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ABSTRACT
Objective. The incidence of perioperative neurocognitive disorders (PND) is high,
especially after cardiac surgeries, and the underlying mechanisms remain elusive.
Here, we conducted a prospective observational study to observe serum proteomics
differences in PND patients after cardiac valve replacement surgery.
Methods. Two hundred and twenty-six patients who underwent cardiac valve surgery
were included. They were categorized based on scoring into non-PND group (group
non-P) and PND group (group P’). The risk factors associated with PNDwere analyzed.
These patients were further divided into group C and group P by propensity score
matching (PSM) to investigate the serum proteome related to the PND by serum
proteomics.
Results. The postoperative 6-week incidence of PND was 16.8%. Risk factors for PND
include age, chronic illness, sufentanil dosage, and time of cardiopulmonary bypass
(CPB). Proteomics identified 31 down-regulated proteins and six up-regulated proteins.
Finally, GSTO1, IDH1, CAT, and PFN1 were found to be associated with PND.
Conclusion. The occurrence of PND can impact some oxidative stress proteins. This
study provided data for future studies about PND to general anaesthesia and surgeries.

Subjects Anesthesiology and Pain Management, Cardiology, Cognitive Disorders, Neurology,
Psychiatry and Psychology
Keywords Postoperative neurocognitive disorder (PND), Proteome, Cardiac valve replacement,
Propensity score matching (PSM), Serum
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INTRODUCTION
Perioperative neurocognitive disorder (PND) manifests as postoperative cognitive decline,
encompassing memory impairment, abstract thinking difficulties, and orientation
disruptions. These symptoms often coincide with reduced social engagement and
integration capabilities (Evered et al., 2018). Degenerative diseases have become
increasingly common among elderly individuals, including valvular heart disease. At
the same time, heart valve replacement surgery has been increasing year by year (Hao,
Hei & Hou, 2021). Age is the main independent risk factor for PND (Kubota et al., 2018).
Cognitive dysfunction occurs in 7% to 26% of patients after non-cardiac surgery (Moller
et al., 1998). However, this prevalence rises dramatically from 14% to 60% following
cardiac surgeries (Keizer et al., 2005). Previous research has demonstrated that proteins
Beta-amyloid and Tau in cerebrospinal fluid are linked to the underlying mechanism of
cognitive impairment (Blennow & Zetterberg, 2018; Hansson et al., 2019).

Present research illustrates that PND’s pathogenesis is multifaceted, including
encompassing oxidative stress (Netto et al., 2018), neuroinflammatory responses (Luo
et al., 2019), mitochondrial dysfunction (Rivero-Segura et al., 2019; Salminen et al., 2012),
blood–brain barrier injury (Marungruang et al., 2018) and synaptic damage (Xiao et al.,
2018). Given this complexity, it is insufficient to rely solely on low concentrations of
beta-amyloid proteins in the cerebrospinal fluid and elevated levels of phosphorylated tau
proteins for diagnosis and treatment (VanDusen et al., 2021). Studies are needed to identify
and utilize more proteins to enhance diagnostic precision and therapeutic effectiveness.

This study aimed to use proteomics to explore potential PND-related proteins by
analyzing serum samples from patients undergoing post-cardiopulmonary bypass (CPB)
valve replacement. This study may offer new PND research targets.

METHODS
Participants
Weconducted a single-center prospective cohort study that was approved by the Biomedical
Research Ethics Committee of the Affiliated Hospital of Zunyi Medical University on
October, 2022 (KLL-2022-700) and was registered in the Chinese Clinical Trials Registry
on October, 2022 (ChiCTR2200064929). Patients who underwent heart valve replacement
at Zunyi Medical University Hospital from October 2022 to April 2023 under CPB were
included (the first patient in this study was included on October 11th, 2022, and the last
visit was on November 24th, 2022). Written informed consent was obtained prior the
enrollment. The inclusion criteria were as follows: Patients between the ages of 45 and
74 who underwent heart valve replacement surgery under CPB and are classified as ASA
grade I- III. The exclusion criteria: surgical history, cerebrovascular disease, epilepsy, other
central nervous system diseases, metabolic disease, history of endocrine disorders, patients
with neurological or psychiatric illnesses, preoperative Mini-Mental State Examination
(MMSE) score ≤ 23, and emergency patients.
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Anesthesia and surgery
No preoperative medication was given. Anesthesia was induced with midazolam (2 mg),
sufentanil (0.4∼0.6 µg/kg), atracurium cisbenesulfonic acid (0.2∼0.3 mg/kg) and
etomidate (0.3 mg/kg). Anesthesia maintenance involved the intravenous pumping of
sufentanil (0.5∼1.0 µg/kg/h), cisatracurium (0.2 mg/kg/h), propofol (0.5∼2 mg/kg/h).
Ventilator parameters were adjusted according to airway pressure and end-expiratory CO2

(ETCO2) was maintained at 35∼45mmHg. Invasive arterial blood pressure (mmHg), body
temperature (T), heart rate (HR), saturation of pulse oxygen (SPO2), electrocardiogram
(ECG), bis-frequency index (BIS) and ETCO2 weremonitored. Intraoperativemean arterial
pressure (MAP) and HR fluctuations were maintained within ±20% of baseline values.

Patients were returned to the Intensive Care Unit (ICU) on the vascular surgery ward
with a tracheal catheter after surgery. Postoperative analgesia was managed in a uniform
manner in the ward. The use of opioids and vasoactive drugs was recorded. Two milliliters
peripheral venous bloodwas collected on the secondday post-surgery after neuropsychiatric
scale assessment. Blood samples were centrifuged at 4 ◦C for 3,000 rpm for 15 min. Serum
was taken and stored in a refrigerator at −80 ◦C.

Neuropsychological test
MMSE (provided by The Hartford Institute for Geriatric Nursing, Division of Nursing,
New York University) and MoCA-B evaluation scales were performed on pre-surgery and
post-surgery, and scores for each test were recorded by trained investigators. Z-score was
calculated for each patient based on the scores from pre-surgery and post-surgery cognitive
function tests. Cognitive impairment testing was performed with consideration of potential
learning effect. The means change from the health control group (spouse of patients) was
subtracted to correct for this learning effect. This means that the preoperative score and
learning effect were deducted from each postoperative test score. The difference was then
divided by the preoperative standard deviation (SD) of the healthy control group. The
composite Z-score was calculated as the average Z-score of all tests in a single patient. PND
was determined by a Z-score of <−1.96 in two or more test items (Greaves et al., 2020;
Wiberg et al., 2022).

Z =
Postoperative Score−Preoperative Score−Learning Effect

Preoperative Standard Deviation
.

Grouping
Based on Z-scores, patients were categorized into PND group (group P’) and non-PND
group (group non-P). Using PSM (with four risk factors as covariates and a caliper width
of 0.2) to match 1:1 from the group non-PND to create a matched group C that has similar
baseline characteristics to the group P’ (Wang, 2021). The resulting matched groups are
the group P and the group C.

Sample size
The postoperative patients were divided into two groups: PND (group P’) and non-PND
(group non-P). The incidence rate of PND was evaluated as approximately 24% based
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on preliminary experiment. The reported incidence of neurocognitive disorders after
cardiac valve surgery in Chinese individuals was approximately 33% according to relevant
literature (Rappold et al., 2016; Xu et al., 2013). Using the PASS 2021 software (Kaysville,
Utah, USA) and setting the parameters for one proportion, two sides to P0 0.33, P1 0.24,
with a significance level of 0.05 and a test power of 0.80, we estimated a drop-out rate of
10% and included 226 subjects in the study.

Proteomics
After matching, serum samples from groups P (n= 25) and C (n= 25) were pooled every
five samples for protein detection. The extracted protein was subjected to BCA protein
concentration assay by BCA kit (Thermo Scientific, Waltham, MA, USA). Standard
curves were plotted based on the optical density values of standards, which allowed the
determination of protein concentration. SDS-PAGE was used for protein separation,
followed by staining with Coomassie Brilliant Blue, then a fully automated digital gel image
analysis system was applied for scanning.

The remaining samples were protease-digested, desalted, and then analyzed by mass
spectrometry under the following conditions: capillary voltage of 1.5 KV, desiccant
temperature of 180 ◦C, drying gas flow rate of 3.0 L/min, mass spectrometry scan range
of 100–1700 m/z, ion mobility range of 0.75−1.4 Vs/cm2, collision energy range of 20–59
eV, followed by evaluation of raw data, database search, and screening for differentially
expressed proteins. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) databases were used to explore the associated functions and/or pathways of target
proteins.

Statistical analysis
Data analysis was performed using SPSS 29.0 (IBM Corp., Armonk, NY, USA, Version
29.0). Quantitative data were expressed as means ± SD, while categorical variables were
presented as percentages. Two independent samples were compared using Student’s t -test
or the Mann–Whitney U-test (when variances were homogeneous and non-normal), and
chi-square tests or Fisher’s exact probability tests were applied for count data. P <0.05 was
considered statistically significant.

Proteins with a fold change >1.2 or <0.83 and P <0.05 were considered differentially
expressed proteins (DEPs). The DEPs were further subjected to GO and KEGG enrichment
analysis using the R package. The results of the enrichment were visualized the ggplot2
package in R. Protein interaction analysis was performed using String.

RESULTS
Characteristics of patients
A total of 226 patients were enrolled. Two patients were excluded due to perioperative
deaths. By the end of 6 weeks, 22 patients had recovered their cognitive ability compared
with the second day after surgery (out of 53 patients with PND on the second day post-
surgery, 44 on the day before discharge, and 31 by the sixth week). Eighteen cases were lost
to follow-up. A total of 184 patients were included finally. Among these patients, 31 patients
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Figure 1 Flow diagram showing the recruiting criterion.
Full-size DOI: 10.7717/peerj.17536/fig-1

(group P’) developed PND (16.8%), while 184 patients (group non-P) did not develop
PND. Twenty-five patients were successfully matched in the group P and 25 patients were
matched in the group C through PSM (Fig. 1). Detailed demographic characteristics of the
healthy group control (spouse of patients, n= 50) and the surgical group (n= 226) before
surgery are presented in Table S1.

Risk factors of PND
Through a univariate analysis of preoperative, intraoperative, and postoperative related
indicators for both the non-P and P’ groups, it was found that age, the presence of
chronic disease, the dose of sufentanil, and the duration of CPB are factors influencing
the occurrence of PND refer to Table 1. The MMSE scores and MoCA scale scores of
the non-P and P’ groups on the day before surgery, the second day after surgery, the day
before discharge, and 6 weeks after surgery are presented in Table S2. The comparisons of
relevant parameters between the preoperative, intraoperative, postoperative group non-P
and group P’ are detailed in Tables S3, S4, and S5. The MMSE and MoCA scale scores of
the group P and C after matching can be found in Table S6. The comparisons of relevant
parameters before surgery, during surgery and after surgery between the group P and C
after PSM can be seen in Table S7.
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Figure 2 Protein quality control and data quality control. (A) SDS-PAGE image shows clearly resolved
and distinguished protein bands for samples from groups P (mixed proteins 1–5) and C (mixed proteins
6–10), with a clean background. (B) PCA was used to visualize the clustering trend between groups P and
C, revealing distinct protein profile separation.

Full-size DOI: 10.7717/peerj.17536/fig-2

Protein quality control and data quality control
Upon examination via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE), the protein bands of each sample were clearly resolved and distinguishable. The
distribution characteristics of these protein bands exhibited similarity among the various
samples, and the gel background remained clean and clear, as shown in Fig. 2A.

Rawdatawere retrieved from the database, andmedian normalization and log2 logarithm
transformation were applied to obtain reliable proteins. Utilizing the expression level of
reliable proteins for principal component analysis (PCA), we obtained a good similarity
and difference between group P and C, as shown in Fig. 2B.

Screening DEPs
After analyzing the serum of the successfully matched group P and C on the second day
after surgery using 4D-Label free serum proteomics, 37 differential proteins were identified,
with six proteins were up-regulated and 31 proteins were down-regulated. Subsequent GO
and KEGG analyses are illustrated in Fig. 3.

Analysis of targeted proteins
The 37 differential proteins were cross-referenced with ‘‘PND’’, ‘‘POCD’’, and ‘‘cognitive’’
to select proteins related to cognitive function. These were listed in ascending order of
P-value, resulting in 10 up-regulated and 2 down-regulated proteins. See Table 2 for details.
The relationship between these DEPs and MMSE scores from this study was analyzed and
ordered according to P-value, as shown in Table 3.
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Table 1 Comparison of parameters between group non-P and group P’ before, during, and after
surgery.

Parameter group non-P
(n= 153)

group P’
(n= 31)

P-value

Preoperative indicators
Gender (%)
Female/Male 72/81 11/20 0.076
Age (y) (%)
45∼54/55∼64/65∼75 78/49/26 10/10/11 0.043*

BMI (mean±SD) 22.02± 3.46 22.00± 3.10 0.974
Education (%)
3/6/9 years 44/45/55 9/6/12 0.439
MMSE score pre-operation 27.43± 1.64 27.22± 1.98 0.540
Chronic diseases (at least one of
COPD, vascular disease,
anemia or arthritis)
No/Yes 125/28 19/12 0.014*

Hypertension
No/Yes 163/17 26/5 0.630
Stage 1/Stage 2/Stage 3 10/4/3 2/2/1 0.729
Age of hypertensive patients 58.94± 7.85 63.00± 10.49 0.306
MMSE score pre-operation 26.41± 1.70 26.8± 2.17 0.676
MoCA score pre-operation 25.00[24.00, 26.00] 24.00[23.50,26.50] 0.542
Years with hypertension 4.00[2.00, 6.50] 3.00[1.50, 7.00] 0.968
Intraoperative indicators
Sufentanil (ug)(mean±SD) 327.56± 55.68 348.55± 39.52 0.047*

Propofol (ml) (mean±SD) 148.26± 35.45 153.06± 38.55 0.499
Midazolam(mg)(mean±SD) 4.62± 1.90 5.13± 1.38 0.160
Etomidate (mg)(mean±SD) 15.20± 3.36 16.19± 3.28 0.132
Dexmedetomidine (%)
No/Yes 98/54 15/16 0.093
CPB time (min)(mean±SD) 147.09± 46.38 165.35± 48.11 0.048*

HR (bmp) (mean±SD) 92.27± 8.60 92.33± 8.82 0.973
MAP (mmHg)(mean±SD) 73.76± 3.41 73.77± 4.01 0.987
BIS(mean±SD) 46.84± 3.04 46.93± 3.21 0.884
Postoperative indicators
Intubation time in ICU (h) (IQR) 19.00[14.00, 25.50] 20.00[16.00, 29.00] 0.140
Dopamine (mg) (IQR) 540.00[300.00,900.00] 600.00[390.00,720.00] 0.876
Epinephrine (mg)(IQR) 6.00[2.50, 7.75] 5.00[2.85, 6.95] 0.676
VAS score (IQR) 4.00[4.00, 5.00] 4.00[4.00, 5.00] 0.426

Notes.
*In comparison to the group non-P, P < 0.05.
IQR, Interquartile Range; BMI, Body Mass Index; COPD, Chronic Obstructive Pulmonary Disease; VAS, Visual Analogue
Scale.

GO and KEGG analyses
GO and KEGG analyses were performed on the differential proteins, followed by
PPI analysis. GO enrichment analysis demonstrated significant alterations in cellular
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Figure 3 Profiling and integrated analysis of DEPs between groups P and C revealed proteins linked to
PND occurrence after cardiac valve surgery. (A) The heatmap shows hierarchical clustering of quantita-
tive protein data from 10 samples. (B) GO analysis, the figure displays Enrichment Score on the x-axis and
top 5 BP/CC/MF terms on the y-axis. Larger bubbles denote more proteins and the color shift from yel-
low to red indicates increasing significance with smaller p-values. (C) Bubble diagram shows Enrichment
Score vs top 20 pathways. Larger bubbles and red-to-purple gradient signify more differential proteins and
increasing significance. (D) NetworkX visualized the top 25 connected nodes, with circles representing dif-
ferential proteins color-coded by upregulation (red) or downregulation (green).

Full-size DOI: 10.7717/peerj.17536/fig-3

components of the cognitive-related DEPs. Majority of these DEPs were located in the
extracellular exosomes and extracellular regions, with some also present in cytoplasmic
vesicles and blood microparticles. KEGG enrichment analysis identified a total of 12
differential proteins with Listhits ≥2, sorted in ascending order of p-values, which were
found to participate in glutathione metabolism, pertussis, peroxisome, and complement
activation pathways. Refer to Fig. 4 for details.
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Table 2 DEPs associated with cognitive function after database search.

Accession Gene name FC P-value

Down O75874 IDH1 −0.0212 0.0000
Down P0DP25 CALM3 −0.8384 0.0025
Down P04275 VWF −0.7607 0.0072
Down P20742 PZP −0.7277 0.0140
Down P02745 C1QA −0.7079 0.0204
Down P04040 CAT −0.6994 0.0255
Down P07737 PFN1 −0.6848 0.0277
Down P26038 MSN −0.6558 0.0308
Down P78417 GSTO1 −0.6538 0.0318
Down P11597 CETP −0.6478 0.0335
Up Q9NPR2 SEMA4B 0.5946 0.0449
Up P12109 COL6A1 0.6443 0.0498

Table 3 Correlation between DEPs andMMSE scores.

Accession Gene name P-value MMSE corr MMSE corr_P value

Down P0DP25 CALM3 0.0025 −0.8384 0.0024
Down O75874 IDH1 0.0000 0.8200 0.0037
Down P04275 VWF 0.0072 −0.7607 0.0106
Down P02745 C1QA 0.0204 −0.7277 0.0170
Down P78417 GSTO1 0.0318 −0.7079 0.0220
Down P20742 PZP 0.0140 −0.6994 0.0244
Down P26038 MSN 0.0308 −0.6848 0.0289
Down P07737 PFN1 0.0277 −0.6558 0.0395
Down P11597 CETP 0.0335 −0.6538 0.0403
Down P04040 CAT 0.0255 −0.6478 0.0428
Up P12109 COL6A1 0.0498 0.6443 0.0444
Up Q9NPR2 SEMA4B 0.0449 0.5946 0.0698

DISCUSSION
The incidence of PND after cardiac valve replacement surgery in this study is 16.8%.
In addition to the risk factors consistent with previous studies, including age, sufentanil
dosage, and duration of CPB. We also found that the presence of chronic diseases is a
risk factor for the development of PND. Through DEPs screening and correlation analysis
with cognitive scores, we identified 10 down-regulated differential proteins and two
up-regulated differential proteins (Table 3). GO enrichment analysis revealed significant
changes in cellular components after cardiac surgery, while KEGG enrichment analysis
identified two pathways related to oxidative stress: the Glutathione S-transferase Omega-1
(GSTO1) and IDH1-participated glutathione metabolism pathway, and the IDH1 and
CAT-enriched peroxisome pathway.
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Figure 4 Profiling of cognition related DEPs. (A) Volcano plot of DEPs; The blue dots in the figure
represent down-regulated DEPs, while the purple dots represent up-regulated DEPs. (B) GO analysis of
DEPs; Significant changes have occurred in the cellular components, with a majority of the DEPs primar-
ily located in the extracellular exosomes and extracellular regions. (C) Bubble diagram of KEGG; Based on
significance, DPEs are enriched in glutathione metabolism, pertussis, peroxidase, and complement activa-
tion pathways. (D) PPI network of DEPs; circles denote differential proteins (upregulated in red, down-
regulated in green), with size indicating connectivity level (larger circles= higher connectivity).

Full-size DOI: 10.7717/peerj.17536/fig-4

Incidence of PND
Previous studies have shown that about 50∼70% (Newman et al., 2006) of patients
exhibit a decline in cognitive ability one week after coronary artery bypass grafting
(CABG), with 13∼40% (Gao et al., 2005; Evered et al., 2009) of patients continuing for
one year. Moreover, the incidence rate of neurocognitive disorders following cardiac
valve replacement is reported to be around 22%∼71% (Ballester et al., 2011; Xia, Huang &
Ansley, 2006). These data consistently indicate a high incidence of PND following cardiac
surgery. However, in the current study, the incidence rate of postoperative disorders was
relatively lower (16.8%). There may be two reasons: 1. Our assessment of PND adopted
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a Z-score less than −1.96 (equivalent to a decrease of 2SD), while some literatures used a
Z-score less than 1SD (Ackenbom et al., 2021; Deiner et al., 2021; Dustin Boone et al., 2022;
Glumac, Kardum & Karanovic, 2018), which people with less severe cognitive decline were
also diagnosed as PNDpatients, which increased the incidence; 2. During the case collection,
we excluded elderly patients with a surgical history, as well as those suffering frommetabolic
diseases (such as diabetes) or endocrine disorders (such as lipid disturbances), as these
conditions could potentially affect cognitive ability (Moller et al., 1998; Fabbri et al., 2015;
Kim, Park & An, 2019). This led to the study subjects being younger and having fewer
underlying diseases, resulting in a lower incidence rate of PND compared to the above
data. Although the proportion of elderly individuals was low in this study, age remained
higher in the PND group (P < 0.05) than in the control group (C group) when analyzing
the factors influencing PND occurrence.

It is well-known that aging is a natural, irreversible life process, inevitably accompanied
by the decline of bodily systems, such as brain atrophy and the reduction of brain cells.
Furthermore, with advancing age, chronic low-grade neuroinflammation is a hallmark
of cognitive decline associated with the normal aging process (Luo et al., 2019). In these
circumstances, cardiac valve patients in this study following anesthesia and surgery showed
that older patients have a higher probability of developing PND, which is a risk factor for
PND. This is consistent with the prevailing view that older age is an independent risk factor
for PND (Kubota et al., 2018).

Risk factors for PND
In our study design, we did not exclude patients with valvular heart disease who also
have hypertension. Epidemiological studies have shown a significant correlation between
hypertension and a decline in cognitive abilities, mild cognitive impairment, and dementia
(Kivipelto et al., 2001; Freitag et al., 2006; Gottesman et al., 2017; Mahinrad, Sorond &
Gorelick, 2021). Additionally, Iadecola’s review highlighted that hypertension could affect
various cognitive domains, including attention and executive functions. These impacts
are often reflected in scores from comprehensive cognitive assessment tools such as
MMSE and MoCA, typically resulting in lower scores (Iadecola & Gottesman, 2019). Upon
reviewing relevant literature, we noticed that most studies exploring the relationship
between hypertension and cognition included vascular diseases or metabolic disorders
related to dyslipidemia, with the studies often spanning a long duration (about 20 years),
showing a significant correlation between hypertension and cognitive decline (Kivipelto et
al., 2001; Freitag et al., 2006; Gottesman et al., 2017).

However, in this study, through comparative analysis between the P’ group and the non-P
group, we found that hypertension is not a risk factor for PND. Additionally, our further
analysis on aspects such as preoperative MMSE and MoCA scores, hypertension severity
grading, age, and years with hypertension among the two groups of hypertensive patients
showed no statistical difference (see Table 1). Thus, it can be inferred that the baseline
characteristics related to hypertension were consistent between the two groups in this study.
Beyond hypertension, we excluded diseases that could affect cognitive functions, such as
diabetes, lipid disorders, central nervous system diseases and cerebrovascular diseases.

Ma et al. (2024), PeerJ, DOI 10.7717/peerj.17536 11/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.17536


Nonetheless, we discovered that some PND patients still had comorbidities, including
respiratory system diseases (e.g., chronic obstructive pulmonary disease), digestive system
diseases (e.g., gastric diseases), cardiovascular system diseases (e.g., coronary artery
stenosis), and immune system diseases (e.g., arthritis). Therefore, we defined chronic
diseases as including at least one of the aforementioned diseases (Monastero et al., 2007)
for our study. The reasons for decreased cognitive ability in patients with one or multiple
chronic diseases are still not entirely clear. We speculate that the severity of the disease,
medication, and interactions among diseases might mediate the occurrence of PND. This
data is influenced by many confounding factors, which further clinical studies are required
to clarify the specific causes (Blaum, Ofstedal & Liang, 2002). From our study, we noticed
that this decreased cognitive ability coexists with patients’ chronic diseases, which leads to a
long-term inflammatory state in the body or cellular damage causing a decline in cognitive
ability (Tangestani Fard & Stough, 2019). These patients often take medication to alleviate
their symptoms. According to relevant studies, there is a steady increase in risk when
using 1–4 kinds of drugs to five kinds of drugs, with the number of drugs taken showing a
dose–response relationship with the risk of cognitive impairment (Monastero et al., 2007;
Shinohara & Yamada, 2016). Patients who take more than four kinds of drugs have three
times the risk of cognitive impairment compared to those who take no medication (Blaum,
Ofstedal & Liang, 2002) . However, in this study, the coexistence of these chronic diseases
did not result in an MMSE score of less than 24 on the day before surgery, thus they were
not excluded. But through the analysis of related variables in the cognitive impairment and
non-cognitive impairment groups after cardiac valve replacement surgery, chronic diseases
still could be potential risk factors influencing the occurrence of PND.

GSTO1
In the most enriched KEGG pathways, the glutathione metabolism pathway is significantly
enriched (P = 0.0027) (Fig. 4C), which includes GSTO1 and IDH1 proteins. GSTO1is
biologically related to late-onset Alzheimer’s disease (AD), serving as a risk factor for
cognitive impairment (Wongtrakul et al., 2018). GSTO1 is an omega class subtype of
glutathione S-transferases (GST), and genetic variants of the omega class GST genes are
related to the age of onset of diseases such as AD, Parkinson’s disease, amyotrophic lateral
sclerosis, and vascular dementia. GSTO1 is a protein with various cellular functions,
participating in primary metabolism, detoxification and protection, resistance to oxidative
damage, and sequestration of xenobiotics. GSTO1 at the mRNA level is related to several
central nervous system traits, such as caudate glial fibrillary acidic protein levels, cortical
gray matter volume, and hippocampal mossy fiber pathway volume. It is also found to be
related to AD susceptibility genes, such as APP, Grin2b, Ide, Psenen, etc (Wongtrakul et
al., 2018). It has been reported that GSTO1 expression levels are significantly reduced in
patients with cognitive impairment (Li et al., 2003), and a significant correlation between
GSTO1 polymorphism and the age of AD onset has been found (Zhang et al., 2018). It
has been confirmed that GSTO1 gene knockout significantly impacts the expression of
its downstream gene Pa2g4, and these two genes interact with other genes in the network
during the development of AD (Jia et al., 2022). In our study, we found that in addition to
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GSTO1′s antioxidative stress function in the redox system, IDH1, CAT and PFN1 are also
related to oxidative stress.

IDH1
IDH1, an isozyme of the IDH gene family, catalyzes the production of Nicotinamide
Adenine Dinucleotide Phosphate (NADPH), which acts as a donor of reductive hydrogen
within the body, participating in cellular resistance to oxidative stress responses. It has
been proven that IDH1 is upregulated in an oxidative stress environment to limit oxidative
damage (Wahl et al., 2017). The IDH1 mutation related to oxidative stress is a metabolic
enzyme in the glycolytic pathway that catalyzes the oxidative decarboxylation of isocitrate
to 2-oxoglutarate, providing cellular protection against oxidative stress (Hodges et al.,
2013). Recently, Walker et al. (2022) utilized the GeoMx™ Digital Spatial Profiler (DSP)
technology to study protein expression differences between individuals with dementia and
AD neuropathology versus recovery individuals, and found that IDH1 expression was lower
in the environment of resilient neurons with neurofibrillary tangles (nft). Similarly, in the
present study, the expression of IDH1 was down-regulated which is consistent withWalker
et al.’s (2022) research results.

Moreover, we observed that both IDH1 and CAT proteins were enriched in the
transport and catabolic metabolism (Classification_level2) KEGG pathway, specifically
the peroxisome pathway. The peroxisome pathway plays a pivotal role in cellular metabolic
conversions, participating in various biological processes. It generates substantial energy
and oxidative products through oxidative reactions and is involved in several cellular
metabolic processes facilitated by oxidative reactions catalyzed within peroxisomes.
The functionality of the peroxisome pathway largely depends on the intricate interplay
and modulation between a plethora of enzymes and metabolic substances within the
peroxisomes, thus fulfilling the biological functions of the peroxisome pathway.

CAT
Catalase (CAT) is an essential antioxidant enzyme that reduces oxidative stress by
decomposing hydrogen peroxide in cells to produce water and oxygen. The deficiency
or dysfunction of catalase is thought to be associated with the pathogenesis of many
age-related degenerative diseases, such as diabetes, hypertension, AD, Parkinson’s
disease, bipolar disorder, schizophrenia, and cancer (Al-Abrash, Al-Quobaili & Al-Akhras,
2000; Jimenez-Fernandez et al., 2022; Lane, Wang & Lin, 2023). Animal studies have also
confirmed that 24 h after fracture surgery, the activity of CAT in the prefrontal cortex and
hippocampus significantly decreases and remains low on the seventh day postoperatively
in the hippocampus (Netto et al., 2018).

PFN1
Interestingly, by examining the aforementioned differential proteins in the database,
we also identified a connection between the PFN1 protein and oxidative stress. PFN1
(profilin 1) is a small protein composed of 140 residues that functions to regulate actin
polymerization in cells. While PFN1 and SOD1 do not share functional similarities, their
mutated forms display comparable patterns in neuropathology, particularly concerning
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the ongoing progression of motor neuron degeneration (Lim, Kang & Song, 2017). Mutant
variants of SOD1 have been linked to cellular membranes, especially the mitochondria
and endoplasmic reticulum (Israelson et al., 2010). This aberrant integration into the ER
membrane induces ER stress observed in ALS (Sun et al., 2015). In a similar way, Lim, Kang
& Song (2017) speculated that certain mutations in PFN1 might trigger stress reactions
associated with oxidative stress due to abnormal interactions with membranes, possibly
representing one of the pivotal mechanisms in ALS pathogenesis.

Undoubtedly, the onset of PND is not solely attributed by oxidative stress. Based on the
KEGG enrichment analysis, it is associated with the complement coagulation system, the
Pertussis pathway, and the Rap1 signaling pathway.

LIMITATIONS
In our endeavor to identify differential proteins associated with PND occurrence following
cardiac valve replacement, we recognize several areas that merit further exploration.
Firstly, while our rigorous inclusion criteria, exclusion criteria and statistical methods
helped minimize preoperative confounding factors, the inclusion of a preoperative serum
proteomic profile as a baseline comparison would have enhanced the reliability of the
identified proteins. Secondly, the current study focused primarily on the discovery phase,
identifying potential protein markers. However, we acknowledge that functional validation
through animal or cellular models is a crucial next step in confirming the biological
significance of these proteins. Future research efforts should aim to bridge this gap,
providing a more comprehensive understanding of the roles these proteins play in the
pathophysiology of PND.

CONCLUSION
The prevalence of PND patients six weeks after heart valve replacement surgery stands at
16.8%. The occurrence of PND may be mainly related to the expression levels of oxidative
stress-related proteins: GSTO1, IDH1, CAT, and PFN1. The occurrence of PND can impact
principal metabolic pathways, such as glutathione metabolism and peroxisome pathway,
in clinical patients.
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