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ABSTRACT
Background: Previous work found that numerous genes positively selected within
the hoary bat (Lasiurus cinereus) lineage are physically clustered in regions of
conserved synteny. Here I further validate and expand on those finding utilizing an
updated L. cinereus genome assembly and additional bat species as well as other
tetrapod outgroups.
Methods: A chromosome-level assembly was generated by chromatin-contact
mapping and made available by DNAZoo (www.dnazoo.org). The genomic
organization of orthologous genes was extracted from annotation data for multiple
additional bat species as well as other tetrapod clades for which chromosome-level
assemblies were available from the National Center for Biotechnology Information
(NCBI). Tests of branch-specific positive selection were performed for L. cinereus
using PAML as well as with the HyPhy package for comparison.
Results: Twelve genes exhibiting significant diversifying selection in the L. cinereus
lineage were clustered within a 12-Mb genomic window; one of these (Trpc4) also
exhibited diversifying selection in bats generally. Ten of the 12 genes are landmarks
of two distinct blocks of ancient synteny that are not linked in other tetrapod clades.
Bats are further distinguished by frequent structural rearrangements within these
synteny blocks, which are rarely observed in other Tetrapoda. Patterns of gene order
and orientation among bat taxa are incompatible with phylogeny as presently
understood, implying parallel evolution or subsequent reversals. Inferences of
positive selection were found to be robust to alternative phylogenetic topologies as
well as a strong shift in background nucleotide composition in some taxa.
Discussion: This study confirms and further localizes a genomic hotspot of
protein-coding divergence in the hoary bat, one that also exhibits an increased tempo
of structural change in bats compared with other mammals. Most genes in the two
synteny blocks have elevated expression in brain tissue in humans and model
organisms, and genetic studies implicate the selected genes in cranial and
neurological development, among other functions.

Subjects Evolutionary Studies, Genomics, Zoology
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INTRODUCTION
As high-quality genome references with well-supported annotations continue to be
released, it has become increasingly common to compare the evolution of genomic features
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within a clade, often in conjunction with ecological, life-history, or morphological data
(Lewin et al., 2018). These comparative analyses can illuminate the genomic architecture of
trait evolution, bringing to bear diverse data types such as cytogenetics, gene family
evolution, evolutionary rates of orthologous genes, gene expression patterns, and
methylation profiles (Wei et al., 2002). Protein evolutionary rates are among the most
accessible and widely applied comparisons, and several tests have been proposed to
identify positive diversifying selection within a gene tree (Muse & Gaut, 1994; Yang &
Nielsen, 2000; Seo, Kishino & Thorne, 2004; Smith et al., 2015). As nonsynonymous
substitution rates statistically higher than synonymous rates are only expected under
adaptive evolution, ratio-based tests can confirm hypotheses of diversifying selection on
candidate genes relevant to fitness (Aguileta et al., 2009) as well as discover episodes of
selection agnostically by scanning whole genomes (Heger & Ponting, 2007; Kosiol et al.,
2008). In addition to revealing mechanisms of adaptation, genomic surveys of substitution
patterns can be important in other contexts such as evolutionary medicine, e.g. by
quantifying levels of protein constraint (Lindblad-Toh et al., 2011) and estimating the
functional significance of mutations (Cingolani et al., 2012).

A number of studies have investigated rates of protein evolution within the various
orders of mammals, some of which (Shen et al., 2010; Hawkins et al., 2019; Cornman &
Cryan, 2022, but see Jebb et al., 2020) have indicated high rates of positive selection on
coding sequence in bats (order Chiroptera). A recent study (Cornman & Cryan, 2022)
identified candidates of positive selection in the hoary bat lineage, including genes
clustered in regions of conserved synteny (discrete regions in which ancestral gene sets are
colinear in comparative genomic alignments despite extensive background divergence in
genome content and organization). For example, six genes showed evidence of positive
selection in the vicinity of the cat-eye critical region, which overlaps a conserved synteny
block in tetrapods, so-named for its association with the ‘cat-eye’ spectrum of congenital
developmental disorders in human (Footz et al., 2001). In addition to containing clustered
signatures of positive selection, this region was structurally divergent in the hoary bat
lineage as well, including rearrangements not apparent in other mammalian clades
(Cornman & Cryan, 2022). Furthermore, several other genes associated with cranial
dysmorphy in humans were selection candidates in L. cinereus, collectively indicating that
cranial development may have been a phenotypic target of selection in the divergence of
the hoary bat lineage (Cornman & Cryan, 2022). This hypothesis is consistent with
previous morphometric studies that have documented associations between cranial
morphology and ecological divergence among related bat species and at higher taxonomic
levels in bats (Evin et al., 2008; Hedrick & Dumont, 2018; Arbour, Curtis & Santana, 2021).

While the hoary bat assembly analyzed by Cornman & Cryan (2022) had a high scaffold
N50 (35.1 Mb; Cornman et al., 2021), contiguity was not at chromosomal level, such that
clustering of selection candidates and conservation of synteny could not be fully evaluated.
Few other chromosome-scale assemblies of bat genomes were available at that time,
preventing a reconstruction of the sequence of structural changes. However, a recent
scaffolding effort with “Hi-C” chromatin mapping (Belton et al., 2012) has revealed that
two of the three clusters discussed by Cornman & Cryan (2022) form a contiguous block
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on a large metacentric chromosome. Additional high-quality genomes of bat species have
also become available since that study, which enable improved sampling of gene trees and
thus increased statistical power of selection tests within bats, as well as improved
comparisons of synteny. Here I report that expanded ortholog alignments strengthen
inferences of diversifying selection within the hoary bat lineage (i.e., since the divergence of
genus Lasiurus from other analyzed genera). Co-localization of the two synteny blocks was
not observed in a survey of other tetrapod orders and appears not to be the ancestral state
of Chiroptera, yet has an apparently homoplasious distribution within this group, implying
parallel evolution of complex features or a similarly complex reversal. Numerous smaller
changes in gene order are found within these synteny blocks as well, particularly within
suborder Yangochiroptera.

MATERIALS AND METHODS
The analysis of Cornman & Cryan (2022) was based on a 10X linked-read assembly
(accession GCA_011751065.1 of the National Center for Biotechnology Information
(NCBI), Cornman et al., 2021). This was subsequently scaffolded by the DNAZoo
Consortium (Dudchenko et al., 2017) using a HiC chromatin contact-mapping data set
(NCBI accession SRX8933264) and made publicly available at https://www.dnazoo.org/
assemblies/Aeorestes_cinereus. (Note that Aeroestes cinereus and Lasiurus cinereus are
synonymous; we follow the latter usage here as it predominates in the literature.) To
evaluate assembly coverage patterns, confirm the X chromosome, and detect assembly
artifacts such as collapsed repeats, an existing genomic short-read data set for L. cinereus
(PRJNA559902; Pinzari et al., 2020) was aligned to the genome assembly with bowtie2 v.
2.4.5 (Langmead & Salzberg, 2012) using the “fast” and “end-to-end” parameter switches,
then filtered with SAMtools v. 1.12 (Li et al., 2009) at a mapping quality of 30 (Phred-
scaled). Mapped reads were summed per major scaffold using the bedcov function of
SAMtools, then divided by chromosome length as well as the total number of reads
mapped per sample to those scaffolds. The resulting values were then normalized to the
average of all sample-scaffold pairs.

Coding-sequence alignments were generated from precomputed orthologs sets for each
gene, available from NCBI via the corresponding gene pages, with the exception that
L. cinereus orthologs were taken from Cornman & Cryan (2022). Some transcripts in the
pre-computed ortholog groups differed structurally from the others due to alternative
splicing, in which case substituting a different isoform of the same gene often sufficed to
correct the alignment. In other cases, un-annotated exons could be extracted by searching
genomic sequence with coding sequence of a related taxon. Rarely, the coding sequence of
a congener was used when available and substantially more complete. If none of these
alternatives yielded at least a partial coding sequence for a genus, that genus was deleted
from the guide tree and evolutionary rates were computed from the remaining taxa.
If multiple taxa were unavailable, the gene was not analyzed. Ortholog sets were aligned at
the nucleotide level with MAFFT v. 7.480 (Katoh et al., 2002), trimmed of untranslated
regions, and realigned at the protein level. Low-complexity or gapped regions for which
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codon-level orthology was questionable were deleted from alignments between
unambiguously conserved codons. Analyzed ortholog alignments are available in File S1.

The guide tree for all evolutionary rate analyses reported in the Results follows the
phylogenetic analysis of Amador et al. (2018), however the consistency of results was
qualitatively assessed by examining three other tree topologies as well (Fig. S1).
For example, Agnarsson et al. (2011) supported a closer relationship of Lasiurus and
Pipistrellus, with Eptesicus an outgroup to the pair, which is also consistent with overall
karyotype (Bickham, 1987). This alternative topology is labeled “tree 2” in Fig. S1. A third
topology was tested in which the location ofMiniopterus follows Agnarsson et al. (2011), as
sister to phyllostomids rather than vespertilionids (“tree 3”). A fourth topology (“tree 4”) is
a pruned version of tree 1, in which taxa with greatly increased GC content of some tested
genes (see Results) were removed to ensure that this shift in nucleotide compositions did
not influence the conclusions drawn.

Parameters and likelihoods of two models were estimated with PAML (Yang, 2007).
Setting the control variables “Model = 0” and “NSsites = 0” estimates one rate class ω
across the phylogeny, whereas setting the control variables “Model = 2” and “NSsites = 0”
and labeling the L. cinereus branch as foreground estimates two ω values, one for
background taxa and one for the foreground taxon. The test statistic for branch-specific
positive selection was then calculated as twice the difference in log-likelihood between the
latter and the former, assuming a χ2 distribution with one degree of freedom (Yang, 2007).
False discovery rate (FDR) correction was performed with the Benjamini-Hochberg
procedure of the R function p.adjust (R Core Team R, 2018). The aBSREL and BUSTED
programs of the HyPhy package (Kosakovsky Pond et al., 2020) were also used to test for
positive selection in order to evaluate overall consistency of inferences. False discovery was
performed for the set of 34 tested genes (see Results), but separately for each tree topology
and for each statistical test. This is because only the PAML results for tree 1 are reported in
the Results; the other methods and topologies are reported for qualitative comparison only.
FDR correction of aBSREL P-values were performed on the uncorrected values for the
foreground branch only (L. cinereus). Model outputs are summarized in File S2.

Ortholog locations were extracted for each gene from the gene feature files
accompanying each annotated genome downloaded from NCBI. Locations of L. cinereus
genes were updated by splice-aware alignment of transcripts to the revised genome
assembly with GMAP v. 2023-12-01 using default settings (Wu & Watanabe, 2005).
Clustering of the original selection candidates from Cornman & Cryan (2022) was
re-evaluated for the updated assembly in two ways. First, the cumulative proportions of
selected and total genes were plotted in consecutive 1-Mb windows based on midpoint
coordinate. Secondly, a null distribution for the expected number of selected genes in
comparable windows was generated by selecting 1,000 random 12-Mb windows that were
permitted to cross chromosome boundaries, with chromosomes concatenated in a random
order for each iteration.

Bat “RefSeq” genome accessions generated by NCBI that were used in evolutionary rate
and synteny analyses include Eptesicus fuscus (GCA_027574615.1; Paulat et al., 2023),
Pipistrellus kuhlii (GCF_014108245.1; Jebb et al., 2020),Myotis myotis (GCF_014108235.1;
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Jebb et al., 2020), Molossus molossus (GCF_014108415.1; Jebb et al., 2020), Artibeus
jamaicensis (GCF_021234435.1; Wang et al., 2020), Phyllostomus discolor (GCF_
004126475.2; Jebb et al., 2020), Rousettus aegyptiacus (GCF_014176215.1; Jebb et al., 2020),
and Rhinolophus ferrumequinum (GCF_004115265.2; Jebb et al., 2020). Bat genomes used
for evolutionary rate analysis only include Sturnira hondurensis (GCF_014824575.3;Wang
et al., 2020), Pteropus alecto (GCF_000325575.1; Zhang et al., 2013), Miniopterus
natalensis (GCF_001595765.1; Eckalbar et al., 2016), and Hipposideros armiger (GCF_
001890085.2; Dong et al., 2016). Genome accessions of outgroup tetrapods used in synteny
analyses included Homo sapiens (GCF_000001405.40; International Human Genome
Sequencing Consortium, 2001), Mus musculus (GCF_000001635.27; Church et al., 2009),
Corvus cornix (GCF_000738735.6; Poelstra et al., 2014), Monodelphis domestica (GCF_
027887165.1;Mikkelsen et al., 2007), Ornithorhynchus anatinus (GCF_004115215.2; Zhou
et al., 2021), Ochotona princeps (GCF_030435755.1; Sjodin et al., 2021), Sus scrofa (GCF_
000003025.6; Warr et al., 2020), Bos taurus (GCF_002263795.3; Rosen et al., 2020), Equus
caballus (GCF_002863925.1; Kalbfleisch et al., 2018), and Felis catus (GCF_018350175.1;
Pontius et al., 2007). Syntenic regions were evaluated using pre-computed data tracks of
the University of California, Santa Cruz (UCSC) Genome Browser (Lee et al., 2020),
including Gencode (Frankish et al., 2021) and RefSeq (O’Leary et al., 2016) annotation data
for human.

Sequence analysis was performed to investigate the evolution of a set of genes with
partial homology to the transcription factor Tbx1 (see Results). Manipulation and
visualization of these sequence alignments was performed with BioEdit (Hall, 1999),
whereas protein secondary structure was predicted with Jpred4 (Drozdetskiy et al., 2015)
and core promoter sequences identified with the neural network tool of Reese (2001).

Gene expression data were tabulated from two sources. Summaries of tissue-level
expression in human and mouse orthologs were extracted from their NCBI Gene pages
and are derived from Fagerberg et al. (2014) and Yue et al. (2014), respectively. Tissues of
elevated expression for each gene were obtained from the “UP_Table” expression output of
the DAVID functional annotation tool. Gene ontology enrichment was performed with the
AmiGO 2 web service (Ashburner et al., 2000; The Gene Ontology Consortium et al., 2023)
using official gene symbols as input and the GO-Slim ontology terms for biological process.

Primary sequence data underlying these analyses are also available in a U.S. Geological
Survey data release (Cornman, 2024).

RESULTS AND DISCUSSION
The updated L. cinereus genome assembly is comprised of 14 major scaffolds totaling 2.08
Gb, encompassing 98.9% of the total assembly length of 2.11 Gb. The assembly is similar in
length to the chromosome-level assembly of the vespertilionid species E. fuscus (2.01 Gb)
and matches the L. cinereus karyotype (Bickham, 1987) in terms of chromosome number
and their relative lengths (Fig. S2). Among-individual coverage patterns in a population
sample were consistent for all major scaffolds except Scaffold 10, which exhibited a
bimodal coverage pattern unambiguously indicating the X chromosome. No scaffold was
identified with coverage patterns indicative of the Y chromosome, as expected given that
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the sequenced individual was female. Although not relevant to the present study, the
smallest scaffolds were consistently undersampled in the Illumina short-read libraries used
for coverage assessment (Fig. S2), an unanticipated effect which could potentially bias
population-genomic analyses in this or related species.

To re-evaluate the clustering of positive selection candidates in this new assembly, the
9,447 tested single-copy orthologs from Cornman & Cryan (2022) were re-aligned, with all
but two placed on one of the 14 major scaffolds. The cumulative distribution of positive
selection candidates diverges from all tested genes (Fig. 1A), particularly in the region of
the synteny blocks described below, which encompasses ten such genes within a 12-Mb
span. No randomly resampled 12-Mb windows selected from randomly concatenated
chromosomes contained more than ten positive selection candidates, and 99.9% of
resampled windows were less than this value (Fig. 1B).

The ten clustered selection candidates identified above combine two of three clusters
identified in Cornman & Cryan (2022), which were on separate scaffolds of that assembly.
They include four genes of the ‘cat-eye’ (CE) synteny block (Cecr2, Cecr6, Mical3, and
Slc25a18) and three genes (Postn, Frem2, and Proser1) that lie within a second block of
conserved synteny in tetrapods that was highlighted in Cornman & Cryan (2022).
For convenience, I designate this latter synteny block “NF” based on the upstream and
downstream genes Nbea and Foxo1 that bound the protein-coding members of the block
in human. The CE and NF synteny blocks are operationally defined here based on
pre-computed alignments with other taxa (Figs. 2 and 3) available from the UCSC Genome
Browser (Lee et al., 2020). One positive-selection candidate, Sacs, lies within the NF
synteny block in most bat species examined but not in mammals generally (further
discussed below). Another positive-selection candidate, Amer3, lies between these two
synteny blocks in L. cinereus whereas the final selection candidate is downstream of the CE
synteny block (Fgf9). Two positive-selection candidates from Cornman & Cryan (2022)
that also mapped to this region, Rps13 and Necap1, were excluded from this analysis as
they are likely retrogenes: the coding sequences of the annotated genes occur on single
exons and both have unannotated, multiexon alignments elsewhere in the genome. Note
that these synteny-block depictions are necessarily human-centric based on the available
data tracks and do not imply that no other genes are present in these regions in other
lineages or that humans have retained all genes that were present in these synteny blocks in
the common ancestor.

Tests of positive selection in the L. cinereus lineage with the expanded set of 13 bat taxa
were again significant for all ten of the previously identified selection candidates (P < 0.01
after false-discovery correction; Table 1). Given the larger number of taxa available for
analysis and the clear relevance of this region to adaptation in L. cinereus, I also tested the
remaining genes of the CE and NF synteny blocks (Figs. 2 and 3). For these additional tests,
Nbea and Trpc4 were also significant for the L. cinereus branch after FDR correction at
P < 0.01 (Table 2). Thus, a total of 12 genes within a 12-Mb genomic window were
identified as candidates for positive selection within the L. cinereus branch in this updated
assessment.
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None of these 12 alignments were significant for positive selection within bats generally
(i.e., testing a site-level model with no branch-specific parameters) after FDR correction
(File S2). However, the Trpc4 alignment was observed to be highly variable in the
C-terminal third of the coding sequence within bats overall as well as divergent from the
other tetrapod clades in the same region (Fig. 4). In contrast, other tetrapod orders did not

Figure 1 A pronounced cluster of positively selected genes occurs in the chromosome-level assembly
of hoary bat (Lasiurus cinereus). The genomic region containing the cluster of selection candidates is
labeled “NF-CE block”, see text for details. (A) Cumulative proportion of all single-copy orthologs tested
for positive selection in a previous study (see text for details) compared with the cumulative proportion of
genes with significant test results. (B) Histogram of the number of positive selection candidates in
windows of comparable size to the 12-Mb region identified in panel A. The observed value for the NF-CE
block is ten. Full-size DOI: 10.7717/peerj.17482/fig-1

Figure 2 Demarcation of the cat-eye (CE) synteny block based on the gene order in human. Each row is a genomic data track derived from the
University of California Santa Cruz (UCSC) Genome Browser, with the approximate location in the human genome indicated in the upper left.
The top track shows ideograms of the human RefSeq genes curated by the National Center for Biotechnology Information (NCBI), indicating exon
structure and orientation, labeled with the gene symbols used in the text. Asterisks indicate genes with evidence of positive selection within the
Lasiurus cinereus branch of the tested phylogeny. The subsequent tracks identify blocks of conserved sequence in representative Tetrapoda of
increasing evolutionary distance to human. Within each species, alignments on the same chromosome share a common color and are linked by flow
lines if contiguous. Regions that are approximately uniform in color and contiguous within each species are syntenic. See Methods for data track
sources. Full-size DOI: 10.7717/peerj.17482/fig-2
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show increased variation in this region either within or among clades. Trpc4 encodes a
Ca2+ transmembrane channel subunit involved in diverse processes, the C-terminal region
of which is intracellular and believed to interact with inositol triphosphate receptors
(ITPRs) as well as calmodulin (Tang et al., 2001). Given the diverse hibernation strategies
of bats, it is noteworthy that Trpc4 is required in mice for heat detection and subsequent
thermoregulation by warm-sensing neurons (Zhou et al. 2023). I therefore performed
additional post-hoc tests of positive diversifying selection on Trpc4 within bats relative to a
representative mammalian outgroup, Carnivora. With Trpc4 sequences from carnivores
designated as background and bat sequences designated as foreground, PAML analysis
revealed strong evidence of diversifying selection within bats for the entire coding
sequence (1.12E-7) and for the ITPR-binding domain alone (3.36E-7). Remarkably,

Figure 3 Demarcation of the NF synteny block based on gene order in human. Each row is a genomic data track derived from the University of
California Santa Cruz (UCSC) Genome Browser, with the approximate location in the human genome indicated in the upper left. The top track
shows ideograms of human genes curated by the Gencode consortium, indicating exon-intron structure and orientation, labeled with the gene
symbols used in the text. Asterisks indicate genes with evidence of positive selection within the Lasiurus cinereus branch of the tested phylogeny.
The subsequent tracks identify blocks of conserved sequence in representative Tetrapoda of increasing evolutionary distance to human. Within each
species, alignments on the same chromosome share a common color and are linked by flow lines if contiguous. Regions that are approximately
uniform in color and contiguous within each species are syntenic. Not the human gene Ccdc169, which lies between Sohlh2 and Spart, is not
conserved across mammals and therefore not labeled here. See Methods for data track sources. Full-size DOI: 10.7717/peerj.17482/fig-3

Table 1 Branch-specific tests of evolutionary rate for previously identified positive-selection candidates clustered in the hoary bat genome.
Significant P-values are bolded. See text for details.

Gene Synteny block lnL: Model = 0, NSsites = 0 lnL: Model = 2, NSsites = 0 Adjusted P-value Background ω Foreground ω

Amer3 −11,606.9213 −11,599.1666 0.0003 0.3127 0.7241

Cecr2 CE −17,895.0499 −17,887.2513 0.0003 0.2194 0.4779

Cecr6 CE −6,567.5161 −6,557.1220 0.0000 0.1386 0.4092

Fgf9 −1,467.9643 −1,462.3278 0.0021 0.0030 0.3742

Frem2 NF −41,738.7078 −41,719.1637 0.0000 0.1449 0.3532

Mical3 CE −22,368.7987 −22,362.1366 0.0008 0.1672 0.3137

Periostin NF −8,688.5241 −8,679.9892 0.0002 0.0584 0.2468

Proser1 NF −11,209.2924 −11,201.2627 0.0002 0.2019 0.6130

Sacs −47,422.3021 −47,411.1321 0.0000 0.0832 0.1817

Slc25a18 CE −2,305.1623 −2,296.6956 0.0002 0.1605 2.2338
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neither BUSTED nor aBSREL supported positive selection in those same alignments. This
discrepancy might be attributable to the greater evolutionary distance between bats and
carnivores, which could complicate the estimation of background evolutionary rates due to
factors such as rate variability and mutational saturation (reviewed in Joy et al., 2016).
Alternatively, the ITPR region may simply be evolving neutrally within bats, yet this seems
unlikely given that truncations and frameshifts are not seen and radical substitutions are
infrequent (Fig. 4). Factors such as gene conversion or unrecognized paralogy also do not
appear to contribute to the observed Trpc4 diversity, as BLASTP searches with either the
full P. kuhli predicted protein or the ITPR region alone did not match more strongly to any
other Trpc homolog (File S2). Alterative splicing can also be excluded as a confounding
factor as the predicted exon structures are similar to orthologs in other taxa and an
outgroup sequence from cat aligned only to predicted exons in P. kuhlii (see Fig. S3).

Structural evolution of the CE and NF synteny blocks in bats and tet-
rapod outgroups
Ten tetrapod taxa including a bird, non-placental mammals, and placental mammals were
surveyed to evaluate the ancestral organization of the clustered positive selection

Table 2 Branch-specific tests of evolutionary rate for other genes of the NF and CE blocks, as defined in the text, in the hoary bat genome.
Significant P-values are bolded. See text for details.

Gene Synteny block lnL: Model = 0, NSsites = 0 lnL: Model = 2, NSsites = 0 Adjusted P-value Background ω Foreground ω

Alg5 NF −3,167.7468 −3,167.7380 0.9541 0.1248 0.1395

Atp6v1e1 CE −1,851.9959 −1,850.9754 0.2882 0.0496 0.0001

Bcl2l13 CE −4,528.8733 −4,528.8732 0.9922 0.2803 0.2792

Ccna1 NF −5,422.2964 −5,421.3659 0.3067 0.1379 0.2666

Cog6 NF −6,466.0667 −6,465.4972 0.3977 0.0531 0.0973

Dclk1 NF −6,276.2568 −6,274.3244 0.1052 0.0180 0.0547

Exosc8 NF −2,588.5123 −2,585.7166 0.0413 0.0762 0.3830

Foxo1 NF −6,126.2541 −6,125.6486 0.3944 0.0572 0.0994

Hdhd5 CE −4,230.8031 −4,230.7411 0.7997 0.1590 0.1912

Il17ra CE −10,733.4234 −10,729.4470 0.0118 0.2544 0.4890

Mab21l1 NF −1,957.4403 −1,957.3366 0.7415 0.0476 0.0302

Lhfpl6 NF −2,999.7726 −2,999.5977 0.7094 0.0021 0.0001

Nbea NF −28,137.9727 −28,125.8943 0.0000 0.0332 0.1234

Pex26 CE −4,080.0169 −4,079.8760 0.7330 0.1967 0.1444

Nhlrc3 NF −3,773.5075 −3,773.3928 0.7415 0.3949 0.3239

Rfxap NF −2,809.1775 −2,808.5338 0.3909 0.1045 0.1798

Smad9 NF −4,432.7381 −4,432.0203 0.3694 0.0257 0.0353

Spart NF −8,726.5589 −8,725.2287 0.2058 0.1288 0.2327

Supt20h NF −7,073.7274 −7,073.2486 0.4371 0.1244 0.1845

Trpc4 NF −9,860.3126 −9,851.2214 0.0001 0.0656 0.2388

Tuba8 CE −3,897.1940 −3,897.1896 0.9553 0.0144 0.0160

Usp18 CE −3,896.5612 −3,895.6903 0.3148 0.2748 0.5061
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candidates and the tempo of structural change in their vicinity during tetrapod evolution
(File S3), a representative subset of which is shown in Fig. 5. Some structural variation in
the CE block is seen in the B. taurus and O. anatinus genomes and individual gene

Figure 4 Alignment of predicted protein sequences of the Trpc4 gene in representative Carnivora and Chiroptera. The gray-shaded C-terminal
region corresponds to the inositol triphosphate receptor (ITPR) binding region annotated in the human protein and discussed in the text. Residues
that are unchanged from the first sequence in the alignment are represented by a dot to better highlight variable positions. Dashes indicate missing
sequence. The alignment wraps to each row of the figure, position numbers are not shown for clarity. Full-size DOI: 10.7717/peerj.17482/fig-4
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deletions have occurred (e.g., Ada2 inM. musculus and Slc25a18 in S. scofra and B. taurus).
However, altered gene order or orientation was not observed in the NF block nor is it
linked with the CE block in any outgroup genome. The bats R. aegypticus and
R. ferrumiquinum, representatives of suborder Yinpterochiroptera (Agnarsson et al., 2011;
Amador et al., 2018), have genomic architectures (Figs. 5 and 6) similar to the other
tetrapod clades, but differ in that Lhflp6 and Cog6 are far removed from other NF genes on
the same linkage group. The positively selected gene Amer3 does not occur near either the
NF or CE synteny blocks in other tetrapods but is linked to CE genes in all bats examined.
The positively selected genes Sacs and Fgf9 have a conserved relative orientation in
outgroups and while usually linked to the NF synteny block they never lie within either
synteny block (unlike in bats).

Within Yangochiroptera (Fig. 6 and File S3), multiple distinct arrangements are evident
within and among the CE and NF synteny blocks, as well as the positively selected genes
Sacs, Fgf9, and Amer3. A common arrangement is shared between P. discolor and
A. jamaicensis, of family Phyllostomidae (Yangochiroptera), in which the NF and CE
blocks are tightly linked, the NF block is further rearranged in gene order, Amer3 lies
between Il17ra and Nhlrc3, and Fgf9 is effectively unlinked from Sacs and genes of both
synteny blocks. Organization of these gene regions is more variable within the four vesper
bats examined, such that a single unambiguous sequence of chromosomal rearrangements
is not apparent without homoplasy (Fig. 7 illustrates one possible reconstruction of
evolutionary events, inferred by inspection). The vespertilionid species share at least partial
linkage of NF and CE genes (Fig. 6, File S3), but in arrangements distinct from
phyllostomids. In E. fuscus, only the CE genes Il17ra, Cecr6, andHdhd5 are linked with NF,
with the remainder on a separate linkage group, apparently due to a chromosomal fission.
Amer3 again lies between the two synteny blocks, but in two novel arrangements in vesper
bats. M. myotis exhibits a unique integration of the Il17ra-Cecr2-Hdhd5 trio and Amer3
within the NF block. P. kuhlii and L. cinereus are more similar in gene order compared
with other vesper bats examined, but differ in that Ufm1 of the NF synteny block is on a
different scaffold in L. cinereus (it also has a distinct location in E. fuscus) and Amer3 is in
the same relative order but inverted in L. cinereus. Note that the ideograms in Figs. 5 and 6
are oriented with the NF block first and the CE block second for consistency, since the
plus-strand designation of each linkage group is arbitrary (hence P. kuhlii and L. cinereus
coordinates are descending and ascending, respectively, on the main linkage groups; see
File S3 for genomic accessions and coordinates).

The genomic organization in M. molossus, representative of the free-tailed bat family
(Molossidae), reveals several changes from Yinpterochiroptera that are shared with
phyllostomid and vespertilionid bats and may be basal to Yangochiroptera: 1) the insertion
of Sacs within the NF synteny block; 2) deletion of Stoml3; and 3) a rearrangement of the
NF genes Lhfpl6-Foxo1. However, the consensus view that Molossidae is within the
superfamily Vespertilionoidea (Agnarsson et al., 2011; Amador et al., 2018) and shares a
more recent common ancestor with vespertilionids than with phyllostomids is
incongruent with aspects of Fig. 6. Most notably, this phylogenetic position implies that
either the NF and CE blocks merged independently in vespertilionid and phyllostomid
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ancestors, or the merged NF and CE blocks subsequently split in molossids (a reversal).
Further complicating the inferred order of chromosomal changes, the molossid and
phyllostomid taxa also share a very pronounced increase in GC content within the coding
sequences of the analyzed genes (Fig. S4). This shift in background nucleotide composition
may relate to the extreme subtelomeric location of NF and CE genes in some of these taxa.
For example, the most 3’ gene coordinate of the merged NF+CE block in A. jamaicensis is

Figure 5 Relative positions in tetrapod genomes of synteny blocks and individual genes analyzed in this study. Each species diagram consists of
one gene per row, represented by the human gene symbol for the orthologous group. A plus or minus sign indicates the orientation of the gene on the
reference sequence. Gaps between gene blocks indicate they are on different linkage groups. A double line between genes on the same linkage group
indicates a gap greater than 10 Mb. The Nbea-Foxo1 (NF) synteny block is colored green and the cat-eye (CE) synteny block is colored orange (see
text for definitions of these blocks). Within each block, genes are numbered according to their order in the human genome as a reference. The genes
Sacs, Fgf9, and Amer3 are not numbered because they are not considered part of either synteny block; rather, they are shown because they were
identified as positive selection candidates closely linked to the two synteny blocks in Lasiurus cinereus. These three genes are colored blue, purple,
and brown, respectively. Gene symbols are in unitalicized upper case for legibility. Genes that are unannotated and presumed absent in a species are
grayed. Full-size DOI: 10.7717/peerj.17482/fig-5
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only six bases from the end of the linkage group (File S3). Changes in genomic location
relative to chromosome ends are known to influence background nucleotide composition
in mammals, and these compositional shifts can occur rapidly (Montoya-Burgos, Boursot
& Galtier, 2003).

While Figs. 5 and 6 illustrate the changing relative positions of the positive selection
candidates Amer3, Fgf9, and Sacs in tetrapod genomes, it should not be inferred that those
genes have necessarily moved individually. Identifying and plotting conserved landmark
genes that are adjacent to those positive selection candidates in outgroup and bat genomes
demonstrates that each of the three selection candidates has moved as part of larger

Figure 6 Relative positions in twelve tetrapod genomes of synteny blocks and individual genes analyzed in this study. Each species diagram
consists of one gene per row, represented by the human gene symbol for the orthologous group. A plus or minus sign indicates the orientation of the
gene on the reference sequence. Gaps between genes indicate they are on different linkage groups. A double line between genes on the same linkage
group indicates a physical distance greater than 10 Mb. The Nbea-Foxo1 (NF) synteny block is colored green and the cat-eye (CE) synteny block is
colored orange (see text for definitions of these blocks). Within each block, genes are numbered according to their order in the human genome as a
reference. The genes Sacs, Fgf9 and Amer3 are not numbered because they are not considered part of either synteny block; rather, they are shown
because they were identified as positive selection candidates closely linked to the two synteny blocks in Lasiurus cinereus. These three genes are
colored blue, purple, and brown, respectively. Gene symbols are in unitalicized upper case for legibility. Genes that are unannotated and presumed
absent in a species are grayed. Species are grouped by phylogenetic position using the same color scheme as in Fig. 7. The asterisk denotes uncertainty
as to whether the gene Bid is functional in L. cinereus. Full-size DOI: 10.7717/peerj.17482/fig-6
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multigene blocks (Figs. S5 and S6). Amer3 likely moved as part of an ancestral block of
eight genes (Fig. S5), whereas the genes that flank them in other mammals, represented by
the human gene order in Fig. S5B, were not lost in bats but are instead located distant from
Amer3 on the same chromosome or on a different chromosome. Additional inversions of
these discrete gene blocks have subsequently occurred during bat evolution, giving rise to
diverse relative orientations (Fig. S5). Linkage of the Amer3 block to the CE and NF genes
has also been maintained despite subsequent chromosomal breakage (e.g., the genes are
telomeric in A. jamaicensis andM.molossus as noted above but occur in the middle of large
linkage groups in the other taxa shown in Fig. S5).

The selection candidates Fgf9 and Sacs are tightly linked in all outgroup genomes
examined (Fig. S6) but based on conserved landmark genes have split into two distinct,
rearranged blocks in bats. (Note other, less conserved genes are also present in the vicinity
but are not shown for clarity.) These gene blocks are maintained in approximately the
same order in outgroups, with the exception of an inversion in mouse, and lie several Mb
from the NF block. In bats, the Fgf9 and Sacs blocks are separated from each other by
several Mb or are on separate linkage groups. In molossid and vespertilionid bats, the Fgf9
block is tightly linked to the NF block and has remained so through subsequent

Figure 7 Hypothesized sequence of structural changes in gene organization in bats. Taxa for which
chromosome-scale assemblies were available for this analysis are marked by colored boxes, which cor-
respond to the colors used in Fig. 6. Grayed taxa were not analyzed for synteny because the relevant genes
were not on large linkage groups. Genes are identified by their gene symbols, whereas NF and CE denote
synteny blocks described in the text. GC denotes G + C content of gene coding sequences.

Full-size DOI: 10.7717/peerj.17482/fig-7
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rearrangements in the region. The Fgf9 block has also remained largely intact in all bat
lineages examined, whereas most genes of the Sacs block present in Yinpterochiroptera are
found elsewhere in the genomes of Yangochiroptera.

It remains to be determined whether the CE gene Bid is intact in L. cinereus. BLASTN
alignments of Bid orthologs from other Vespertilionidae identified only a single contiguous
match of ~200 nt within the L. cinereus assembly (for comparison, the coding sequence is
~700 nt in E. fuscus). Gene pseudogenization and loss are themselves functionally
significant events that may relate to adaptive divergence as well, and indeed three genes of
the NF and CE blocks (Ada2, Stoml3, and Sertm1) were not found in multiple
vespertilionid bats. Pseudogenization of at least three genes has also substantially altered
the Amer3 block subsequent to being linked to the NF and CE blocks in bats, although
Gpr148 has been lost in other mammals as well (Fig. S5A). However, some presumed gene
losses could simply reflect assembly errors, such that transcriptomic data may be needed to
confirm their sequence and functionality. A summary of gene order and orientation of all
gene blocks discussed here, including gene loss events, is depicted for bats and outgroups
in Fig. S7.

Functional roles of positively selected genes and synteny blocks
Eight of the 12 positive selection candidates in L. cinereus have peak expression in brain
tissue in either human or mouse based on NCBI Gene data, whereas nine have enriched
expression in a brain tissue category according to the DAVID “Up_tissue” annotation table
(Table 3). Similarly biased expression is seen in the DAVID data when all genes in the NF
and CE blocks are included regardless of selection test result. For the 38 genes for which
DAVID annotation information was available, 29 (76.3%) had elevated expression in
human brain tissue (Table 3). However, a smaller proportion of genes (13 of 37 genes with
available data, or 35.1%) had peak expression in brain or central nervous system (CNS) in
either human or mouse based on NCBI Gene data. No significant gene ontology
enrichment was found for either the selected genes or for all NF and CE genes. I conclude
that while the positive selection candidates have relatively high expression in brain or CNS,
as do the NF and CE genes as a group, neither gene set is over-represented in annotated
pathways or biological processes. Furthermore, a recent protein-protein interaction map of
the mouse brain uncovered no direct pairwise interactions between proteins encoded by
the genes listed in Fig. 5 (see Table S3 of Pourhaghighi et al., 2020).

For five selection candidates, deleterious mutations are associated with mild to severe
defects of organogenesis or embryonic neural development, as indicated by clinical
variants in human or by experiments in animal models. Cecr2 deletion causes anencephaly,
a severe defect of cranial and neural development (Banting et al., 2005; Fairbridge et al.,
2010; Dicipulo et al., 2021). Frem2 loss of function underlies Fraser Syndrome,
characteristics of which include cryptopthalmy and syndactyly, both of which can be
recapitulated in a mouse model (Jadeja et al., 2005; Timmer et al., 2005). A frameshift in
Proser1 has been associated with craniofacial dysmorphy and genitourinary developmental
defects in human (Salah et al., 2022). Missense mutations in Fgf9 are associated with
multiple syntoses syndrome, which is characterized by joint fusions of the hand and
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Table 3 Tissue-specific expression patterns for positive-selection candidates as well as other genes of the NF and CE blocks (see text for block
definition). The sources of tissue-specific expression are described in the text. Tissues that are part of the brain or central nervous system are bolded.
Tissue labels that are specific to human disease states were excluded. Positive selection candidates are denoted by an asterisk.

Gene
symbol

Gene name DAVID tissue enrichment NCBI tissue of peak
expression (human/mouse)

Ada2 Adenosine deaminase 2 Brain, Liver, Thymus, Trachea, Uterus Spleen/NA

Alg5 Dolichyl-phosphate beta-glucosyltransferase Hypothalamus, Liver, Prostate, Umbilical cord blood Thyroid/placenta adult

Amer3* APC membrane recruitment protein 3 Brain, Cerebellum Brain/CNS E18

Atp6v1e1 ATPase H+ transporting V1 subunit E1 Amygdala, Brain, Cajal-Retzius cell, Cerebellum, Liver,
Lung

Brain/cortex adult

Bcl2l13 BCL2 like 13 Amygdala, Brain, Eye, Human skeletal muscle, Liver, Skin,
Synovial membrane tissue, Testis, Trachea

Fat/heart adult

Bid BH3 interacting domain death agonist Brain, Embryonic kidney, Fetal liver, Liver, Normal
colorectal tissue, Skin

Bone marrow/kidney adult

Ccna1 Cyclin A1 Brain, Myeloid, Testis Testis/testis adult

Cecr2* Histone acetyl-lysine reader Brain, Liver, Skeletal muscle Brain/testis adult

Cecr6* Transmembrane protein 121B Brain Brain/NA

Cog6 Component of oligomeric golgi complex 6 Amygdala, Aorta, Brain, Fetal skin Testis/testis adult

Dclk1 Doublecortin like kinase 1 Brain, Fetal brain, Hippocampus Brain/frontal lobe adult

Exosc8 Exosome component 8 Brain, Uterus Testis/CNS E11.5

Fgf9* Fibroblast growth factor 9 Foreskin, Kidney Kidney/cerebellum adult

Foxo1 Forkhead box O1 Lymph, Placenta Ovary/ovary adult

Frem2* FRAS1 related extracellular matrix 2 Fetal kidney, Plasma, Tongue Kidney/bladder adult

Hdhd5 Haloacid dehalogenase like hydrolase domain
containing 5

Brain, Embryo, Lymph, Testis Duodenum/thymus adult

Il17ra Interleukin 17 receptor A Placenta, T-cell, Uterus Bone marrow/thymus adult

Lhfpl6 LHFPL tetraspan subfamily member 6 Amygdala, Lung Fat/lung adult

Mab21l1 Mab-21 like 1 Brain NA/NA

Mical3* Microtubule associated monooxygenase,
calponin and LIM domain containing 3

Brain, Liver, Lymph, Pancreas, Testis Testis/testis adult

Nbea* Neurobeachin Brain, Embryonic head, Spleen, Testis Brain/CNS E18

Nhlrc3 NHL repeat containing 3 Heart, Placenta, Testis Thyroid/placenta adult

Pex26 Peroxisomal biogenesis factor 26 Brain, Colon, Fibroblast, Ileal mucosa, Uterus Colon/ovary adult

Postn* Periostin Liver, Periodontal ligament, Placenta, Plasma, Thyroid
gland

Skin/limb E14.5

Proser1* Proline and serine rich 1 Amygdala, Brain, Colon endothelium, Peripheral nervous
system

Placenta/thymus adult

Rfxap Regulatory factor X associated protein Lymphoblast, Testis, Thalamus Testis/ovary adult

Sacs* Sacsin Astrocyte, Brain, Fetal liver, Uterine endothelium Brain/CNS E18

Sertm1 Serine rich and transmembrane domain
containing 1

Amygdala, Brain Brain/CNS E18

Slc25a18* Solute carrier family 25 member 18 Brain, Liver Brain/cortex adult

Smad9 SMAD family member 9 Brain, Eye, Fetal brain Thyroid/adrenal adult

Sohlh2 Spermatogenesis and oogenesis specific basic
helix-loop-helix 2

Testis Testis/testis adult

Spart Spartin Brain, Placenta Ovary/limb E14.5

(Continued)
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cranium as well as craniofacial dysmorphy (Wu et al., 2009; Rodriguez‐Zabala et al., 2017);
these phenotypes can be recapitulated in a mouse model (Tang et al., 2017). Missense
mutations, microdeletions, and reciprocal translocations in Nbea are associated with
neurodevelopmental disease, including autism and epilepsy (Mulhern et al., 2018). While
no developmental defect has been reported for Amer3 specifically, the homolog to which
Amer3 binds, Amer1, does have an association with craniofacial dysmorphy and abnormal
organogenesis in human (Mi et al., 2020). However, not all deleterious phenotypes of
selection candidates appear early in development: Sacs mutations underlie an adult-onset
neurodegenerative syndrome characterized by spastic ataxia (Bagaria, Bagyinszky & An,
2022).

In addition to these gene-specific associations, diverse structural aberrations in human
involving the CE block, such as supernumerary chromosomes and microdeletions, have
overlapping phenotypes with a craniofacial component (reviewed in Glaeser et al., 2021). A
spontaneous deletion of the majority of NF genes has been associated with impaired
neurological development and craniofacial dysmorphy in an isolated clinical report (Miura
et al., 2020). Recurrent deletion or duplication of five genes that include Amer3 (also
known as Fam123C) is associated with clinically diagnosed behavioral problems, epilepsy,
and cranial dysmorphy (Dharmadhikari et al., 2012); the deletion spans the genes Gpr148
to Plekthb2 shown in Fig. S5A.

The phenotypes of deleterious mutations reveal aspects of gene function, but may be
completely unrelated to positively selected phenotypic variation. Nonetheless, bats are well
known for extreme cranial divergence that underpins ecological traits. Cranial morphology
has been shown to evolve via allometric processes such as heterochrony (Camacho et al.,
2020), the underlying mechanisms of which are beginning to be revealed (Camacho et al.,
2019). Arbour, Curtis & Santana (2021) identified distinct modules of cranial and
mandibular development that have diversified across the bat phylogeny, particularly with
respect to oral-echolocating, nasal-echolocating, and non-echolocating taxa.
The biomechanics of feeding also strongly shapes cranial evolution at both deep and
shallow divergence times (Hedrick & Dumont, 2018; Camacho et al., 2019). For example,

Table 3 (continued)

Gene
symbol

Gene name DAVID tissue enrichment NCBI tissue of peak
expression (human/mouse)

Stoml3 Stomatin like 3 Lung, Trachea Lung/frontal lobe adult

Supt20h SPT20 homolog, SAGA complex component Kidney, Prostate, Testis, Trachea Testis/testis adult

Trpc4* Transient receptor potential cation channel
subfamily C member 4

Embryonic kidney, Kidney, Thalamus Endometrium/frontal lobe
adult

Tuba8 Tubulin alpha 8 Amygdala, Brain, Caudate nucleus, Skeletal muscle Heart/testis adult

Ufm1 Ubiquitin fold modifier 1 Bone marrow, Brain, Kidney Thyroid/placenta adult

Usp18 Ubiquitin specific peptidase 18 Brain, Ovary, Uterus Fat/liver E18
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cranial morphology was found to parallel dietary similarity in some MediterraneanMyotis
species (Evin et al., 2008).

Birth and death of a Tbx1-like gene family in Vespertilionidae
Cornman & Cryan (2022) identified a variable gene family with partial homology to the
DNA-binding transcription factor Tbx1, the latter having many important roles in
embryonic development (Baldini, Fulcoli & Illingworth, 2017). The gene family was
initially identified because one member lies within the CE block in L. cinereus but
homologs were not detected in other tetrapod orders. In addition to multiexon gene
models, single-exon genes and partial genes were identified, suggesting that at least some of
these ‘Tbx1-like’ family members were retrogenes or pseudogenes. To further investigate
the origins and functionality of this gene-family expansion, I performed a TBLASTN
search with the homologous sequence XP_027987819.1 from E. fuscus against the genomes
of P. kuhlii and M. myotis. Multiple unannotated Tbx1-like homologs are present in both
of the latter genomes (File S4), at least some of which appear to have the minimum
complement of gene features (a multiexon example with a predicted core promoter is
shown in File S5). No Tbx1-like sequences were identified in non-vespertilionid bat
genomes.

High-scoring BLAST matches in P. kuhlii are also consistently supported by low-level
RNA-Seq coverage at those sites (Fig. S8B). Furthermore, the well conserved portion of the
Tbx1-like family retains the key arginine residue that in the TBX1 protein binds the major
groove of double-stranded DNA (El Omari et al., 2012), and the N-terminal protein
regions have secondary structures very similar to that of human Tbx1 even after all
primary sequence homology is lost (Fig. S8A). In contrast, the C-terminal portions of the
predicted proteins appears more disordered and lack the second and third alpha helices
and DNA interaction residues found in TBX1. This pattern of sequence divergence also
characterizes the Tbx gene family generally (El Omari et al., 2012), in that the conserved
protein domain that defines the Tbx family encompasses the same region that Tbx1 shares
with Tbx1-like, whereas Tbx homologs show increased divergence at the same point that
Tbx1-like diverges from Tbx1, which encompasses the dimerization domain.

Evidence of transcription and conservation of functionally important domains suggests
that at least some Tbx1-like genes are functional, albeit with potentially high evolutionary
turnover or pseudogenization rates. The latter possibility is illustrated by a comparison of
the P. kuhlii Tbx1-like gene proposed in File S5 to its closest homologs in three other
vespertilionids, including L. cinereus (Fig. S8C). All three homologs in these other taxa
show clear signs of pseudogenization, including internal stop codons, frameshifts, and an
unconserved start codon. I conclude that the burst of Tbx1-like sequences began early in
the Vespertilionid lineage if not earlier, likely with continued birth and death in
subsequent lineages.

While pseudogenes are ubiquitous in complex genomes (and often disregarded on
non-scientific grounds (Cheetham, Faulkner & Dinger, 2020), the apparent burst in Tbx1-
like duplications within the same lineage exhibiting positive selection on genes affecting
cranial morphology would be a remarkable coincidence if functionally unrelated. This is
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because Tbx1 mutation, duplication, and haploinsufficiency are all associated with
craniofacial dysmorphy syndrome in human (DiGeorge Syndrome), which can be
recapitulated in a mouse model (Lindsay et al., 2001; Liao et al., 2004; McDermid &
Morrow, 2002). An expansive literature has since established Tbx1 as a key regulator of
cranial development, governing aspects of the differentiation and migration of cells arising
from the pharyngeal arches and neural crest (reviewed in Baldini, Fulcoli & Illingworth,
2017). The human phenotypes associated with Tbx1 dosage variation overlap with cat-eye
syndrome and both syndromes are attributable in part to defects in pharyngeal arch
development mediated by abnormal cell migration (Tan et al., 2010, Ivins & Scambler,
2022). Indeed, Tbx1 is tightly linked to the CE synteny block in human and deletions of
either constitute similar subclasses of 22q11 microdeletion syndrome (Tan et al., 2010),
although Tbx1 is not located near either synteny block in mammals generally (see Tbx1
gene pages for taxa in Fig. 5 and File S3). One hypothesis suggested by the advent of Tbx1-
like sequences in vesper bats is that they have been at least transiently functional and have
affected aspects of Tbx1-regulatory networks relevant to positively selected phenotypes in
the hoary bat lineage, perhaps by modulating or inhibiting TBX1 dimerization at particular
binding sites. Tbx1 is believed to regulate gene expression by binding C-rich DNA motifs
and then promoting histone methylation near transcription start sites in a
dosage-dependent fashion (Fulcoli et al., 2016). This hypothesis does not require that
TBX1 directly regulate selection candidates or other genes with which they are linked,
although 3 of 12 selection candidates (Frem2, Proser1, and Slc25a18) were differential
expressed in a mouse Tbx1 haploinsufficiency model (Fulcoli et al., 2016), compared with
1,992 of 22,807 total genes (8.7%) tested in that study.

CAVEATS AND CONCLUSIONS
This analysis further established a cluster of 12 genes exhibiting signatures of diversifying
selection within the hoary bat lineage, which lie within a 12-Mb window of the hoary bat
genome. This genomic hotspot is dominated by re-assorted elements of two distinct
synteny blocks that are conserved and unlinked in other tetrapods. In fact, structural
changes within this region during bat evolution appears to require parallel occurrences or
subsequent reversals in different bat lineages. The selected genes specifically and the
synteny blocks generally are associated with cranial and neural development, based on
expression patterns, disease associations, and functional studies in model organisms.
The analysis also confirmed previously reported Tbx1-like duplications within vesper bats,
although the timing remains difficult to determine since the sequences are largely
unannotated in those genomes and turnover appears rapid. Nonetheless, the strict
conservation of a critical functional region despite high divergence elsewhere in the
predicted proteins (see also Cornman & Cryan, 2022) implies purifying selection. I
conclude that this genomic region is a hotspot of adaptive evolution in the hoary bat
lineage that likely relates to cranial and neurological traits underlying ecological
diversification.

Different tests of selection fit conceptually distinct, parameter-rich models to quantify
excess nonsynonymous substitutions in an alignment, a phenomenon that is likely both
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transient and conservative as a metric of positive selection (see Seo, Kishino & Thorne,
2004). Not surprisingly, different algorithms and data sets give different results.
For example, positive rates were higher with the PAML package than with the HyPhy
package, and the PAML algorithm is known to be subject to false positives if the
assumption of rate homogeneity on background lineages is unreasonable (Smith et al.,
2015). Nonetheless, results from the two packages were broadly similar for longer
alignments, indicating convergence of model results as the information content of
alignments increased. For example, using either tree 1 or tree 2, six of nine alignments
exceeding 2,000 analyzed positions were supported by the BUSTED method at an
FDR-corrected P-value of less than 0.05 (File S2). For tree 3, seven of nine were
concordant. Incomplete concordance between the two methods may also arise if
diversification had begun prior to the divergence of Lasiurus, as suggested by the fact that
the aBSREL method was generally not significant for the same comparisons.
Methodological congruence might therefore be greater for alternative designations of
foreground branches. Yet the diversification of Trpc4 within bats (Fig. 4) is a striking
example of how different approaches to quantifying episodic selection can produce highly
discordant interpretations of the same alignment.

Another caveat is that evolutionary rate estimation may be sensitive to errors in
phylogeny or reconstructed states at unsampled nodes (Feng et al., 2020) and factors such
as undetected paralogy, gene conversion, nucleotide composition bias, and recombination
can lead to false positives (Anisimova, Nielsen & Yang, 2003; Galtier & Duret, 2007;
Ratnakumar et al., 2010). For example, two genes identified as positive selection candidates
in this region by Cornman & Cryan (2022), Rps13 and Necap1, were found to be
paralogous retrogenes and removed from this analysis for this reason. Phylogenetic
uncertainty also exists for the studied species, particularly with respect to vespertilionid
taxa. This uncertainty was addressed by evaluating alternative guide trees, which produced
qualitatively similar PAML results. Pruning compositionally skewed taxa (tree 4) generally
increased P-values of the tests such that fewer were significant at the same alpha, yet most
remained significant at an FDR-corrected P-value of 0.05. Furthermore, the closest
outgroups of L. cinereus are very similar in nucleotide composition of tested genes (Fig. S3)
and thus unlikely to bias the L. cinereus branch test. Moreover, the shift in background
composition affected whole genomic regions yet only a minority of tested genes within
them had signatures of positive selection.

Despite these important caveats, it bears emphasizing that the conclusions of this study
are not predicated on any specific gene undergoing episodic positive selection. They are
instead based on the tight genomic clustering of numerous positive selection tests
concomitant with a high number of structural changes within synteny blocks that show
few changes in other tetrapod orders. These observations hold regardless of any
methodological sensitivity for a specific gene. This study also strengthens the genome-wide
conclusions of Cornman & Cryan (2022), given that all ten positive selection tests repeated
here with additional data produced the same result at an alpha of 0.01. That study also
identified several positively selected genes affecting cranial development elsewhere in the
L. cinereus genome.
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This study examined the order and evolutionary rates of protein-coding genes only.
Purifying selection on the expression context of long noncoding RNA (lncRNA) genes has
been proposed to constrain coding-gene synteny in some cases (Hufton et al., 2009), and
lncRNA genes occur within these synteny blocks in many taxa. For example, the human
genes Cecr1, Cecr7, and Fam230D are all lncRNAs within the CE block defined by Fig. 1.
However, Cecr1 and Cecr7 have been shown not to be conserved with other mammals (e.g.,
Bridgland et al., 2003; Footz et al., 2001) and both Cecr7 and Fam230D appear to be
recently arisen within the primate lineage (Bridgland et al., 2003; Delihas, 2018). lncRNA
genes present in the human NF synteny block (e.g., LINC02343 and LINC00571) also do
not have conserved orthologs listed in the UCSC genome browser. While the annotation of
lncRNAs remains poorly developed compared with protein-coding genes, conservation of
orthologous lncRNAs per se does not appear to drive the maintenance of the NF and CE
blocks across tetrapod orders. Yet regulation of chromosomal ‘neighborhoods’ (sensu
Nora, Dekker & Heard, 2013) by lncRNAs could still be a mechanism by which synteny is
maintained even if the lncRNAs themselves turn over or no longer retain evidence of
orthology (Engreitz et al., 2016; Quinn et al., 2016).

Regardless of the contribution of lncRNAs, co-regulation via shared cis regulatory
elements and chromatin neighborhood effects remains an important hypothesis for the
maintenance of these synteny blocks during tetrapod evolution as well as the clustering of
positive selection candidates in L. cinereus. For example, ‘transcriptionally associated
chromosome domains’ are recognized facets of hierarchical chromatin folding that
contribute to correlated transcription on scales from kilobases to megabases (Nora, Dekker
& Heard, 2013), distances that are very relevant to the synteny blocks studied here.
Moreover, the critical link between chromatin state and co-expression may be manifested
in only a few cell types or developmental stages (cf. Eckalbar et al., 2016), and thus not
apparent in aggregate measures of gene expression such as given in Table 3.

Future directions could include refining estimates of the timing and magnitude of
episodic selection within clades as more genomes become available. The hypothesis that
structural changes within synteny blocks alter gene expression profiles, chromatin
modifications, or chromatin topological domains could potentially be tested with RNA-
Seq, ChIP-Seq, and HiC data, although the fact that many of these genes act during
embryonic development is constraining (but see Eckalbar et al., 2016 for an example in
bats). Fine-scale analysis of genotype-phenotype associations for these genes, e.g., by
focusing on highly diverse genera such as Myotis, could suggest ecological drivers of
diversifying selection. Further comparative genomic study of the orthologous genes in bats
could also serve as a case study of how genic and karyotypic evolution interact to drive
phenotypic divergence, given that karyotypic evolution is considered an important mode
of adaptation and species diversification (Damas, Corbo & Lewin, 2021).
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