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ABSTRACT
Background. The development of serodiagnostic tests and vaccines for COVID-19
depends on the identification of epitopes from the SARS-CoV-2 genome. An epitope is
the specific part of an antigen that is recognized by the immune system and can elicit an
immune response. However, when the genetic variants contained in epitopes are used
to develop rapid antigen tests (Ag-RDTs) and DNA or RNA vaccines, test sensitivity
and vaccine efficacy can be low.
Methods. Here, we developed a ‘‘variant on epitope (VOE)’’ software, a new Python
script for identifying variants located on an epitope. Variant analysis and sensitivity
calculation for seven recommended epitopes were processed by VOE. Variants in
1,011 Omicron SRA reads from two variant databases (BCFtools and SARS-CoV-2-
Freebayes) were processed by VOE.
Results. A variant with HIGH or MODERATE impact was found on all epitopes from
both variant databases except the epitopes KLNDLCFTNV, RVQPTES, LKPFERD,
and ITLCFTLKRK on the S gene and ORF7a gene. All epitope variants from the
BCFtools and SARS-CoV-2 Freebayes variant databases showed about 100% sensitivity
except epitopes APGQTGK and DSKVGGNYN on the S gene, which showed respective
sensitivities of 28.4866% and 6.8249%, and 87.7349% and 71.1177%.
Conclusions. Therefore, the epitopes KLNDLCFTNV, RVQPTES, LKPFERD, and
ITLCFTLKRK may be useful for the development of an epitope-based peptide vaccine
and GGDGKMKD on the N gene may be useful for the development of serodiagnostic
tests. Moreover, VOE can also be used to analyze other epitopes, and a new variant
database for VOE may be further established when a new variant of SARS-CoV-2
emerges.

Subjects Bioinformatics, Computational Biology, Genomics, COVID-19
Keywords SARS-CoV-2, Variant of concern, Epitope, Variant, Immunoinformatics, COVID-19,
Vaccine, Serodiagnostic test, Python script

INTRODUCTION
On December 31, 2019, the World Health Organization (WHO) was notified of cases
of pneumonia of unknown cause in Wuhan City, China. On January 7, 2020, a novel
coronavirus was identified as the cause by Chinese authorities and tentatively designated
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2019-nCoV (World Health Organization, 2022b). Mutations in the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) genome resulted in a novel variant coronavirus
(World Health Organization, 2022a). Coronavirus variants of concern (VOCs) are variants
of global public health significance that can be associated with one or more of the following
changes: an increase in transmissibility or adverse change in COVID-19 epidemiology;
an increase in virulence or change in the clinical disease pattern; or a decrease in the
effectiveness of public health and social interventions, diagnostics, vaccines, or therapeutics.
TheWHOhas reported fiveVOCsof SARS-CoV-2 that increase transmissibility or virulence
symptoms, or decrease diagnostic efficacy. The VOCs are known as Alpha, Beta, Gamma,
Delta and Omicron (World Health Organization, 2022a).

The Alpha VOC, variant B.1.1.7 detected by the plaque-reduction neutralization test
(PRNT50), reduced the neutralizing activity of the BNT162b2-Elicted serum (Liu et
al., 2021). The Delta VOC, B.1.617.2, was reported after the efficacy of the COVID-19
vaccine BNT162b2 ChAdOx1 was seen to diminish after the receipt of one dose (Lopez
Bernal et al., 2021). The Omicron variant, B.1.1.529, was first identified on November 25,
2021, in Gauteng Province, South Africa (Callaway, 2021). The Omicron variant contains
mutations that suggest it may be more infectious and transmissible and better able to
evade innate immunity and neutralize antibody activity than the wild-type virus (Centre
of Disease Prevention E, 2021; Ukhsa, 2022; Chen et al., 2022). Following the emergence of
the original B.1.1.529 Omicron variant, several subvariants of Omicron have emerged,
including BA.1, BA.2, BA.3, BA.4, and BA.5 (Yao et al., 2022). New subvariants of Omicron
continue to emerge (Vitiello et al., 2022). In the United Kingdom in January 2022, XE, a
new BA.1–BA.2 recombinant was isolated (Mohapatra et al., 2022). In August 2022, an
Omicron subvariant XBB, a recombinant of the BA.2.10.1 and BA.2.75 sublineages (World
Health Organization, 2022c) was detected. Currently circulating variants of interest (VOIs)
of Omicron reported by the WHO are XBB.1.5 and XBB.1.16 (both recombinants of the
BA.2.10.1 and BA.2.75 sublineages, the former with a breakpoint in S1 protein) and EG.5
(a descendant of XBB.1.9.2) (World Health Organization, 2023).

Rapid diagnostic tests (RDTs) are used to diagnose SARS-CoV-2 in external laboratories.
RDTs are easy to use, provide rapid results and are less expensive than nucleic acid
amplification test (NAATs) such as rRT-PCR, but they are also generally less sensitive and
specific and must be confirmed with an NAAT. There are two types of RDT—antigen (Ag)
RDTs and antibody (Ab) RDTs (World Health Organization, 2020a). However, the WHO
recommends that Ab-RDTs should not be used to identify active infections in clinical care
or for contact tracing (World Health Organization, 2020b). Ab-RDTs may be useful for
sousveillance studies to aid in the investigation of an ongoing outbreak or the retrospective
assessment of the rate or extent of an outbreak. Ag-RDTs primarily detect the nucleocapsid
of the virus in respiratory secretions. Ag-RDTs detect antigens from clinical specimens
using an immunochromatographic assay format (World Health Organization, 2020a). The
test kit typically consists of a nitrocellulose strip enclosed in a plastic cassette with a sample
well. The sample is mixed with test buffer and placed in the sample well. Target antigens
in the sample bind to a labeled antibody and they migrate along the test strip together.
They are then captured by a second antibody attached to the test strip, causing a detectable
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color change (World Health Organization, 2020c; Kupferschmidt, 2021; Peto et al., 2021).
Ag-RDTs may have product design or quality issues such as insufficient antibody quantity
or insufficient affinity for the target antigen, and possible cross-reactivity with other
microorganisms (World Health Organization, 2021). The emergence of future VOCs of this
β-coronavirus with an altered mutation pattern in the nucleocapsid protein will require
the re-evaluatation of the performance of Ag-RDTs (Osterman et al., 2022). With regard
to vaccines, results suggest that vaccine efficacy is much lower against the symptomatic
disease caused by the Omicron variant than the Delta variant. Two doses of the ChAdOx1
nCoV-19 vaccine showed no protective effect against infection by the Omicron variant 20
to 24 weeks after the second dose (Andrews et al., 2022). Vaccines against SARS-CoV-2 are
typically DNA or RNA vaccines. Alternative epitope-based vaccines can be developed by
using immunoinformatics to identify epitopes or protein regions that are physiologically
important to the virus and can elicit an immune response (Ayra & Arora, 2020; Fahmi
et al., 2021). Immunoinformatics has been used predict peptide-MHC complexes, and
comparative molecular docking analyses have led to the identification of potential peptides
for peptide vaccine development (Waqas et al., 2020). The predicted epitopes RVQPTES,
APGQTGK, DSKVGGNYN, and LKPFERD (Ferreira et al., 2021) were highly antigenic for
the development of an epitope-based peptide. The predicted epitopes KLNDLCFTNV and
ITLCFTLKRK (Can et al., 2020) were ideal antigens for the development of an epitope-
based peptide, and GGDGKMKD (Can et al., 2020) was ideal for a serodiagnostic assay.
However, the significant predicted epitopes should be further examined in wet lab studies
(Can et al., 2020; Ansori et al., 2021).

Epitope APGQTGK is part of epitope S406-420 located on the SARS-CoV-2 spike
protein. Epitope DSKVGGNYN is part of epitope S439–454 and epitope LKPFERD is part
of epitope S455–469. S406-420, S439–454 and S455–469 were shown to induce production
of the neutralization antibody in SARS-CoV-2 pseudovirus neutralization. The study
validated the immunogenicity of the epitopes by immunizing mice and suggests that the
epitopes could be used to design a broad-spectrum betacoronavirus vaccine (Lu et al.,
2021b). Furthermore, epitope KLNDLCFTNV induced robust in vivo T cell responses
and an IFN-γ ELSPOT assay demonstrated that the epitope may help design a vaccine
against multiple virus variants (Shen et al., 2022). Nonspecific antibodies with an epitope
of a SARS-CoV−2 VOC could affect the sensitivity of Ag-RDTs and efficacy of vaccines.
The problem was illustrated by the proposal of an epitope of SARS-CoV-2 that is likely
to be more specific in the antibody of Ab-RDTs and in the neutralizing antibody of a
vaccine (Can et al., 2020). Since the variant of this epitope has not been determined, if the
epitope is used to develop Ag-RDTs and DNA or RNA vaccines, the tests could be of low
sensitivity and the vaccines of poor efficacy. However, bioinformatics tools can be used
to transfer mutations from sequence read archive (SRA) data into a variant calling format
(VCF) (Sangket et al., 2022; Chanasongkhram, Damkliang & Sangket, 2023). Currently, a
SARS-CoV-2 genome of about four million samples is held in the NCBI database and
approximately three million SRA runs and reference genomes and all other SARS-CoV-2
data are entered daily in the NCBI database (National Center for Biotechnology Information,
2022). Tools such as Bowtie2 (Langmead & Salzberg, 2012) and SAMtool (Li et al., 2009)
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are based on sequence alignment and variant calling of SRA reads from SARS-CoV-2 whole
genome sequencing in VCF. In addition, the SARS-CoV-2 Freebayes pipeline (Farkas et
al., 2021) has been developed to explore SARS-CoV-2 mutations from SRA reads in VCF
format and output a format suitable for variant filtering and annotation.

The previous studies (Can et al., 2020; Lu et al., 2021b;Ansori et al., 2021) used predicted
epitopes to design epitope-based vaccines and a serodiagnosis assay. Essential useful
bioinformatics entities were also reported to solve the SARS-CoV-2 conundrum (Fahmi
et al., 2021). However, bioinformatics tools for rapid screening of variants located on
an epitope do not exist. In this study, we aim to develop a ‘‘variant on epitope (VOE)’’
software, a new Python script for identifying variants located on an epitope for the
development of Ag-RDTs and epitope-based vaccines. The requirement for this tool is
based on the hypothesis that if a missense variant is found on an epitope, the sensitivity
may be decreased because of the less compact binding of an epitope from the missense
variant. However, if no variant or a synonymous variant is found on the epitope, epitope
binding will be the same, resulting in identical sensitivity.

MATERIALS & METHODS
Experimental setup
All experiments in this study were performed in a 64-bit architecture server with a 1 TB
SSD, 64 GB of RAM, two Intel(R) Xeon(R) Silver 4110 CPUs @ 2.10 GHz running Ubuntu
22.04.2 LTS. All analysis software was installed through the Bioconda channel, which can
be downloaded and installed using the instructions in the Conda documentation.

VOE development
The overview of the VOE development workflow in Fig. 1 summarizes the following
process. To begin the process, genomic SARS-CoV-2 SRA accession numbers were selected
from the NCBI SRA database filtered with paired library layout, illumina platform and
31/5/2022–31/5/2023, creating input files. Using the NCBI SRA toolkit, 1,961 SRA files
were split into paired-end FASTQ files. To create intermediate files, the paired-end FASTQ
files were referenced and assembled using the HaVoc pipeline, which includes a read
trimming pre-processing tool (Truong Nguyen et al., 2021). Subsequently, 1,200 assembled
SRA files were identified as belonging to the SARS-CoV-2 Omicron lineage, using Pangolin
version 4.3 (Rambaut et al., 2020). The Omicron lineage accession number was selected.
The Omicron SRA files in csv format were split into paired-end FASTQ files using the NCBI
SRA toolkit (https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software). All sequence
reads in the SRA files were trimmed to remove low-quality reads and bases, and adapter
sequences removed using Fastp (Chen et al., 2018) with a cut-off from the SARS-CoV-2
Freebayes pipeline.

Before the next step, the trimmed sequence reads were validated. The quality of the
trimmed reads of Omicron SRA files were assessed using the following four statuses of
FastQC version 0.12.1 (Simon, 2010): (1) Per base sequence quality (median value of each
base greater than 25), (2) per sequence quality (median quality greater than 27), (3) per
base N content (N base less than 5% at each read position) and (4) adapter content (adapter
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Figure 1 Workflow describing all processes and steps in this study.
Full-size DOI: 10.7717/peerj.17504/fig-1
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sequences at each position less than 5% of all reads) (Simon, 2010). The output FastQC
files were combined with MultiQC v1.4 (Ewels et al., 2016). Files that failed the quality
assessment were removed for the variant calling step.

To create the BCFtools variant database, selected fastp (trimmed fastq) files were
processed using Bowtie2 Aligner (Langmead & Salzberg, 2012) and BCFtools variant caller
(Li, 2011). All reads in fastp files were aligned against Wuhan-Hu-1 (NCBI accession:
NC_045512.2) using Bowtie2 version 2.3.4.1 (Langmead & Salzberg, 2012). The SAM files
were converted to BAM files and the BAM files were sorted and indexed using SAMtools
(Li et al., 2009). The BAM files were accessed by BCFtools version 1.17 (Li, 2011) as
variants (read depth > 100) (Lythgoe et al., 2021). All VCF files from the variant calling
step were merged with Jacquard version 1.1.5 (Farkas et al., 2021) and annotated with
SnpEff version 5.0e (Cingolani et al., 2012). The merged, annotated file was called BCFtools
variant database. For the SARS-CoV-2 Freebayes variant database, all selected SRA files
were variants called one at a time from the SARS-CoV-2 Freebayes pipeline.

The raw variant databases were then ready to be modified by VOE. The modified
BCFtools and SARS-CoV-2 Freebayes variant databases were presented in the format
shown in Table 1. Headers and uninteresting information were deleted. POS and #
CHROM were swapped. In the INFO column, the variant was annotated using the format
of SnpEff version 5.0e. Each database was used as a variant database for analysis of variants
on epitopes with VOE. The first database was the BCFtools variant database and the second
was the SARS-CoV-2 Freebayes variant database.

VOE was coded with a Python script that locates variants on the epitope and calculates
the sensitivity of these variants. The workflow for VOE is shown in Fig. 2. It uses
BLAST (Camacho et al., 2009) tools that are publicly available in Bioconda on Unix/Linux
platforms.

First, the nucleotide position of the epitope sequence from tBLASTn is generated
using the default E-value (E-value < 10) (Camacho et al., 2009) (%identity = 100) and
compared with the CDS in the SARS -CoV-2 database. The first hit from the tBLASTn result
is selected. The reference database was downloaded from CDS nucleotide Wuhan-Hu-1
(NCBI Accession: NC_045512.2).

Second, all nucleotide positions of the epitope in the SARS-CoV-2 genome are calculated
using the database according to the formula: nucleotide position in the gene from the
tBLASTn result + nucleotide position in the genome from the database + 1.

Third, all variants on an epitope with HIGH or MODERATE effects (Cingolani et al.,
2012) are included in the information of each variant from the variant database because
both effects are assumed to change in amino acid sequence. All values in each column of
the SRA accession number from the variant database are stored in a dictionary variable,
such as {SRR: [0,0,0,1]} (0 means a variant item was not found in the SRA escrow number,
1 means a variant was found).

Last, using the dictionary variables, sensitivity is calculated based on the hypothesis that
if a HIGH or MODERATE impact variant is found on the epitope, a false negative result
(FN) follows, whereas if no variant or a synonymous variant, or both, are found on the
epitope, a true positive result (TP) follows. If any of the values in the columns is 1, then
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Table 1 Modified variant database example. POS_Genome is the position of the variant in the genome, CHROM is the name of the reference sequence, REF is the ref-
erence base, ALT means alternative alleles, INFO is generic information about this variant. FORMAT is an extensible list of fields for describing the samples. The rest
columns are the number of the variant for each sample.

POS CHROM REF ALT INFO FORMAT SRRX1 SRRX2 SRRX3 SRRX4 SRRX5

14 NC_045512.2 A G AC=2;AF=0.4;AN=5;NS=5. . .missense_variant|MODERATE|. . . GT 0 1 0 1 0

15 NC_045512.2 C T AC=1;AF=0.2;AN=5;NS=5. . .missense_variant|MODERATE|. . . GT 0 0 0 1 0

30 NC_045512.2 C AAC AC=3;AF=0.6;AN=5;NS=5. . . insertion|HIGH|. . . GT 0 0 1 1 1

20020 NC_045512.2 CCA C AC=2;AF=0.4;AN=5;NS=5. . .deletiong|HIGH| GT 1 0 1 0 0
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Figure 2 Flowchart describing processes and steps of VOE.
Full-size DOI: 10.7717/peerj.17504/fig-2
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this SRA results in a FN. Conversely, if all of the values in the columns are 0, then this
SRA results in a TP. The sensitivity of the epitope is calculated using the following formula
(Trevethan, 2017).

Sensitivity =
TP

TP+FN
. (1)

For example, suppose an epitope is located at nucleotide positions 10–30 and in this
position interval, no variant is found for SRRX1, one variant is found for SRRX2, one
variant is found for SRRX3, three variants are found for SRRX4, and one variant is found
for SRRX5. Then, TP = 1 and FN = 4, and sensitivity is 1/(1+4) or 0.2 and %sensitivity is
20%.

Peptide-protein docking validation
Peptides of epitopes were modeled with PEP-FOLD 3 Server (Lamiable et al., 2016).
Peptide-protein docking of epitopes with lower 90% sensitivity and the most frequently
occurring variant against specific proteins were analyzes using AutoDocktools version
1.5.7 (Morris et al., 2009). An increase in binding energy for mutant docking will make less
compact binding of the epitope.

RESULTS
Identification of the SARS-CoV-2 lineage and trimming
The sequence reads of selected 1,791 SRA files were downloaded and assembled as 1,659
consensus files, which were identified with 1,023 Omicron accession numbers. The quality
of reads of the accession numbers were assessed, giving 1,011 accepted accession numbers.

VOE variant analysis and sensitivity calculation
Seven epitopes including KLNDLCFTNV, ITLCFTLKRK, GGDGKMKD, RVQPTES,
APGQTGK, DSKVGGNYN, and LKPFERD were obtained to evaluate the performance of
the proposed VOE analysis tool. The epitopes KLNDLCFTNV, ITLCFTLKRK, RVQPTES,
APGQTGK, DSKVGGNYN, and LKPFERD are highly antigenic for the development of
an epitope-based peptide vaccine and the epitope GGDGKMKD was identified as ideal for
serodiagnostic testing.

The tBLASTn results of all epitopes from the BCFtools variant database appear in
Table 2.

The first epitope KLNDLCFTNV is located on the S gene at nucleotide positions 1,156
to 1,185 (amino acid positions 386 to 395 on the S gene) with an E-value of 4.81 × 10−4.
The second epitope ITLCFTLKRK is located at nucleotide positions 328 to 357 on the
ORF7a gene (amino acid positions 110 to 119) with an E-value of 0.005. The third epitope
RVQPTES is located at nucleotide positions 955 to 975 on the S gene (amino acid positions
319 to 325) with an E-value of 0.025. The fourth epitope APGQTGK is located at nucleotide
positions 1,231 to 1,251 on the S gene (amino acid positions 411 to 417) with an E-value of
0.028. The fifth epitope DSKVGGNYN is located at nucleotide positions 1,324 to 1,350 on
the S gene (amino acid positions 442 to 450) with an E-value of 0.003. The sixth epitope
LKPFERD is located at nucleotide positions 1,381 to 1,401 on the S gene (amino acid
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Table 2 tBlastn results of the BCFtools variant database.

Epitope Variant
found

E-value %Identity Nucleotide
position
on gene

Nucleotide
position on
the genome

KLNDLCFTNV
(Can et al., 2020)

No 4.81×10−4 100% 1,156 to 1,185
(S386-395)

22,718 to 22,747

ITLCFTLKRK
(Can et al., 2020)

No 0.005 100% 328 to 357
(ORF7a110-119)

27,722 to 27,750

RVQPTES
(Ferreira et al., 2021)

Yes 0.025 100% 955 to 975
(S319-325)

22,517 to 22,537

APGQTGK
(Ferreira et al., 2021)

Yes 0.028 100% 1,231 to 1,251
(S411-417)

22,793 to 22,813

DSKVGGNYN
(Ferreira et al., 2021)

Yes 0.003 100% 1,324 to 1,350
(S442-450)

22,886 to 22,912

LKPFERD
(Ferreira et al., 2021)

No 0.008 100% 1,381 to 1,401
(S461-467)

22,943 to 22,963

GGDGKMKD
(Can et al., 2020)

Yes 0.12 100% 286 to 309
(N96-103)

28,559 to 28,582

positions 461 to 467) with an E-value of 0.008. The last epitope GGDGKMKD is located at
nucleotide positions 286 to 309 on the N gene (amino acid positions 96 to 103) an E-value
of 0.12. The % identity of all epitopes was 100%.

The variant information for all epitopes from the BCFtools variant database appear in
Table 3. For the epitopes KLNDLCFTNV (S386-395) and LKPFERD (S461-467) on the
S gene and the epitope ITLCFTLKRK (ORF7a110-119) on the ORF7a gene, no variants
with two effects (HIGH or MODERATE) were found, resulting in a sensitivity of 100%. In
contrast, for the epitopes RVQPTES (S319-325), APGQTGK (S411-417), DSKVGGNYN
(S442-450) on the S gene, and GGDGKMKD (N96-103) on the N gene, variants were found
with two effects, and one (p.Thr323Ile), three (p.Lys417Thr, p.Lys417Met, p.Lys417Asn),
seven (p.Lys444Thr, p.Lys444Asn, p.Val445Leu, p.Val445Ala, p.Gly446Ser, p.Gly446Asp,
p.Asn450Asp), and four (p.Gly96Cys, p.Gly96Val, p.Gly97Cys, p.Gly99Cys) missense
variants, respectively, giving respective sensitivities of 99.9011%, 28.4866%, 87.7349%, and
99.6044%.

The tBLASTn results of all epitopes from the SARS-CoV-2-Freebayes variant database
appear in Table 4. The first epitope KLNDLCFTNV is located at nucleotide positions 1,156
to 1,185 on the S gene (amino acid positions 386 to 395 on the S gene) with an E-value
of 4.81 ×10−4. The second epitope ITLCFTLKRK is located at nucleotide positions 328
to 357 on the ORF7a gene (amino acid positions 110 to 119) with an E-value of 0.005.
The third epitope RVQPTES is located at nucleotide positions 955 to 975 on the S gene
(amino acid positions 319 to 325) with an E-value of 0.025. The fourth epitope APGQTGK
is located at nucleotide positions 1,231 to 1,251 on the S gene (amino acid positions 411
to 417) with an E-value of 0.028. The fifth epitope DSKVGGNYN is located at nucleotide
positions 1,324 to 1,350 on the S gene (amino acid positions 442 to 450) with an E-value
of 0.003. The sixth epitope LKPFERD is located at nucleotide positions 1,381 to 1,401 on
the S gene (amino acid positions 461 to 467) with an E-value of 0.008. The last epitope
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Table 3 Variant information of the seven epitopes from the BCFtools variant database. The POS_Genome column in Table 3 lists the nucleotide
position of each variant in the genome, the ALT column shows the changed nucleotide sequence of each variant. AA_change is the changed amino
acid sequence of each variant, AC is the allele count of samples, NS is the number of samples, AF is the allele frequency of each allele, and %Chance
is the possibility of each identified variant (AC/NS*100).

Epitope POS
_Genome

Type ALT AA
_change

AC NS AF Chance
(%)

Sensitivity
(%)

KLNDLCFTNV
(S386-395)

The variant was not found

ITLCFTLKRK
(ORF7a110-119)

100

RVQPTES
(S319-325)

22,530 missense_variant c.968C>T p.Thr323Ile 1 1,011 0.001 0.0989 99.9011

22,812 c.1250A>C p.Lys417Thr 1 1,011 0.001 0.0989
22,812 c.1250A>T p.Lys417Met 1 1,011 0.001 0.0989

APGQTGK
(S411-417)

22,813

missense_variant

c.1251G>T p.Lys417Asn 723 1,011 0.7151 71.5134

28.4866

22,893 c.1331A>C p.Lys444Thr 19 1,011 0.0188 1.8793
22,894 c.1332G>T p.Lys444Asn 1 1,011 0.001 0.0989

DSKVGGNYN
(S442-450)

22,895

missense_variant

c.1333G>C p.Val445Leu 1 1,011 0.001 0.0989

87.7349

22,896 c.1334T>C p.Val445Ala 3 1,011 0.003 0.2967
22,898 c.1336G>A p.Gly446Ser 99 1,011 0.0979 9.7923
22,899 c.1337G>A p.Gly446Asp 1 1,011 0.001 0.0989
22,910 c.1348A>G p.Asn450Asp 2 1,011 0.002 0.1978

LKPFERD
(S461-467)

Variant was not found 100

28,559 c.286G>T p.Gly96Cys 1 1,011 0.001 0.0989
28,560 c.287G>T p.Gly96Val 1 1,011 0.001 0.0989
28,562 c.289G>T p.Gly97Cys 1 1,011 0.001 0.0989

GGDGKMKD
(N96-103)

28,568

missense_varian

c.295G>T p.Gly99Cys 1 1,011 0.001 0.0989

99.6044

GGDGKMKD is located at nucleotide positions 286 to 309 on the N gene (amino acid
positions 96 to 103) an E-value of 0.12. The % identity of all epitopes was 100%.

The variant information of all epitopes from the SARS-CoV-2-Freebayes variant
databasewas presented inTable 5. For the epitopeKLNDLCFTNV(S386-395), variantswith
two effects, threemissense variants (p.Asn388Tyr, p.Asp389Val, and p.Leu390Pro), and one
frameshift variant (p.Thr393fs) were found on the S gene. For the epitope ITLCFTLKRK
(ORF7a110-119) on the ORF7a variant, five missense variants (p.Ile110Thr, p.Phe114Val,
p.Thr115Ile, p.Leu116Ile, and p.Lys119Arg) were found. For the epitope RVQPTES
(S319-325) on the S gene variant, one stop-gain (p.Arg319*), one frameshift (p.Pro322fs),
and two missense variants (p.Val320Phe, and p.Thr323Ile) were found. For the epitopes
APGQTGK (S411-417), DSKVGGNYN (S442:450), and LKPFERD (S461-467) on the S
gene variant, seven (p.Gln414Lys, p.Lys417Asn, p.Lys417His, p.Lys417Asn, p.Lys417Thr,
p.Lys417Ile, and p.Lys417Asn), 10 (p.Lys444Thr, p.Lys444Asn, p.ValGly445ProSer,
p.Gly446Ser, p.Val445Ala, p.ValGly445AlaSer, p.Gly446Ser, p.Gly446Asp, p.Asn448Ile,
and p.Asn450Asp) and two missense variants (p.Pro463Leu, and p.Asp467Val) were
found, respectively. For the epitope GGDGKMKD (N96-103) on the N gene variant, four
missense variants (p.Gly96Cys, p.Gly96Val, p.Gly97Cys, and p.Gly99Cys) were found.
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Table 4 tBlastn results of the Freebayes variant database.

Epitope Variant
found

E-value %Identity Nucleotide
position
on gene

Nucleotide
position on
the genome

KLNDLCFTNV
(Can et al., 2020)

Yes 4.81×10−4 100% 1,156 to 1,185
(S386:395)

22,718 to 22,747

ITLCFTLKRK
(Can et al., 2020)

Yes 0.005 100% 328 to 357
(ORF7a110:119)

27,722 to 27,750

RVQPTES
(Ferreira et al., 2021)

Yes 0.025 100% 955 to 975
(S319:325)

22,517 to 22,537

APGQTGK
(Ferreira et al., 2021)

Yes 0.028 100% 1,231 to 1,251
(S411:417)

22,793 to 22,813

DSKVGGNYN
(Ferreira et al., 2021)

Yes 0.003 100% 1,324 to 1,350
(S442:450)

22,886 to 22,912

LKPFERD
(Ferreira et al., 2021)

Yes 0.008 100% 1,381 to 1,401
(S461:467)

22,943 to 22,963

GGDGKMKD
(Can et al., 2020)

Yes 0.12 100% 286 to 309
(N96:103)

28,559 to 28,582

Lastly, the respective % sensitivities of all epitopes were 99.5054%, 99.5054%, 99.6044%,
6.8249%, 71.1177%, 99.8022%, and 99.6044%.

Peptide-protein docking validation
Epitopes with low sensitivity (<90%) could be considered moderate to low binders and
were further investigated. The 3D structures of the B cell receptor (BCR) (ID: 5IFH)
(Rantam et al., 2021) were obtained from the RCSB Protein Data Bank. The wild-type
epitope (APGQTGK) and the mutant epitope (APGQTGN) were docked with the BCR
shown in Figs. 3A and 3B, respectively. The estimated binding energy was −2.56 kcal/mol
for the wild-type docking and −2.02 kcal/mol for the mutant docking. The wild-type
epitope (DSKVGGNYN) and mutant epitope (DSKVSGNYN) were docked with the BCR
shown in Figs. 4A and 4B, respectively. The estimated binding energy was −1.69 kcal/mol
for wild-type docking and +3.58 kcal/mol for mutant docking.

DISCUSSION
In previous predictions of human leukocyte antigen (HLA) class I and II epitopes, the
binding of HLA class I and II molecules with pathogen peptides was an important trigger
of T cell activity and other components of the adaptive immune response (Can et al.,
2020). The epitope KLNDLCFTNV on the S gene was investigated in HLA class I epitope
prediction. The result showed that, of 1,312 HLA class I and II epitopes, only 125 (9%)
were modified in the Omicron variant. The KLNDLCFTNV epitope was not altered by
the Omicron variant definition (Centre of Disease Prevention E, 2021; Ukhsa, 2022; Chen et
al., 2022), and both cytotoxic and helper cellular immune protection elicited by currently
licensed vaccines were not affected by the Omicron variant of SARS-CoV-2. Moreover,
the epitopes KLNDLCFTNV and ITLCFTLKRK were recommended for the development
of an epitope-based vaccine. In addition, the potential of KLNDLCFTNV to generate a
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Table 5 Variant information of seven epitopes from the SARS-CoV-2 Freebayes variant database. The column headed POS_Genome lists
the nucleotide position of each variant in the genome. The ALT column lists the changed nucleotide sequence of each variant. AA_change is the
changed amino acid sequence of each variant, AC is the allele count of samples, NS is the number of samples, AF is the allele frequency of each allele,
and %Chance is the possibility of each identified variant (AC/NS*100).

Epitope POS
_Genome

Type ALT AA
_change

AC NS AF Chance
(%)

Sensitivity
(%)

22,724 c.1162A>T p.Asn388Tyr 1 1,011 0.001 0.0989

22,728 c.1166A>T p.Asp389Val 2 1,011 0.002 0.0198

22,731

missense_variant

c.1169T>C p.Leu390Pro 1 1,011 0.001 0.0989
KLNDLCFTNV
(S386-395)

22,735 frameshift_variant c.1176dupT p.Thr393fs 1 1,011 0.001 0.0989

99.5054

27,722 c.329T> C p.Ile110Thr 1 1,011 0.001 0.0989

27,733 c.340T>G p.Phe114Val 1 1,011 0.001 0.0989

27,737 c.344C>T p.Thr115Ile 1 1,011 0.001 0.0989
ITLCFTLKRK
(ORF7a110-119)

27,739

missense_variant

c.346C>A p.Leu116Ile 1 1,011 0.001 0.0989

99.5054

27,749 c.356A >G p.Lys119Arg 1 1,011 0.001 0.0989

22,517 stop_gained c.955A>T p.Arg319* 1 1,011 0.001 0.0989

22,520 missense_variant c.958G>T p.Val320Phe 1 1,011 0.001 0.0989

22,525 frameshift_variant c.965delC p.Pro322fs 1 1,011 0.001 0.0989
RVQPTES
(S319-325)

22,530 missense_variant c.968C>T p.Thr323Ile 1 1,011 0.001 0.0989

99.6044

22,802 c.1240C>A p.Gln414Lys 1 1,011 0.001 0.0989

c.1251G>T p.Lys417Asn 1 1,011 0.001 0.0989

c.1249_1251delAAGinsCAT p.Lys417His 1 1,011 0.001 0.098922,811

c.1251G>T p.Lys417Asn 1 1,011 0.001 0.0989

22,812 c.1250_1251delAGinsCT p.Lys417Thr 1 1,011 0.001 0.0989

APGQTGK
(S411-417)

22,812

missense_variant

c.1250_1251delAGinsTT p.Lys417Ile 1 1,011 0.001 0.0989

6.8249

22,813 c.1251G>T p.Lys417Asn 938 1,011 0.9278 92.7794

22,893 c.1331A>C p.Lys444Thr 42 1,011 0.0415 4.1543

22,894 c.1332G>T p.Lys444Asn 1 1011 0.001 0.0989

c.1333_1336delGTTGinsCCTA p.ValGly445ProSer 19 1,011 0.0188 1.8793
22,895

c.1336G>A p.Gly446Ser 3 1,011 0.003 0.2967

22,896 c.1334T>C p.Val445Ala 4 1,011 0.004 0.3956

DSKVGGNYN
(S442-450)

22,896

missense_varian

c.1334_1336delTTGinsCTA p.ValGly445AlaSer 1 1,011 0.001 0.0989

71.1177

22,898 c.1336G>A p.Gly446Ser 222 1,011 0.2196 21.9585

22,899 c.1337G>A p.Gly446Asp 1 1,011 0.001 0.0989

22,905 c.1343A>T p.Asn448Ile 1 1,011 0.001 0.0989

22,910 c.1348A>G p.Asn450Asp 3 1,011 0.003 0.2967

22,950 c.1388C>T p.Pro463Leu 1 1,011 0.001 0.0989LKPFERD
(S461-467)

22,962
missense_variant

c.1400A>T p.Asp467Val 1 1,011 0.001 0.0989
99.8022

28,559 c.286G>T p.Gly96Cys 1 1,011 0.001 0.0989

28,560 c.287G>T p.Gly96Val 1 1,011 0.001 0.0989

28,562 c.289G>T p.Gly97Cys 1 1,011 0.001 0.0989
GGDGKMKD
(N96-103)

28,568

missense_variant

c.295G>T p.Gly99Cys 1 1,011 0.001 0.0989

99.6044

Notes.
An asterisk (*) indicates stop codon.
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Figure 3 Molecular docking between epitope APGQTGK and B cell receptor. (A) Wild-type epitope.
(B) Mutant epitope.

Full-size DOI: 10.7717/peerj.17504/fig-3

Figure 4 Molecular docking between epitope DSKVGGNYN and B cell receptor. (A) Wild-type epi-
tope. (B) Mutant epitope.

Full-size DOI: 10.7717/peerj.17504/fig-4

vaccine was demonstrated and confirmed in vivo (Shen et al., 2022). Our results showed
that the sensitivity of both epitopes was 100% when calculated from the BCFtools variant
database and 99.5054%when calculated from the SARS-CoV-2- Freebayes variant database
(Tables 3 and 5). Therefore, both epitopes could be strongly recommended for use in the
development of an epitope-based vaccine.

In a previous study on single mutations affecting viral escape antibodies (Doud, Lee
& Bloom, 2018), it was found that some point mutations can affect antibody binding. In
addition, for peptide-based vaccines, some epitope prediction, such as the B-cell T-cell
response, is immunoinformatically required (Oli et al., 2020; Ramana & Mehla, 2020; Lu
et al., 2021a). The epitopes RVQPTES, APGQTGK, DSKVGGNYN, and LKPFERD on the
S gene were B-cell epitopes for which nonsynonymous variants were found in both variant
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databases, except for LKPFERD, for which nonsynonymous variants were found only in the
BCFtools variant database. Also, epitopes APGQTGK, DSKVGGNYN and LKPFERD have
been proposed for use in in the wet lab for vaccine design (Lu et al., 2021b). Specifically, the
epitope APGQTGK on the S gene was identified by the Omicron variant definition (Centre
of Disease Prevention E, 2021) at K417N or p.Lys417Asn with a sensitivity of 28.4866% in
the BCFtools database and 6.8249% in the SARS-CoV-2 Freebayes database. In both variant
databases, the epitope DSKVGGNYN on the S gene was modified by the Omicron variant
definition (Centre of Disease Prevention E, 2021) at G446S with respective sensitivities of
87.7349% and 71.1177%. The peptide-protein docking of the mutant epitopes APGQTGK
and DSKVGGNYN also leads to an increase in binding energy, resulting in a less compact
binding of the epitopes. Therefore, the epitopes APGQTGK and DSKVGGNYN could be
further considered in terms of variant impact on the epitope-based vaccine development.
In contrast, the RVQPTES and LKPFERD epitopes on the S gene were not modified by
the Omicron variant definition (Centre of Disease Prevention E, 2021). In addition, the
sensitivity of the epitopes RVQPTES and LKPFERD was almost 100% in both variant
databases.

An earlier report of a rapid diagnostic test for SARS-CoV-2 indicated that novel
viral mutations can directly alter the genomic sequence detected by molecular RDTs.
Ag-RDTs recognize epitopes on surface proteins (mostly the nucleocapsid), and their
performance depends more on protein structure and confirmation than on individual
genomic mutations (Drain, 2022). GGDGKMKD is a sub-sequence of the nucleocapsid
protein recommended as ideal for serodiagnostic test development. Our results (Tables 3
and 5) showed four nonsynonymous variants of the epitope GGDGKMKD on the N gene
from both variant databases, and sensitivity is 99.6044%. Therefore, its sensitivity can be
assessed by comparison with an NAAT such as rRT-PCR. Moreover, the data in Tables 3
and 5 can be used in protein modeling for analysis of the impact on each variant.

Since VOE was developed using the Python programming language, the program can
run on either Windows or Linux platforms. Moreover, VOE is easy to use, and processing
is completed within one minute. However, the limitation of VOE is that the query sequence
must contain more than five amino acids due to a tBLASTn condition.

CONCLUSIONS
In the development of epitope-based vaccines and Ag-RDTs, mutation is one of the most
important factors since mutations can reduce the binding affinity between the epitope and
protein, resulting in less sensitive Ag-RDTs and less effective vaccines. VOE is a Python
script that allows users to quickly identify variants and calculate the sensitivity of epitopes.
The results from VOE can be used as data for identifying suitable epitopes. In the future,
results from VOE should be studied in terms of protein structure and conformation. In
addition, all epitopes should be docked with HLAs and/or TLRs proteins to ensure that
the epitopes actually elicit an immune response under the simulated biochemical reaction
conditions. The BCFtools pipeline and the SARS-CoV-2 Freebayes pipeline can be used
to create new variant databases from new variants of SARS-CoV-2 or new SRA data, and
VOE can be used to analyze other epitopes.
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