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Abstract 14 
Imagery has become one of the main data sources for investigating seascape spatial patterns. 15 
This is particularly true in deep-sea environments, which are only accessible with underwater 16 
vehicles. On the one hand, using collaborative web-based tools and machine learning algorithms, 17 
biological and geological features can now be massively annotated on 2D images with the 18 
support of experts. On the other hand, geomorphometrics such as slope or rugosity derived from 19 
3D models built with structure from motion (sfm) methodology can then be used to answer 20 
spatial distribution questions. However, precise georeferencing of 2D annotations on 3D models 21 
has proven challenging for deep-sea images, due to a large mismatch between the raw navigation 22 
produced by underwater vehicles and the reprojected navigation resulting from bundle 23 
adjustment. In this article, we propose a streamlined, open-access processing pipeline to 24 
reproject 2D image annotations onto 3D models using ray tracing. Using four underwater image 25 
datasets, we evaluated the accuracy of annotation reprojection on 3D models and compared it to 26 
annotation geolocation available from the raw navigation. Features were georeferenced to 27 
centimetric accuracy, a 100-fold improvement over raw data geolocation. The combination of 28 
photogrammetric 3D models and accurate 2D annotations would allow the construction of a 3D 29 
representation of the landscape providing new insights into understanding species 30 
microdistribution and biotic interactions.  31 
 32 
Introduction 33 
The development of remote cameras, towed by research vessels or mounted on underwater 34 
platforms, was used early on for underwater exploration especially in the deep sea (e.g. Lonsdale 35 
et al. 1977). Compared to physical sampling of the fauna, imaging is non-intrusive and non-36 
destructive, while allowing direct observation of the seabed over continuous areas (Tunnicliffe, 37 
1990; Beisiegel et al., 2017). As a result, imaging has become a primary source of data to 38 

investigate across several scales of spatial patterns (i.e. 10s of m to kms) of seabed 39 
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geomorphology and benthic megafaunal communities, especially those poorly accessible and/or 46 
vulnerable  (e.g. Girard et al., 2020; Marcon et al., 2014; Robert et al., 2017; van den Beld et al., 47 
2017). Typical ecological investigations make use of geological and biological annotations made 48 
in images (Matabos et al., 2017; Schoening et al., 2017). This annotation task is complicated by 49 
the fact that, in most cases, the fauna cannot be identified down to the species level, making it 50 
susceptible to annotator bias (Durden et al., 2016). The recent development of image-based 51 
catalogues of fauna and seascape features (e.g. Althaus et al., 2013; Howell et al., 2020) and, the 52 
integration of these typologies into web-based annotation tools of 2D images has been widely 53 
used to mitigate identification bias by standardizing and remotely reviewing the categorization of 54 
large annotation sets (e.g., Langenkämper et al., 2017). 55 
For spatial investigation, the compilation of those annotations into space requires coordinates 56 
typically measured by a georeferencing device (e.g. GPS for terrestrial studies; ref). However, 57 
the lack of precision of image positioning yielded by underwater vehicle navigation considerably 58 
lowers the spatial resolution at which deep-sea investigations are performed. Commonly, a 59 
submarine platform gets its position from the ship through an acoustic signal (usually the Ultra 60 
Short Baseline system, USBL), which precision decreases as a function of distance. Depending 61 
on the system used and its calibration, the accuracy may range from 1% to 0.1% of the slant 62 
distance. Consequently, at 1,000 m depth, the accuracy of the position is in the range of 1 m to 63 
10 m. Recent advances in computer vision can provide access to an optimal repositioning (i.e. 64 
precision < 1 m) of underwater vehicles based on sequences of overlapping images. For instance, 65 
using photogrammetry, images can be re-assembled using feature-matching algorithm also 66 
refining a posteriori the position of the underwater camera.  As a result, the relative positioning 67 
of features over the resulting 3D model of the seabed can be as precise as 1 cm or even less 68 
(Palmer et al., 2015; Istenič et al., 2019). Furthermore, a 3D model provides a numerical terrain 69 
model (NTM) of a centimetric to millimetric precision, enabling a high-resolution mapping of 70 
the seabed bathymetry from which geomorphometric descriptors, such as slope and rugosity, can 71 
be rapidly and quantitatively derived (Wilson et al., 2007; Gerdes et al., 2019). Those objective 72 
terrain metrics are especially of importance when considering them as driving ecological 73 
variables (Robert et al., 2017; Price et al., 2019). In addition, with the development of computer 74 
vision and photogrammetry, an overlapping image set allows reconstruction of underwater 75 
scenes in three dimensions (i.e., incuding overhangs and cavities), advancing seascape ecology 76 
from 2.5D to 3D (Kwasnitschka et al., 2013; Lepczyk et al., 2021).  77 
However, the georeferencing system of 3D models conflicts with the acoustic-based relocation of 78 
annotations made on 2D images, hence producing two spatially incompatible datasets. A possible 79 
solution to cope with the mismatch between an acoustic-based positioning inherited from vehicle 80 
navigation and an optical-based positioning inherited from photogrammetry would still be to 81 
annotate the 3D model or the derived orthomosaics, instead of raw images. However, due to the 82 
additional reprojection step involved in their calculation, 3D models and associated orthomosaics 83 
typically have a slightly lower resolution than the raw 2D images, thus reducing the detectability 84 
of small organisms, and possibly biasing the observed community composition (Thornton et al., 85 
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2016). Because we identified the lack of existing method to mutualize the benefit of 2D image 103 
annotation on web-based annotation tools and photogrammetric outcomes (i.e. optimal navigation 104 
and objective terrain descriptors), we propose an innovative workflow to transform 2D annotations 105 
in a 3D georeferencing system (Marcillat et al., 2023). This involves the development of a function 106 
allowing re-projection of annotations made in the open-access web-based image annotation tool 107 
Biigle (Langenkämper et al., 2017) onto 3D models produced with the freely available 108 
photogrammetry software Matisse3D (Arnaubec et al., 2023). The precision of the method has 109 
been assessed in different deep seascapes, with different camera settings and vehicles, and has 110 
been compared to an available georeferencing method from Biigle. Furthermore, we explored the 111 
use of this workflow for overlap management in image set building. 112 
 113 
Materials & Methods 114 
Study sites 115 
Four datasets were used to assess the accuracy of annotation reprojection onto 3D models (Table 116 
1). The four datasets represented different geological settings acquired using two different 117 
vehicles and cameras. Downward-looking cameras were mounted on the remotely operated 118 
vehicle (ROV) Victor 6000 to map three hydrothermal vent sites and on the hybrid remotely 119 
operated vehicle (HROV) Ariane to map a cold-water coral (CWC) reef. The underwater 120 
vehicles were flown at a constant altitude to acquire parallel photo transects to map the 121 
respective seafloor structures. Tui Malila is a hydrothermal vent field surrounded by a complex 122 
basalt and is substratum located on a fast dorsal in the center of the Lau back-arc basin (South-123 
West Pacific; ref). Eiffel Tower and White Castle are two vent edifices surrounded by a mild-124 
slope terrain consisting mainly of slab and are located in the Lucky Strike vent field on the Mid-125 
Atlantic Ridge (Ondréas et al., 2009). The most recent dataset was acquired in a cold-water coral 126 
reef located on a large (10s of meters) and mostly flat terrace in a submarine canyon of the Bay 127 
of Biscay. The reef consists of isolated colonies of Madrepora oculata growing on a matrix of 128 
dead coral infilled with soft sediments. 129 
 130 
Table 1: Different datasets used during the reprojection error evaluation. 131 
 132 
3D reconstructions and image annotations 133 
For each of the four datasets, 3D models were reconstructed using Matisse3D (Arnaubec et al., 134 
2023). Prior to reconstruction and annotation, the images were corrected for underwater 135 
attenuation and non-uniform illumination using the Matisse3D preprocessing module in order to 136 
improve feature matching outcome. For the reconstruction, images were also resized to 4 Mpx to 137 
cut down reconstruction speed. 138 
Matisse3D performs feature detection and matching using the SIFT algorithm and removes 139 
outliers using the RANSAC model based on the fundamental matrix (see Arnaubec et al., 2015). 140 
Bundle adjustment then uses the images to reconstruct the 3D points detected by the SIFT 141 
algorithm. During bundle adjustment, the position of the camera relative to the scene is modelled 142 
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and georeferenced by fitting these camera positions to those provided by the navigation system. 148 
The camera position computed during bundle adjustment is referred to here as the optical 149 
navigation. The number of points in the model is then increased using the dense matching 150 
method to create a dense cloud. Finally, the surface is reconstructed using the Poisson surface 151 
reconstruction algorithm. The resulting 3D models have an average resolution of 5 mm. 152 
Optical navigation can differ significantly from the raw navigation. Disjoint images were 153 
selected from the ROV dive on Tui Malila vent site using the disjoint mosaic function of 154 
Matisse3D (non-overlapping image georeferencing using raw navigation and altitude data). All 155 
disjoint images were annotated for fauna (e.g. on each image all recognizable individuals were 156 
tagged with points, and all patches were delimited with polygons) using the image annotation 157 
web service Biigle (Langenkämper et al., 2017).  158 
We then investigated the effect of inaccuracies in the raw navigation on the quality of the 159 
annotations by estimating image overlap and annotation duplicates. For the purpose of 160 
reprojection error evaluation, a subset of 20 images was randomly selected in each of the four 161 
dataset and manually checked for non-overlap. On each image, four recognizable features were 162 
annotated with points using Biigle. Annotations were then exported from Biigle using the csv 163 
report scheme. These points are hereafter referred to as “ground control points”, knowing that, 164 
unlike in terrestrial photogrammetry involving ground control points of precise georeferencing, 165 
our ground control points would actually be less precise than the corresponding DTM 166 
coordinates. 167 
 168 
 169 
Annotation reprojection 170 
The annotations were re-projected onto the 3D model using the camera position and rotation 171 
information (the extrinsic parameters) and the optical characteristics of the camera (the intrinsic 172 
parameters) resulting from the photogrammetric recunstruction. This information is stored in a 173 
sfm_data binary file generated by OpenMVG (Moulon et al., 2016), the 3D reconstruction  174 
library implemented in Matisse3D. For the reprojection of each camera line of sight we used the 175 
Blender python library (Blender Community, 2018) and the Blender Photogrammetry Importer 176 
(Bullinger, Bodensteiner & Arens, 2023). In this process, the annotation features were projected 177 
onto the 3D model using ray tracing (Figure 1). For each of these features, a ray is launched from 178 
the camera viewpoint towards the 3D model. The 3D reprojected position of a 2D feature 179 
corresponds to the first intersection between the ray and the model. If the reprojected annotation 180 
is a polygon, each vertex of the polygon is reprojected. If a ray does not hit the model, e.g. if the 181 
corresponding area in the image is not properly modeled, the annotation is discarded (Figure 1).  182 
A Python implementation of this process has been developed: (Marcillat et al., 2023). 183 

 184 
Figure 1: Principle of annotations reprojection 185 
 186 
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The local 2D uv coordinates of the annotation features in the images were thus transformed into 205 
global 3D coordinates (georeferenced using the WGS84 datum). The footprint of each image on 206 
the 3D model was also determined as 3D polygons by reprojecting the image corner coordinates 207 
in the same way as the annotation points. 208 
 209 
Offset evaluation 210 
To compare this method with the annotation geolocation available in Biigle (georeferencing 211 
based on the ROV’s raw navigation, heading and elevation), annotation location reports of the 212 
ground controls were generated in Biigle. These geolocated positions were then compared to the 213 
reference positions on the 3D textured models, and the distance calculated. 214 
Reprojection accuracy was assessed by identification of the ground control points within the 215 
textured 3D models. The distance between features on the textured 3D model and the same features 216 
after reprojection of the 2D images was determined calculating the Euclidean distance in 3D 217 
(Figure 2). The distance is used as a proxy for the error measurement of the annotation reprojection.  218 
 219 
Figure 2: Error evaluation process. 220 
Left: Annotation of afeature on the 2D raw image in Biigle. Right: Measurement of the 221 
reprojection error as the distance between the reprojected annotation point and the reference 222 
position of the feature on the 3D model. 223 
 224 
Results 225 
Raw versus optical navigation 226 
The comparison between optical and raw navigation on the Tui Malila vent site highlights the 227 
discrepancy between raw image positioning based on raw navigation and 3D model positioning 228 
based on optical navigation (Figure 3). Transects that should be parallel and separated by a fixed 229 
distance are actually overlapping in some cases. Consequently, images that were supposedly 230 
non-overlapping according to the raw navigation actually overlapped on the 3D model (Figure 231 
3), and 29% of the annotations were duplicated. 232 
 233 
Figure 3: Impact of navigational inaccuracies.  234 
(A) Discrepancy between raw navigation and optical navigation (from photogrammetry). (B) 2D 235 
disjoint mosaic obtained from raw navigation data. (C) Imprints of the same images reprojected 236 
onto the photogrammetric model. Disjoint images of the 2D mosaic actually overlap. 237 
 238 
Figure 4 presents the summarized offsets of raw navigated versus photogrammetrically 239 
determined feature positions for all four data sets considered. The median distances were 240 
comparable among datasets, ranging from 2.35 m at White Castle to 4.67 m at the Coral Garden. 241 
The offsets were however variable within datasets. The interquartile ranges (IQR) varied from 242 
2.57 m at Eiffel Tower to 3.28 m at the coral garden. The differences were unrelated to the 243 
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vehicle. The median distance and IQR were comparable at the coral garden, mapped with 283 
HROV, and the three vent sites mapped with the ROV. 284 
 285 
Figure 4: Distribution of distances between annotations of ground control points on raw 286 
images and their reference positions on 3D models for different sites, according to two 287 
georeferencing methods: (A) geolocalisation based on raw navigation, and (B) reprojection 288 
based on optical navigation. 289 
 290 
Annotation reprojections 291 
Of the 320 ground control points that were annotated on the raw images to assess the precision of 292 
reprojections, 293 could be successfully reprojected onto the 3D model. Points that failed to 293 
reproject mostly corresponded to imperfections in the 3D models (17 missing points at Tui 294 
Malila, 5 at Eiffel Tower, 3 at the coral garden, and 2 at White Castle). For instance, where there 295 
are ‘holes’ (non-reconstructed areas in the model), light rays can pass through without hitting the 296 
model. 297 
The distance between the reprojected ground controls points and their reference position on the 298 
3D models emphasize the precision achieved by reprojection (Figure 4). The median distances at 299 
the coral garden (1.1*10e-2 m), White Castle (9.6*10e-3 m), and Eiffel Tower (1.3*10e-2 m) 300 
were similar, as well as their IQR, ranging from 1.2*10e-2 m at White Castle to 2.3*10e-2 m at 301 
Eiffel Tower. At Tui Malila, which is the topographically most complex site, the median distance 302 
and the IQR were higher, at respectively 8.6*10e-2 m and 2.1*10e-1 m.  303 
 304 
 305 
Discussion 306 
In the context of growing interest in 3D seafloor ecology (Lepczyk et al., 2021; Swanborn et al., 307 
2022; Pulido Mantas et al., 2023), structure from motion (sfm) allows to reconstruct textured 3D 308 
models with centimeter resolution using underwater ROV/AUV imagery. Hereby, we present the 309 
first tool for reprojection of 2D annotation on 3D models. This tool implemented in a dedicated 310 
interface ‘Chubacapp’ provides multiple benefits for improving ecological investigations. 311 
 312 
The resolution of 3D models allows generating small-scale geomorphometrics (e.g. slope, 313 
roughness, bathymetric position index…), which can provide new insights on species 314 
distribution patterns, especially in complex three-dimensional ecosystems and over continuous 315 
spatial scales (Price et al., 2019; Robert et al., 2020). For deep-sea studies, however, the use of 316 
high-resolution environmental variables necessitates the georeferencing of faunal observations 317 
with an equal precision which remains a challenge. Annotation georeferencing using raw 318 
navigation (using ROV position attitude and altitude) relies heavily on navigation precision. The 319 
distance we observed between raw-navigation and optical-navigation based positioning, with a 320 
median positioning error across datasets of 3.01 m, is coherent with the acoustic navigation 321 
precision. The median error does not vary much between datasets but variations can be as high as 322 
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3.28 m within datasets. With such an approximation in the positioning of features on the deep 332 
seafloor, abiotic and biotic interactions occurring at scales smaller than 10 m are out of our 333 
understanding. 334 
Typically, as a result of the low navigation resolution, most seabed studies made use of 335 
annotations directly performed over continuous image sets either processed into textured 2D 336 
orthomosaics or 3D models in the case of complex environments (Pizarro & Singh, 2003; Marsh 337 
et al., 2012; Bodenmann et al., 2017; Simon-Lledó et al., 2019; Mitchell & Harris, 2020; Girard 338 
et al., 2020). On top of that, annotations of 3D models can be challenging due to the difficulty of 339 
displaying large high-resolution models and because of the longer duration required for drawing 340 
3D geometries compared to 2D annotations. As a result, photogrammetry investigation typically 341 
focused on a subset of easily discernible organisms (e.g., Thornton et al., 2016) or on areas of a 342 
few 10s of m2  (e.g., Lim et al., 2020; Mitchell & Harris, 2020). Moreover, during the texturing 343 
of photogrammetry outputs, images are distorted and the definition is lowered. Hence, smaller 344 
organisms may be missed, misidentified, and might require a time-consuming confirmation in 345 
the original image. To avoid biasing community composition insights, identification must be 346 
performed on the highest resolution of images and on an annotation platform allowing an easy 347 
and remote review by taxonomic experts (e.g., the largo tool in Biigle: Langenkämper et al., 348 
2017).  349 
As the tool developed in this study provided a satisfactory repositioning of annotations at the 350 
centimeter scale, it demonstrates its whole potential by combining the better of two worlds. 2D 351 
annotations of higher-resolution images allow an optimization of annotation georeferencing on 352 
3D continuous models of the benthic habitat. 3D textured models allow an acceleration of the 353 
annotation process. Ultimately, this will facilitate exhaustive megafaunal community 354 
characterizations over large continuous spatial extents of 100s of m2, as those large image sets are 355 
increasingly collected with autonomous underwater vehicles (Thornton et al., 2016). 356 
It should be noted however that 3D models are not exempt from errors. In our datasets, 3% of 357 
image annotations could not be reprojected on 3D models due to model imperfections. Many 358 
improvements could be made to the quality of 3D models to avoid non-reprojected points. 359 
Manual transects can cause these gaps were the ROV is too fast or too high (or too low). 360 
“Survey” mode, the ROV autonomous guidance mode, has proven to operate more efficiently 361 
when mapping large areas in multiple transects, and should be generalized. However, this 362 
autopilot mode can be prone to Doppler Velocity Log (DVL) dropouts, particularly in complex 363 
terrains with large bathymetric variations. Topography can also drive erroneous reprojection of 364 
annotations over 3D models. In fact, the higher distance error (~m) observed for the Tui Malila 365 
site dataset could be related to a higher topographic complexity because of the rocky basaltic 366 
terrain exhibiting faults. Those faults could clearly limit the ‘hit’ of the ray traced from the 367 
downward-looking camera in near vertical setting, thus reprojecting the annotations a few 368 
decimeters away in the fault. In the near future, specific 3D mapping instruments such as 369 
LIDAR, multibeam scanning sonars or stereo camera will significantly improve the speed and 370 
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the accuracy of the reconstruction and the overall quality of 3D mapping, as well as providing an 382 
accurate optical navigation. 383 
Still, one of the main bottlenecks in faunal imaging studies remains the annotation step of 2D 384 
images (Matabos et al., 2017). For image and video annotation, many online and collaborative 385 
tools have emerged (e.g. Biigle: Langenkämper et al., 2017, Squidle+: Bewley et al., 2015, 386 
VARS: Schlining & Stout, 2006), and the latest developments in assisted feature annotation have 387 
been integrated (Zurowietz et al., 2018). Citizen science platforms (Deep sea spy (Matabos et al., 388 
2018), Zooniverse (Simpson, Page & De Roure, 2014)) also allow a significant increase in the 389 
amount of images processed. Our ability to adapt the workflow to Biigle demonstrates that in 390 
principle it is flexible against any of the annotation platform mentioned above. Furthermore, 391 
automated detection by machine learning looks very promising to speed up the process. 392 
Although some experiments on automatic recognition of 3D features have been carried out (De 393 
Oliveira et al., 2021), most detection models remain actually developed for 2D images and 394 
videos (Katija et al., 2022). Reprojection may allow the use of well-proven generic 2D image 395 
detection Convoluted Neural Networks (CNN) for 3D annotation generation and vice-versa. On 396 
the one hand, 3D reprojection positions could generate 3D annotation sets for machine learning 397 
training. On the other hand, once a feature has been manually annotated on a single image and 398 
reprojected onto the 3D model, that 3D position can be used to locate that feature back on images 399 
taken from different angles. Multiple crops of the same object could then be generated and 400 
served as a training dataset.  401 
 402 
 403 
Conclusions 404 
This study demonstrated that 3D photogrammetry and reprojected annotations have several 405 
advantages when combined. 406 

• Annotated images, using the popular and collaborative Biigle software, are raw and at 407 
full scale allowing optimal morphospecies categorization. 408 

• Image overlap and annotation duplicates are avoided thanks to optical navigation. 409 
Annotations are precisely georeferenced to a centimetric scale. 410 

• The 3D model provides access to high-resolution topographic metrics to quantify 411 
annotation distribution over several spatial scales. This technique could be applied on a 412 
very large scale to particularly complex terrains such as hydrothermal vents, canyons, 413 
cliffs, or coral reefs. 414 

• We expect the developed workflow to considerably speed up the generation of annotation 415 
sets for 3D and for deep-learning purposes. 416 

 417 
Supplementary Materials 418 
The Python implementation of annotation reprojection, as well as other useful tools such as 3D 419 
topographic metrics calculation, disjoint image selection or model inference import into Biigle, 420 
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are available on GitHub (Marcillat et al., 2023). Images, navigation data and 3D reconstructions 428 
are available on request. 429 
 430 
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It took me a night to understand this figure. Please choose a different representation for the 3D model, 
e.g. an oblique model rendering. Plot the photogrammetric and the raw navigated camera pose with 
their images as a sprite (the plugin lets you do that) over the model, show the projecting rays, and 
point out the Euclidian distance. This would be a highly citable figure, but the current one is misleading 
as it suggests we are comparing two sets of U/V coordinates. 
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Again, please provide an idea of the spread of the USBL data and of its systematic offset. It is obvious 
that there has been some processing done on the USBL data, but you don’t state that. Please also 
see my comment below on DVL data 
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Illustrate this in the figure by linking a few features and labeling their offsets in meters 
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