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Fertilization plays a crucial role in ensuring global food security and ecological balance. In
a comprehensive three-year experiment, we investigated the impact of substituting
innovative biological manure for chemical fertilization on rice productivity and soil
biochemical properties. Our findings highlight a significant improvement in both rice yield
and straw weight. Specifically, applying 70% of total chemical nitrogen (N) fertilization with

2000 kg ha™ of biological manure resulted in a substantial 13.6% increase in rice yield and
a remarkable 34.2% boost in straw weight. In comparison to the conventional local farmer

practice of applying 165 kg N ha™, adopting 70% of total N with biological manure
demonstrated superior outcomes, particularly in enhancing yield components and spike
morphology. Fertilization treatments led to elevated levels of soil microbial biomass carbon
and N. However, a nuanced comparison with local practices indicated that applying
biological manure alongside urea resulted in a slight reduction in N content in vegetative
and economic organs, along with decreases of 10.4%, 11.2%, and 6.1% in N recovery
efficiency (NRE), respectively. Prudent N management through the judicious application of
partial biological manure fertilizer in rice systems could be imperative for sustaining
productivity and soil fertility in southern China.
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Abs%lt

Fertilization plays a crucial role in ensuring global food security and ecological balance. This study
investigated the impact of substituting innovative biological manure for chemical fertilization on
rice (Oryza sativa L) productivity and soil biochemical properties based on a three-year
experiment. Our results suggested rice yield and straw weight were increased under manure
addition treatment. Specifically, 70% of total amount of nitrogen (N) fertilizer substituted by
biological manure resulted in a substantial 13.6% increase in rice yield and a remarkable 34.2%
boost in straw weight. In comparison to the conventional local farmer practice of applying 165 kg
N ha'l, adopting 70% of total N with biological manure demonstrated superior outcomes,
particularly in enhancing yield components and spike morphology. Fertilization treatments led to
elevated levels of soil microbial biomass carbon and N. However, a nuanced comparison with local
practices indicated that applying biological manure alongside urea resulted in a slight reduction in
N content in vegetative and economic organs, along with decreases of 10.4%, 11.2%, and 6.1% in
N recovery efficiency (NRE), respectively. Prudent N management through the judicious
application of partial biological manure fertilizer in rice systems could be imperative for sustaining

productivity and soil fertility in southern China.

Keywords: N recovery efficiency, soil biochemical property, rice production, biological manure

fertilizer.
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1 Introduction

Agricultural practices play a p@al role in global food security and ecosystem health, with
fertilizer application being a critical aspect. Traditionally, chemical nitrogen (N) fertilizers have
been widely used to improve soil fertility and increase crop yields. However, the associated
ecological and environmental consequences have raised concerns, urging researchers to explore
alternative strategies (Smith et al., 2016; Dogan et al., 2023). Seeking innovative approaches that
promote sustainable agriculture, considering the complex interplay between soil health, crop yield,
and environmental sustainability could be required in shaping the future of agriculture towards
more eco-friendly and resilient practices (Tilman et al., 2017; Singh et al., 2023).

Manure, a traditional and organic nutrient source, is gaining recognition as a promising alternative
to chemical fertilizers (Ng et al., 2024). Beyond supplying essential nutrients for crop
development, its utilization presents the added benefit of recycling organic matter into the soil. As
the agricultural paradigm undergoes transformations, it becomes crucial to comprehensively
evaluate the ramifications of partial and complete substitution with manure applications (Hou et
al., 2023). Understanding the holistic impact of transitioning to manure-based practices is essential
for informed and sustainable agricultural decision-making, ensuring a balanced approach to
nutrient management and soil health.

As global concerns about the environmental footprint of agriculture intensify, there is a paramount
need to explore sustainable practices that balance productivity with ecological stewardship. The
investigation into the partial substitution by manure applications represents a crucial step in
evaluating the feasibility and consequences of adopting organic alternatives on a large scale. Thus,
this study aims to elucidate the impacts of a novel biological manure application on grain yield,

soil nutrient and microbial biomass in rice system during 2020 — 2022 in southern China.
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2 Method and materi@

2.1 Site description and experimental design

A three-year experiment was conducted to assess the impact of various nitrogen fertilization
strategies on rice productivity in He County, Anhui province, China (N31.76828, E118.20394,
elevation 18 m) from 2020 to 2022. The experimental site, characterized by a subtropical climate,
had an average annual temperature of approximately 15.8 °C and annual precipitation of 1067 mm.
The predominant soil profile was hydragric paddy soil, equivalent to Inceptisols in the U.S. soil
classification system. Initial soil properties at depths of 0—20 cm in 2020 were as follows: pH 6.04,
soil organic matter 14.8 g kg-1, total N content 1.07 g kg!, available phosphate 36.6 mg kg -! and
available potassium 147 mg kg™'.

The field experiment employed a randomized complete block design with plots measuring 60 m?
(6 m x 10 m) and three replications. Three treatments were applied: the control treatment (NO)
with 0 kg N ha'!; the conventional N treatment (N100) following local practices, applying 165 kg
N ha™!; the manure plus 70% of the total 165 kg N ha-! application (N70BM). Each experimental
plot received 60 kg P,Os of calcium superphosphate (12%) and 75 kg K,O ha'! potassium sulfate
(60%). The biological manure fertilizer, jointly developed by our experimental lab and Anhui Serte
Fertilizer Co., Ltd, primarily utilized pig manure and straw as raw materials. It exhibited an
effective viable count (Bacillus amyloliquefaciens SQR9) of > 200 milt'% g’!, organic matter
content of > 50%, moisture content of < 30%, and nutrient content of 15.6 g N kg'!, 26.1 g P,Os
kg, and 64.8 g K,O kg! in granular powder form. The popular rice cultivar “Fuxiangzhan” was
employed in this study. Field management practices, including tillage, weed, and pest control, were
consistent with local farmer practices.

2.2 Field sampling and analysis
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Grain yield was determined by harvesting the whole plot area and weighing all leaves and stems
for recording straw. The plant samples were oven dried to constant weight at 60 °C and then was
measured N content in grain and straw by an elemental analyzer (Vario Max CN, Elemeta
Analysensysteme GmbH, Hanau, Germany). Accumulated N content was calculated as the product
of N content and dry matter weight.

Soil samples were collected using the 5-point method at depths of 20 cm with three replications
after the rice harvest for each season. The fine root, gravel and plant residues were removed in
each soil sample. Then, the soil was divided into two parts: one served as air-drying soil through
a 0.25 mm sieve for determining soil properties, and another one was stored at 4 °C for measuring
the ammonium, nitrate, microbial biomass C (MBC) and N (MBN) and soil enzyme activity. Soil
NH;—N and NO3;—N was measured by the continuous flow analyzer (FIAstar 5000 Analyzer,
Foss Tecator, Hillerad, Denmark). Soil MBC and MBN can be determined using the chloroform
fumigation extraction method. After fumigation, microbial residues are extracted, and organic
carbon and nitrogen are quantified (Vance et al., 1987).

Soil catalase activity was assessed following the potassium permanganate titration method (Guan
et al., 1986; Wang et al., 2020). A soil sample (2 g) was mixed with 40 ml distilled water and 5 ml
hydrogen peroxide (3%), shaken for 30 min, and filtered. A 25 ml filtrate was titrated to pink with
0.1 M potassium permanganate.

Urease activities were determined as Guan and Yin's method (Guan et al., 1986; Yin et al., 2014).
Soil (2 g) was treated with 10 ml urea (10%), 20 ml citrate buffer (1 M, pH 6.7), and 1 ml
methylbenzene. After incubation at 37°C for 24 hours, the solution was filtered. 1 ml filtrate was

mixed with 20 ml distilled water, 4 ml sodium phenolate hydroxide, and 3 ml sodium hypochlorite.
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NH4—N was analyzed after 20 min using a spectrophotometer at 578 nm. Urease activity was
expressed as milligrams of NH,*—N per gram of dry soil released in 24 hours.

The invertase activity was assessed following the protocols outlined by Guan et al. (1986). Using
3,5-dinitrosalicylic acid, invertase activity was measured with sucrose solution as the substrate.
The results were expressed as the mass (mg) of glucose per gram of soil after a 24-hour incubation
period.

Apparent N recovery efficiency (NRE) was calculated by N concentration and plant biomass as

defined by a previous study (Conant et al., 2013).

__ Nuptake (fertilized) - N uptake (none - fertilized)
- amount of N applied

NRE

23 Statistical Analygl
To test the difference between different N management (i.e. NO, N100 and N70BM) for grain
yield, biomass and soil properties, one-way analysis of variance (ANOVA) and the least significant

differences (LSDs, P < 0.05) was conducted in SPSS 20.0 (SPSS, inc., 2011, Chicago IL, USA).

3 Result

3.1 Grain yield and straw weight

Grain yield and straw weight v&@igniﬁcant differences under fertilizer treatments (Fig. 1).
Compared with NO, 100% N application (N100) increased the average yield by 1221 kg ha'! and
straw weight by 1913 — 1963 kg ha™!, respectively (P < 0.05,Table S6). Manure substitution with
30% of total N amount (N70BM) increased the average yield by 13.6% and straw weight by 34.2%,
respectively (P < 0.05,Table S6). Both grain yield and straw weight under 30% of total N
substituted by manure were slightly smaller than that under 100% of total N application.

3.2 N recovery efficiency and N uptake in plant
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Fertilization regime increased N content in economic and vegetative organs (P < 0.05, Fig.
2a,Table S6) and N recovery efficiency (P > 0.05, Fig. 2b). In detail, N content in grain yield and
straw at harvest was highest by 111 kg N ha'! and 49.8 kg N ha'! under N100 treatment,
respectively. N content in plant under N70BM treatment was 10.4% and 11.2% slightly lower than
that under N100 (P > 0.05), respectively (Fig. 2a). Similarly, N recovery efficiency under N100
treatment was slightly higher by 6.1% compared with N70BM treatment (P > 0.05, Fig. 2b).

33 Physiological morphology

Fertilization regime influenced yield components and N concentrations in grain and straw (Table
1). Detailly, there is no significant difference in spike length, kernel grain weight, grain number
and N concentration in straw between with and without fertilization. The average effective spike
and N concentration in grain among N management treatments were 20.6 —21.6% and 2.3 — 14.5%
higher than that under NO, respectively. In general, the practice for N70BM treatment was superior
to slightly increase the spike length, kernel grain weight and grain number while the practice for
N100 has potential to enhance effective spike and N concentration in plant compared with other
treatments.

34 Soil biochemical property

3.4.1 @utrient and microbial biomass

Soil nutrient and microbial biomass at harvest for different fertilization regime are shown in Fig.
3. The average soil ammonium and nitrate N contents varied from 0.06 — 0.1 g kg'! and 3.0 — 5.2
g kg'! under all treatments, respectively (Fig. 3 a and b).%e lower ammonium N content was
observed from N70BM while the lower nitrate N content was observed from N100, with the
average value of 0.08 g kg'! and 3.9 g kg'!, respectively. These values showed no significant

differences as compared to those with NO treatment.
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Soil microbial biomass C (MBC) and N (MBN) were generally higher in applied N treatments than
in the zero N treatment. The largest MBC and MBN occurred in N70BM, while the lowest MBC
and MBN occurred in NO treatment. N fertilization significantly affected MBC and MBN, which
showed an increase by 24.3 — 37.3% and 35.5 — 93.3% for the MBC and MBN in response to N
fertilization (P < 0.05, Fig. 3¢ and d,Table S6).

342 Soil enz%] activity

The soil enzyme activities differed among fertilization regimes (Fig. 4). High N addition had the
largest soil sucrase and urease enzyme activities involved in C and N cycling, which are 17.8 —
47.6 % and 31.9 — 48.1% higher than those from other treatments, respectively (P < 0.05, Fig. 4a,
b,Table S6). The lowest catalase enzyme activity was observed under N100 treatment (P < 0.05,
Fig. 4c,Table S6). Similarly, the average highest C-acquisition enzyme activities occurred under

N100 treatment (P > 0.05, Fig. 4d).

4 Discuss@

4.1 Fertilizer regime impacts on grain yield, physiological morphology and N uptake

Previous studies have shown that suitable N management can increase plant growth, grain yield
and its components (Makino et al., 2022). Grain yield, a key indicator of agricultural productivity,
relies on the intricate interplay between yield components and N remobilization to economic
organs in plant. Unraveling these connections is crucial for maximizing grain yield while reducing
N losses to environment (Long et al., 2006; Liu et al., 2020). Our study showed that properly
managing N application by urea or biological manure could significantly increase grain yield and
N uptake in economic organs in plant, with the magnitude ranging from 7640 kg ha! to 9305 kg

ha'! and from 99 kg ha'' to 131 kg ha-!, respectively (Fig. 1 and Fig. 2). This is in agreement with
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previous studies that reported fertilization significantly contributed to increased biomass
production through enhancing photosynthesis efficiency and mobilizing N to leaves and stems in
plant (Yoon et al., 2020; Makino et al., 2022). However, compared to N100 treatment, biological
manure fertilizer substitution slightly reduced grain yield, its components and accumulated N in
plant. This could be because of rich nutrients from chemical N and biological manure fertilizer,
which effectively supply sufficient N in leaves and stems over the vegetative period, promoting
the remobilization of N to economic organs over the reproductive period (Igbal et al., 2021).
Nutrients were slowly released from biological manure fertilizer, which improves plant growth
and meets N requirements, thus minimizing mineral N losses (Qaswar et al., 2020). Compared to
the single N fertilization treatment, a small increase in spike length, kernel grain weight and grain
number per spike was found under N70BM (Table 1). This could be because a slower nutrient
release rate of biological manure enhanced the synchronization of N supply and accelerated the
remobilized N in vegetative organs to economic organs at the later growth period. Additionally,
this could be associated with the difference in assimilation distribution between tiller and main
shoot due to the response of tiller inhibition gene to different N type (Duggan et al., 2005; Moeller
and Rebetzke, 2017).

4.2 Fertilization regime effects on soil nutrient, microbial biomass and enzymes

Of the soil nutrients involved in this study, soil ammonium and nitrate consistently exhibited the
most uniform responses across different treatments (Fig. 3a and b). The ANOVA showed that soil
nutrient content under fertilization was slightly smaller compared to that in plots with zero nitrogen
application. The increase in fertilizer application might have led to a more efficient uptake of
nutrients by crops, resulting in enhanced crop yield and nutrient absorption despite the slightly

reduced soil nutrient content (Li et al., 2019). This agrees with that the additional nutrients supplied
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through fertilization compensated for the marginal decrease in soil nutrient levels, contributing to
improved crop performance and nutrient utilization (Govindasamy et al., 2023).

Organic manure increased soil microbial biomass in comparison with single chemical N addition
(Fig. 4), which could be ascribed to the increased organic C and nutrient availability (Zhang et al.,
2020). High amount of manure application in soil serves as substrates and energy for increasing
microbial growth and activity (Ling et al., 2022). Our results suggest that the MBC and MBN were
increased under N70BM compared with the single chemical N treatment (Fig. 3c and d). This is
in agreement with previous study reported that abundant organic materials mixed with soil can
provide rich nutrients for microbial metabolism, which in turn accelerates microbial growth and
enzyme secretion, especially in the catalase (Zheng et al., 2019; Wang et al., 2022; Fig. 4c).

Past studies in paddy soil found that soil enzyme activity was enhanced by N amendments (Xiao
et al., 2023 [urease and phosphatase]; Li et al., 2022 [B-1,4-N-acetylglucosaminidase]; Sharma et
al., 2021 [urease and L-asparaginase]; Hu et al.,, 2023 [B-1,4-glucosidase, B-N-acetyl-
glucosaminidase and phenol oxidase]). This is in accordance with our results showing that soil
urease and sucrase activity was increased under N100 and N70BM treatments. An elevation in
urease activity facilitates the conversion of soil organic nitrogen into ammonium nitrogen through
mineralization. This ammonium nitrogen can subsequently adsorb onto soil particles, making it
readily available for plant uptake (Liang et al., 2003). However, soil catalase activity could be
repressed by fertilization. This could be attributed to the alteration in soil microbial communities
and their metabolic activities when applying fertilization to soil (Zheng et al., 2019). Our results
indicated that urease and sucrase activity in paddy soil were decreased while catalase activity
occurred an increase when using biological manure compared to chemical N addition (Fig. 4). The

observed phenomenon may be attributed to the release of substances by organic manure, leading
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to an increase in soil C/N ratio (Li et al., 2018; Yang et al., 2023). This alteration in C/N ratio
could prompt shifts in soil microbial communities, given the presence of two nitrogen forms—
organic and inorganic compounds (Luo et al., 2016; Wu et al., 2020). Consequently, these changes
may influence urease and sucrase enzyme activities. It is important to note that catalase activity
might exhibit distinct responses in the context of these alterations. To elucidate the effect of

biological manure on soil C acquisition enzyme activity, more work should be made in the future.

5 Conc@n

Proper N management significantly influences grain yield, components, and nitrogen
remobilization in plants, crucial for agricultural productivity. Substitution of biological manure for
chemical fertilization significantly enhances rice yield and straw weight. Application of 70% total
chemical N plus 2000 kg ha! biological manure proves superior to local practices, especially in
maintaining rice yield and an increase in yield components and soil microbial biomass C and N.
Fertilization influenced soil ammonium and nitrate content, with slightly smaller nutrient content
in fertilized plots, compensated by efficient nutrient uptake. Prudent N management, particularly
the judicious use of partial biological manure, is crucial for sustaining productivity and soil fertility

in southern China.
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Figure legend

Fig. 1 Boxplots summarizing variation in rice grain yield (a) and straw weight (b) under different
fertilizer treatments between 2020 and 2022. For each boxplot, the central mark is the median, the
red square indicates the mean value, the edges of the box are the 25th and 75th percentiles, and the
whiskers extend to the extreme data points not considered to be outliers. Different lowercase letters
represent significant differences (P < 0.05) between the different N treatments.

Fig. 2 Variations of N uptake between vegetative and economic organs (a) and NRE at harvest
among different N treatments during 2020 — 2022. The error bar represents the standard deviation
of each index in each treatment. Different lowercase letters represent significant differences (P <
0.05) between the different N treatments.

Fig. 3 Average soil ammonium, nitrate (a, b) and microbial biomass C/N (c, d) in each treatment
from 2020 to 2022. The error bar represents the standard deviation of each index in each treatment.
Different lowercase letters represent significant differences (P < 0.05) between the different N
treatments.

Fig. 4 Boxplots summarizing variation in soil sucrase, urease and catalase under different fertilizer
treatments between 2020 and 2022. For each boxplot, the central mark is the median, the red point
indicates the mean value, the edges of the box are the 25th and 75th percentiles, and the whiskers
extend to the extreme data points not considered to be outliers. The error bar represents the
standard deviation of each index in each treatment. Different lowercase letters represent significant

differences (P < 0.05) between the different N treatments.
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Figure 1

Grain yield and straw weight in rice

Fig. 1 Boxplots summarizing variation in rice grain yield (a) and straw weight (b) under
different fertilizer treatments between 2020 and 2022. For each boxplot, the central mark is
the median, the red square indicates the mean value, the edges of the box are the 25th and
75th percentiles, and the whiskers extend to the extreme data points not considered to be
outliers. Different lowercase letters represent significant differences (P < 0.05) between the

different N treatments.
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Figure 2

N uptake and NUE in rice

Fig. 2 Variations of N uptake between vegetative and economic organs (a) and NRE at
harvest among different N treatments during 2020 - 2022. The error bar represents the
standard deviation of each index in each treatment. Different lowercase letters represent

significant differences (P < 0.05) between the different N treatments.
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Figure 3

Soil nutrient and mirobial biomass in rice

Fig. 3 Average soil ammonium, nitrate (a, b) and microbial biomass C/N (c, d) in each
treatment from 2020 to 2022. The error bar represents the standard deviation of each index
in each treatment. Different lowercase letters represent significant differences (P < 0.05)

between the different N treatments.
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Figure 4

Soil enzyme in rice

Fig. 4 Boxplots summarizing variation in soil sucrase, urease and catalase under different
fertilizer treatments between 2020 and 2022. For each boxplot, the central mark is the
median, the red point indicates the mean value, the edges of the box are the 25th and 75th
percentiles, and the whiskers extend to the extreme data points not considered to be
outliers. The error bar represents the standard deviation of each index in each treatment.
Different lowercase letters represent significant differences (P < 0.05) between the different

N treatments.
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Table 1l(on next page)

Changes of gain yields, yield component and straw weight in rice under different N
management practices.

Table 1 Changes of yield components and N concentrations in grain and straw at harvest
during 2020 - 2022.
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4 Table 1 Changes of yield components and N concentrations in grain and straw at harvest during

5

2020 —2022.
Spike Effective Kernel grain Grain Straw N Grain N
Treatmen . .
¢ length spike weight number content content
(cm) (x10° ha') (g" (spike') (g kg (gkg')
NO 26.1+3.7a 16 +3.1b 22.4+0.8a 164.3+15.8a 52+13a 11.0+1.0b
N100 26.5 £ 3.6a 19.6 +2.5a 224+ 1.1a 167.2 + 28.6a 6.0+ 1.6a 12.6 + 1.2a
N70BM  27.6 + 1.6a 19.3+4.9a 22.5+0.6a 169.9 + 15.2a 5.8+ 0.6a 11.3+1.3ab
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