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Background. Psilocybin and related tryptamines have come into the spotlight in recent
years as potential therapeutics for depression. Research on the mechanisms of these
effects has historically focused on the direct effects of these drugs on neural processes.
However, in addition to such neural effects, alterations in peripheral physiology may also
contribute to their therapeutic effects. In particular, substantial support exists for a gut
microbiome-mediated pathway for the antidepressant efficacy of other drug classes, but
no prior studies have determined the effects of tryptamines on microbiota. Methods. To
address this gap, in this preliminary study, male Long Evans rats were treated with varying
dosages of oral psilocybin, norbaeocystin, or vehicle and their fecal samples were collected
1 week and 3 weeks after exposure for microbiome analysis using integrated 16S
ribosomal DNA sequencing to determine gut microbiome composition. Results. We found
that although treatment with either psilocybin or norbaeocystin did not significantly affect
overall microbiome diversity, it did cause significant dose- and time- dependent changes in
bacterial abundance at the phylum level, including increases in Verrucomicrobia and
Actinobacteria, and decreases in Proteobacteria. Conclusion and Implications: These
preliminary findings support the idea that psilocybin and other tryptamines may act on the
gut microbiome in a dose- and time-dependent manner, potentially identifying a novel
peripheral mechanism for their antidepressant activity. The results from this preliminary
study also suggest that norbaeocystin may warrant further investigation as a potential
antidepressant, given the similarity of its effects to psilocybin.
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Abstract

Background. Psilocybin and related tryptamines have come into the spotlight in recent years as
potential therapeutics for depression. Research on the mechanisms of these effects has historically
focused on the direct effects of these drugs on neural processes. However, in addition to such
neural effects, alterations in peripheral physiology may also contribute to their therapeutic effects.
In particular, substantial support exists for a gut microbiome-mediated pathway for the
antidepressant efficacy of other drug classes, but no prior studies have determined the effects of
tryptamines on microbiota. Methods. To address this gap, in this preliminary study, male Long
Evans rats were treated with varying dosages of oral psilocybin, norbaeocystin, or vehicle and their
fecal samples were collected 1 week and 3 weeks after exposure for microbiome analysis using
integrated 16S ribosomal DNA sequencing to determine gut microbiome composition. Results.
We found that although treatment with either psilocybin or norbaeocystin did not significantly
affect overall microbiome diversity, it did cause significant dose- and time- dependent changes in
bacterial abundance at the phylum level, including increases in Verrucomicrobia and
Actinobacteria, and decreases in Proteobacteria. Conclusion and Implications: These
preliminary findings support the idea that psilocybin and other tryptamines may act on the gut
microbiome in a dose- and time-dependent manner, potentially identifying a novel peripheral
mechanism for their antidepressant activity. The results from this preliminary study also suggest
that norbaeocystin may warrant further investigation as a potential antidepressant, given the
similarity of its effects to psilocybin.
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Introduction

In addition to its hallucinogenic properties, psilocybin has gained recent interest as a
potential fast-acting treatment for depression (Nichols 2004). A growing number of clinical studies
have shown that when paired with talk therapy, a single dose of the tryptamine can have strong
and persistent effects that are equal to or greater than traditional antidepressants (Becker et al.
2022; Carhart-Harris et al. 2021; Carhart-Harris et al. 2018; Davis et al. 2021; Goodwin et al. 2022;
Goodwin et al. 2023; Griffiths et al. 2016; Gukasyan et al. 2022). The mechanisms of these effects
have not yet been fully understood. While previous findings have implied that psychedelic and
hallucinogenic properties may be independent to antidepressive properties and due to a mixture of
actions on excitatory and inhibitory neuronal circuits, substantial evidence points to psilocybin’s
activation of 5-HT;4 receptors as a likely mechanism (De Gregorio et al. 2021; Gonzalez-Maeso
et al. 2007; Presti & Nichols 2004). In animal models, co-treatment with ketanserin, a 5-HT)4
antagonist, has been shown to block both the psychedelic effects of psilocybin and its therapeutic
efficacy (Slocum et al. 2022). Additionally, animal models have shown that selective activation of
5-HT,5 receptors by other compounds can recapitulate many of the psychedelic effects of
psilocybin (Hanks & Gonzélez-Maeso 2013). This mechanism differs from conventional
antidepressants such as selective serotonin reuptake inhibitors (SSRIs) that block serotonin
transporters and elevate serotonin levels in neuronal synapses. Despite acute increases in serotonin
levels, phenotypic depressive symptoms are usually not relieved until 4-6 weeks later (Stahl 2021).

Much of the research investigating the mechanisms of psilocybin and other antidepressants
has focused on their interaction with central nervous system processes. However, a growing body
of research has pointed to alternative mechanisms for antidepressant action, through peripheral
processes. Specifically, substantial research has shown that modulation of gut processes such as
gut motility, permeability, and gut microbiome composition may be important contributors to the
antidepressant efficacy of serotonin modulating compounds. Serotonin receptors, including 5-
HT,4, are widely distributed throughout the gut and peripheral tissues (Mawe & Hoffman 2013)
and the serotonin produced in the gut accounts for more than 60% of peripheral serotonin in mice
and more than 95% in humans (Yano et al. 2015). Enteric serotonin is predominantly secreted by
enterochromaffin cells that line the gut. Thus, psychedelic drugs have strong potential to influence
enteric processes.

In addition to enteric factors, there is also substantial evidence that the gut microbiome has
bi-directional effects on a variety of psychological disorders through a combination of neural,
endocrine, and metabolic signals of the gut-brain axis (Burokas et al. 2015; Carabotti et al. 2015).
The gut microbiome refers to the diverse array of microscopic organisms that exist in the
gastrointestinal tract (i.e., microbiota) and their genomes. These microorganisms collectively
contain a number of genes 150 times greater than that of the human genome (Weinstock 2012).
Gut bacteria such as Bacilli, Bifidobacterium, Candida, Enterococcus, Escherichia coli (E. coli),
Lactobacillus, Streptococcus, and Serratia secrete serotonin, acetylcholine, dopamine, gamma-
aminobutyric acid, glycine, and catecholamine (Yano et al. 2015), which can promote serotonin
production and release within the lining of the colon, affecting gut motility and permeability. Thus,
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gut microbes secrete a large array of neurotransmitters, as well as other neuroactive molecules that
regulate many complex cognitive processes, from mood and memory to learning and cognition
(Yano et al. 2015). Both preclinical and clinical studies have observed that gut microbiota affect
the symptoms of mood disorders (Cruz-Pereira et al. 2020). Most prominent are studies using
germ-free rodents, which have found that, when compared with specific pathogen free (SPF)
counterparts free of certain infectious pathogens but not completely free of all microbes, germ-
free rats develop anxiety-like behavior and germ-free mice develop exaggerated stress responses
(Crumeyrolle-Arias et al. 2014; Sudo et al. 2004). These changes have been shown to be reversible
upon recolonization of the gut through dietary probiotics (Wallace & Milev 2017). These studies
provide a basis for the idea that altering the gut microbiome could be an alternative therapeutic
strategy to treat mood disorders. The exact relationships between bacterial populations and host
remain relatively unknown due to the complexity of the gut-brain axis.

Recent work on the importance of the gut microbiome suggests a need for more
understanding of how therapeutics alter these microbe populations, potentially modulating a vast
array of signaling and metabolic pathways. Prior studies of treatment of various traditional
antidepressants have found inconsistent changes of gut microbiota diversity, richness, and
composition (Donoso et al. 2023). Additionally, a recent study on ketamine has reported dose-
dependent relationships between drug treatment and shifts in gut microbe compositions in
relatively short time periods (Getachew et al. 2018). Specifically, 7 days after a single ketamine
treatment, some bacteria have an over 90-fold increase in abundance at the family level (Getachew
et al. 2018). Combined, these studies suggest that psilocybin may also, in part, exert its
antidepressant effects through similar mechanisms. This is particularly likely, since 5-HTa
receptors are an essential component of the gut-brain axis (Fiorica-Howells et al. 2002). Although
gut microbiome has been proposed as a potential mechanism that psychedelics act upon (Kelly et
al. 2023; Kuypers 2019), no prior studies have investigated the effects of any psychedelics on gut
microbe populations, however. Therefore, the primary objective of this study was to determine if
psilocybin dose-dependently modulates gut bacterial composition. To accomplish this, animals
were treated orally with varying dosages of psilocybin, vehicle, or norbaeocystin (a psilocybin
precursor). Norbaeocystin is structurally similar to psilocybin and is also found in Psilocybe
mushrooms. Prior studies have shown it does not cause head twitch behaviors in rats (Adams et
al. 2022), a proxy for 5-HT,s activation and possibly hallucinations. Thus, by comparing
psilocybin’s effects to those of norbaeocystin, findings could contribute to the understanding of
the role of 5-HT, receptors in psilocybin’s effects on the gut microbiome. Additionally, should
norbaeocystin cause similar effects on the gut microbiome, this might suggest it also possesses
therapeutic potential.

Materials & Methods

Production of psilocybin and precursors from E. coli
Psilocybin and norbaeocystin-containing cell broths, acquired from Dr. J. Andrew Jones’
lab at Miami University, were produced using a genetically modified E. coli biosynthetic
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production pathway (Adams et al. 2022; Adams et al. 2019). Concentrations of target metabolites
in filtered cell broths were analyzed using HPLC. HPLC results indicated that the psilocybin
containing broths had high levels of psilocybin (approx. 1 g/L), trace levels of norbaeocystin (<20
mg/L) and aeruginascin (<1 mg/L), and low levels of baeocystin (approx. 150 mg/L); while the
norbaeocystin containing broths had high levels of norbaeocystin (approx. 1.5 g/L) only, with no
baeocystin, psilocybin, or aeruginascin due to the lack of the methyltransferase responsible for the
synthesis of the latter metabolites. The cell culture media broth contained none of the
aforementioned metabolites.

Animals, housing condition, treatment, and fecal collection

Thirty-nine adult male Long Evans rats (90-120 days of age) were bred in-house. Rats were
housed individually in standard cages with water and food provided ad /libitum and were kept on
a 12hr:12hr light/dark cycle (lights on 0700) throughout the study. All the rats were SPF animals,
as the cage bedding and materials were tested periodically for certain designated pathogens to
ensure safety of researchers and research quality.

Rats were randomly assigned to one of 5 groups, which received oral gavage of low (0.2
mg/kg) or high (2 mg/kg) dosages of psilocybin, low (0.25 mg/kg) or high (2.52 mg/kg) dosages
of norbaeocystin, or an equivalent volumetric amount of cell culture media broth as a negative
control, with the order of administration randomized. As published previously, “low” dosages
show no observable head twitch responses and “high” dosages cause observable head twitches in
male Long Evans rats (Adams et al. 2022).

Fresh fecal samples were collected in the morning, in the order of defecation, but was
random among groups. Collections occurred from 19 rats one week after treatment (control: n =
7; low dosage psilocybin: n = 3; high dosage psilocybin: n = 2; low dosage norbaeocystin: n = 5;
and high dosage norbaeocystin: n = 2) and from 20 rats 3 weeks after treatment (control: n = §;
low dosage psilocybin: n = 3; high dosage psilocybin: n = 4; low dosage norbaeocystin: n = 3; and
high dosage norbaeocystin: n = 2). All the collected fecal samples were snap frozen immediately
and stored at -80 °C until processing. Each fecal sample was provided with a unique sample
identification number. Thus, although researchers were aware of group allocation during drug
administration and fecal sample collection, they were unaware of group allocation when samples
were processed for gut microbiome analysis using 16S rDNA sequencing (see below for details).

All experimental interventions, including oral gavage and fresh fecal sample collection,
were carried out in conscious rats without any anesthesia by experienced researchers. No rats
showed any sign of distress throughout the study; thus, no analgesia was given. Consequently, all
rats were included in this study and their results were reported. Criteria were established for
euthanizing animals prior to the planned end of the experiment, but this was not needed. At the
conclusion of the experiment, rats were euthanized with one IP injection of Euthasol (200 mg/kg
body weight; a sodium pentobarbital-based drug). These euthanasia methods comply with AVMA
standards. The research question, groups, fecal sample collection, and gut microbiome analysis
using 16S rDNA sequencing were discussed before the study among involved researchers. All
procedures were approved by Miami University's Institutional Animal Care and Use Committee
(IACUC Project Number: 1033 2023 Apr).
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16S rDNA sequencing and analysis

Genomic DNA was isolated and purified from the fecal samples via a commercialized kit
(MP bio fast DNA spin kit for feces, Santa Ana, CA, USA), and underwent PCR amplification of
the 16S ribosomal DNA (rDNA) V4 region using the 515f/806r primer set (Earth Microbiome
Project; http://www.earthmicrobiome.org/). Gel electrophoresis was then used to check the quality
and size of PCR products. Amplified 16S rDNA samples were purified by the SequalPrep
Normalization Plate kit (Thermo Fisher, Waltham, MA, USA). Purified products were quantified
by KAPA Library Quantification Kit Illumina Platforms (Kapa Biosystems, Wilmington, MA,
USA), and used the Illumina Next Generation Sequencing MiSeq platform for amplicon

sequencing at Miami University’s Center for Bioinformatics and Functional Genomics for 16S
rDNA sequencing based on our established protocol (Xu et al. 2020a). The project is registered
with the BioProject database (BioProjectID: PRINA1054120). Raw sequencing data are accessible
via http://www.ncbi.nlm.nih.gov/bioproject/1054120. Raw sequencing data were processed and
cleaned. The sequencing reads of all samples were assigned using the corresponding barcode
sequences of their primers. Quality-filtering of reads was done using default parameters within
QIIME to improve diversity estimates (Xu et al. 2020b).

The diversity analysis indicated by Shannon diversity index was done utilizing QIIME 2
for differentiation of bacteria at the phylum level (Bolyen et al. 2019). QIIME 2 is capable of
analyzing Mi-Seq data with two or more biological replicates and tends to be conservative in
revealing statistical significance (Bolyen et al. 2019), and has been used to analyze studies with
sample sizes of 1 and 2 (McKenzie et al. 2017). The number and relative abundance of bacterial
species were analyzed. Shannon diversity index considers the number of species indicating
richness and their relative abundance indicating evenness, thus estimates the diversity of species
in a community. The relative abundance refers to the percentage of one microbial phylum in
relation to the total number of phyla in the community, which was analyzed to indicate the
population size of specific phyla and their commonalities with other phyla in the fecal samples.

Statistical analysis

Significant differences in diversity at the phylum level and relative abundance of different
bacterial populations between groups were determined by a two-way analysis of variance
(ANOVA) followed by a standard two-stage linear step-up method of Benjamini, Krieger and
Yekutieli post hoc multiple comparisons analysis (GraphPad™ Prism 10, San Diego, CA, USA).
This statistic method assumes that test statistics are independent, and controls the false discovery
rate. It first examines the distribution of P values to estimate the fraction of the null hypotheses
that are actually true. It then uses this information to get more power when deciding when a P
value is low enough to be called a discovery (Benjamini et al. 2006). P < 0.05 was considered
statistically significant.

Results
Effects of psilocybin and norbaeocystin on microbial diversity
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Microbial diversity measured by Shannon diversity index and analyzed by a two-way
ANOVA (treatment x time) did not reveal any significant differences by psilocybin treatments at
low or high dosage [F,, 21) = 0.7496; p = 0.4848], timepoints [F(; 21y = 0.01407; p = 0.9067], or
interaction [F(, 21y = 0.3673; p = 0.6970] (Figure 1A). Similarly, microbial diversity was not
significantly different by norbaeocystin treatment at low or high dosage [F», 21y = 0.3363; p =
0.7182], timepoints [F, 1) = 0.05253; p = 0.8209], or interaction [F 21y = 0.5505; p = 0.5848]
(Figure 1B). Therefore, neither psilocybin nor norbaeocystin at either dose resulted in any
significant change in microbial diversity compared to the vehicle control (Figure 1).

Effects of psilocybin and norbaeocystin on microbial abundance of dominant phyla

The populations of two major gut microbiota phyla, Firmicutes and Bacteroidetes
representing ~80% of gut microbiota (Arumugam et al. 2011; Ley et al. 2008), were analyzed.

Firmicutes abundance was analyzed by a two-way ANOVA (treatment x time), revealing
a significant interaction between psilocybin dose and time [(F(o, 21y = 3.797; p = 0.0391], but
Firmicutes abundance was not affected by main effects of psilocybin treatment [(F, 1) = 0.1963;
p = 0.8233] or time [(F(, 21y = 0.0323; p = 0.8591] (Figure 2A). Post hoc multiple comparisons
indicated trends of decreased Firmicutes abundance by the high dose of psilocybin treatment
compared to the control group (p = 0.0847) and the low dose of psilocybin treatment (p = 0.0512)
at the Week 1 timepoint. This trend did not persist at the Week 3 timepoint, instead the trend
reversed, with trends of increased Firmicutes abundance after the high dose of psilocybin treatment
compared to the control (p = 0.1282) and the low dose of psilocybin treatment (p = 0.1451) (Figure
2A). Firmicutes population was not significantly affected by norbaeocystin treatment [(F, 21y =
0.7270; p = 0.4951], time [(F1, 21y = 0.1179; p = 0.7347], or their interaction [(F(,, 1) = 0.8594; p
= 0.4378] (Figure 2B). Therefore, psilocybin or norbaeocystin at either dose did not result in any
significant changes in Firmicutes population compared to the vehicle control (Figures 2A, 2B).

Bacteroidetes population was not significantly affected by psilocybin treatment [(F(,, 1) =
2.430; p = 0.1124], time [(F(, 21) = 0.1239; p = 0.7283], or the interaction of treatment and time
[(Fe, 21y = 0.8893; p = 0.4259] (Figure 2C). Similarly, Bacteroidetes population was not
significantly affected by norbaeocystin treatment [(F, 21y = 1.732; p = 0.2013], time [(F(, 21y =
0.06842; p = 0.7962], or their interaction [(F, 21y = 1.992; p = 0.1613] (Figure 2D).

Effects of psilocybin and norbaeocystin on microbial abundance of sub-dominant phyla

The populations of four minor gut microbiota phyla, Proteobacteria, Tenericutes,
Actinobacteria, and Verrucomicrobia were analyzed.

Proteobacteria population at the phylum level was not affected by psilocybin treatment
[(F,21) = 0.2846; p = 0.7552], time [(F(;, 21y = 0.6990; p = 0.4125], or their interaction [(F, 21y =
2.165; p = 0.1397] (Figure 3A). Analysis of Proteobacteria population revealed a significant
interaction between norbaeocystin treatment and time [(F2, 21y = 3.946; p = 0.0351], but not main
effects of norbaeocystin treatment [(F(, 21y = 0.7901; p = 0.4668] or time [(F(; 21y = 0.7484; p =
0.3968] (Figure 3B). Post hoc multiple comparisons indicated significantly decreased
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Proteobacteria abundance by the low dose of norbaeocystin treatment vs. control (P =0.0283) and
vs. the high dose of norbaeocystin treatment (P = 0.0282) at Week 1 timepoint, but not at Week 3
timepoint (Figure 3B).

Actinobacteria population at the phylum level was not affected by psilocybin treatment
[(F2, 21y = 1.399; p = 0.2701], time [(F(;, 21y = 0.3574; p = 0.5567], or their interaction [(F, 21y =
1.653; p = 0.2167] (Figure 3C). However, a significant main effect of norbaeocystin treatment
[(F,21y= 3.631; p = 0.0452] and interaction between norbaeocystin treatment and time [(F(2,21) =
4.977; p = 0.0176] were revealed with no effect of time [(F(; »1) = 1.846; p = 0.1893] (Figure 3D).
Post hoc comparisons indicated significantly increased Actinobacteria abundance at the high dose
of norbaeocystin treatment vs. control (p = 0.0014) and vs. the low dose of norbaeocystin treatment
(P =0.0014) at Week 1 timepoint. This change did not persist at the Week 3 timepoint (Figure
3D).

Verrucomicrobia population was significantly affected by the interaction of psilocybin
treatment and time [(F (2, 21) = 4.027; p = 0.0331]; but there were not main effects of treatment [(F,,
21y = 1.646; p=0.2167] or time [(F(;,21) = 0.04451; p = 0.8349] (Figure 3E). Post hoc comparisons
indicated a significant increase in Verrucomicrobia abundance at the low dose of psilocybin
treatment vs. control (p = 0.0332) and vs. the high dose of psilocybin treatment (p = 0.0355) at the
Week 1 timepoint; and a significant increase in Verrucomicrobia abundance by the high dose of
psilocybin treatment vs. control (p = 0.0288) at Week 3 timepoint (Figure 3E). Verrucomicrobia
population at the phylum level was not changed by norbaeocystin treatment [(F(,, 21y = 1.735; p =
0.2007], time [(F(;, 21y = 0.07775; p = 0.7831], or their interaction [(F, 21y = 0.3985; p = 0.6763]
(Figure 3F).

Tenericutes population at the phylum level was not significantly affected by psilocybin
treatment [(F, 21y = 0.1573; p = 0.8554], time [(F(;, 21y = 0.05945; p = 0.8097], or their interaction
[(F,21) = 2.551; p = 0.1019] (Figure 3G); nor was it affected by norbacocystin treatment [(F2, 21
=0.2521; p = 0.7795], time [(F, 21y = 1.386; p = 0.2523], or their interaction [(F(,, o1y =2.142; p =
0.1424] (Figure 3H).

Discussion

The gut-brain axis is a highly complex system, the importance of which is not yet fully
understood. Although neither psilocybin nor norbaeocystin treatments significantly impacted gut
microbe diversity (Figure 1), some significant changes in microbial abundance at the phylum level
were observed. The human gut is predominantly composed of Bacteroidetes and Firmicutes,
complemented by sub-dominant Actinobacteria, Proteobacteria, and Verrucomicrobia (Qin et al.
2010). Interestingly, neither Firmicutes nor Bacteroidetes, which together represent ~80% of gut
microbes (Ley et al. 2008), was significantly impacted (Figure 2); whereas three of the four sub-
dominant bacterial phyla analyzed, Proteobacteria, Verrucomicrobia, and Actinobacteria (Ley et
al. 2008), were significantly impacted by psilocybin or norbaeocystin treatments at different
timepoints. Specifically, the low dose psilocybin treatment increased Verrucomicrobia abundance
at the Week 1 timepoint and the high dose psilocybin treatment increased Verrucomicrobia
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abundance at the Week 3 timepoint. Additionally, while the low dose norbaeocystin decreased
Proteobacteria abundance, the high dose norbaeocystin increased Actinobacteria abundance, both
of which occurred at the Week 1 timepoint (Figures 3B, 3D).

Emerging evidence supports the microbiota-gut-brain axis in regulation of physiology and
behavior, and suggests that disturbance of the gastrointestinal microbiota could affect the immune
system and psychiatric functioning (Cruz-Pereira et al. 2020). The bidirectional communication
between gastrointestinal microbiota and immune system mediates many neural processes, such as
neurogenesis, neurotransmission, neuroinflammation, and neurochemical functions such as
activation of stress responses, depression, and other mental health disorders (Cryan et al. 2019;
Dinan & Cryan 2015; Sarkar et al. 2018). In the current study, phyla Verrucomicrobia and
Actinobacteria were increased by psilocybin and norbaeocystin, respectively. Phylum
Verrucomicrobia are mucin-degrading bacteria, constitutes 3%-5% of the bacterial community
mainly residing in the intestinal mucosa that forms an interface between host and gut microbiome.
Low abundance of Verrucomicrobia has been reported in prediabetic and type 2 diabetic patients
(Zhang et al. 2013), in patients with inflammatory gut diseases such as Crohn's disease, ulcerative
colitis, and inflammatory bowel disease (Papa et al. 2012; Png et al. 2010), and in populations with
poorer sleep quality or disrupted sleep (Anderson et al. 2017). In contrast, abundance of
Verrucomicrobia increases following dieting and Roux-en-Y gastric bypass in diabetic patients
accompanied with many beneficial metabolic outcomes (Barlow et al. 2015). Thus, a low level of
Verrucomicrobia has been associated with metabolic disorders and weakened immune system,
while a high abundance of Verrucomicrobia is considered as a potential biomarker of a healthy
gut status. Phylum Actinobacteria contributes to the maintenance of gut homeostasis and supports
immune system (Binda et al. 2018). In contrast to beneficial phyla Verrucomicrobia and
Actinobacteria that were increased following treatment of psilocybin and norbaeocystin,
respectively, high abundance of phylum Proteobacteria is considered as a microbial signature of
disease (Rizzatti et al. 2017) and was decreased by the low dose norbaeocystin treatment. Thus, it
is possible that psilocybin and norbaeocystin could be candidates for alleviating gut dysbiosis and
producing positive downstream effects.

The findings of the current study are promising, as significant alteration of the gut
microbiome may provide a possible explanation as to why psilocybin users report a reduction of
depressive symptoms after treatment (Grob et al. 2011). It has been proposed that psychedelics
may affect gut microbiome to influence their treatment responses (Kelly et al. 2023; Kuypers
2019). To our knowledge, the current study is the first study that investigated the effects of
tryptamines, psilocybin and norbaeocystin, on gut microbe populations. Unlike conventional mood
modulating drugs that require chronic doses over a long timeline, it is possible that psilocybin in
part works by altering microbe populations within the gut, potentially targeting a component of
the disease state rather than treating the symptoms. These results also suggest that norbaeocystin,
a psilocybin precursor with limited study in the peer reviewed literature (Adams et al. 2022), may
warrant further investigation as a potential antidepressant.
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The limitation of this study is low sample sizes analyzed for some groups. Although QIIME
2 is capable of analyzing Mi-Seq data with two or more biological replicates and tends to be
conservative in revealing statistical significance (Bolyen et al. 2019), as shown in a publication
with some sample sizes of 1 and 2 (McKenzie et al. 2017), we should interpret findings with
caution. The lack of statistical significance in diversity and some phylum abundance, along with
high variability of the relative abundance of some phyla, could be due to the small sample size of
this preliminary study. Consequently, the findings from this preliminary study have limited
generalizability, and would require further validation with larger sample sizes and comparing
across routes of drug delivery.

One caveat to the current work is that it was conducted in normal, healthy rats. It is likely
that rats modeling a disease-state, such as chronic stress, anxiety, and depression, may respond
differently to psilocybin and/or norbaeocystin. Previously, we have reported the impact of chronic
stress on gut microbiome diversity and composition, leading to gut dysbiosis (Xu et al. 2020a).
Rats with disturbed microbiome may react very differently to these drugs. As such, findings from
healthy rats in this study may not generalize to other animals or treatment conditions. Further
research is needed using disease models, where multiple physiological, biochemical behavioral
and microbiome outcomes are evaluated, such that biological mechanisms can be elucidated.
Additionally, there is still little information on how psilocybin and norbaeocystin interact with the
body, and continued study is needed in order to inform potential side effects in human trials.
Altogether, psilocybin and norbaeocystin stand as strong candidates for managing gut dysbiosis.

Conclusions

The schedule I status of psilocybin has greatly hindered advancements in research to better
understand the efficacy and safety of using it to treat mood disorders. Psilocybin may also be used
to treat other diseases, such as those related to gut health. For example, the FDA recently approved
a Phase 2A clinical trial for the treatment of irritable bowel syndrome with psilocybin. Although
our study does not use a paradigm that induces stress or depression, nor does it determine
psilocybin’s ability to modulate mood via the gut-brain axis, it does begin to probe the mechanisms
by which psilocybin affects body physiology and behavior. The observed alterations to the gut
microbiome show promise for the ability of psilocybin and norbaeocystin to affect the gut
microbiome in a positive manner and establish a path for future research to investigate how
psilocybin, or other related tryptamines, could be used to modulate the gut microbiota to treat
dysbiosis as well as other disorders. Prior to this study the potential effects of psilocybin and its
biosynthetic precursor, norbaeocystin, on gut microbe populations was unknown. Further
investigations building upon this work could open the door to a new potential avenue for
pharmaceuticals which target the gut-brain axis.
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Figure 1 (on next page)

Figure 1: Effects of psilocybin and norbaeocystin treatment on microbial diversity.

Effects of psilocybin treatment (A) and norbaeocystin treatment (B) on microbial diversity,
measured by Shannon diversity index. Sample sizes for Week 1 were control (Control) n = 7;
low dosage psilocybin (P-low) n = 3; high dosage psilocybin (P-high) n = 2; low dosage
norbaeocystin (N-low) n = 5; and high dosage norbaeocystin (N-high) n = 2. Sample size for
Week 3 were Control n = 8; P-low n = 3; P-high n = 4; N-low n = 3; and N-high n = 2. Error

bars represent +/- 1 standard error of the mean of biological replicate samples.
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Figure 2

Figure 2: Effects of psilocybin and norbaeocystin treatment on abundance of major
microbial phyla at the phylum level.

Effects of psilocybin treatment on Firmicutes abundance (A), norbaeocystin treatment on
Firmicutes abundance (B), psilocybin treatment on Bacteroidetes abundance (C), and

norbaeocystin treatment on Bacteroidetes abundance (D).
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Figure 3(on next page)

Figure 3: Effects of psilocybin and norbaeocystin treatment on abundance of minor
microbial phyla at the phylum level.

Effects of psilocybin on Proteobacteria abundance (A), norbaeocystin on Proteobacteria
abundance (B), psilocybin on Actinobacteria abundance (C), and norbaeocystin on
Actinobacteria abundance (D), psilocybin on Verrucomicrobia abundance (E), and
norbaeocystin on Verrucomicrobia abundance (F), psilocybin on Tenericutes abundance (G),

and norbaeocystin on Tenericutes abundance (H). * indicated statistical significance.
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Figure 3: Effects of psilocybin and norbaeocystin treatment on abundance of minor
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