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Much of the ecological discourse surrounding the polarising theropod Spinosaurus has
centred on qualitative discussions. Using a quantitative multivariate data analytical
approach on size-adjusted linear measurements of the skull, we examine patterns in skull
shape across a range of sauropsid clades and three ecological habitats (terrestrial, semi-
aquatic, and aquatic). We utilise cluster analyses to identify emergent properties of the
data which associate properties of skull shape with ecological habitat occupancy. Results
revealed terrestrial ecologies to be significantly distinct from both semi- and fully aquatic
ecologies, the latter two were not significantly different. Spinosaurids (including
Spinosaurus) plotted away from theropods in morphospace and close to both marine taxa
and wading birds. The position of nares and the degree of rostral elongation had the
greatest effect on categorisation. Comparisons of supervised (k-means) and unsupervised
clustering demonstrated categorising taxa into three groups (habitats) was inappropriate
and suggested instead that cluster division is based on morphological adaptations to
feeding on aquatic versus terrestrial food items. The relative position of the nares in
longirostrine taxa is associated with which skull bones are elongated. Rostral elongation is
observed by either elongating the maxilla and the premaxilla or by elongating the maxilla
only. This results in the nares positioned towards the orbits or towards the end of the
rostrum respectively, with implications on available feeding methods. Spinosaurids,
especially Spinosaurus, show elongation in the maxilla-premaxilla complex, achieving
similar functional outcomes to elongation of the premaxilla seen in birds, particularly large-
bodied piscivorous taxa. Such a skull construction would bolster “stand-and-wait”
predation of aquatic prey to a greater extent than serving other feeding methods.
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Abstract:

Much of the ecological discourse surrounding the polarising theropod Spinosaurus has centred on
gualitative discussions. Using a quantitative multivariate data analytical approach on size-adjusted
linear measurements of the skull, we examine patterns in skull shape across a range of sauropsid clades
and three ecological habitats (terrestrial, semi-aquatic, and aquatic).

We utilise cluster analyses to identify emergent properties of the data which associate properties of
skull shape with ecological habitat occupancy. Results revealed terrestrial ecologies to be significantly
distinct from both semi- and fully aquatic ecologies, the latter two were not significantly different.
Spinosaurids (including Spinosaurus) plotted away from theropods in morphospace and close to both
marine taxa and wading birds. The position of nares and the degree of rostral elongation had the
greatest effect on categorisation. Comparisons of supervised (k-means) and unsupervised clustering
demonstrated categorising taxa into three groups (habitats) was inappropriate and suggested instead
that cluster division is based on morphological adaptations to feeding on aquatic versus terrestrial food
items. The relative position of the nares in longirostrine taxa is associated with which skull bones are
elongated. Rostral elongation is observed by either elongating the maxilla and the premaxilla or by
elongating the maxilla only. This results in the nares positioned towards the orbits or towards the end of
the rostrum respectively, with implications on available feeding methods. Spinosaurids, especially
Spinosaurus, show elongation in the maxilla-premaxilla complex, achieving similar functional outcomes
to elongation of the premaxilla seen in birds, particularly large-bodied piscivorous taxa. Such a skull
construction would bolster “stand-and-wait” predation of aquatic prey to a greater extent than serving
other feeding methods.

Introduction:

The enigmatic theropod Spinosaurus aegyptiacus (Stromer, 1915) is putatively considered semi-aquatic
to some capacity (Aureliano et al., 2018; Henderson, 2018; lbrahim et al., 2020; Fabbri et al., 2022;
Sereno et al., 2022). This is supported by morphological (Ibrahim et al., 2014; Beevor et al., 2021),
geographical (Bertin, 2010; Benyoucef et al., 2015), and isotopic (Amiot et al., 2010) evidence. Of
specific interest are cranial adaptations to piscivory (itself indicative of aquatic affinities) observed in
Spinosaurus; conical, interlocking dentition, posteriorly retracicd nares, lateral skull compression, and
raised orbit position (Ibrahim et al., 2014; Arden et al., 2019; Hone and Holtz, 2021). Partial piscivory has
been widely described across Spinosauridae (Charig and Milner, 1997; Allain et al., 2012; Sales and
Schultz, 2017; Fabbri et al., 20" = |. Spinosaurine spinosaurids show fewer, larger teeth with fluting in
place of serrations compared to baryonychine spinosaurids, (Sereno et al., 1998; Sales and Schultz,
2017; Hone and Holtz, 2021), wk ich have been proposed as adaptations to a diet including hard-bodied
prey (Massare, 1987; Hone and Holtz, 2021) in spinosaurine spinosaurids. Alternatively, this dentition
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could be an adaptation to withstand greater bite forces generated by greater body size compared to
baryonychine spinosaurids (Sakamoto, 2022), similar selection pressures were suggested by Sereno et
al. (2022).

As described, Spinosaurus is considered to be se 111 aquatic partially due to the shape of its skull and
relative position of the orbits (Ibrahim et al., 2014; Arden et al., 2019; Hone and Holtz, 2021). Despite a
fragmentary cranial fossil record, sufficient material of multiple spinosaurids (both those considered
semi-aquatic and terrestrial) exists to compare these features and their relation to habitat use, both
within Spinosauridae and to other taxa where habitat use is undisputed. To this end, cranial linear
morphometric analyses (Mosimann, 1970; Sakamoto and Ruta, 2012; Morales and Giannini, 2021) have
previously been successful in revealing the taxonomic affinities of unidentified specimens (Blake et al.,
2014; Naish et al., 2014). Linear morphometric analysis could thus be a suitable method for categorising
the habitat use of Spinosaurus.

Within the Spinosaurus literature, definitions of ‘semi-aquatic’ can be varied. We define a ‘semi-aquatic’
animal to refer to those that utilise aquatic environments for a significant proportion of their nutritional
resources and/or spend a significant proportion of time within bodies of water but retain terrestrial
locomotory capabilities. However, a more specific diagnosis of the habitat utilisation of Spinosaurus
beyond semi-aquatic would be advantageous, as there is no consensus thus far (Ibrahim et al., 2014;
Hone and Holtz, 2021; Fabbri et al., 2022; Sereno et al., 2022).

Most recent research broadly addresses one of two competing hypotheses: the ‘underwater pursuit
predator’ hypothesis (lbrahim et al., 2020) and the ‘shallow water wading’ hypothesis (Hone and Holtz,
2021). The former paints Spinosaurus as specialised in actively chasing down prey whilst submerged in
the water column, propelled by tail and trunk (lbrahim et al., 2020). In contrast, the latter hypothesis
describes a hunting mode wherein the majority of the animal remains above the waterline, except for
portions of the limbs and rostrum, suggesting stork-like feeding behaviours (Paul, 1988; Hone and Holtz,
2017).

The shallow water wading hypothesis has received notable support in recent publications (Hone and
Holtz, 2021; Sereno et al., 2022), though discussions remain ongoing (see (Fabbri et al., 2022a; Fabbri et
al., 2022b)). Here, we expand on the work by Hone and Holtz (2021) to develop their quantitative
approach to analysing cranial morphology in sauropsids across different ecological habitats. To this end,
we aim to build upon the work of Hone and Holtz to evaluate whether ecological habitat (terrestrial,
semi-aquatic, or aquatic) can be inferred through skull morphometrics based on multiple linear
measurements, and apply this to Spinosaurus.

Materials and methods:

99 taxa from 8 clades were examined and subdivided by known or inferred ecologies (terrestrial, semi-
aquatic (following the definition above), or aquatic). Our dataset expanded upon that of Hone and Holtz
(2021), increasing the number of representatives of examined clades and adding the families Ardeidae
(herons) and Ciconiidae (storks), to allow morphological comparisons between Spinosaurus and these
ecological analogues (wading birds) as proposed by Hone and Holtz (2021). Taxa were selected upon the
availability of photographs (The Experimental Zoology Group of Wageningen University, 2022), 3D scans
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(The University of Texas at Austin, 2022), or reconstructions depicting the skull in dorsal and lateral
orientations (Supplemental material).

[Figure 1]

Figure 1. Principal component analysis of 6 size-adjusted linear (Mosimann) variables in 95
representative taxa across 8 sauropsid clades (Squamata and Crurotarsi further divided based on
ecology). (a) Distribution of taxa in morphospace of principle component (PC) 1 (48.06% of variance) and
PC2 (30.10% of variance). Convex hulls delimit K-means (k=3) cluster groupings. Green markers indicate
terrestrial ecology, light blue markers indicate a semi-aquatic ecology, dark blue markers represent a
fully aquatic ecology, and orange and red represent unknown ecologies. Silhouettes of taxa highlight the
naris (blue) and the orbit (green). (b) Measurements were taken from the skull in lateral view. Skull
height (SH), skull length (SL), distance from naris to anterior margin (NA), distance from naris to dorsal
margin (ND), and distance from orbit to dorsal margin (OD). Not pictured: skull width (taken from dorsal
view). Modified from (Hone and Holtz, 2021). (c) Comparison of skull morphology between Spinosaurus
sp. (top, modified from (Ibrahim et al., 2014)) and Pliosaurus kevani (bottom, modified from (Benson et
al., 2013)). Legend silhouettes Allosaurus and Spinosaurus by Tasman Dixon, Varanus by Steven Traver,
Goniopholis, Tylosaurus, Rhomaleosaurus, and Baryonyx by Scott Hartman, and Leptoptilos by L.
Shyamal. Skull silhouettes modified from respective sources (see supplemental material).

For each taxon, 6 measurements were taken using Imagel v. 1.53 (Abramoff et al., 2004) (figure 1b)
following Hone and Holtz (2021). As some variable measurements were 0 (such as when naris lies on the
skull anterior margin), to allow these values to be log-transformed, a constant of 1mm was added to all
measurements. To account for Isometric scaling due to body size, each measurement was divided by
the geometric mean of the skull (Sakamoto and Ruta, 2012). The resultant dimensionless Mosimann
shape variables have been demonstrated to out-perform residuals as size-adjusted shape variables, and
have the additional benefit of only requiring information from a single specimen (Mosimann, 1970;
Sakamoto and Ruta, 2012; Morales and Giannini, 2021). These values were log-transformed (Glazier,
2013), centred on 0 and scaled to unit variance to conform to the assumptions of cluster analysis and to
a lesser extent, principal component analysis (PCA). Geometric mean was selected as a proxy for body
size over skull length due to the presence of characteristic rostral elongation in multiple taxa examined
(Bertin, 2010; Erickson et al., 2012; Fischer et al., 2017). Rostral elongation can interfere with body size
estimates derived from skull length due to the allometric relationship between these variables (Therrien
and Henderson, 2007).

Data analyses

All data and statistical analyses were conducted in PAST v. 4.03 (Hammer et al., 2001). A principal
component analysis (PCA) was performed on the 6 Mosimann shape variables of 95 taxa (those with
incomplete information were excluded) using a variance-covariance matrix. Taxa were grouped by clade
and ecology. Permutational multivariate analyses of variance (PerMANOVA) were used to assess the
overlap in morphospace between clades, and between ecologies. These analyses used a Euclidian
similarity index and Bonferroni-corrected p values. To determine the appropriate number and pattern of
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clustering in morphospace, we used both classical (unsupervised clustering using Ward’s method and
Euclidian distance measure) and k-means (supervised) cluster analyses to examine the relative effect of
ecology compared to phylogeny on skull shape. We chose k=3 for k-means analysis to reflect the
number of ecologies.

Results:

Following Principal component analysis (PCA) of linear skull measurements, PC1 and PC2 cumulatively
account for 78.16% of the variance in the data, PC1 explaining 48.06% and PC2 explaining 30.10%. A
morphospace plot of PC1 against PC2 (figure 1a) reveals that an increase along PC1 is associated with an
increase in skull size and a decrease in NA. Whereas increase along PC2 is associated with skull heights
approximately equal to skull length, progressively deeper-set orbits (long OD) and nares (long OD), and
increasing distance from the naris to the skull anterior margin (long NA) (supplemental material).
Ecologies are scattered across morphospace, though an increase along PC1 is associated with increasing
terrestriality and higher values of PC2 (both positive and negative) are associated with increased aquatic
affinities. When clades contain representatives from multiple ecologies (squamates and crurotarsans),
members remain close in morphospace despite their assigned ecologies (figure 1a). Wading birds,
spinosaurids, mosasaurs and plesiosaurs occupy the same region of morphospace, with Spinosaurus
being most similar to Pliosaurus kevani (figure 1c).

A one-way PerMANOVA by clade, reveals that all aquatic taxa and semi-aquatic crurotarsans did not
occupy significantly different (p > 0.05) regions of morphospace. Spinosaurids (excluding Spinosaurus)
did not show significant differences from any other clade. Storks and herons, terrestrial and semi-
aquatic squamates, and semi-aquatic and aquatic crurotarsans could not be differentiated from each
other. Non-spinosaurid theropods were distinct from all clades except semi-aquatic squamates and
spinosaurids. Likewise, semi-aquatic crurotarsans were distinct from all non-aquatic, non-spinosaurid
taxa. A one-way PerMANOVA of the same data grouped by ecology showed all terrestrial ecology pairs
as significantly different (p < 0.001) but aquatic and semi-aquatic ecologies could not be differentiated.

[Figure 2]

Figure 2. Morphospace plot of principal component scores as in figure 1, showing instead unsupervised
cluster analysis groupings.

Supervised clustering using k-means (k=3) cluster analysis did not yield clusters according to the three
habitat categories (figure 1a). Cluster 1 is characterised by narrow skulls, elongate rostra, and
substantial nares to anterior margin distances (larger NA). Cluster 2 is also associated with rostral
elongation but is distinguished from Cluster 1 by anterodorsally elevated nares (smaller OD and NA).
Cluster 3 contains all other terrestrial taxa. High PC 1 scores indicate the absence of rostral elongation.

Unsupervised cluster analysis on the other hand produced two clusters (figure 2). Cluster A is formed of
taxa with elongate skulls and long nares to anterior margin distances. Taxa in this cluster are all either
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aquatic (plesiosaurs and mosasaurs) or semi-aquatic (phytosaurs (Crurotarsi) and aves). Cluster B
contains taxa with short nares to anterior margin distances, this includes all terrestrial taxa, semi-
aquatic squamates, and non-phytosaur crurotarsans.

Discussion

The discrepancy between the number of clusters produced by supervised (3 - figure 1a) and
unsupervised (2 - figure 2) cluster analyses demonstrates that the a priori categorisation (K=3) based on
the three habitats is not supported by our linear morphometric data. Cluster membership did not
correspond to specified ecology (terrestrial, semi-aquatic, or aquatic) in either analysis. Taken together,
this indicates that ecomorphologies associated with habitat are not emergent properties of our dataset.
Instead, unsupervised cluster membership (figure 2) appears to be largely determined by the distance
from the nares to the anterior margin (supplemental material), which dictates the relative rostral length
often interpreted as adaptations for foraging in water, either semi- or fully submerged. Thus, separation
in morphospace may be influenced by factors such as diet (feeding ecology, i.e., what they are eating
irrespective of habitat) and to a lesser extent phylogeny (Melstrom et al., 2021). This supports
inferences regarding the evolutionary history of derived spinosaurids and feeding ecology in
Spinosaurus.

Taxa in unsupervised cluster A (figure 2) exhibit proportionally posteriorly retracted nares relative to
members of cluster B. Taxa in both clusters display rostral elongation, though this is achieved by
elongation of different skull bones in each cluster. Members of cluster A (aves, plesiosaurs, mosasaurs,
spinosaurids, and phytosaurs) extend the rostra via elongation of the skeletal elements rostral to the
naris, i.e., the maxilla-premaxilla complex. This distinguishes them from taxa in Cluster B (i.e., non-
phytosaurian crurotarsans), which elongate the rostrum via increasing the length of the nasal-maxilla
complex (supplemental material). These two morphotypes attain the same outcome in terms of
elongation of the rostrum (e.g., increased reach), but differ in which part of the rostrum is elongated
relative to the nares, anterior (Clade A) or posterior (Clade B). Although increased reach is equally
beneficial to taxa in both clusters, the correlated movement of relative nares position results in
significant impacts in which feeding modalities are available to these semi- and fully aquatic taxa.

In general, rostral elongation is viewed as an adaptation for both semi- and fully aquatic taxa feeding on
aquatic prey. The associated increases in the out-lever distance (distance from jaw joint to bite point)
results in greater relative jaw closing speed (Sakamoto, 2010; Ballell et al., 2019; Evans et al., 2019). This
would be a desirable trait when feeding on highly mobile aquatic prey (Massare, 1988; McCurry et al.,
2017) either fully submerged as in underwater pursuit predation or only submerging a portion of the
skull as in the “stand-and-wait” strategy seen in herons and storks (Kushlan, 1976; Willard, 1977,
Maheswaran and Rahmani, 2002).

Of these two main strategies proposed to describe feeding behaviour in Spinosaurus (Ibrahim et al.,
2020; Hone and Holtz, 2021), the position of the nares is beneficial to the “stand-and-wait” strategy
whilst being neither beneficial nor detrimental to the efficacy of the underwater pursuit strategy. An
increased distance between the tip of the rostrum and the nares allows for a greater portion of the skull
to remain submerged without restricting breathing, potentially increasing foraging efficiency (Hone and
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Holtz, 2021). In marine mosasaurs and pliosauroid plesiosaurs, rostral elongation is present but not as
extreme, especially in plesicocuroid plesiosaurs (supplemental material). In these taxa, nares that are
positioned closer to the doisai margin of the head may have assisted with minimising the portion of the
body exposed when surfacing for breath. This benefit has also been suggested for instances when
Spinosaurus is largely submerged and only extends a small portion of the head above the water,
suggesting strong aquatic affinities (Ibrahim et al, 2014; Arden et al, 2019). However, the nares of
Spinosaurus are not notably closer to the dorsal margin of the head than other spinosaurids for which
such strong aquatic affinities are not proposed, and a larger portion of the head would have to be
exposed, negating the proposed benefits (Hone and Holtz, 2021; Hone and Holtz, 2022).

Whilst it is difficult to address the sources of natural selection that differentiate the two evolutionary
pathways to rostral elongation observed, as this was not directly tested, the relative lengths of the skull
bones in Spinosaurus presents implications for the impacts of phylogeny on skull shape. Across all
theropods examined (both spinosaurids and non-spinosaurids), the relative positions of the naris and
orbit to the nasal remain constant (supplemental material). Interestingly, the rostral elongation in
Spinosaurus is achieved via the lengthening of the skeletal elements anterior to the naris, thus
maintaining the theropod configuration of the naris and orbit positions relative to the nasal. This feature
is more prominent in the derived Spinosaurus than in more basal baryonychine spinosaurids, which
show more limited retraction (figure 1a, 1c). Avians display elongation primarily through elongation of
the premaxilla as the makxilla is greatly reduced (Bhullar et al., 2015), piscivorous birds in particular have
among the largest bills in terms of absolute size. In both birds and spinosaurids, elongation of the skull
anterior to the nares serves to considerably increase the striking range, jaw closing speed, and amount
of the skull that can be submerged whilst foraging, facilitating foraging on aquatic prey items.

In contrast, Crurotarsi displays both pathways of rostral elongation in phytosaurs (Cluster A) and
crocodyliforms (Cluster B), demonstrating less phylogenetic constraint across Crurotarsi as a whole, but
distinct effects of phylogeny within Phytosauria and Crocodyliformes respectively, i.e., all phytosaurs are
in Cluster A while all crocodyliforms are in Cluster B. The disparity in how rostral elongation is attained
across Crurotarsi likely owes to it being a large and diverse clade, with phytosaurs being more basal,
representing an older radiation, than crocodyliforms (Nesbitt, 2011). Regardless of what ecological
selection pressures may be associated with rostral elongation, it is likely that members within clades
attain this trait due to consistent selection pressures from feeding in aquatic environments. However,
species engaging with such a feeding ecology are subjected to the mechanical pressures of feeding in a
dense fluid medium that restricts viable morphospace (Massare, 1988; Pierce et al., 2008). This
combines with fewer modalities of feeding available to large-bodied marine organicms (Taylor, 1987)
leading to convergence in skull shape (figure 2) though not necessarily converge in diet.

The variables investigated here - in particular, the position of the nares relative to the anterior margin of
the skull- are largely able to discriminate between taxa that feed terrestrially and those that feed on
aquatic prey (figure 1a, 2). However, due to similar biomechanical restrictions, taxa that feed on aquatic
prey show substantial skull shape convergence with fully aquatic taxa which prevents definitive
categorisation of taxa with uncertain ecology (such as Spinosaurus), based on linear measurement of the
skull alone. In regards to the feeding behaviour of Spinosaurus, elongation of the premaxilla in
spinosaurids compared to other theropods results in a nares position which would have been
exceedingly beneficial to the “stand-and-wait” predation strategy, whilst not substantially beneficial to
the underwater pursuit predation strategy. Further investigations may consider post-cranial data,
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phylogenetic analyses and dentition, as well as feeding guilds as a categorisation factor. The data we
have gathered is not sufficient to completely evaluate the utility of size-adjusted linear measurements of
the cranium, but functions as an exploratory study which provides a framework for future studies to
develop this line of enquiry. Specifically, we emphasise the importance of comparing supervised and
unsupervised clustering to assess if the former is appropriate as the number of groups in supervised
clustering can mislead inferences.
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Figure 1

Principal component analysis of 6 size-adjusted linear (Mosimann) variables in 95
representative taxa across 8 sauropsid clades (Squamata and Crurotarsi further divided
based on ecology).

(a) Distribution of taxa in morphospace of principle component (PC) 1 (48.06% of variance)
and PC2 (30.10% of variance). Convex hulls delimit K-means (k=3) cluster groupings. Green
markers indicate terrestrial ecology, light blue markers indicate a semi-aquatic ecology, dark
blue markers represent a fully aquatic ecology, and orange and red represent unknown
ecologies. Silhouettes of taxa highlight the naris (blue) and the orbit (green). (b)
Measurements were taken from the skull in lateral view. Skull height (SH), skull length (SL),
distance from naris to anterior margin (NA), distance from naris to dorsal margin (ND), and
distance from orbit to dorsal margin (OD). Not pictured: skull width (taken from dorsal view).
Modified from (Hone and Holtz 2021). (¢) Comparison of skull morphology between
Spinosaurus sp. (top, modified from (Ibrahim et al 2014)) and Pliosaurus kevani (bottom,
modified from (Benson et al 2013)). Allosaurus and Spinosaurus by Tasman Dixon, Varanus
by Steven Traver, Goniopholis, Tylosaurus, Rhomaleosaurus, and Baryonyx by Scott

Hartman, and Leptoptilos by L. Shyamal.
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Figure 2

Morphospace plot of principal component scores as in figure 1, showing instead
unsupervised cluster analysis groupings.
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