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Much of the ecological discourse surrounding the polarising theropod Spinosaurus has
centred on qualitative discussions. Using a multivariate data analytical approach on size-
adjusted linear measurements of the skull, we examine patterns in skull shape across a
range of sauropsid clades, across three ecological realms (terrestrial, semi-aquatic, and
aquatic) utilising cluster analyses to identify emergent properties of the data. Results
revealed terrestrial ecologies to be significantly distinct from both semi- and fully aquatic
ecologies, the latter two were not significantly different. Spinosaurids plotted away from
theropods in morphospace and close to marine taxa and wading birds. The position of
nares and the degree of rostral elongation had the greatest effect on categorisation.
Unsupervised clustering resulted in two distinct groups rather than three, indicating that
habitat categorisation do not adequately explain skull morphological variance, suggestive
of division based on feeding on aquatic versus terrestrial food items.
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Abstract:

Much of the ecological discourse surrounding the polarising theropod Spinosaurus has centred on
gualitative discussions. Using a multivariate data analytical approach on size-adjusted linear
measurements of the skull, we examine patterns in skull shape across a range of sauropsid clades,
across three ecological realms (terrestrial, semi-aquatic, and aquatic) utilising cluster analyses to identify

emergent properties of the data. Results revealed terrestrial ecologies to be significantly distinct from
both semi- and fully aquatic ecologies, the latter two were not significantly different. Spinosaurids
plotted away from theropods in morphospace and close to marine taxa and wading birds. The position
of nares and the degree of rostral elongation had the greatest effect on categorisation. Unsupervised
clustering resulted in two distinct groups rather than three, indicating that habitat categorisation do not
adequately explain skull morphological variance, suggestive of division based on feeding on aquatic
versus terrestrial food items.

Introduction:

The enigmatic theropod Spinosaurus aegyptiacus (Stromer, 1915) is putatively considered semi-aquatic
to some capacity (Aureliano et al., 2018; Henderson, 2018; lbrahim et al., 2020; Fabbri et al., 2022;
Sereno et al., 2022). This is supported by morphological (Ibrahim et al., 2014; Beevor et al., 2021),
geographical (Bertin, 2010; Benyoucef et al., 2015), and isotopic (Amiot et al., 2010) evidence. Of
specific interest are cranial adaptations to piscivory (itself indicative of aquatic affinities) observed in
Spinosaurus; conical, interlocking dentition, posteriorly retracted nares, lateral skull compression, and
raised orbit position (Ibrahim et al., 2014; Arden et al., 2019; Hone and Holtz, 2021). Partial piscivory has
been widely presumed for spinosaurids (Charig and Milner, 1997; Allain et al., 2012; Sales and Schultz,
2017; Fabbri et al., 2022a). Spinosaurine spinosaurids show fewer, larger teeth with fluting in place of
serrations compared to baryonychine spinosaurids, (Sereno et al., 1998; Sales and Schultz, 2017; Hone
and Holtz, 2021), which have been proposed as adaptations to a diet including hard-bodied prey
(Massare, 1987; Hone and Holtz, 2021). Alternatively, this dentition could be an adaptation to withstand
greater bite forces generated by greater body size compared to baryonychine spinosaurids (Sakamoto,
2022), similar selection pressures were suggested by Sereno et al. (2022).

Within the Spinosaurus literature, definitions of ‘semi-aquatic’ can be varied. We define a ‘semi-aquatic’
animal to refer to those that utilise aquatic environments for a significant proportion of their nutritional
resources and/or spend a significant proportion of time within bodies of water but retain terrestrial
locomotory capabilities. However, a more specific diagnosis of the habitat use of Spinosaurus would be
advantageous, as there is no consensus thus far (Ibrahim et al., 2014; Hone and Holtz, 2021; Fabbri et
al., 2022; Sereno et al., 2022). Most recent research broadly addresses one of two competing
hypotheses: the ‘underwater pursuit predator’ hypothesis (Ibrahim et al., 2020) and the ‘shallow water
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wading’ hypothesis (Hone and Holtz, 2021). The former paints Spinosaurus as specialised in actively
chasing down prey whilst submerged in the water column, propelled by tail and trunk (Ibrahim et al.,
2020). In contrast, the latter hypothesis describes a hunting mode wherein the majority of the animal
remains above the waterline, except for portions of the limbs and rostrum, suggesting stork-like feeding
behaviours (Paul, 1988; Hone and Holtz, 2017; Arden et al., 2019).

The shallow water wading hypothesis has received notable support in recent publications (Hone and
Holtz, 2021; Sereno et al., 2022), though discussions remain ongoing (see (Fabbri et al., 2022a; Fabbri et
al., 2022b)). Here, we expand on the work by Hone and Holtz (2021) to develop their quantitative
approach to analysing cranial morphology in sauropsids across different ecological habitats. To this end,
we aim to:

. Increase the number and diversity of taxa in the dataset utilised by Hone and Holtz (2021).
. Evaluate whether skull morphometrics reflect ecology.
. Categorise the habitat of Spinosaurus based on skull morphometrics.

Materials and methods:

99 taxa from 8 clades were examined and subdivided by known or inferred ecologies (terrestrial, semi-
aquatic, or aquatic). Our dataset expanded upon that of Hone and Holtz (2021), increasing the number
of representatives of examined clades and adding the families Ardeidae (herons) and Ciconiidae (storks),
to allow morphological comparisons between Spinosaurus and these ecological analogues (wading birds)
as proposed by Hone and Holtz (2021). Taxa were selected upon the availability of photographs (The
Experimental Zoology Group of Wageningen University, 2022), 3D scans (The University of Texas at
Austin, 2022), or reconstructions depicting the skull in dorsal and lateral orientations (Supplementary
material).

[Figure 1]

Figure 1. Principal component analysis of 6 size-adjusted linear (Mosimann) variables in 95
representative taxa across 8 sauropsid clades (Squamata and Crurotarsi further divided based on
ecology). (a) Distribution of taxa in morphospace of principle component (PC) 1 (48.06% of variance) and
PC2 (30.10% of variance). Convex hulls delimit K-means (k=3) cluster groupings. Green markers indicate
terrestrial ecology, light blue markers indicate a semi-aquatic ecology, dark blue markers represent a
fully aquatic ecology, and orange and red represent unknown ecologies. Silhouettes of taxa highlight the
naris (blue) and the orbit (green). (b) Measurements were taken from the skull in lateral view. Skull
height (SH), skull length (SL), distance from naris to anterior margin (NA), distance from naris to dorsal
margin (ND), and distance from orbit to dorsal margin (OD). Not pictured: skull width (taken from dorsal
view). Modified from (Hone and Holtz 2021). (c) Comparison of skull morphology between Spinosaurus
sp. (top, modified from (Ibrahim et al 2014)) and Pliosaurus kevani (bottom, modified from (Benson et al
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2013)). Allosaurus and Spinosaurus by Tasman Dixon, Varanus by Steven Traver, Goniopholis, Tylosaurus,
Rhomaleosaurus, and Baryonyx by Scott Hartman, and Leptoptilos by L. Shyamal.

For each taxon, 6 measurements were taken using Imagel v. 1.53 (Abramoff et al., 2004) (figure 1b)
following Hone and Holtz (2021). Isometric scaling due to body size was accounted for by converting to
Mosimann shape variables (Mosimann, 1970; Sakamoto and Ruta, 2012; Morales and Giannini, 2021).
These values were log-transformed (Glazier, 2013), centred on 0 and scaled to unit variance.

Data analyses

All data and statistical analyses were conducted in PAST v. 4.03 (Hammer et al., 2001). A principal
component analysis (PCA) was performed on the transformed shape data of 95 taxa (those with
incomplete information were excluded). Taxa were grouped by clade and ecology. Permutational
multivariate analyses of variance (PerMANOVA) were used to assess the overlap in morphospace
between clades, and between ecologies. To determine the appropriate number and pattern of
clustering in morphospace, we used both classical (unsupervised) and k-means (supervised) cluster
analyses. We chose k=3 for k-means analysis to reflect the number of ecologies.

Results:

PC1 and PC2 together account for 78.16% of the variance in the data, with PC1 explaining 48.06% and
PC2 explaining 30.10% respectively. A morphospace plot of PC1 against PC2 (figure 1a) reveals that an
increase along PC1 is associated with an increase in skull size and a decrease in NA. Whereas increase
along PC2 is associated with skull heights approximately equal to skull length, progressively deeper-set
orbits (long OD) and nares (long ND), and increasing distance from the naris to the skull anterior margin
(long NA) (supplementary material). Ecologies are scattered across morphospace, though an increase
along PC1 appears to be associated with increasing terrestriality. When clades contain representatives
from multiple ecologies (squamates and crurotarsans), members remain close in morphospace despite
their assigned ecologies (figure 1a). Wading birds, spinosaurids, mosasaurs and plesiosaurs occupy the
same region of morphospace, with Spinosaurus being most similar to Pliosaurus kevani (figure 1c).

A one-way PerMANOVA by clade, reveals that all aquatic taxa and semi-aquatic crurotarsans did not
occupy significantly different (p > 0.05) regions of morphospace. Spinosaurids (excluding Spinosaurus)
did not show significant differences from any other clade. Storks and herons, terrestrial and semi-
aquatic squamates, and semi-aquatic and aquatic crurotarsans could not be differentiated from each
other. Non-spinosaurid theropods were distinct from all clades except semi-aquatic squamates and
spinosaurids. Likewise, semi-aquatic crurotarsans were distinct from all non-aquatic, non-spinosaurid
taxa. A one-way PerMANOVA of the same data grouped by ecology showed all terrestrial ecology pairs
as significantly different (p < 0.001) but aquatic and semi-aquatic ecologies could not be differentiated.

[Figure 2]
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Figure 2. Morphospace plot of principal component scores as in figure 1, showing instead unsupervised
cluster analysis groupings.

Supervised clustering using k-means (k=3) cluster analysis did not yield clusters according to the three
habitat categories (figure 1a). Cluster 1 is characterised by narrow skulls, elongate rostra, and
substantial nares to anterior margin distances (larger NA). Cluster 2 is also associated with rostral
elongation but is distinguished from Cluster 1 by anterodorsally elevated nares (smaller OD and NA).
Cluster 3 contains all other terrestrial taxa. High PC 1 scores indicate the absence of rostral elongation.

Unsupervised cluster analysis on the other hand produced two clusters (figure 2). Cluster A is formed of
taxa with elongate skulls and long nares to anterior margin distances. Taxa in this cluster are all either
aquatic (plesiosaurs and mosasaurs) or semi-aquatic (phytosaurs (Crurotarsi) and aves). Cluster B
contains taxa with short nares to anterior margin distances, this includes all terrestrial taxa, semi-
aquatic squamates, and non-phytosaur crurotarsans.

Discussion

The discrepancy between the number of clusters produced by supervised (figure 1a) and unsupervised
(figure 2) cluster analyses demonstrates that the a priori categorisation (K=3) based on the three
habitats is not supported by our linear morphometric data. Cluster membership did not correspond to
specified ecology (terrestrial, semi-aquatic, or aquatic) in both analyses. Taken together, this indicates
that ecomorphologies associated with habitat are not emergent properties of our dataset. Instead,
unsupervised cluster membership (figure 2) appears to be largely determined by the distance from the
nares to the anterior margin, which dictates the relative rostral length often interpreted as adaptations
for foraging in water, either semi- or fully submerged. Thus, separation in morphospace may be
influenced by factors such as diet (feeding ecology, i.e., what they are eating irrespective of where they
live) and to a lesser extent phylogeny (Melstrom et al., 2021).

Members of cluster A (aves, plesiosaurs, mosasaurs, spinosaurids, and phytosaurs) (figure 2)
demonstrate elongate skulls via elongation of the skeletal elements rostral to the naris, i.e., the maxilla-
premaxilla complex. This distinguishes them from those with elongate skulls in Cluster B (i.e., non-
phytosaurian crurotarsans), which achieve elongation of the rostrum via increasing the length of the
nasal-maxilla complex (supplementary material). These two morphotypes attain the same outcome in
terms of elongation of the rostrum (e.g., increased reach), but differf==yhich part of the rostrum is
elongated relative to the nares, anterior (Clade A) or posterior (Clad Q

While it is difficult to address the sources of natural selection that differentiate the two evolutionary
pathways to rostral elongation as we have not directly tested this here, it is possible to discuss the
implications of phylogeny. Across all theropods examined (both spinosaurids and non-spinosaurids), the
relative positions of the naris and orbit to the nasal remain constant (supplementary material).
Interestingly, the rostral elongation in Spinosaurus is achieved via the lengthening of the skeletal
elements anterior to the naris, thus maintaining the theropod configuration of the naris and orbit
positions relative to the nasal. This feature is more prominent in Spinosaurus even compared to its
closest relatives, the baryonychine spinosaurids (figure 1a, 1c). On the other hand, birds (avian
theropods) ancestrally display elongation in the maxilla-premaxilla complex (Bhullar et al., 2015),
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despite their highly diverse feeding ecology, most of which being non-aquatic. Taken together, this
indicates that theropods tend to elongate their rostra by extending the maxilla-premaxilla complex
rather than the maxilla-nasal complex.

In contrast, Crurotarsi displays both pathways of rostral elongation in phytosaurs (Cluster A) and
crocodyliforms (Cluster B), demonstrating less phylogenetic constraint across Crurotarsi as a whole, but
distinct effects of phylogeny within Phytosauria and Crocodyliformes respectively, i.e., all phytosaurs are
in Cluster A while all crocodyliforms are in Cluster B. The disparity in how rostral elongation is attained
across Crurotarsi likely owes to it being a large and diverse clade, with phytosaurs being more basal,
representing an older radiation, than crocodyliforms (Nesbitt, 2011). Regardless of what ecological
selection pressures may be associated with rostral elongation, it is likely that members within clades
consistently attain this trait.

In general, rostral elongation is viewed as an adaptation for both semi- and fully aquatic taxa feeding on
aquatic prey. The associated increases in the out-lever distance (distance from jaw joint to bite point)
results in greater relative jaw closing speed (Sakamoto, 2010; Ballell et al., 2019; Evans et al., 2019),
which is a desirable trait when feeding on highly mobile aquatic prey (Massare, 1988; McCurry et al.,
2017). However, species engaging with such a feeding ecology are subjected to the mechanical
pressures of feeding in a dense fluid medium that restricts viable morphospace (Massare, 1988; Pierce
et al., 2008). This combines with fewer modalities of feeding available to large-bodied marine organisms
(Taylor, 1987) leading to convergence in skull shape (figure 2).

The observed rostral elongation may serve different purposes in the different clades represented in
cluster A. In Spinosaurus, this may suggest further adaptation for a “stand-and-wait” predation strategy
seen in herons and storks (Kushlan, 1976; Willard, 1977; Maheswaran and Rahmani, 2002). An increased
distance between the tip of the rostrum and nares allows for a greater portion of the skull to remain
submerged without restricting breathing, potentially increasing foraging efficiency as proposed under
the ‘shallow water wading’ hypothesis (Hone and Holtz, 2021). In marine mosasaurs and pliosauroid
plesiosaurs, rostral elongation is present but not as extreme, especially in plesiosauroid plesiosaurs
(supplementary material). In these taxa, nares that are positioned closer to the dorsal margin of the
head may have assisted with minimising the portion of the body exposed when surfacing for breath.

The variables investigated here -in particular, the position of the nares relative to the anterior margin of
the skull- are largely able to discriminate between taxa that feed terrestrially and those that feed on
aquatic prey (figure 1a, 2). However, due to similar biomechanical restrictions, taxa that feed on aquatic
prey show substantial skull shape convergence with fully aquatic taxa which prevents definitive
categorisation of taxa with uncertain ecology (such as Spinosaurus), based on linear measurement of the
skull alone. Further investigations may wish to consider post-cranial data, phylogenetic analyses and
dentition, as well as feeding guilds as a categorisation factor. The data we have gathered is not sufficient
to completely evaluate the utility of size-adjusted linear measurements of the cranium, but functions as
an exploratory study which provides a framework for future studies to develop this line of enquiry.
Specifically, we emphasise the importance of comparing supervised and unsupervised clustering to
assess if the former is appropriate.
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Figure 1

Principal component analysis of 6 size-adjusted linear (Mosimann) variables in 95
representative taxa across 8 sauropsid clades (Squamata and Crurotarsi further divided
based on ecology).

(a) Distribution of taxa in morphospace of principle component (PC) 1 (48.06% of variance)
and PC2 (30.10% of variance). Convex hulls delimit K-means (k=3) cluster groupings. Green
markers indicate terrestrial ecology, light blue markers indicate a semi-aquatic ecology, dark
blue markers represent a fully aquatic ecology, and orange and red represent unknown
ecologies. Silhouettes of taxa highlight the naris (blue) and the orbit (green). (b)
Measurements were taken from the skull in lateral view. Skull height (SH), skull length (SL),
distance from naris to anterior margin (NA), distance from naris to dorsal margin (ND), and
distance from orbit to dorsal margin (OD). Not pictured: skull width (taken from dorsal view).
Modified from (Hone and Holtz 2021). (¢) Comparison of skull morphology between
Spinosaurus sp. (top, modified from (Ibrahim et al 2014)) and Pliosaurus kevani (bottom,
modified from (Benson et al 2013)). Allosaurus and Spinosaurus by Tasman Dixon, Varanus
by Steven Traver, Goniopholis, Tylosaurus, Rhomaleosaurus, and Baryonyx by Scott

Hartman, and Leptoptilos by L. Shyamal.
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Figure 2

Morphospace plot of principal component scores as in figure 1, showing instead
unsupervised cluster analysis groupings.
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