reprojections, the 2D reprojected control points from the control data 340 

set were imported into Blender. The features in the images corresponding to these 2D control 341 

points were visually identified within the textured 3D models.texture of the models. These points 342 

are hereinafter referred to as 3D control points. The distance between features on the textured 3D 343 

model and the same features after reprojection was measured2D reprojected control points and 344 

3D control points was determined by comparing the 3D coordinates in Python using the 345 

Euclidean distance in 3D (Figure 2(Fig. 3). The distance is used as a proxy for the error 346 

measurement of the annotation reprojection. For each dive, the median Euclidean distance 347 

between 2D control points and 3D control points was computed together with the interquartile 348 

range (i.e., IQR, the difference between the first and third quartile). The IQR is a measure of 349 

statistical dispersion.  350 

To compare this method with the annotation geolocation available in Biigle (georeferencing 351 

based on the ROV’s raw navigation, heading and elevation), annotation location reports of the 352 

ground controls were generated in Biigle. These geolocated positions were then compared to the 353 

reference positions on the 3D textured models, and the distance calculated. 354 

 355 

Figure 2: Error3: Reprojection accuracy evaluation process. 356 

A: Annotation of a recognizable feature (2D control point) on the 2D raw image in Biigle. 357 

Measurement on the 3D  (here, a cubic shape of the Tui Malila dive site). B: Reprojection of this 358 
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2D control point onto the textured 3D model of the reprojection error as the distance between the 359 

reprojected annotation point and the reference. C: The position of the feature on the annotated as 360 

a 2D control point is localized on the textured 3D model (“3D control point”, red point), and the 361 

distance with the 2D reprojected control point (green point) determined. 362 

 363 

Results 364 

RawHybrid versus optical navigation 365 

The comparison discrepancy in image georeferencing between the hybrid and optical and raw 366 

navigation from the Chubacarc diveis illustrated on Tui Malila vent site allows highlighting Fig. 367 

4 with the discrepancy between raw image positioning, based on rawdisjoint data set. According 368 

to the hybrid navigation, images were aligned along three roughly parallel transects (Fig. 4.A and 369 

3D model positioning based on B). According to the optical navigation (Figure 3). Transects that 370 

should be parallel however, the relative distance between images and separated bythe supposedly 371 

parallel transects decreases towards the west end (Fig. 4A). As a fixed distance are actually 372 

overlapping in some cases. Consequently,result, the imfootprint of  images that were supposedly 373 

non-overlappingdisjointed according to the rawhybrid navigation (Fig. 4.B) actually overlapped 374 

on the textured 3D model (Figure 3),, and 29% of the annotations were duplicated. (Fig. 4.C). 375 

 376 

Figure 34: Impact of navigational inaccuracies.  377 

(A) Discrepancy between rawhybrid navigation and optical navigation (from photogrammetry). 378 

(B) 2D disjoint mosaic obtained from rawwith Matisse3D using hybrid navigation data. Three 379 

annotations, visible across several images, are shown separated by colored lines with the 380 

corresponding horizontal distance in meters. (C) Imprints Footprints of the same images 381 

reprojected onto the photogrammetric model. Disjoint images of the 2D mosaic actually 382 

overlapThe duplicated annotations are represented with corresponding color crosses. 383 

 384 

For the four datasets, the distance between the geolocalised ground controls, based on raw 385 

navigation, and their reference positions on the 3D model further highlight the discrepancy 386 

between raw and optical navigation (Figure 4). The median distances were comparable among 387 

datasets, ranging from 2.35 m at White Castle to 4.67 m at the coral garden. The offsets were 388 

however variable within datasets. The interquartile ranges (IQR) varied from 2.57 m at Eiffel 389 

Tower to 3.28 m at the coral garden. The differences were unrelated to the vehicle. The median 390 

distance and IQR were comparable at the coral garden, mapped with HROV, and the three vent 391 

sites mapped with the ROV. 392 

 393 

Figure 4 394 

Annotation reprojections 395 

 396 

Figure 5: Distribution of log-transformed distances between annotations of ground2D 397 

control points on raw images and their reference positionscorresponding 3D control points 398 
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on 3D models for different sites, according to two georeferencing methods: (A) 399 

geolocalisation based on raw navigation, and (B) reprojection based on optical navigation. 400 

 401 

Annotation reprojections 402 

Of the 403 

A total of 320 ground 2D-control points that were annotated on the raw images to assess the 404 

precision of reprojections, off which 293 could be successfully reprojected onto the 3D 405 

modelmodels. The reprojection computing took less than 10 seconds to complete. Points that 406 

failed to reproject mostly corresponded to imperfections in the 3D models (17 missing points at 407 

Tui Malila, 5 at Eiffel Tower, 3 at the coral garden, and 2 at White Castle). For instance, where 408 

there are ‘holes’ (non-reconstructed areas in the model), light rays can pass through without 409 

hitting the model. 410 

The distance between the reprojected ground controls2D-control points and their reference 411 

position on the 3D models emphasize the precisionaccuracy achieved by reprojection (Figure 412 

4Fig. 5). The median distances at the coral garden (1.1*10e-2 m cm), White Castle (9.6*10e-3 413 

m0.96 cm), and Eiffel Tower (1.3*10e-2 m cm) were similar, as well as their IQR, ranging from 414 

1.2*10e-2 m cm at White Castle to 2.3*10e-2 m cm at Eiffel Tower. At Tui Malila, which is the 415 

most topographically most complex site, the median distance and the IQR were higher, at 416 

respectively 8.6*10e-2 m cm and 2.1*10e-1 m. 21 cm. 417 

 418 

 419 

Discussion 420 

In the context of growing interest for 3D seascape ecology (Lepczyk et al., 2021; Swanborn et 421 

al., 2022; Pulido Mantas et al., 2023), structure from motion (sfm) allows to reconstruct textured 422 

3D models with centimeter resolution using underwater ROV/AUV imagery. Hereby, we present 423 

the first tool for reprojection of 2D annotation on 3D models. This tool implemented in a 424 

dedicated interface ‘Chubacapp’ provides multiple benefits for improving ecological 425 

investigations. 426 

 427 

The resolution of 3D models allows generating small-scale geomorphometrics (e.g. slope, 428 

roughness, bathymetric position index…), which can provide new insights on species 429 

distribution patterns, especially in complex three-dimensional ecosystems and over continuous 430 

spatial scales (Price et al., 2019; Robert et al., 2020). However, the use of high-resolution 431 

environmental variables makes necessary the georeferencing of faunal observations with an 432 

equal precision that remains a challenge to reach for deep-sea studies. Annotation geolocalisation 433 

using raw navigation (using ROV position attitude and altitude) relies heavily on navigation 434 

precision. The distance we observed between raw-navigation based and optical-navigation based 435 

positioning, with a median positioning error across datasets of 3.01 m, is coherent with the 436 

acoustic navigation precision. The median error does not vary much between datasets but 437 

variations can be as high as 3.28 m within datasets. With such an approximation in the 438 
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positioning of features on the deep seafloor, abiotic and biotic interactions occurring at scales 439 

lower than 10 m are out of our understanding. 440 

Typically, as a result of the low navigation resolution, most seabed studies made use of 441 

annotations directly performed over continuous image sets either processed into textured 2D 442 

orthomosaics or 3D models in the case of complex environments (Pizarro & Singh, 2003; Marsh 443 

et al., 2012; Bodenmann et al., 2017; Simon-Lledó et al., 2019; Mitchell & Harris, 2020; Girard 444 

et al., 2020). On top of that, annotations of 3D models can 445 

The advent of underwater photogrammetry has offered a powerful tool to study seascapes, with a 446 

resolution hardly achievable by means of acoustic mapping of the deep seafloor. The same 447 

images acquired with an AUV or an ROV can now be used to map biological and 448 

geomorphological features as well as to build DTM with a resolution in the order of centimeters 449 

to millimeters. However, while there exist powerful open-access tools for image annotation and 450 

3D model building, we found it difficult to merge data from these two processing pipelines 451 

because of their mismatch in georeferencing. We illustrated this discrepancy by reprojecting the 452 

imfootprint of supposedly disjoint images onto a 3D model. The images, and the annotations on 453 

these images, were georeferenced using the navigation of the ROV, as is usually done when 454 

processing such data.  Even though images were georeferenced using a state-of-the-art 455 

navigation system combining acoustic and dead-reckoning positioning, the supposedly disjoint 456 

images were in fact overlapping on the 3D model, resulting in a redundancyduplication of almost 457 

a third of the annotations made on these images. This is due to the well-known inaccuracy of 458 

even the most accurate positioning systems. The consequences are three folds. First, the absolute 459 

positioning of a feature is known within a radius that equals the accuracy of the positioning, that 460 

is to say in the range of 1 m to 10 m. In the framework of seascape ecology, this may not be an 461 

issue if the accuracy is still higher than the resolution of the DTM on which the image data are 462 

mapped and against which they are analysed (Swanborn et al., 2022). But it becomes critical 463 

when the resolution of the DTM is an order of magnitude lowerhigher than the accuracy of 464 

annotation positioning. In addition, the relative distance between images is also approximate, 465 

which is limiting the interest application of spatial autocorrelation analyses. Finally, similarthe 466 

same features may be annotated several times, which is a loss of time and can lead to spurious 467 

results if unnoticed.  468 

To cope with this discrepancy we developed an open-access solution to reproject image 469 

annotations onto 3D models. Here, the position of the camera computed during the process of 470 

model building is used instead of the position of the camera given by the ROV navigation. In 471 

three of our study sites, image annotations, once reprojected, are positioned onto the 3D model 472 

with a median accuracy of about 1 cm compared to annotations made directly on the 3D model. 473 

Since the accuracy we achieved is similar to the resolution of the 3D model, the method allows 474 

to get the best of the two worlds, both annotations on images at full resolution with powerful 475 

annotation tools, and a true 3D DTM at very high resolution. Ultimately, this will facilitate 476 

exhaustive megafaunal community characterizations over large continuous spatial extents of 477 

Commented [GC28]: Aerial photogrammetry has 
existed for almost a century, so you have to add this 
qualifier. 

Commented [GC29]: Replace with “overestimation of 
relative abundance”? Or at least give an example of 
‘spurious results’ 



 

 

UNCLASSIFIED - NON CLASSIFIÉ 

100s of m2, as those large image sets are increasingly collected with autonomous underwater 478 

vehicles (Thornton et al., 2016). 479 

At be challenging due to the difficulty of displaying large high-resolution models and because of 480 

the longer duration required for drawing 3D geometries compared to 2D annotations. As a result, 481 

photogrammetry investigation typically focused on a subset of easily discernible organisms (e.g., 482 

Thornton et al., 2016) or on areas of a few 10s of m2  (e.g., Lim et al., 2020; Mitchell & Harris, 483 

2020). Moreover, during the texturing of photogrammetry outputs, images are distorted and the 484 

definition is lowered. Hence, smaller organisms may be missed, misidentified, and might require 485 

a time-consuming confirmation in the original image. To avoid biasing community composition 486 

insights, identification must be performed on the highest resolution of images and on an 487 

annotation platform allowing an easy and remote review by taxonomic experts (e.g., the largo 488 

tool in Biigle: Langenkämper et al., 2017).  489 

As the tool developed in this study provided a satisfactory repositioning of annotations at the 490 

centimeter scale, it demonstrates its whole potential by combining the better of two worlds. From 491 

2D annotations of higher-resolution taxa, it allows an optimization of annotation georeferencing 492 

on 3D continuous models of the benthic habitat. From textured 3D models, it allows an 493 

acceleration of the annotation process. Ultimately, this will facilitate exhaustive megafaunal 494 

community characterizations over large continuous spatial extents of 100s of m2, as those large 495 

image sets are increasingly collected with autonomous underwater vehicles (Thornton et al., 496 

2016). 497 

It should be noted however that 3D models are not exempted from errors. In our datasets, 3% of 498 

image annotations could not be reprojected on 3D models due to model imperfections. Many 499 

improvements could be made to the quality of 3D models to avoid non-reprojected points. 500 

Manual transects can cause these gaps were the ROV is too fast or too high. “Survey” mode, the 501 

ROV autonomous guidance mode, has proven to operate more efficiently when mapping large 502 

areas in multiple transects, and should be generalized. However, this autopilot mode can be 503 

prone to Doppler Velocity Log (DVL) dropouts, particularly in complex terrains with large 504 

bathymetric variations. Topography can also drive erroneous reprojection of annotations over 3D 505 

models. In fact, the higher distance error (~m) observed for the Tui Malila site dataset could be 506 

related to a higher topographic complexityhowever, the median accuracy was close to 10 cm and 507 

more variable than at the three other sites. Tui Malila is also topographically more complex than 508 

the other sites   because of the rocky basaltic terrain exhibiting faults. Those faults could clearly 509 

limit the ‘hit’ of the ray light traced from the downward-looking camera in near vertical setting, 510 

hencethus reprojecting the annotations a few decimeters away infrom the fault. In the near future, 511 

specific 3D mapping instrumentsThe accuracy and precision of the reprojection are thus 512 

dependent on the roughness of the terrain, and it would be best practice to assess its 513 

effectiveness. 514 

Terrain roughness also has an influence on the quality of the 3D model. In our data sets, 3% of 515 

image annotations could not be reprojected on 3D models due to model imperfections, most of 516 

which at the Tui Malila site. The ROV was pre-programmed to run along parallel paths to 517 
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optimize the image overlap needed for 3D reconstruction. In this “survey” mode, the ROV 518 

heavily relies on the DVL for its navigation but in complex terrains with large bathymetric 519 

variations bottom tracking may be lost, thus compromising the integrity of the survey. New 520 

technological developments such as LIDAR, multibeam scanning sonars or stereo camera willare 521 

now significantly improveimproving  the speed and the accuracy of the3D reconstruction and the 522 

overall quality of 3D mapping, as well as providing an accurate optical navigationa simultaneous 523 

mapping and imaging of the seafloor at centimetric scales (Caress et al., 2018). These methods 524 

produce 3D models, bathymetry and photomosaïcs that fully overlap, allowing the precise 525 

evaluation of species distribution in relation to topography (Barry et al., 2023). But while this 526 

mapping system requires specialized and costly equipment, reprojection can be utilized directly 527 

on most ROV, making it cost-effective. 528 

Still, one of the main bottlenecks in faunal imaging studies remains the annotation step of 2D 529 

images (Matabos et al., 2017). For image and video annotation, many online and collaborative 530 

tools have emerged recently (e.g. Biigle: Langenkämper et al., 2017, Squidle+: Bewley et al., 531 

2015, VARS: Schlining & Stout, 2006), and the latest developments in assisted feature 532 

annotation have been integrated (Zurowietz et al., 2018). Citizen science platforms (Deep sea spy 533 

(Matabos et al., 2018), Zooniverse (Simpson, Page & De Roure, 2014)) also allow a significant 534 

increase in the amount of images processed. Our ability to adapt the workflow with Biigle 535 

demonstrates that it is flexible to any of the annotation platform mentioned above. Furthermore, 536 

automated detection by machine learning looks very promising to speed up the process. 537 

Although some experiments on automatic recognition of 3D features have been carried out (De 538 

Oliveira et al., 2021), most detection models remain actually developed for 2D images and 539 

videos (Katija et al., 2022). Reprojection may allow the use of well-proven generic 2D image 540 

detection Convoluted Neural Networks (CNN) for 3D annotation generation and vice-versa. On 541 

the one hand, 3D reprojection positions could generate 3D annotation sets for machine learning 542 

training. On the other hand, once a feature has been manually annotated on a single image and 543 

reprojected onto the 3D model, that 3D position can be used to locate that feature back on images 544 

taken from different angles. Multiple crops of the same object could then be generated and 545 

served as a training dataset.  546 

 547 

A strong bottleneck that remains in image analysis is the time needed for annotations (Matabos 548 

et al., 2017). For image and video annotation, many online and collaborative tools have emerged 549 

(e.g. Biigle: Langenkämper et al., 2017, Squidle+: Bewley et al., 2015, VARS: Schlining & 550 

Stout, 2006), and the latest developments in assisted feature annotation have been integrated 551 

(Zurowietz et al., 2018). Citizen science platforms (Deep sea spy: Matabos et al., 2018, 552 

Zooniverse: Simpson, Page & De Roure, 2014) also allow a significant increase in the amount of 553 

images processed. Our ability to adapt the workflow to Biigle demonstrates that in principle it is 554 

flexible against any ofcould also be adapted to the annotation platforms mentioned above. 555 

Reprojection could also be useful for disjoint image selection. Overlapping images can be 556 

detected before annotation by reprojecting the image imfootprints and checking for 557 
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intersectionsoverlap between these reprojections. Furthermore, automated detection by machine 558 

learning looks very promising to speed up the process. Although some experiments on automatic 559 

recognition of 3D features have been carried out (De Oliveira et al., 2021), most detection 560 

models remain actually developed for 2D images and videos (Katija et al., 2022). Reprojection 561 

may allow the use of well-proven generic 2D image detection Convolutedional Neural Networks 562 

(CNN) for 3D annotation generation and vice-versa. On the one hand, 3D reprojection positions 563 

could generate 3D annotation sets for machine learning training. On the other hand, once a 564 

feature has been manually annotated on a single image and reprojected onto the 3D model, that 565 

3D position can be used to locate that feature back on images taken from different angles. 566 

Multiple crops of the same object could then be generated and serve as a training data set. 567 

Ultimately, fully 3D open-access and collaborative annotation of high-resolution textured 3D 568 

models appear as an ideal solution in terms of accuracy for the analysis of species 569 

microdistribution and biotic interactions. This is already possible with some commercial 570 

solutions such as VRGS (Hodgetts et al., 2015). However, the cost of manipulating 3D models in 571 

terms of computational and energy requirements must be taken into account. Large 3D models 572 

require significant amounts of memory and graphics processing power to manipulate, which may 573 

require dedicated computers and/or servers. By removing the need for 3D annotation and thus 574 

reducing the number of 3D models manipulations, our solution could provide a trade-off between 575 

accuracy and computational requirements. 576 

 577 

 578 

Conclusions 579 

This study demonstrated that 3D underwater photogrammetry and reprojected 2D annotations 580 

projected onto a 3D seascape model have several advantages when combined, in particular:. 581 

• Annotated Instead of working on orthophotomosaics of lower quality, the raw seascape 582 

images can be annotated, using the popular and collaborative Biigle software, are raw and 583 

at full scale resolution, allowing optimal morphospecies categorization. 584 

• Image overlap and annotation duplicates are avoided thanks to optical navigation. 585 

Annotations are precisely georeferenced to a centimetric scale.can be avoided by filtering 586 

overlapping images prior to annotations.  587 

• The annotation positional accuracy of the 3D projection of the 2D annotations is 588 

compatible with the analysis of intraspecific and interspecific interactions. 589 

• The 3D model provides access to high-resolution topographic metrics to explain 590 

annotationsquantify annotation distribution over continuousseveral spatial scales. This 591 

technique could be applied on a very large scale to particularly complex terrains such as 592 

hydrothermal vents, canyons, cliffs, or coral reefs. 593 

• By removing the need of annotating and manipulating 3D models,  Wwe expect the 594 

developed workflow to considerably fastenspeed up the generation of annotation setsets 595 

for 3D and for deep-learning purposes. 596 

 597 

Commented [GC33]: Yes, that was exactly the idea I 
was suggesting earlier about YOLO. 

Commented [GC34]: Effort? Labor? Or do you mean 
that the GPU may  crash because of the high power 
demand? 

Commented [CG35]: IMPORTANT. You have not 
demonstrated that overlap can be avoided using the 
projected footprints of the SfM-aligned images. What 
you demonstrated is the opposite, that the procedure of 
selecting disjoint images from the hybrid navigation can 
lead to considerable overlap. As a matter of fact, some 
overlap will always be necessary to avoid data gaps. 
What you could do once you have identified the areas 
of overlap is to sequentially apply the inverse projection 
(from the 3D model to the aligned image) to mask out 
the portions of the image corresponding to areas of 
overlap with an already processed image. Perhaps the 
easier solution though is to provide the Mattise 3D 
disjoint function with the optical navigation instead of 
the hybrid one, and then remove duplicates that come 
from different images. If you want to make any claim on 
this, you would have to add some additional work in this 
regard (e.g., another pane in Figure 4 with the footprints 
of images selected as disjoint when the hybrid 
navigation is used). Or you can say: “Using the hybrid 
(original) navigation data to select disjoint images can 
lead to considerable overlap and therefore unnecessary 
duplication of effort. This can be avoided by using the 
optical navigation instead.” 

Commented [CG36]: Would it make sense to add 
‘spatial’ before ‘interactions’? I assume there can be 
‘interactions’ where proximity is not relevant? 

Commented [CG37]: Replace with ‘organism’?  

Commented [CG38]: Specify what you mean by “this 
technique” (your workflow? If so, what about the 
commercial tools like agisoft’s?) and by “very large 
scale” (do you mean the extent of the site in hectares, 
or do you mean in considerably more sites than what is 
possible now? Consider rewording this bullet point and 
make sure that whatever you state I supported by your 
results. 



 

 

UNCLASSIFIED - NON CLASSIFIÉ 

Supplementary Materials 598 

The Python implementation of annotation reprojection, as well as other useful tools such as 3D 599 

topographic metrics calculation, disjoint image selection or model inference import into Biigle, 600 

are available on GitHub (Marcillat et al., 2023)(Marcillat et al., 2023). Images, navigation data 601 

and 3D reconstructions are available at https://www.seanoe.org/data/00879/99108/on request. 602 
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