Using linear measurements to diagnose the ecological realm of *Spinosaurus* (#91634)

First submission

Guidance from your Editor

Please submit by 1 Nov 2023 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

- 2 Figure file(s)
- 2 Raw data file(s)
- 1 Other file(s)

ř

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Using linear measurements to diagnose the ecological realm of *Spinosaurus*

Sean Smart ¹, Manabu Sakamoto ^{Corresp. 1}

¹ School of Life Sciences, University of Lincoln, Lincoln, United Kingdom

Corresponding Author: Manabu Sakamoto Email address: msakamoto@lincoln.ac.uk

Much of the ecological discourse surrounding the polarising theropod *Spinosaurus* has centred on qualitative discussions. Using a multivariate data analytical approach on size-adjusted linear measurements of the skull, we examine patterns in skull shape across a range of sauropsid clades, across three ecological realms (terrestrial, semi-aquatic, and aquatic) utilising cluster analyses to identify emergent properties of the data. Results revealed terrestrial ecologies to be significantly distinct from both semi- and fully aquatic ecologies, the latter two were not significantly different. Spinosaurids plotted away from theropods in morphospace and close to marine taxa and wading birds. The position of nares and the degree of rostral elongation had the greatest effect on categorisation. Unsupervised clustering resulted in two distinct groups rather than three, indicating that habitat categorisation do not adequately explain skull morphological variance, suggestive of division based on feeding on aquatic versus terrestrial food items.

- 1 Using linear measurements to diagnose the ecological realm of
- 2 Spinosaurus
- 3 Sean Smart, Manabu Sakamoto*
- 4 School of Life Sciences, University of Lincoln, Lincoln, United Kingdom

5 Abstract:

- 6 Much of the ecological discourse surrounding the polarising theropod Spinosaurus has centred on
- 7 qualitative discussions. Using a multivariate data analytical approach on size-adjusted linear
- 8 measurements of the skull, we examine patterns in skull shape across a range of sauropsid clades,
- 9 across three ecological realms (terrestrial, semi-aquatic, and aquatic) utilising cluster analyses to identify
- 10 emergent properties of the data. Results revealed terrestrial ecologies to be significantly distinct from
- 11 both semi- and fully aquatic ecologies, the latter two were not significantly different. Spinosaurids
- 12 plotted away from theropods in morphospace and close to marine taxa and wading birds. The position
- 13 of nares and the degree of rostral elongation had the greatest effect on categorisation. Unsupervised
- 14 clustering resulted in two distinct groups rather than three, indicating that habitat categorisation do not
- 15 adequately explain skull morphological variance, suggestive of division based on feeding on aquatic
- 16 versus terrestrial food items.

18 Introduction:

17

- 19 The enigmatic theropod *Spinosaurus aegyptiacus* (Stromer, 1915) is putatively considered semi-aquatic
- to some capacity (Aureliano et al., 2018; Henderson, 2018; Ibrahim et al., 2020; Fabbri et al., 2022;
- 21 Sereno et al., 2022). This is supported by morphological (Ibrahim et al., 2014; Beevor et al., 2021),
- 22 geographical (Bertin, 2010; Benyoucef et al., 2015), and isotopic (Amiot et al., 2010) evidence. Of
- 23 specific interest are cranial adaptations to piscivory (itself indicative of aquatic affinities) observed in
- 24 Spinosaurus; conical, interlocking dentition, posteriorly retracted nares, lateral skull compression, and
- raised orbit position (Ibrahim et al., 2014; Arden et al., 2019; Hone and Holtz, 2021). Partial piscivory has
- been widely presumed for spinosaurids (Charig and Milner, 1997; Allain et al., 2012; Sales and Schultz,
- 27 2017; Fabbri et al., 2022a). Spinosaurine spinosaurids show fewer, larger teeth with fluting in place of
- 28 serrations compared to baryonychine spinosaurids, (Sereno et al., 1998; Sales and Schultz, 2017; Hone
- 29 and Holtz, 2021), which have been proposed as adaptations to a diet including hard-bodied prey
- 30 (Massare, 1987; Hone and Holtz, 2021). Alternatively, this dentition could be an adaptation to withstand
- 31 greater bite forces generated by greater body size compared to baryonychine spinosaurids (Sakamoto,
- 32 2022), similar selection pressures were suggested by Sereno et al. (2022).
- 33 Within the Spinosaurus literature, definitions of 'semi-aquatic' can be varied. We define a 'semi-aquatic'
- 34 animal to refer to those that utilise aquatic environments for a significant proportion of their nutritional
- 35 resources and/or spend a significant proportion of time within bodies of water but retain terrestrial
- locomotory capabilities. However, a more specific diagnosis of the habitat use of Spinosaurus would be
- advantageous, as there is no consensus thus far (Ibrahim et al., 2014; Hone and Holtz, 2021; Fabbri et
- 38 al., 2022; Sereno et al., 2022). Most recent research broadly addresses one of two competing
- 39 hypotheses: the 'underwater pursuit predator' hypothesis (Ibrahim et al., 2020) and the 'shallow water

- 40 wading' hypothesis (Hone and Holtz, 2021). The former paints *Spinosaurus* as specialised in actively
- 41 chasing down prey whilst submerged in the water column, propelled by tail and trunk (Ibrahim et al.,
- 42 2020). In contrast, the latter hypothesis describes a hunting mode wherein the majority of the animal
- 43 remains above the waterline, except for portions of the limbs and rostrum, suggesting stork-like feeding
- behaviours (Paul, 1988; Hone and Holtz, 2017; Arden et al., 2019).
- 45 The shallow water wading hypothesis has received notable support in recent publications (Hone and
- 46 Holtz, 2021; Sereno et al., 2022), though discussions remain ongoing (see (Fabbri et al., 2022a; Fabbri et
- 47 al., 2022b)). Here, we expand on the work by Hone and Holtz (2021) to develop their quantitative
- 48 approach to analysing cranial morphology in sauropsids across different ecological habitats. To this end,
- 49 we aim to:
- Increase the number and diversity of taxa in the dataset utilised by Hone and Holtz (2021).
- Evaluate whether skull morphometrics reflect ecology.
- Categorise the habitat of *Spinosaurus* based on skull morphometrics.

53

54

Materials and methods:

- 55 99 taxa from 8 clades were examined and subdivided by known or inferred ecologies (terrestrial, semi-
- aquatic, or aquatic). Our dataset expanded upon that of Hone and Holtz (2021), increasing the number
- of representatives of examined clades and adding the families Ardeidae (herons) and Ciconiidae (storks),
- 58 to allow morphological comparisons between *Spinosaurus* and these ecological analogues (wading birds)
- as proposed by Hone and Holtz (2021). Taxa were selected upon the availability of photographs (The
- 60 Experimental Zoology Group of Wageningen University, 2022), 3D scans (The University of Texas at
- 61 Austin, 2022), or reconstructions depicting the skull in dorsal and lateral orientations (Supplementary
- 62 material).

63

[Figure 1]

65

64

- 66 Figure 1. Principal component analysis of 6 size-adjusted linear (Mosimann) variables in 95
- 67 representative taxa across 8 sauropsid clades (Squamata and Crurotarsi further divided based on
- 68 ecology). (a) Distribution of taxa in morphospace of principle component (PC) 1 (48.06% of variance) and
- 69 PC2 (30.10% of variance). Convex hulls delimit K-means (k=3) cluster groupings. Green markers indicate
- 70 terrestrial ecology, light blue markers indicate a semi-aquatic ecology, dark blue markers represent a
- 71 fully aquatic ecology, and orange and red represent unknown ecologies. Silhouettes of taxa highlight the
- 72 naris (blue) and the orbit (green). **(b)** Measurements were taken from the skull in lateral view. Skull
- height (SH), skull length (SL), distance from naris to anterior margin (NA), distance from naris to dorsal
- 74 margin (ND), and distance from orbit to dorsal margin (OD). Not pictured: skull width (taken from dorsal
- 75 view). Modified from (Hone and Holtz 2021). (c) Comparison of skull morphology between Spinosaurus
- 76 sp. (top, modified from (Ibrahim et al 2014)) and Pliosaurus kevani (bottom, modified from (Benson et al

- 77 2013)). Allosaurus and Spinosaurus by Tasman Dixon, Varanus by Steven Traver, Goniopholis, Tylosaurus,
- 78 Rhomaleosaurus, and Baryonyx by Scott Hartman, and Leptoptilos by L. Shyamal.
- 79 For each taxon, 6 measurements were taken using ImageJ v. 1.53 (Abràmoff et al., 2004) (figure 1b)
- 80 following Hone and Holtz (2021). Isometric scaling due to body size was accounted for by converting to
- 81 Mosimann shape variables (Mosimann, 1970; Sakamoto and Ruta, 2012; Morales and Giannini, 2021).
- 82 These values were log-transformed (Glazier, 2013), centred on 0 and scaled to unit variance.

83 Data analyses

- 84 All data and statistical analyses were conducted in PAST v. 4.03 (Hammer et al., 2001). A principal
- 85 component analysis (PCA) was performed on the transformed shape data of 95 taxa (those with
- 86 incomplete information were excluded). Taxa were grouped by clade and ecology. Permutational
- 87 multivariate analyses of variance (PerMANOVA) were used to assess the overlap in morphospace
- 88 between clades, and between ecologies. To determine the appropriate number and pattern of
- 89 clustering in morphospace, we used both classical (unsupervised) and k-means (supervised) cluster
- 90 analyses. We chose k=3 for k-means analysis to reflect the number of ecologies.

Results: 92

91

- 93 PC1 and PC2 together account for 78.16% of the variance in the data, with PC1 explaining 48.06% and
- 94 PC2 explaining 30.10% respectively. A morphospace plot of PC1 against PC2 (figure 1a) reveals that an
- 95 increase along PC1 is associated with an increase in skull size and a decrease in NA. Whereas increase
- 96 along PC2 is associated with skull heights approximately equal to skull length, progressively deeper-set
- 97 orbits (long OD) and nares (long ND), and increasing distance from the naris to the skull anterior margin
- 98 (long NA) (supplementary material). Ecologies are scattered across morphospace, though an increase
- 99 along PC1 appears to be associated with increasing terrestriality. When clades contain representatives
- 100 from multiple ecologies (squamates and crurotarsans), members remain close in morphospace despite
- 101 their assigned ecologies (figure 1a). Wading birds, spinosaurids, mosasaurs and plesiosaurs occupy the
- 102 same region of morphospace, with Spinosaurus being most similar to Pliosaurus kevani (figure 1c).
- 103 A one-way PerMANOVA by clade, reveals that all aquatic taxa and semi-aquatic crurotarsans did not
- 104 occupy significantly different (p > 0.05) regions of morphospace. Spinosaurids (excluding Spinosaurus)
- 105 did not show significant differences from any other clade. Storks and herons, terrestrial and semi-
- 106 aquatic squamates, and semi-aquatic and aquatic crurotarsans could not be differentiated from each
- 107 other. Non-spinosaurid theropods were distinct from all clades except semi-aquatic squamates and
- 108 spinosaurids. Likewise, semi-aquatic crurotarsans were distinct from all non-aquatic, non-spinosaurid
- 109 taxa. A one-way PerMANOVA of the same data grouped by ecology showed all terrestrial ecology pairs
- 110 as significantly different (p < 0.001) but aquatic and semi-aquatic ecologies could not be differentiated.
- [Figure 2]

113

111

112

- 114 Figure 2. Morphospace plot of principal component scores as in figure 1, showing instead unsupervised
- 115 cluster analysis groupings.
- Supervised clustering using k-means (k=3) cluster analysis did not yield clusters according to the three
- 117 habitat categories (figure 1a). Cluster 1 is characterised by narrow skulls, elongate rostra, and
- 118 substantial nares to anterior margin distances (larger NA). Cluster 2 is also associated with rostral
- elongation but is distinguished from Cluster 1 by anterodorsally elevated nares (smaller OD and NA).
- 120 Cluster 3 contains all other terrestrial taxa. High PC 1 scores indicate the absence of rostral elongation.
- 121 Unsupervised cluster analysis on the other hand produced two clusters (figure 2). Cluster A is formed of
- 122 taxa with elongate skulls and long nares to anterior margin distances. Taxa in this cluster are all either
- 123 aquatic (plesiosaurs and mosasaurs) or semi-aquatic (phytosaurs (Crurotarsi) and aves). Cluster B
- 124 contains taxa with short nares to anterior margin distances, this includes all terrestrial taxa, semi-
- aguatic squamates, and non-phytosaur crurotarsans.

126

127

Discussion

- 128 The discrepancy between the number of clusters produced by supervised (figure 1a) and unsupervised
- 129 (figure 2) cluster analyses demonstrates that the a priori categorisation (K=3) based on the three
- 130 habitats is not supported by our linear morphometric data. Cluster membership did not correspond to
- 131 specified ecology (terrestrial, semi-aquatic, or aquatic) in both analyses. Taken together, this indicates
- that ecomorphologies associated with habitat are not emergent properties of our dataset. Instead,
- 133 unsupervised cluster membership (figure 2) appears to be largely determined by the distance from the
- nares to the anterior margin, which dictates the relative rostral length often interpreted as adaptations
- for foraging in water, either semi- or fully submerged. Thus, separation in morphospace may be
- 136 influenced by factors such as diet (feeding ecology, i.e., what they are eating irrespective of where they
- live) and to a lesser extent phylogeny (Melstrom et al., 2021).
- 138 Members of cluster A (aves, plesiosaurs, mosasaurs, spinosaurids, and phytosaurs) (figure 2)
- demonstrate elongate skulls via elongation of the skeletal elements rostral to the naris, i.e., the maxilla-
- 140 premaxilla complex. This distinguishes them from those with elongate skulls in Cluster B (i.e., non-
- 141 phytosaurian crurotarsans), which achieve elongation of the rostrum via increasing the length of the
- 142 nasal-maxilla complex (supplementary material). These two morphotypes attain the same outcome in
- terms of elongation of the rostrum (e.g., increased reach), but differing which part of the rostrum is
- elongated relative to the nares, anterior (Clade A) or posterior (Clad
- 145 While it is difficult to address the sources of natural selection that differentiate the two evolutionary
- 146 pathways to rostral elongation as we have not directly tested this here, it is possible to discuss the
- 147 implications of phylogeny. Across all theropods examined (both spinosaurids and non-spinosaurids), the
- 148 relative positions of the naris and orbit to the nasal remain constant (supplementary material).
- 149 Interestingly, the rostral elongation in Spinosaurus is achieved via the lengthening of the skeletal
- elements anterior to the naris, thus maintaining the theropod configuration of the naris and orbit
- positions relative to the nasal. This feature is more prominent in *Spinosaurus* even compared to its
- 152 closest relatives, the baryonychine spinosaurids (figure 1a, 1c). On the other hand, birds (avian
- theropods) ancestrally display elongation in the maxilla-premaxilla complex (Bhullar et al., 2015),

154 despite their highly diverse feeding ecology, most of which being non-aquatic. Taken together, this 155 indicates that theropods tend to elongate their rostra by extending the maxilla-premaxilla complex 156 rather than the maxilla-nasal complex. 157 In contrast, Crurotarsi displays both pathways of rostral elongation in phytosaurs (Cluster A) and crocodyliforms (Cluster B), demonstrating less phylogenetic constraint across Crurotarsi as a whole, but 158 159 distinct effects of phylogeny within Phytosauria and Crocodyliformes respectively, i.e., all phytosaurs are in Cluster A while all crocodyliforms are in Cluster B. The disparity in how rostral elongation is attained 160 across Crurotarsi likely owes to it being a large and diverse clade, with phytosaurs being more basal, 161 representing an older radiation, than crocodyliforms (Nesbitt, 2011). Regardless of what ecological 162 163 selection pressures may be associated with rostral elongation, it is likely that members within clades 164 consistently attain this trait. 165 In general, rostral elongation is viewed as an adaptation for both semi- and fully aquatic taxa feeding on aquatic prey. The associated increases in the out-lever distance (distance from jaw joint to bite point) 166 167 results in greater relative jaw closing speed (Sakamoto, 2010; Ballell et al., 2019; Evans et al., 2019), which is a desirable trait when feeding on highly mobile aquatic prey (Massare, 1988; McCurry et al., 168 169 2017). However, species engaging with such a feeding ecology are subjected to the mechanical 170 pressures of feeding in a dense fluid medium that restricts viable morphospace (Massare, 1988; Pierce 171 et al., 2008). This combines with fewer modalities of feeding available to large-bodied marine organisms 172 (Taylor, 1987) leading to convergence in skull shape (figure 2). 173 The observed rostral elongation may serve different purposes in the different clades represented in 174 cluster A. In Spinosaurus, this may suggest further adaptation for a "stand-and-wait" predation strategy 175 seen in herons and storks (Kushlan, 1976; Willard, 1977; Maheswaran and Rahmani, 2002). An increased 176 distance between the tip of the rostrum and nares allows for a greater portion of the skull to remain 177 submerged without restricting breathing, potentially increasing foraging efficiency as proposed under 178 the 'shallow water wading' hypothesis (Hone and Holtz, 2021). In marine mosasaurs and pliosauroid 179 plesiosaurs, rostral elongation is present but not as extreme, especially in plesiosauroid plesiosaurs 180 (supplementary material). In these taxa, nares that are positioned closer to the dorsal margin of the 181 head may have assisted with minimising the portion of the body exposed when surfacing for breath. 182 The variables investigated here in particular, the position of the nares relative to the anterior margin of 183 the skull- are largely able to discriminate between taxa that feed terrestrially and those that feed on 184 aguatic prey (figure 1a, 2). However, due to similar biomechanical restrictions, taxa that feed on aquatic prey show substantial skull shape convergence with fully aquatic taxa which prevents definitive 185 186 categorisation of taxa with uncertain ecology (such as Spinosaurus), based on linear measurement of the skull alone. Further investigations may wish to consider post-cranial data, phylogenetic analyses and 187 188 dentition, as well as feeding guilds as a categorisation factor. The data we have gathered is not sufficient 189 to completely evaluate the utility of size-adjusted linear measurements of the cranium, but functions as 190 an exploratory study which provides a framework for future studies to develop this line of enquiry. Specifically, we emphasise the importance of comparing supervised and unsupervised clustering to 191 192 assess if the former is appropriate.

194 **Acknowledgements:**

- 195 This research was funded by the University of Lincoln's Undergraduate Researcher Opportunity Scheme
- 196 (UROS).
- 197 Images used are available under the CC BY 4.0 licence https://creativecommons.org/licenses/by/3.0/.
- 198 Taxa silhouettes sources from PhyloPic.org.

199

200 References:

- 201 Abràmoff, D.M.D., Magalhães, P.J. and Ram, S.J. (2004) Image Processing with ImageJ. Biophotonics
- 202 international, 11(7) 36-42.
- 203 Allain, R., Xaisanavong, T., Richir, P. and Khentavong, B. (2012) The first definitive Asian spinosaurid
- 204 (Dinosauria: Theropoda) from the early cretaceous of Laos. Naturwissenschaften, 99(5) 369–377.
- Amiot, R., Buffetaut, E., Lécuyer, C., Wang, X., Boudad, L., Ding, Z., Fourel, F., Hutt, S., Martineau, F.,
- 206 Medeiros, M.A., Mo, J., Simon, L., Suteethorn, V., Sweetman, S., Tong, H., Zhang, F. and Zhou, Z. (2010)
- 207 Oxygen isotope evidence for semi-aquatic habits among spinosaurid theropods. *Geology*, 38(2) 139–142.
- 208 Arden, T.M.S., Klein, C.G., Zouhri, S. and Longrich, N.R. (2019) Aquatic adaptation in the skull of
- 209 carnivorous dinosaurs (Theropoda: Spinosauridae) and the evolution of aquatic habits in spinosaurids.
- 210 Cretaceous Research, 93 275–284.
- Aureliano, T., Ghilardi, A.M., Buck, P.V., Fabbri, M., Samathi, A., Delcourt, R., Fernandes, M.A. and
- 212 Sander, M. (2018) Semi-aquatic adaptations in a spinosaur from the Lower Cretaceous of Brazil.
- 213 Cretaceous Research, 90 283–295.
- 214 Ballell, A., Moon, B.C., Porro, L.B., Benton, M.J. and Rayfield, E.J. (2019) Convergence and functional
- evolution of longirostry in crocodylomorphs. *Palaeontology*, 62(6) 867–887.
- 216 Beevor, T., Quigley, A., Smith, R.E., Smyth, R.S.H., Ibrahim, N., Zouhri, S. and Martill, D.M. (2021)
- Taphonomic evidence supports an aquatic lifestyle for Spinosaurus. Cretaceous Research, 117 104627.
- 218 Benson, R.B.J., Evans, M., Smith, A.S., Sassoon, J., Moore-Faye, S., Ketchum, H.F. and Forrest, R. (2013) A
- 219 Giant Pliosaurid Skull from the Late Jurassic of England. *PLOS ONE*, 8(5) e65989.
- 220 Benyoucef, M., Läng, E., Cavin, L., Mebarki, K., Adaci, M. and Bensalah, M. (2015) Overabundance of
- 221 piscivorous dinosaurs (Theropoda: Spinosauridae) in the mid-Cretaceous of North Africa: The Algerian
- dilemma. Cretaceous Research, 55 44-55.
- 223 Bertin, T. (2010) A Catalogue of Material and Review of the Spinosauridae. PalArch's Journal of
- 224 *Vertebrate Palaeontology*, 7(4) 01–39.
- Bestwick, J., Jones, A.S., Purnell, M.A. and Butler, R.J. (2021) Dietary constraints of phytosaurian reptiles
- revealed by dental microwear textural analysis. *Palaeontology*, 64(1) 119–136.

- 227 Bhullar, B.-A.S., Morris, Z.S., Sefton, E.M., Tok, A., Tokita, M., Namkoong, B., Camacho, J., Burnham, D.A.
- and Abzhanov, A. (2015) A molecular mechanism for the origin of a key evolutionary innovation, the bird
- 229 beak and palate, revealed by an integrative approach to major transitions in vertebrate history.
- 230 Evolution, 69(7) 1665-1677.
- 231 Brusatte, S.L., Sakamoto, M., Montanari, S. and Harcourt Smith, W.E.H. (2012) The evolution of cranial
- 232 form and function in theropod dinosaurs: insights from geometric morphometrics. Journal of
- 233 *Evolutionary Biology*, 25(2) 365–377.
- 234 Charig, A. and Milner, A.C. (1997) Baryonyx walkeri, a fish-eating dinosaur from the Wealden of Surrey.
- 235 Bulletin of the Natural History Museum. Geology series, 53 11–70.
- 236 Erickson, G.M., Gignac, P.M., Steppan, S.J., Lappin, A.K., Vliet, K.A., Brueggen, J.D., Inouye, B.D., Kledzik,
- 237 D. and Webb, G.J.W. (2012) Insights into the Ecology and Evolutionary Success of Crocodilians Revealed
- through Bite-Force and Tooth-Pressure Experimentation. *PLOS ONE*, 7(3) e31781.
- 239 Evans, K.M., Kim, L.Y., Schubert, B.A. and Albert, J.S. (2019) Ecomorphology of Neotropical Electric
- 240 Fishes: An Integrative Approach to Testing the Relationships between Form, Function, and Trophic
- 241 Ecology. *Integrative Organismal Biology*, 1(1) obz015.
- 242 Fabbri, M., Navalón, G., Benson, R.B.J., Pol, D., O'Connor, J., Bhullar, B.-A.S., Erickson, G.M., Norell, M.A.,
- Orkney, A., Lamanna, M.C., Zouhri, S., Becker, J., Emke, A., Dal Sasso, C., Bindellini, G., Maganuco, S.,
- 244 Auditore, M. and Ibrahim, N. (2022) Subaqueous foraging among carnivorous dinosaurs. Nature,
- 245 603(7903) 852–857.
- FFabbri, M., Navalón, G., Benson, R.B.J., Pol, D., O'Connor, J., Bhullar, B.-A.S., Erickson, G.M., Norell,
- 247 M.A., Orkney, A., Lamanna, M.C., Zouhri, S., Becker, J., Sasso, C.D., Bindellini, G., Maganuco, S., Auditore,
- 248 M. and Ibrahim, N. (2022) Sinking a giant: quantitative macroevolutionary comparative methods debunk
- 249 *qualitative assumptions.* p.2022.05.05.490811.
- 250 Fischer, V., Benson, R.B.J., Zverkov, N.G., Soul, L.C., Arkhangelsky, M.S., Lambert, O., Stenshin, I.M.,
- 251 Uspensky, G.N. and Druckenmiller, P.S. (2017) Plasticity and Convergence in the Evolution of Short-
- 252 Necked Plesiosaurs. *Current Biology*, 27(11) 1667-1676.e3.
- 253 Glazier, D.S. (2013) Log-transformation is useful for examining proportional relationships in allometric
- scaling. *Journal of Theoretical Biology*, 334 200–203.
- 255 Hammer, O., Harper, D.A.T. and Ryan, P.D. (2001) PAST: Paleontological Statistics Software Package for
- 256 Education and Data Analysis. Palaeontologia Electronica, 4(1) 9.
- 257 Henderson, D.M. (2018) A buoyancy, balance and stability challenge to the hypothesis of a semi-aquatic
- 258 Spinosaurus Stromer, 1915 (Dinosauria: Theropoda). PeerJ, 6 e5409.
- 259 Hone, D.W.E. and Holtz, T.R. (2017) A Century of Spinosaurs A Review and Revision of the
- 260 Spinosauridae with Comments on Their Ecology. Acta Geologica Sinica English Edition, 91(3) 1120-
- 261 1132.
- Hone, D.W.E. and Holtz, T.R.J. (2021) Evaluating the ecology of Spinosaurus: Shoreline generalist or
- aquatic pursuit specialist? *Palaeontologia Electronica*, 24(1) 1–28.

- 264 Ibrahim, N., Maganuco, S., Dal Sasso, C., Fabbri, M., Auditore, M., Bindellini, G., Martill, D.M., Zouhri, S.,
- 265 Mattarelli, D.A., Unwin, D.M., Wiemann, J., Bonadonna, D., Amane, A., Jakubczak, J., Joger, U., Lauder,
- 266 G.V. and Pierce, S.E. (2020) Tail-propelled aquatic locomotion in a theropod dinosaur. *Nature*, 581(7806)
- 267 67-70.
- 268 Ibrahim, N., Sereno, P.C., Sasso, C.D., Maganuco, S., Fabbri, M., Martill, D.M., Zouhri, S., Myhrvold, N.
- and Iurino, D.A. (2014) Semiaquatic adaptations in a giant predatory dinosaur. Science, Available from
- 270 https://www.science.org/doi/abs/10.1126/science.1258750 [accessed 7 February 2022].
- 271 Kushlan, J.A. (1976) Feeding Behavior of North American Herons. *The Auk*, 93(1) 86–94.
- 272 Maheswaran, G. and Rahmani, A.R. (2002) Foraging behaviour and feeding success of the black-necked
- 273 stork (Ephippiorhynchus asiaticus) in Dudwa National Park, Uttar Pradesh, India. Journal of Zoology,
- 274 258(2) 189–195.
- 275 Massare, J.A. (1988) Swimming Capabilities of Mesozoic Marine Reptiles: Implications for Method of
- 276 Predation. *Paleobiology*, 14(2) 187–205.
- 277 Massare, J.A. (1987) Tooth Morphology and Prey Preference of Mesozoic Marine Reptiles. Journal of
- 278 Vertebrate Paleontology, 7(2) 121–137.
- 279 McCurry, M.R., Evans, A.R., Fitzgerald, E.M.G., Adams, J.W., Clausen, P.D. and McHenry, C.R. (2017) The
- 280 remarkable convergence of skull shape in crocodilians and toothed whales. Proceedings of the Royal
- 281 *Society B: Biological Sciences*, 284(1850) 20162348.
- Melstrom, K.M., Angielczyk, K.D., Ritterbush, K.A. and Irmis, R.B. (2021) The limits of convergence: the
- roles of phylogeny and dietary ecology in shaping non-avian amniote crania. Royal Society Open Science,
- 284 8(9) 17.
- 285 Morales, M.M. and Giannini, N.P. (2021) Pleistocene extinction and geographic singularity explain
- differences in global felid ensemble structure. Evolutionary Ecology, 35(2) 271–289.
- 287 Mosimann, J.E. (1970) Size Allometry: Size and Shape Variables with Characterizations of the Lognormal
- and Generalized Gamma Distributions. *Journal of the American Statistical Association*, 65(330) 930–945.
- Nesbitt, S.J. (2011) The early evolution of archosaurs: relationships and the origin of major clades.
- 290 (Bulletin of the American Museum of Natural History, no. 352). Available from
- 291 https://digitallibrary.amnh.org/handle/2246/6112 [accessed 16 September 2022].
- 292 Paul, G.S. (1988) Predatory Dinosaurs of the World: a Complete Illustrated Guide. New York: Simon and
- 293 Schuster.
- 294 Pierce, S.E., Angielczyk, K.D. and Rayfield, E.J. (2008) Patterns of morphospace occupation and
- 295 mechanical performance in extant crocodilian skulls: A combined geometric morphometric and finite
- element modeling approach. *Journal of Morphology*, 269(7) 840–864.
- 297 Sakamoto, M. (2022) Estimating bite force in extinct dinosaurs using phylogenetically predicted
- 298 physiological cross-sectional areas of jaw adductor muscles. *PeerJ*, 10 e13731.
- 299 Sakamoto, M. (2010) Jaw biomechanics and the evolution of biting performance in theropod dinosaurs.
- 300 Proceedings of the Royal Society B: Biological Sciences, 277(1698) 3327–3333.

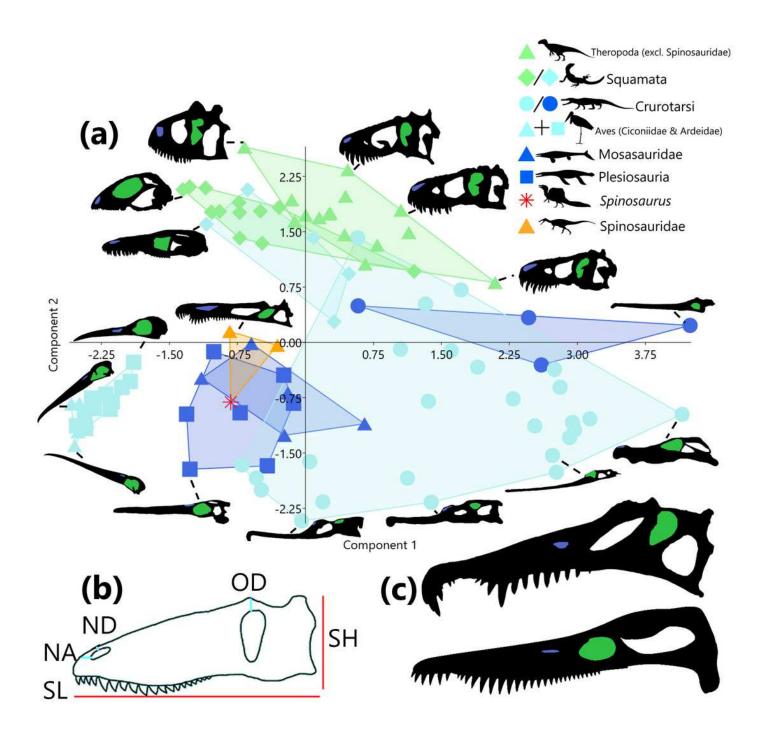
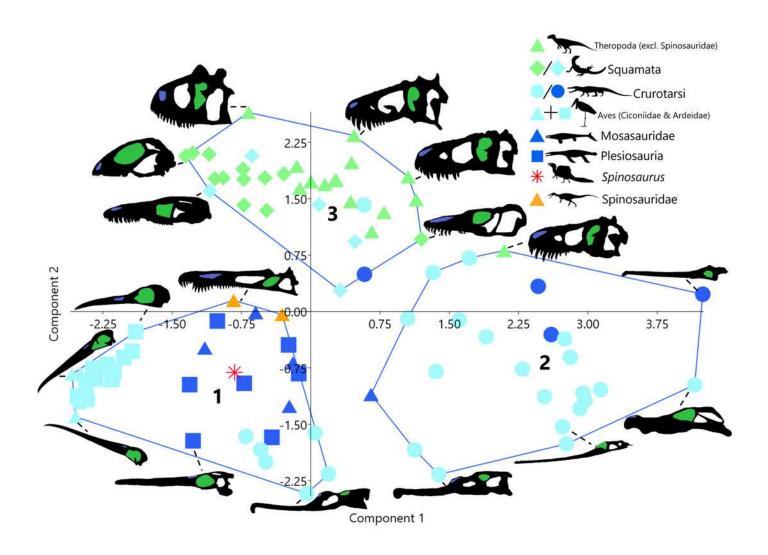

- 301 Sakamoto, M. and Ruta, M. (2012) Convergence and Divergence in the Evolution of Cat Skulls: Temporal
- and Spatial Patterns of Morphological Diversity. *PLOS ONE*, 7(7) e39752.
- 303 Sales, M.A.F. and Schultz, C.L. (2017) Spinosaur taxonomy and evolution of craniodental features:
- 304 Evidence from Brazil. *PLOS ONE*, 12(11) e0187070.
- 305 Sereno, P., Myhrvold, N., Henderson, D.M., Fish, F.E., Vidal, D., Baumgart, S.L., Keillor, T.M., Formoso,
- 306 K.K. and Conroy, L.L. (2022) Spinosaurus is not an aquatic dinosaur M. Zhu, C. Rutz, M. Zhu, T.R. Holtz,
- 307 and D. Hone (eds.). eLife, 11 e80092.
- 308 Sereno, P.C., Beck, A.L., Dutheil, D.B., Gado, B., Larsson, H.C.E., Lyon, G.H., Marcot, J.D., Rauhut, O.W.M.,
- 309 Sadleir, R.W., Sidor, C.A., Varricchio, D.D., Wilson, G.P. and Wilson, J.A. (1998) A Long-Snouted Predatory
- 310 Dinosaur from Africa and the Evolution of Spinosaurids. Science, 282(5392) 1298–1302.
- 311 Stromer, E. (1915) Ergebnisse der Forschungsreisen Prof. E. Stromers in den Wüsten Agyptens. II.
- 312 Wirbeltier-Reste der Baharije-Stufe (unterstes Cenoman). 3. Das Original des theropoden Spinosaurus
- 313 aegyptiacus nov. gen., nov. spec. Abhandlungen der Koniglich Bayerischen Akademie der
- 314 Wissenschaften. *Mathematisch-physikalische Klasse*, 28(3) 1e32.
- 315 Taylor, M.A. (1987) How tetrapods feed in water: a functional analysis by paradigm. Zoological Journal of
- 316 the Linnean Society, 91(2) 171–195.
- 317 The Experimental Zoology Group of Wageningen University (2022) Skull Site, Bird Skull Collection.
- 318 The University of Texas at Austin (2022) Digimorph, Digital Morphology Database.
- 319 Therrien, F. and Henderson, D.M. (2007) My theropod is bigger than yours ... or not: estimating body
- 320 size from skull length in theropods. *Journal of Vertebrate Paleontology*, 27(1) 108–115.
- 321 Willard, D.E. (1977) The Feeding Ecology and Behavior of Five Species of Herons in Southeastern New
- 322 Jersey. *The Condor*, 79(4) 462–470.

Figure 1

Principal component analysis of 6 size-adjusted linear (Mosimann) variables in 95 representative taxa across 8 sauropsid clades (Squamata and Crurotarsi further divided based on ecology).


(a) Distribution of taxa in morphospace of principle component (PC) 1 (48.06% of variance) and PC2 (30.10% of variance). Convex hulls delimit K-means (k=3) cluster groupings. Green markers indicate terrestrial ecology, light blue markers indicate a semi-aquatic ecology, dark blue markers represent a fully aquatic ecology, and orange and red represent unknown ecologies. Silhouettes of taxa highlight the naris (blue) and the orbit (green). (b)

Measurements were taken from the skull in lateral view. Skull height (SH), skull length (SL), distance from naris to anterior margin (NA), distance from naris to dorsal margin (ND), and distance from orbit to dorsal margin (OD). Not pictured: skull width (taken from dorsal view). Modified from (Hone and Holtz 2021). (c) Comparison of skull morphology between Spinosaurus sp. (top, modified from (Ibrahim et al 2014)) and Pliosaurus kevani (bottom, modified from (Benson et al 2013)). Allosaurus and Spinosaurus by Tasman Dixon, Varanus by Steven Traver, Goniopholis, Tylosaurus, Rhomaleosaurus, and Baryonyx by Scott Hartman, and Leptoptilos by L. Shyamal.

Figure 2

Morphospace plot of principal component scores as in figure 1, showing instead unsupervised cluster analysis groupings.

