Regulation of dye peroxidase gene expression in Pleurotus ostreatus grown on glycerol as the carbon source (#92673)

First submission

Guidance from your Editor

Please submit by 18 Jan 2024 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

6 Figure file(s)

3 Table file(s)

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Regulation of dye peroxidase gene expression in *Pleurotus* ostreatus grown on glycerol as the carbon source

Jorge Cuamatzi-Flores ¹, Soley Nava-Galicia ¹, Edgardo Esquivel-Naranjo ², Agustín López-Munguía ³, Analilia Arroyo-Becerra ¹, Miguel Angel Villalobos-López ¹, Martha Bibbins-Martínez ^{Corresp. 1}

Corresponding Author: Martha Bibbins-Martínez Email address: mbibbinsm@ipn.mx

Dye peroxidases (DyePs) (E.C. 1.11.1.19) are heme peroxidases that catalyze oxygen transfer reactions similar to oxygenases. DyePs utilize hydrogen peroxide (H₂O₂) both as an electron acceptor co-substrate and as electron donor when oxidized to its respective radical. The production of DyePs as well as lignin-modifying enzymes (LME) are regulated by the carbon source, while less readily metabolizable carbon sources improve LME production. In this research, we analyzed the effect of glycerol on *Pleurotus ostreatus* growth, total DyePs activity and the expression of three Pleos-DyeP genes (Pleos-DyeP1, Pleos-DyeP2 and Pleos-DyeP4) through real time RT-qPCR, monitoring the time-course of P. ostreatus cultures supplemented either with glycerol or glucose and Acetyl Yellow G (AYG) dye. Our results indicate that glycerol negatively affects P. ostreatus growth resulting in a biomass production of 5.31 and 5.62 g/L with growth rates (μ) of 0.027 h^{-1} and 0.023 h^{-1} for fermentations in the absence and presence of AYG dye respectively. In contrast, 7.09 g/L and 7.20 g/L of biomass, with μ of 0.033 $h^{\text{-1}}$ and 0.047 $h^{\text{-1}}$ were observed in the equivalent control fermentations with glucose. Nevertheless, higher DyeP activity levels were obtained on glycerol, as 4043 IU/L and 4902 IU/L, equivalent to a 2.6-fold and 3.16-fold higher than the activity observed when glucose is used as carbon source. We explored the differential regulation of the DyeP genes in *P. ostreatus* by the carbon source, the growth phase, as well as the influence of the dye. Throughout the fermentation, we observed both up-and down- regulation of the three DyeP genes evaluated. In the control media, the highest induction was for the *Pleos*-DyeP1 gene, equivalent to a 11.1-fold increase in the relative expression (log₂) at the stationary phase of the culture (360 h). In addition, glycerol preferentially induced Pleos-DyeP1 and Pleos-DyeP2 genes, leading to a 11.61 and 4.28-fold increase after 144 h respectively. On the other hand, an increase in the induction

¹ Centro de Investigación en Biotecnología Aplicada-Instituto Politécnico Nacional, Ex-Hacienda de San Juan Molino. Tepetitla de Lardizábal, Tlaxcala, México

² Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias S/N Juriquilla, Querétaro, Mexico

³ Instituto de Biotecnología, Universidad Autónoma de México, Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, México

level of *Pleos*-DyeP1 and *Pleos*-DyeP2 of 12.86 and 4.02-fold after 360 h and 504 h of culture respectively were observed in the presence of AYG. To our knowledge, this is the first report describing the effect of a less metabolizable carbon source such as glycerol on the differential expression of DyeP encoding genes and the corresponding activity. These suggest that the observed glycerol effect on DyeP activity results from the absence of carbon catabolite repression, probably present in glucose cultures.

1 Regulation of dye peroxidase genes expression in

2 Pleurotus ostreatus grown on glycerol as the carbon

3 source

4

- 5 Jorge Cuamatzi-Flores¹, Soley Nava-Galicia¹, Edgardo Esquivel-Naranjo², Agustín López-
- 6 Munguía³, Analilia Arroyo-Becerra¹, Miguel Angel Villalobos-López¹ and Martha Bibbins-
- 7 Martínez^{1*}

8

- 9 ¹Centro de Investigación en Biotecnología Aplicada-Instituto Politécnico Nacional. Ex-Hacienda
- 10 de San Juan Molino. Tepetitla de Lardizábal, Tlaxcala, México
- 11 ²Facultad de Ciencias Naturales. Universidad Autónoma de Querétaro. Avenida de las Ciencias
- 12 S/N Juriquilla, Querétaro, México
- 13 ³Instituto de Biotecnología. Universidad Autónoma de México. Av. Universidad 2001,
- 14 Chamilpa, Cuernavaca, Morelos, México

15

- 16 Corresponding Author:
- 17 Martha Bibbins-Martínez^{1*}
- 18 Centro de Investigación en Biotecnología Aplicada-Instituto Politécnico Nacional. Ex-Hacienda
- 19 de San Juan Molino. Tepetitla de Lardizábal, Tlaxcala, 90700, México
- 20 Email address: mbibbinsm@ipn.mx

21 22

Abstract

- 23 Dye peroxidases (DyePs) (E.C. 1.11.1.19) are heme peroxidases that catalyze oxygen transfer
- reactions similar to oxygenases. DyePs utilize hydrogen peroxide (H_2O_2) both as an electron
- 25 acceptor co-substrate and as electron donor when oxidized to its respective radical. The
- 26 production of DyePs as well as lignin-modifying enzymes (LME) are regulated by the carbon
- 27 source, while less readily metabolizable carbon sources improve LME production.
- 28 In this research, we analyzed the effect of glycerol on *Pleurotus ostreatus* growth, total DyePs
- 29 activity and the expression of three *Pleos-DyeP* genes (*Pleos-DyeP*1, *Pleos-DyeP*2 and *Pleos-*
- 30 DyeP4) through real time RT-qPCR, monitoring the time-course of *P. ostreatus* cultures
- 31 supplemented either with glycerol or glucose and Acetyl Yellow G (AYG) dye.
- 32 Our results indicate that glycerol negatively affects *P. ostreatus* growth resulting in a biomass
- production of 5.31 and 5.62 g/L with growth rates (μ) of 0.027 h⁻¹ and 0.023 h⁻¹ for
- 34 fermentations in the absence and presence of AYG dye respectively. In contrast, 7.09 g/L and
- 35 7.20 g/L of biomass, with μ of 0.033 h⁻¹ and 0.047 h⁻¹ were observed in the equivalent control
- 36 fermentations with glucose. Nevertheless, higher DyeP activity levels were obtained on glycerol,
- as 4043 IU/L and 4902 IU/L, equivalent to a 2.6-fold and 3.16-fold higher than the activity
- 38 observed when glucose is used as carbon source.

- 39 We explored the differential regulation of the DyeP genes in *P. ostreatus* by the carbon source,
- 40 the growth phase, as well as the influence of the dye. Throughout the fermentation, we observed
- both up-and down- regulation of the three DyeP genes evaluated. In the control media, the
- 42 highest induction was for the *Pleos*-DyeP1 gene, equivalent to a 11.1-fold increase in the relative
- 43 expression (log₂) at the stationary phase of the culture (360 h). In addition, glycerol preferentially
- 44 induced *Pleos*-DyeP1 and *Pleos*-DyeP2 genes, leading to a 11.61 and 4.28-fold increase after
- 45 144 h respectively. On the other hand, an increase in the induction level of *Pleos*-DyeP1 and
- 46 Pleos-DyeP2 of 12.86 and 4.02-fold after 360 h and 504 h of culture respectively were observed
- 47 in the presence of AYG.
- 48 To our knowledge, this is the first report describing the effect of a less metabolizable carbon
- 49 source such as glycerol on the differential expression of DyeP encoding genes and the
- 50 corresponding activity. These suggest that the observed glycerol effect on DyeP activity results
- 51 from the absence of carbon catabolite repression, probably present in glucose cultures.

52 53

Introduction

- 54 The ligninolytic enzymes of white rot fungi are mainly produced during secondary metabolism.
- 55 Activation of this metabolism occurs under limiting conditions, such as concentration and origin
- of bioavailable carbon and/or nitrogen sources (Alfaro et al., 2020; Aro et al., 2005; Elisashvili
- 57 et al., 2002; Faison & Kirk, 1985; Mikiashvili et al., 2006; Stajić et al., 2006). It has been
- 58 reported that the ligninolytic isoenzymes encoded by members of a gene family, often exhibit
- 59 variations in their differential expression, catalytic properties, regulation mechanisms, and
- 60 cellular location (Fernández-Fueyo et al., 2014; Garrido-Bazán et al., 2016; Janusz et al., 2013;
- 61 Knop et al., 2015). Furthermore, analyses of the promoters of ligninolytic enzymes encoding
- 62 genes in the *P. ostreatus* genome have revealed the presence of different putative responsive
- elements (Janusz et al., 2013; Knop et al., 2015; Piscitelli et al., 2011). These elements include
- 64 carbon catabolite repressor binding elements (CRE), nitrogen response (Nit2), xenobiotic-
- response elements (XRE), metal-response elements (MRE), and heat-shock elements (HSE),
- among other elements, which may be involved in the regulation of gene expression in response
- 67 to environmental conditions (*Jiao et al., 2018; Todd et al., 2014*). Carbon catabolite repression
- 68 (CCR) in combination with different signaling pathways play a crucial role in the utilization of
- 69 different carbon sources in *P. ostreatus* and other Basidiomycota fungi (*Daly et al., 2019; Suzuki*
- 70 et al., 2008; Toyokawa et al., 2016; Yoav et al., 2018). The existence of an ortholog of Cre1, the
- 71 main transcriptional regulator in the CCR pathway, has also been demonstrated and may
- 72 participate in this regulatory process (Alfaro et al., 2020; Pareek et al., 2022; Yoav et al., 2018).
- 73 Furthermore, it has been shown that Cre1 is regulated by cAMP-dependent protein kinase
- 74 A(PKA) (Boominathan & Reddy, 1992; de Assis et al., 2020; Pareek et al., 2022), and both Cre1
- and PKA may be involved in the induction of genes encoding lignin-modifying enzymes in P,
- 76 ostreatus (Toyokawa et al., 2016).
- 77 As part of their wood degradation system *P. ostreatus* produces dye-decolorizing peroxidases
- 78 (DyePs; EC 1.11.1.19). These enzymes are heme peroxidases, and their name reflects their

79 ability to degrade several anthraquinone dyes. They utilize the heme group as redox cofactor to catalyze the hydrogen peroxide-mediated oxidation of a wide range of molecules, including dyes, 80 aromatic and lignin models compounds, some of which are poorly metabolized by other heme 81 peroxidases (Catucci et al., 2020; Singh & Eltis, 2015; Xu et al., 2021). Within the P. ostreatus 82 83 genome, four DyeP genes coding for dye-decolorizing peroxidase activity have been identified: Pleos-DyeP1, Pleos-Dyep2, Pleos-PyeP3 and Pleos-DyeP4 (Ruiz-Dueñas et al., 2011). Up to 84 date, limited reports on factors regulating DyeP production exist. In a previous study we 85 explored the effect of dyes on the differential expression of *P. ostreatus* DyeP encoding genes 86 and DyeP activity, showing that dyes had an induction effect on DyeP activity (Cuamatzi-Flores 87 et al., 2019). Additionally, an extracellular proteome analysis during P. ostreatus growth on 88 lignocellulosic material revealed the exclusive synthesis of *Pleos*-DveP4 together with several 89 versatile peroxidases (VPs) and manganese peroxidases (MnPs) enzymes (Fernández-Fuevo et 90 91 al., 2015). Glycerol can be used as a carbon and energy source for several basidiomycetes 92 including *P. ostreatus*. Furthermore, the activity of some LMEs increases when glycerol or other 93 less metabolizable carbon sources are used instead of glucose which could imply that the glycerol mediates carbon catabolite de-repression of LMEs. Giving the physiological relevance 94 95 of DyePs enzymes in several group of organisms and their potential biotechnological applications, this research aims to investigate the impact of glycerol as a carbon source in the 96 production and differential regulation of DyePs in *P. ostreatus*. 97

98 99

100

Materials & Methods

Microorganism

101 Postreatus from the American Type Culture Collection (ATCC 32783) (Manassas, Virginia,
 102 U.S.A.) was used in this research. The white rot fungus strain was grown and maintained in

103 potato dextrose agar (PDA).

104105

106

107108

109

110

Dye Decolorization on Agar Plate

Petri dishes containing glucose or glycerol as carbon source, 500 ppm of Acetyl yellow G (AYG) (dye content 95%) (SIGMA-ALDRICH 250309) and agar 15g/L were inoculated with 0.4 cm² mycelia plugs taken from the periphery of a *P. ostreatus* colony growing on PDA at 25 °C and incubated during seven days. The inoculum was placed mycelium facing down, on the center of the plate. Then, the plates were incubated at 25 °C for eight days. The fungal colony growth and the effect on the dye were documented by daily photographs throughout the period of incubation.

111112113

Submerged culture conditions and growth kinetics characterization

- 114 The composition of the medium, selection of Acetyl yellow G dye and the conditions for the
- submerged cultures were adapted from Cuamatzi-Flores et al., (2019). In this study we
- 116 conducted four type of *P. ostreatus* cultures: with either glucose (GM) or glycerol (GlyM), as
- carbon source, as well as with the complementary addition of 500 ppm of Acetyl yellow G
- 118 (GAYG and GlyAYG) (dye content 95%) (SIGMA-ALDRICH 250309). Each flask out of three

- per fermentation type was inoculated with three mycelial plugs (4 mm diameter) taken a steel
- punch from the periphery of *P. ostreatus* colonies grown for 7 d at 25°C in Petri dishes
- 121 containing potato dextrose agar. The cultures were incubated at 25°C for 23 days on a rotary
- shaker (SEV-PRENDO 650M) with constant shaking of 120 rpm. Three flasks were taken as
- samples every 24 h from 120 h (5 d) to 552 h (23 d) of fermentation. The supernatant was
- obtained by filtering the cultures using Whatman No. 4 filter paper and stored at -20°C. Glucose
- was determined by the DNS Method (Miller, 1959), while glycerol consumption was assessed as
- described by *Kuhn et al.*, (2015). Dye peroxidase activity was measured by following the
- degradation of ABTS (Salvachúa et al., 2013), while the percentage of dye decolorization was
- determined at fixed time intervals as proposed by *Upadhyay & Przystas, (2023)*. The mycelium
- was rinsed with 0.9% NaCl and stored at -70°C until subjected to the total RNA extraction or dry
- weight measurement (X, g/L). The specific growth rate (μ) was obtained for each replicate from
- the logistic equation $(X = X_{max}/(1 + (X_{max} X_0/X_0) \cdot e^{-m \cdot t}))$ using 100 permutations in R software,
- 132 version 4.3.0 (R Development Core Team, 2023).
- 133 The decolorization of AYG dye was monitored spectrophotometrically at λ_{max} (390 nm). All
- experiments were performed in triplicate. The growth curves were established with dry biomass
- measurements from each fermentation.

136137 RNA extraction and RT-qPCR

- 138 The total RNA was isolated from frozen mycelia harvested at different time-points of the
- fermentation, using the NTES extraction protocol. The concentration was quantified
- spectrophotometrically, and the purity was determined by the absorbance ratio at OD 260/280.
- 141 The RNA was treated with RNAse-free DNase I (Invitrogen). The final RNA concentration was
- set to 300 ng/µl, after which 3 µg of total RNA was reverse-transcribed into cDNA in a volume
- 143 of 20 µl using M-MuLV Reverse Transcriptase (Fermentas), following the manufacturer's
- 144 protocol.
- 145 The RT-qPCR reactions were performed in a StepOne Plus thermal cycler (Applied Biosystems),
- using Maxima SYBR Green/ROX qPCR Master Mix (ThermoFisher) to detect the amplification
- of product. Specific primers were designed to amplify the transcripts of the thre *Pleos*-DyeP
- genes identified in the genome (Table 1). The reaction mixture, the amplification program, the
- melting curve, and the selection of the reference genes were adapted from *Garrido-Bazán et al.*,
- 150 (2016). According to their expression stability under the studied culture conditions and the
- reference index consisting of the geometric mean of the best-performing housekeeping genes,
- peptidase (pep) gene was used for RT-qPCR data normalization.
- 153 The RT-qPCR reactions were carried out in triplicates with a template-free negative control
- 154 performed in parallel.

156 **Results**

155

157 Effect of carbon source on *P. ostreatus* growth and AYG Dye decolorization in Plate Assays

- Figure 1 shows the growth and decolorization capacity of *P. ostreatus* on agar plates of glucose 158 and glycerol supplemented with 500 ppm of AYG dye. Although P. ostreatus was able to grow 159 in both glucose and glycerol media, a higher growth rate is clearly observed on glucose, either 160 alone or supplemented with AYG dye. This differential growth pattern led to the development of 161 162 larger fungal colony over the 192 h of incubation. Furthermore, different changes in the color of the AYG dye were observed during the experiment. In media containing glucose, the AYG dye 163 transitioned from yellow to reddish hues over time, whereas such color alterations were not 164 evident in the glycerol-supplemented medium. 165 These findings suggest a significant influence of the carbon source on both, growth kinetics of P. 166
- These findings suggest a significant influence of the carbon source on both, growth kinetics of *P. ostreatus* and AYG dye oxidation, highlighting the role of carbon substrate in shaping fungal
 metabolism.

169170

Effect of glycerol on *Pleurotus ostreatus* growth, dye peroxidase activity and Acetyl Yellow G dye decolorization in submerged fermentation

171172173

Growth kinetics characterization and AYG decolorization

- 174 To quantitatively analyze the changes observed on plate assays, submerged cultures were
- 175 conducted. The comparison of *P. ostreatus* growth in submerged fermentation with glucose or
- 176 glycerol as carbon source alone or supplemented with AYG dye is shown in Figure 2.
- 177 Variation on the maximal biomass (Xmax) reached were both higher in glucose and
- 178 glucose/AYG cultures (7.09 g/L and 7.20 g/L, respectively) compared to glycerol or
- 179 glycerol/AYG (5.31g/L and 5.62 g/L, respectively). The same differences were observed in
- growth rate (μ), with values for μ of 0.033 h⁻¹ and 0.047 h⁻¹ were obtained for glucose and
- 181 glucose/AYG -media higher than $0.027\ h^{\text{--}1}$ and $0.023\ h^{\text{--}1}$ observed for glycerol and
- 182 glycerol/AYG media, respectively. Interestingly, the addition of the AYG dye does not
- 183 significantly affect biomass production (Xmax), as no substantial differences were observed
- when compared both cultures with and without the dye.
- 185 Consequently, carbon source depletion is faster in the presence of AYG dye when glucose is
- used as the carbon source (Figure 3). In effect, glucose depletion was observed after 336 h of
- 187 culture, compared to 240 h in the fermentation with the AYG dye, as expected considering the
- already reported higher growth rate. However, although the specific growth rates were rather
- similar with glycerol as carbon source, depletion occurred at 400 h, as opposed to 312 h in the
- 190 fermentation supplemented with the AYG dye. These findings suggest that *P. ostreatus* can
- metabolize the carbon source more efficiently in the presence of the dye, leading to accelerated
- 192 carbon source depletion.
- 193 Furthermore, the decolorization percentage during glucose fermentations increased gradually
- over the fermentation-course, reaching percentages of 100 % after 552 h, contrary to the glycerol
- 195 fermentation where 10.8 % decolorization was observed just after 48 h and a maximum of 22 %
- 196 discoloration after 552 h (Figure 4). Markedly, the carbon source had a discernible impact on the
- 197 rate of dye decolorization.

198	
199	Effect of glycerol and AYG dye on DyeP activity production
200	The effect of glycerol and AYG dye on dye peroxidases production by <i>P. ostreatus</i> is shown in
201	Figure 5. The highest titers of dye peroxidase activity (4043 and 4903 UI/L) were observed when
202	glycerol and glycerol with AYG were employed as carbon source, reaching maximum levels at
203	408 h and 360 h, respectively. On the other hand, lower activity levels were obtained in glucose
204	and glucose with AYG cultures (1551 and 2882 UI/L) at 312 and 288 h, respectively. It is
205	noteworthy that independently of the carbon source, the addition of AYG dye consistently
206	induced the production of DyeP, as concluded from the higher activity levels observed early in
207	the fermentation.
208	
209	De-repression of <i>Pleos-DyeP</i> genes expression and differential regulation in response to
210	glycerol and AYG dye
211	The transcriptional response of <i>Pleos</i> -DyeP genes to glycerol as carbon source and to the
212	addition of a synthetic dye (AYG) was also evaluated. Figure 6 and supplementary table 2, show
213	the influence of the carbon source and the AYG dye on the expression patters of DyeP genes,
214	revealing a dynamic up-/down-regulation pattern over the course of fermentation for the three
215	evaluated DyeP genes (<i>Pleos</i> -DyeP1, <i>Pleos</i> -DyeP2 and <i>Pleos</i> -DyeP4).
216	The highest induction levels in the control media were for the <i>Pleos</i> -DyeP1 and <i>Pleos</i> -DyeP4
217	genes, with 11.12 and 8.28-fold increase in the relative expression level (log ₂) after 360 h and
218	168 h respectively. Additionally, gene expression profiles indicated that glycerol induced Pleos-
219	DyeP1 and <i>Pleos</i> -DyeP2 genes, with a 11.61- and 4.28-fold increase observed after 144 h,
220	respectively. On the other hand, AYG addition results in a 12.86 and 4.02-fold increase
221	induction levels after 360 h and 504 h of culture for Pleos-DyeP1 and Pleos-DyeP2, respectively
222	Interestingly, under these experimental conditions, expression of <i>Pleos</i> -DyeP4 was not detected.
223	These findings underscore the intricate dynamics of gene expression in response to different
224	carbon sources and the presence of AYG dye, shedding light on the regulatory mechanisms
225	governing dye peroxidase production in <i>P. ostreatus</i> .
226	
227	Discussion
228	To test the influence of glycerol on growth, dye peroxidase expression/production, and the
229	effectiveness on AYG dye decolorization compared to glucose, we cultured P. ostreatus both on
230	plate and in liquid cultures.
231	
232	Effect of carbon source on growth
233	In this research, we first evaluated the effect of glycerol as a carbon source on <i>P. ostreatus</i>
234	growth, both on plate assays and submerged fermentation. Glycerol exhibited lower efficiency
235	as a carbon source compared to glucose, significantly affecting both growth rate and biomass
236	production. Glycerol can be used as a carbon and energy source for several groups of fungi;
237	however, its utilization efficiency varies among fungi and, compared to glucose, often glycerol

238 metabolism results less efficient (Klein et al., 2017; Liu et al., 2012; Mikiashvili et al., 2006; *Urek & Pazarlioglu*, 2007). Our findings confirm previous research demonstrating that P. 239 ostreatus growth is affected by a complex carbon source such as glycerol resulting in reduced 240 biomass production and altered growth rates (Mikiashvili et al., 2006; Tinoco et al., 2011). 241 242 Effect of glycerol and AYG dye on DyeP activity production and dye decolorization 243 We demonstrate here that the use of glycerol instead of glucose resulted in a 3-fold increase in 244 dye peroxidase activity. Similar observations were reported by Roch et al., (1989) with 245 Phanerochaete chrysosporium growing under carbon limitation with glycerol as carbon source, 246 affecting both *P. chrysospoorium* growth and increased lignin peroxidase activity. Many studies 247 on medium composition effects concerning lignin-modifying enzymes (LME) production have 248 primarily focused on optimizing laccase activity or global LME induction, rather than 249 specifically examining dye decolorizing peroxidase (DyeP). Tinoco et al., (2011) optimized a 250 251 culture medium for laccase production by P. ostreatus, using copper and lignin as inducers. In contrast to our findings, they did not observe significant influence of glucose or glycerol on 252 laccase production. However, they noted a positive effect of xylose on laccase activity. On the 253 other hand, they did observe a positive effect of peptone and yeast extract as nitrogen sources. 254 255 Several reports indicate that the production of lignin modified enzymes (LME) in basidiomycetes is dependent on the carbon and nitrogen sources, as well as the presence of aromatic compounds 256 in the culture medium (Elisashvili et al., 2018; Faison & Kirk, 1985; Mansur et al., 1998; 257 Mikiashvili et al., 2006; Stajić et al., 2006; Thiribhuvanamala et al., 2017). For instance, 258 Elisashvili et al., (2002), demonstrated the effect of different carbon sources and aromatic 259 260 compounds on the lignocellulolytic enzyme activity of different edible and medicinal basidiomycetes, concluding that it is possible not only to substantially increase the 261 lignocellulolytic activity, but also to lead their preferential synthesis by supplementing with 262 nutritional compounds in the culture medium. In many basidiomycetous fungi laccases are 263 264 expressed constitutively and this constitutive low expression is often enhanced by inducers such as aromatic compounds. In effect, the addition of cellobiose, mannitol and xylan as carbon 265 sources and the aromatic compound 2.5-xylidine, increased up to 20-fold the induction of laccase 266 activity depending on the fungal strain (Armas et al., 2019; Castanera et al., 2012; Scheel et al., 267 268 2000; Téllez-Téllez et al., 2005). According with Jiao et al., (2018), the addition of small aromatic molecules in the culture medium could increase the yield of laccase activating the 269 270 laccase gene transcription by binding on the xenobiotic response element (XRE) of the target 271 272 In our study, the production of DyeP was primarily observed during the stationary phase (268-552 h) of the *P. ostreatus* culture. In general, ligninolytic enzymes are produced as secondary 273 274 metabolites (Elisashvili et al., 2020; Hammel, 1997; Mester & Field, 1998; Thiribhuvanamala et al., 2017). It is assumed that the metabolized substrate is essential for fungi not only for the 275 synthesis of lignin degrading enzymes, but also to produce peroxide as well as effectors of the 276 277 ligninolytic system (Faison & Kirk, 1985). According with Buswell et al., (1984),

278 Phanerochaete chrysosporium growth on glycerol leads to carbon limitation which can affect the onset of secondary metabolism. That condition has been reported as favoring the carbon 279 catabolite de-repression of both CAZ and ligninolytic enzymes (Kern, 1990; Peng et al., 2021; 280 Suzuki et al., 2008). Aro et al., (2005) reported that the expression of gene encoding ligninolytic 281 282 enzymes, is generally triggered by the depletion of nutrient nitrogen, carbon or sulfur. However, this does not apply to laccase-encoding genes, whose production can be detected at early 283 284 fermentation stages. On the other hand, the efficiency of AYG decolorization was considerably affected by the carbon 285 source. We observed decolorization percentages of 45 % and 10 % decolorization after 48 h in 286 glucose and glycerol, respectively (Figure 4). Furthermore, in glucose, complete decolorization 287 was observed after 552 h. The efficiency of dye decolorization can be favored by co-metabolism 288 with different carbon sources. Glucose, sucrose, fructose and glycerol are among the most 289 extensively studied carbon sources (*Casas et al., 2013; Civzele et al., 2023; Haider et al., 2019*; 290 291 Leung & Pointing, 2002; Merino et al., 2019; Rao et al., 2019). Furthermore, analysis of Pleos-292 DyeP1 expression on both carbon sources evaluated suggests the decolorization associated with DveP1 activity. 293 294 The ability of *P. ostreatus* to metabolize a wide variety of toxic compounds is primarily 295 attributed to their non-specific multi-enzyme oxidative system (Eichlerova et al., 2002; Garrido-Bazán et al., 2016; George et al., 2023; Grandes-Blanco et al., 2013; Kunjadia et al., 2016; 296 <u>Šlosar</u>číková et al., 2020). Cuamatzi-Flores et al., (2019) reported that when glucose was the 297 sole carbon source, addition of Acetyl Yellow G (AYG), Remazol Brilliant Blue R (RBBR) or 298 Acid Blue 129 (AB129) dyes increased DyeP activity, ultimately achieving complete 299 300 decolorization. When grown in liquid media, transformation of RBBR dye by P. ostreatus seems to be mainly via laccase oxidation. However, dye decolorization peroxidase and veratryl alcohol 301 oxidase were also produced (Palmieri et al., 2005). Eichlerová et al., (2006), evaluated the 302 decolorization capacity of Orange G and Remazol Brilliant Blue R (RBBR) dye and ligninolytic 303 304 enzyme production of eight different *Pleurotus* species. The main enzymes detected were Lac and MnP whose production was strongly influenced by the type of cultivation media and the 305

308 309 310

311

306

307

De-repression of *Pleos*-DyeP genes expression and differential regulation in response to glycerol and AYG dye

presence of a dve. Ottoni et al., (2014), reported that in Trametes versicolor, glycerol is an

important substrate for oxidative metabolism, promoting higher laccase production and

consequently, increasing the decolorization process of Reactive Black 5.

312 In this study, glycerol was used as an alternative substrate to examine the transcriptional responses of *P. ostreatus* DyeP genes, and to investigate the potential participation of carbon 313 314 catabolite de-repression in their regulation. Our analysis of DyeP gene expression profiles revealed significant variations influenced by the carbon source, growth phase, and the presence 315 of AYG dye. These variations led to up- and down-regulation patterns over the fermentation 316

317 period in the three evaluated *Pleos*-DyeP genes. Interestingly, the addition of glycerol and AYG

- 318 dye induced early-stage expression of *Pleos*-DyeP1 (144 hours). In contrast, the expression of
- 319 *Pleos*-DyeP4 was not detected in glycerol cultures.
- 320 The effect of chemical dyes on *P. ostreatus* on DyeP activity and gene expression profile has
- 321 been previously reported. The addition of dyes results in an induction effect on the enzyme
- activity and the expression profiles of DyeP genes, with maximum induction level detected for
- DyP4 gene at the end of the fermentation (*Cuamatzi-Flores et al., 2019*). The potential XRE,
- 324 Cre1 and Nit2 binding sites motifs identified in the promoter of the three DyeP genes analyzed
- 325 (Supplementary Table 1), suggest that DyeP genes transcription among others can be regulated
- 326 by xenobiotics, carbon and nitrogen sources respectively. The frequency of these cis-acting
- 327 elements varies between genes from 0 for XRE in DyeP2 gene, 1 for Cre1 in the three genes and
- 328 3 for Nit2 in DyeP4.
- 329 Carbon catabolite repression (CCR) has been a focal point of research in the Ascomycota (Adnan
- et al., 2018; De Assis et al., 2021; Strauss et al., 1999). However, several studies on the
- Basidiomycota have demonstrated that CCR, in combination with different signaling pathways,
- plays a key role in the utilization of different carbon sources in these group of fungi (*Hu et al.*,
- 333 2020; Janusz et al., 2013; Nakazawa et al., 2019; Toyokawa et al., 2016; Zhang et al., 2022).
- 334 The presence of an ortholog of Cre1 and its participation as main regulator in CCR has been also
- 335 demonstrated (*Daly et al.*, 2019; *Jiao et al.*, 2018; *Pareek et al.*, 2022; *Yoav et al.*, 2018). Yoav
- et al., (2018), conducted genetic modifications on the transcriptional regulator Cre1 in *Pleurotus*
- 337 ostreatus PC9 strain, observing that the secretion level of CAZymes, including lignin modifying
- enzymes, were not exclusively dependent on Cre1 activity. According with *Pareek et al.*, (2022),
- 339 Cre1 in the basidiomycete *Coprinopsis cinerea*, similarly as in ascomycetes mediates regulation
- of CAZymes (carbohydrate-active enzymes) however, LMEs were downregulated in the C.
- 341 *cinerea cre1* mutants, indicating that these enzymes fall under different regulation from that of
- 342 CAZymes. Daly et al., (2019) shed light on the widespread glucose-mediated CCR of plant
- 343 biomass utilization in the white-rot basidiomycete *Dichomitus squalens*. Glucose-mediated
- 344 repression of secreted CAZyme genes but not of genes encoding proteases suggested that CCR
- has been maintained by the fungus to strongly conserve nitrogen use in its nitrogen-scarce woody
- 346 biotope. In *Aspergillus nidulans* cross-talk between signaling pathways, such as the one between
- 347 the protein kinase A (PKA), high osmolarity glycerol (HOG) and mitogen-activated protein
- 348 kinases (MAPK) pathways, are required for the utilization of different carbon sources.
- 349 Furthermore, MAPKs regulate the carbon catabolite repressor CreA activating HOG pathway,
- 350 PKA activity and CCR (de Assis et al., 2020; de Assis et al., 2021).
- 351 Furthermore, regulation of Cre1 by cAMP-dependent protein kinase A(PKA) has been well-
- established (Boominathan & Reddy, 1992; de Assis et al., 2020; Pareek et al., 2022). This
- 353 regulatory mechanism also extends to the induction of genes encoding lignin-modifying enzymes
- 354 in *Pleurotus ostreatus* (Toyokawa et al., 2016).

Conclusions

355

356

- 357 The fungus *Pleurotus ostreatus* can grow on glycerol as carbon source inducing the production
- of dye peroxidase activity. The analysis of the promoters of DyeP encoding genes has revealed
- 359 the presence of several putative cis-regulatory elements, including the CCR Cre1-binding site.
- Notably, the induction of DyeP genes at earlier stages in the presence of glycerol suggests a
- potential regulation by CCR. However, as has previously been reported, alternative regulation
- mechanisms may be involved, requiring further studies to establish the overall mechanisms by
- 363 which DyeP and other oxidases produced by *P. ostreatus* are transcriptionally regulated.

364

365

366

367 **References**

368

- 369 Adnan M, Zheng W, Islam W, Arif M, Abubakar S, Wang Z, Lu G. 2018. Carbon catabolite
- 370 repression in filamentous Fungi. *International Journal of Molecular Sciences*, **19**(1).
- 371 https://doi.org/10.3390/ijms19010048
- 372 Alfaro M, Majcherczyk A, Kües U, Ramírez L, Pisabarro G. 2020. Glucose counteracts
- 373 wood-dependent induction of lignocellulolytic enzyme secretion in monokaryon and dikaryon
- 374 submerged cultures of the white-rot basidiomycete Pleurotus ostreatus. *Scientific Reports*, **10**(1).
- 375 https://doi.org/10.1038/s41598-020-68969-1
- 376 Armas T, Marcial J, Fernández F, Estrada-Torres A, Pérez-Godínez E, Montiel-González
- 377 A. 2019. Laccase gene silencing negatively effects growth and development in Pleurotus
- 378 ostreatus. *Indian Journal of Biotechnology*, **18**:42–51.
- 379 Aro N, Pakula T, Penttilä M. 2005. Transcriptional regulation of plant cell wall degradation by
- 380 filamentous fungi. In *FEMS Microbiology Reviews* **29**(4):719–739.
- 381 https://doi.org/10.1016/j.femsre.2004.11.006
- 382 Boominathan K, Reddy A. 1992. cAMP-mediated differential regulation of lignin peroxidase
- and manganese-dependent peroxidase production in the white-rot basidiomycete Phanerochaete
- 384 chrysosporium. Proc. Natl. Acad. Sci. 89:5586–5590. https://www.pnas.org
- 385 **Buswell J, Mollet B, Odier E.** 1984. Ligninolytic enzyme production by Phanerochaete
- 386 chrysosporium under conditions of nitrogen sufficiency. FEMS Microbiology Letters. 25(2):3
- 387 295–299. https://doi.org/10.1111/j.1574-6968.1984.tb01475.x
- 388 Casas N, Blánquez P, Vicent T, Sarrà, M. 2013. Laccase production by Trametes versicolor
- under limited-growth conditions using dyes as inducers. Environmental Technology. 34(1):113–
- 390 119. https://doi.org/10.1080/09593330.2012.683820
- 391 Castanera R, Pérez G, Omarini A, Alfaro M, Pisabarro A, Faraco V, Amore A, Ramírez L.
- 392 2012. Transcriptional and enzymatic profiling of pleurotus ostreatus laccase genes in submerged
- and solid-state fermentation cultures. Applied and Environmental Microbiology, 78(11):4037–
- 394 4045. https://doi.org/10.1128/AEM.07880-11

- 395 Catucci G, Valetti F, Sadeghi J, Gilardi G. 2020. Biochemical features of dye-decolorizing
- 396 peroxidases: Current impact on lignin degradation. In *Biotechnology and Applied Biochemistry*.
- **67**:5:751–759. Blackwell Publishing Ltd. https://doi.org/10.1002/bab.2015
- 398 Civzele A, Stipniece-Jekimova A, Mezule L. 2023. Fungal ligninolytic enzymes and their
- application in biomass lignin pretreatment. *Journal of Fungi*, **9**(7).
- 400 https://doi.org/10.3390/jof9070780
- 401 Cuamatzi-Flores J, Esquivel-Naranjo E, Nava-Galicia S, López-Munguía A, Arroyo-
- 402 Becerra A, Villalobos-López M, Bibbins-Martínez M. 2019. Differential regulation of
- 403 Pleurotus ostreatus dye peroxidases gene expression in response to dyes and potential application
- 404 of recombinant Pleos-DyP1 in decolorization. *Plos one*, **14**(1).
- 405 https://doi.org/10.1371/journal.pone.0209711
- Daly P, Peng M, Falco Di Lipzen A, Wang V, Grigoriev V, Tsang A, Mäkelä R, de Vries P.
- 407 (2019). Glucose-mediated repression of plant biomass utilization in the white-rot fungus
- 408 dichomitus squalens. Applied and Environmental Microbiology, 85(23).
- 409 https://doi.org/10.1128/AEM.01828-19
- 410 De Assis L., Pereira Silva L, Bayram O, Dowling P, Kniemeyer O, Krüger T, Brakhage A,
- 411 Chen Y, Dong L, Tan K, Wong H, Ries A, Goldman H. 2021. Carbon catabolite repression in
- 412 filamentous fungi is regulated by phosphorylation of the transcription factor CreA. *MBio*, **5**(12).
- 413 https://doi.org/10.1128/mbio.03146-20
- 414 de Assis L, Pereira Silva L, Liu L, Schmitt K, Valerius O, Braus H, Annick Ries N,
- 415 **Henrique Goldman G**. 2020. The high osmolarity glycerol mitogen-activated protein kinase
- 416 regulates glucose catabolite repression in filamentous fungi. *PLoS Genetics*, **16**:8.
- 417 https://doi.org/10.1371/JOURNAL.PGEN.1008996
- 418 Eichlerova I, Homolka L, Nerud F. 2002. Decolorization of synthetic dyes by Pleurotus
- ostreatus isolates differing in ligninolytic properties. *Folia Microbiol*, **47**(6):691–595.
- 420 https://doi.org/10.1007/BF02818673
- 421 Eichlerová I, Homolka L, Nerud, F. 2006. Ability of industrial dyes decolorization and
- 422 ligninolytic enzymes production by different Pleurotus species with special attention on
- Pleurotus calvptratus, strain CCBAS 461. *Process Biochemistry*, **41**(4):941–946.
- 424 https://doi.org/10.1016/j.procbio.2005.10.018
- 425 Elisashvili V, Asatiani D, Kachlishvili E. 2020. Revealing the Features of the Oxidative
- 426 Enzyme Production by White-Rot Basidiomycetes During Fermentation of Plant Raw Materials.
- 427 In Microbial Enzymes and Biotechniques: Interdisciplinary Perspectives 107–130. Springer
- 428 Singapore. https://doi.org/10.1007/978-981-15-6895-4 7
- 429 Elisashvili V, Kachlishvili E, Asatiani M. 2018. Efficient production of lignin-modifying
- 430 enzymes and phenolics removal in submerged fermentation of olive mill by-products by white-
- 431 rot basidiomycetes. *International Biodeterioration and Biodegradation*, **134**:39–47.
- 432 https://doi.org/10.1016/j.ibiod.2018.08.003

- 433 Elisashvili V, Khardziani T, Bakradze M, Kachlishvili E, Tsiklauri N. 2002. Physiological
- regulation of edible and medicinal higher Basidiomycetes lignocellulolytic enzyme activity.
- 435 International Journal of Medicinal Mushrooms, 4(2).
- **Faison D, Kirk K.** 1985. Factors Involved in the Regulation of a Ligninase Activity in
- 437 Phanerochaete chrysosporium. *Applied and Environmental Microbiology*. **49**(2):299–304.
- 438 Fernández-Fueyo E, Castanera R, Ruiz-Dueñas J, López-Lucendo F, Ramírez L, Pisabarro
- 439 **G, Martínez A.** 2014. Ligninolytic peroxidase gene expression by Pleurotus ostreatus:
- Differential regulation in lignocellulose medium and effect of temperature and pH. Fungal
- 441 Genetics and Biology, 72:150–161. https://doi.org/10.1016/j.fgb.2014.02.003
- 442 Fernández-Fueyo E, Linde D, Almendral D, López-Lucendo F, Ruiz-Dueñas J, Martínez T.
- 443 2015. Description of the first fungal dye-decolorizing peroxidase oxidizing manganese(II).
- 444 Applied Microbiology and Biotechnology, 99(21):8927–8942. https://doi.org/10.1007/s00253-
- 445 015-6665-3
- 446 Garrido-Bazán V, Téllez-Téllez, M, Herrera-Estrella A, Díaz-Godínez G, Nava-Galicia S,
- 447 Villalobos-López Á, Arroyo-Becerra A, Bibbins-Martínez M. 2016. Effect of textile dyes on
- 448 activity and differential regulation of laccase genes from Pleurotus ostreatus grown in submerged
- 449 fermentation. AMB Express, 6(1). https://doi.org/10.1186/s13568-016-0263-3
- 450 George J, Rajendran S, Senthil Kumar P, Sonai Anand S, Vinoth Kumar V, Rangasamy G.
- 451 2023. Efficient decolorization and detoxification of triarylmethane and azo dyes by porous-cross-
- 452 linked enzyme aggregates of Pleurotus ostreatus laccase. *Chemosphere*, **313**.
- 453 https://doi.org/10.1016/j.chemosphere.2022.137612
- 454 Grandes-Blanco I, Díaz-Godínez G, Téllez-Téllez M, Delgado-Macuil J, Rojas-López M,
- 455 **Bibbins-Martínez D.** 2013. Ligninolytic activity patterns of pleurotus ostreatus obtained by
- 456 submerged fermentation in presence of 2,6-dimethoxyphenol and remazol brilliant blue R dye.
- 457 *Preparative Biochemistry and Biotechnology*, **43**(5):468–480.
- 458 https://doi.org/10.1080/10826068.2012.746233
- 459 Haider A, Alam M, Khan A, Zulfigar A. 2019. Optimization of cultural conditions for the
- 460 treatment of pulp and paper industrial effluent by Pleurotus ostreatus (L.). *Pakistan Journal of*
- 461 Agricultural Research, 32(3):507–513. https://doi.org/10.17582/journal.pjar/2019/32.3.507.513
- **Hammel E.** 1997. Fungal degradation of lignin biodegradation importance of lignin. In G.
- 463 Cadisch & K. E. Giller (Eds.), *Driven by nature: plant litter quality and decomposition* 33:432.
- 464 Hu Y, Xu W, Hu S, Lian L, Zhu J, Shi L, Ren A, Zhao W. 2020. In Ganoderma lucidum,
- 465 Glsnf1 regulates cellulose degradation by inhibiting GlCreA during the utilization of cellulose.
- 466 Environmental Microbiology, 22(1), 107–121. https://doi.org/10.1111/1462-2920.14826
- Janusz G, Kucharzyk H, Pawlik A, Staszczak M, Paszczynski J. 2013. Fungal laccase,
- 468 manganese peroxidase and lignin peroxidase: Gene expression and regulation. In Enzyme and
- 469 *Microbial Technology* **52**(1):1–12. https://doi.org/10.1016/j.enzmictec.2012.10.003
- 470 Jiao X, Li G, Wang Y, Nie F, Cheng X, Abdullah M, Lin Y, Cai Y. 2018. Systematic analysis
- of the pleurotus ostreatus laccase gene (PoLac) Family and functional characterization of PoLac2

- involved in the degradation of cotton-straw lignin. *Molecules*, **23**(4).
- 473 <u>https://doi.org/10.3390/molecules23040880</u>
- 474 José De Assis, L, Pereira Silva L, Bayram O, Dowling P, Kniemeyer O, Krüger T,
- 475 Brakhage A, Chen Y, Dong L, Tan K, Wong H, Ries A, Goldman H. 2021. Carbon catabolite
- 476 repression in filamentous fungi is regulated by phosphorylation of the transcription factor CreA.
- 477 *Molecular Biology and Physiology*, **12**(1). https://doi.org/10.1128/mbio.03146-20
- 478 Kern W. 1990. Applied microbiology biotechnology production and stability of lignin
- 479 peroxidases of Phanerochaete chrysosporium cultivated on glycerol in the presence of solid
- 480 manganese(IV) oxide. Applied Microbiology and Biotechnology. 33:582–588.
- 481 Klein M, Swinnen S, Thevelein M, Nevoigt E. 2017. Glycerol metabolism and transport in
- 482 yeast and fungi: established knowledge and ambiguities. In Environmental Microbiology
- 483 **19**(3):878–893. Blackwell Publishing Ltd. https://doi.org/10.1111/1462-2920.13617
- 484 Knop D, Yarden, O, Hadar Y. 2015. The ligninolytic peroxidases in the genus Pleurotus:
- 485 divergence in activities, expression, and potential applications. In Applied Microbiology and
- 486 *Biotechnology*. **99**(3):1025–1038. Springer Verlag. https://doi.org/10.1007/s00253-014-6256-8
- 487 Kuhn J, Müller H, Salzig D, Czermak P. 2015. A rapid method for an offline glycerol
- determination during microbial fermentation. *Electronic Journal of Biotechnology*, **18**(3):252–
- 489 255. https://doi.org/10.1016/j.ejbt.2015.01.005
- 490 Kunjadia D, Sanghvi V, Kunjadia P, Mukhopadhyay N, Dave S. 2016. Role of ligninolytic
- enzymes of white rot fungi (Pleurotus spp.) grown with azo dyes. SpringerPlus, 5(1).
- 492 https://doi.org/10.1186/s40064-016-3156-7
- 493 Leung C, Pointing B. 2002. Effect of different carbon and nitrogen regimes on Poly R
- 494 decolorization by white-rot fungi. *Mycological Research.* **106**(1):86–92.
- 495 Liu X, Jensen R, Workman, M. 2012. Bioconversion of crude glycerol feedstocks into ethanol
- 496 by Pachysolen tannophilus. *Bioresource Technology*, **104**:579–586.
- 497 https://doi.org/10.1016/j.biortech.2011.10.065
- 498 Mansur M, Suárez T, González E. 1998. Differential gene expression in the laccase gene
- 499 family from Basidiomycete I-62 (CECT 20197). Applied and Environmental Microbiology,
- 500 **64**(2): https://doi.org/10.1128/AEM.64.2.771-774.1998
- Merino A, Eibes G, Hormaza A. 2019. Effect of copper and different carbon and nitrogen
- sources on the decolorization of an industrial dye mixture under solid-state fermentation. *Journal*
- 503 of Cleaner Production, 237. https://doi.org/10.1016/j.jclepro.2019.117713
- Mikiashvili N, Wasser P, Nevo E, Elisashvili V. 2006. Effects of carbon and nitrogen sources
- 505 on Pleurotus ostreatus ligninolytic enzyme activity. World Journal of Microbiology and
- 506 Biotechnology, 22(9):999–1002. https://doi.org/10.1007/s11274-006-9132-6
- 507 Miller L G. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar.
- 508 *Analytical Chemistry.* **31**(3):426–428.
- Nakazawa T, Morimoto R, Wu H, Kodera R, Sakamoto M, Honda Y. 2019. Dominant
- effects of gat1 mutations on the ligninolytic activity of the white-rot fungus Pleurotus ostreatus.
- 511 Fungal Biology, **123**(3):209–217. https://doi.org/10.1016/j.funbio.2018.12.007

- 512 Nde Mester T, Field A. 1998. Characterization of a novel manganese peroxidase-lignin
- 513 peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of
- manganese. *The Journal of Biological Chemistry*, **273**(19):15412–15417.
- 515 https://doi.org/10.1074/jbc.273.25.15412
- 516 Ottoni C, Lima L, Santos C, Lima N. 2014. Effect of different carbon sources on
- 517 decolourisation of an industrial textile dye under alkaline-saline conditions. *Current*
- 518 *Microbiology*, **68**(1):53–58. https://doi.org/10.1007/s00284-013-0441-3
- 519 Ozturk Urek R, Kasikara Pazarlioglu N. 2007. Enhanced production of manganese peroxidase
- 520 by Phanerochaete chrysosporium. *Brazilian Archives of Biology and Technology*, **50**(6):913–920.
- **Palmieri G, Cennamo G, Sannia G.** 2005. Remazol brilliant blue R decolourisation by the
- 522 fungus Pleurotus ostreatus and its oxidative enzymatic system. Enzyme and Microbial
- 523 Technology, **36**(1):17–24. https://doi.org/10.1016/j.enzmictec.2004.03.026
- Pareek M, Hegedüs B, Hou Z, Csernetics Á, Wu H, Virágh M, Sahu N, Liu X, Bin Nagy, L.
- 525 2022. Preassembled Cas9 Ribonucleoprotein-Mediated Gene Deletion Identifies the Carbon
- 526 Catabolite Repressor and Its Target Genes in Coprinopsis cinerea. *Applied and Environmental*
- 527 *Microbiology*, **88**(23). https://doi.org/10.1128/aem.00940-22
- 528 Peng M, Khosravi C, Lubbers M, Kun S, Aguilar Pontes V, Battaglia E, Chen C,
- 529 Dalhuijsen S, Daly P, Lipzen A, Ng V, Yan J, Wang M, Visser J, Grigoriev V, Mäkelä R, de
- Vries P. 2021. CreA-mediated repression of gene expression occurs at low monosaccharide
- levels during fungal plant biomass conversion in a time and substrate dependent manner. *The*
- 532 *Cell Surface*, 7. https://doi.org/10.1016/j.tcsw.2021.100050
- Piscitelli A, Giardina P, Lettera, V, Pezzella C, Sannia G, Faraco V. 2011. Induction and
- Transcriptional Regulation of Laccases in Fungi. In *Current Genomics* 12.
- **R development core team**. 2023. R: A language and environment for statistical computing. R
- 536 Foundation for Statistical Computing. https://www.R-project.org
- Rao G, Ravichandran A, Kandalam G, Kumar A, Swaraj S, Sridhar M. 2019. Peroxidases
- 538 for dyes & lignin. *BioResources*, **14**(3):6558–6576.
- Roch P, Buswell A, Cain B, Odier E. 1989. Applied miovbiology biotechnology lignin
- 540 peroxidase production by strains of Phanerochaete chrysosporium grown on glycerol. Applied
- 541 *Microbiology and Biotechnology*, **31**, 587–591.
- **Ruiz-Dueñas J, Fernández E, Martínez J, Martínez T.** 2011. Pleurotus ostreatus heme
- 543 peroxidases: An in silico analysis from the genome sequence to the enzyme molecular structure.
- 544 *Comptes Rendus Biologies*, **334**(11):795–805. https://doi.org/10.1016/j.crvi.2011.06.004
- 545 Salvachúa D, Prieto A, Martínez T, Martínez J. 2013. Characterization of a novel dye-
- decolorizing peroxidase (DyP)-type enzyme from Irpex lacteus and its application in enzymatic
- 547 hydrolysis of wheat straw. *Applied and Environmental Microbiology*, **79**(14):4316–4324.
- 548 https://doi.org/10.1128/AEM.00699-13
- 549 Scheel T, Höfer M, Ludwig S, Hölker U. 2000. Differential expression of manganese
- peroxidase and laccase in white-rot fungi in the presence of manganese or aromatic compounds.
- *Applied Microbiology and Biotechnology.* **54**:686–691.

- 552 Singh R, Eltis D. 2015. The multihued palette of dye-decolorizing peroxidases. In Archives of
- 553 Biochemistry and Biophysics 574:56–65. Academic Press Inc.
- 554 <u>https://doi.org/10.1016/j.abb.2015.01.014</u>
- 555 Šlosarčíková P, Plachá D, Malachová K, Rybková Z, Novotný Č. 2020. Biodegradation of
- reactive orange 16 azo dye by simultaneous action of Pleurotus ostreatus and the yeast Candida
- 557 zeylanoides. *Folia Microbiologica*, **65**(4):629–638. https://doi.org/10.1007/s12223-019-00767-3
- 558 Stajić M, Persky L, Friesem D, Hadar Y, Wasser P, Nevo E, Vukojević J. 2006. Effect of
- different carbon and nitrogen sources on laccase and peroxidases production by selected
- Pleurotus species. *Enzyme and Microbial Technology*, **38**(1–2): 65–73.
- 561 <u>https://doi.org/10.1016/j.enzmictec.2005.03.026</u>
- 562 Strauss J, Horvath K, Abdallah M, Kindermann J, Mach L, Kubicek P. 1999. The function
- of CreA, the carbon catabolite repressor of Aspergillus nidulans, is regulated at the
- transcriptional and post-transcriptional level. *Molecular Microbiology*, **32**(1):169–178.
- 565 https://doi.org/10.1046/j.1365-2958.1999.01341.x
- 566 Suzuki H, Igarashi K, Samejima M. 2008. Real-time quantitative analysis of carbon catabolite
- derepression of cellulolytic genes expressed in the basidiomycete Phanerochaete chrysosporium.
- 568 *Applied Microbiology and Biotechnology*, **80**(1):99–106. https://doi.org/10.1007/s00253-008-
- 569 1539-6
- 570 Téllez-Téllez M, Sánchez C, Loera O, Díaz-Godínez G. 2005. Differential patterns of
- 571 constitutive intracellular laccases of the vegetative phase of Pleurotus species. *Biotechnology*
- 572 Letters, 27(18):1391–1394. https://doi.org/10.1007/s10529-005-3687-4
- 573 Thiribhuvanamala G, Kalaiselvi G, Parthasarathy S, Madhavan S, Prakasam V. 2017.
- 574 Extracellular secretion of lignocellulolytic enzymes by diversewhite rot asidiomycetes fungi.
- 575 Annals of Phytomedicine. **6**(I):20–29.
- 576 Tinoco R, Acevedo A, Galindo E, Serrano-Carreón L. 2011. Increasing Pleurotus ostreatus
- 577 laccase production by culture medium optimization and copper/lignin synergistic induction.
- 578 *Journal of Industrial Microbiology and Biotechnology*, **38**(4):531–540.
- 579 https://doi.org/10.1007/s10295-010-0797-3
- Todd B, Zhou M, Ohm A, Leeggangers F, Visser L, de Vries P. 2014. Prevalence of
- transcription factors in ascomycete and basidiomycete fungi. *BMC Genomics*, **15**(1).
- 582 https://doi.org/10.1186/1471-2164-15-214
- Toyokawa C, Shobu M, Tsukamoto R, Okamura S, Honda Y, Kamitsuji H, Izumitsu K,
- 584 Suzuki K, Irie T. 2016. Effects of overexpression of PKAc genes on expressions of lignin-
- modifying enzymes by Pleurotus ostreatus. Bioscience, Biotechnology and Biochemistry, 80(9),
- 586 1759–1767. https://doi.org/10.1080/09168451.2016.1158630
- 587 Upadhvav R. Przystas W. 2023. Decolorization of two dyes using white fungus P. ostreatus
- 588 (BWPH) strain and evaluation of zootoxicity of post process samples. Architecture Civil
- 589 Engineering Environment, 15(3).

PeerJ

590	Xu L, Sun J, Qaria A, Gao L, Zhu D. 2021. Dye decoloring peroxidase structure, catalytic
591	properties and applications: Current advancement and futurity. In Catalysts 11(8). MDPI.
592	https://doi.org/10.3390/catal11080955
593	Yoav S, Salame M, Feldman D, Levinson D, Ioelovich M, Morag E, Yarden O, Bayer A,
594	Hadar Y. 2018. Effects of cre1 modification in the white-rot fungus Pleurotus ostreatus PC9:
595	Altering substrate preference during biological pretreatment. <i>Biotechnology for Biofuels</i> , 11 (1).
596	https://doi.org/10.1186/s13068-018-1209-6
597	Zhang, J, Meng Markillie L, Mitchell D, Gaffrey J, Orr G, Schilling S. 2022. Distinctive
598	carbon repression effects in the carbohydrate-selective wood decay fungus Rhodonia placenta.
599	Fungal Genetics and Biology, 159. https://doi.org/10.1016/j.fgb.2022.103673
600	
601	
602	

Table 1(on next page)

Primers used in this study

qPCR primers (type – forward or reverse – and sequences) and amplification length and efficiency for the *P. ostreatus* dye peroxidase genes and the selected reference gene.

1

3

2 **Table 1.** Primers used in this study. qPCR primers (type – forward or reverse – and sequences) and

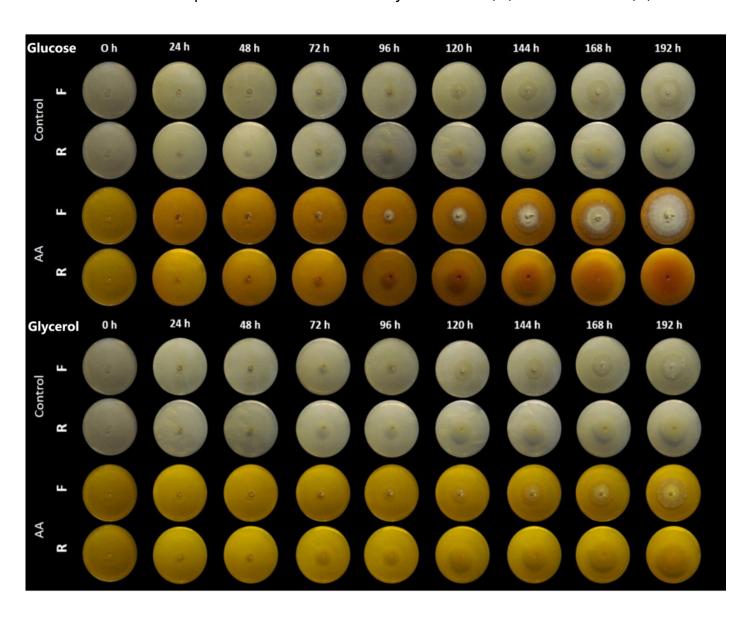
amplification length and efficiency for the P. ostreatus dye peroxidase genes and the selected reference

4 gene.

Gene	Transcript ID ^a	Direction ^b	Sequence (5' to 3')	Product size (bp)	Efficiency ^c
Pleos_DyeP1	62271	Fw	CGCTTGAGTTGATCCAGAAA	104	2.21
		Rv	TATTTCCTTCGGCTTCCTCA		
Pleos_DyeP2	1092668	Fw	TACATTCTTGCCGCTGGAT	117	1.87
		Rv	GCGAGAACCTGCTTGAACTT		
	1069077	Fw	ATGAACACTTCGGCTTCCTC	64	2.03
Pleos_DyeP4		Rv	GGCAAGTACCGCAGATAAG		
pep	1092697	Fw	CGGAGGACATTCTTGTTCAC	142	1.89
		Rv	AGATCGGTAACCCACACGAG		

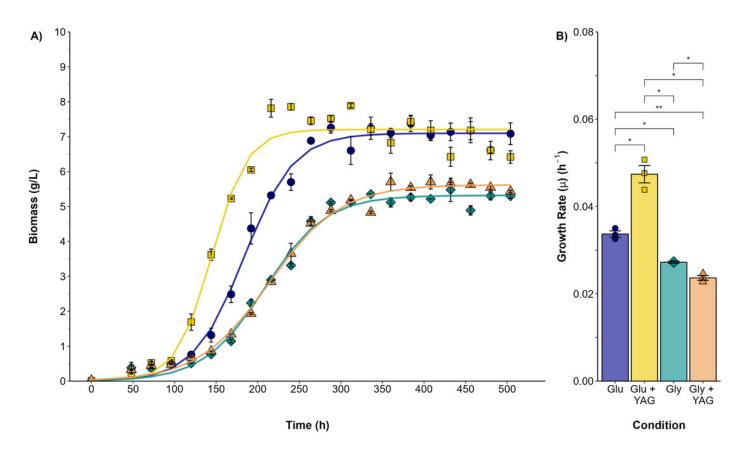
5

6 7 **Note**: ^aTranscript ID and gene nomenclature refer to the annotation of *P. ostreatus* PC15 genome version 2.0 (http://genome.jgi-psf.org/ PleosPC15_2/PleosPC15_2. home.html), ^bFw, Forward; Rv, reverse, ^cEfficiency for primers used in qPCR


9

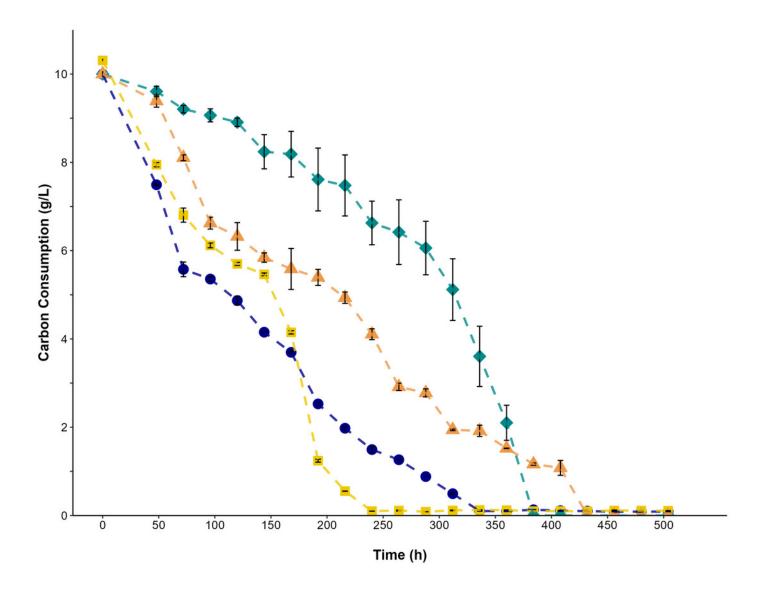
8

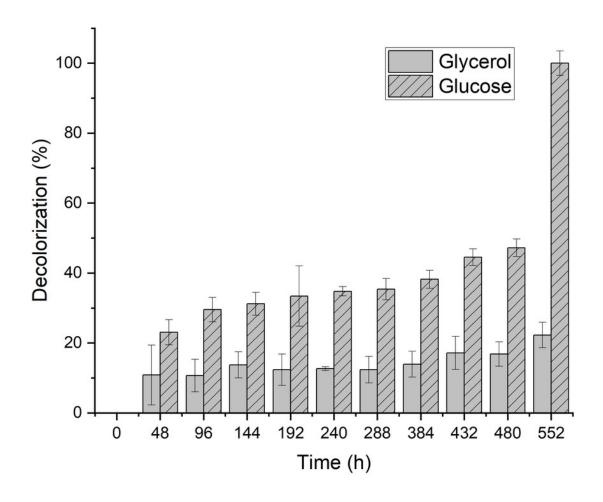
10


Plate decolorization of AYG dye by P. ostreatus

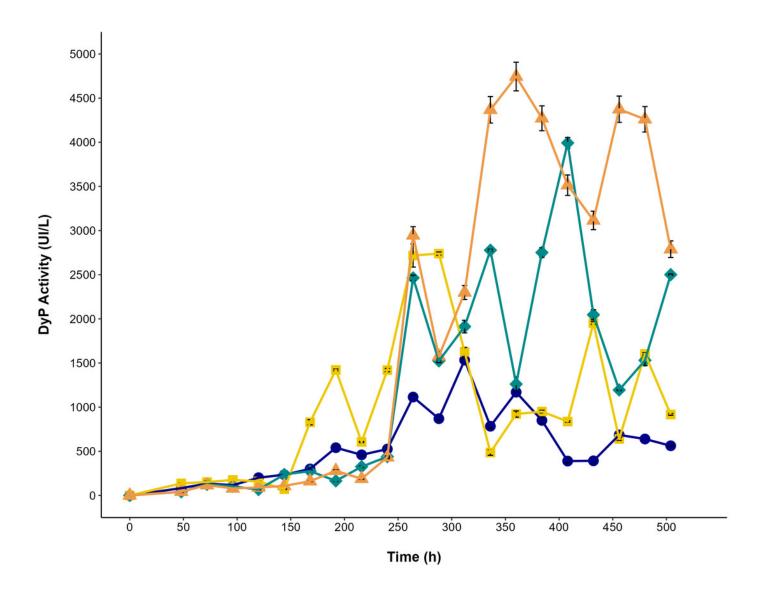
The fungus was incubated on agar plates supplemented with glucose or glycerol as carbon source as well as complemented with the AYG dye. Reverse (\mathbf{R}) and front side (\mathbf{F})

Growth kinetics and specific growth rate values (µ) for *P. ostreatus* fermentations


(**A**) Growth curve for glucose (blue circles), glucose supplemented with 500 ppm of AYG (yellow squares), glycerol (darkcyan diamonds), and glycerol supplemented with 500 ppm of AYG (orange triangles). Each point represents the mean of three replicates. The continuous line represents the best fit of the measured data to the logistic model. (**B**) Specific growth rate (h^{-1}) in each fermentation. Each bar represents the mean of three replicates. Statistical significance was calculated with *t-test* (* = p < 0.05, ** p < 0.01). The error bars in both panels represent the standard error.

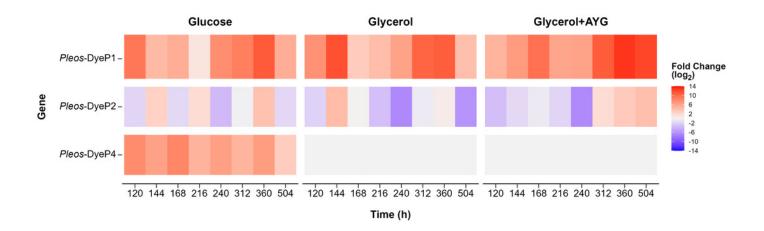

Carbon source consumption

During the fermentation with glucose (blue circle), glucose supplemented with 500 ppm of YAG (yellow squares), glycerol (green diamonds), and glycerol supplemented with 500 ppm of YAG (orange triangles). Each point represents the mean of three replicates. Error bars indicate the standard error.


Decolorization percentage

Effect of carbon source on AYG dye decolorization during the time course of fermentation

DyeP activity in the cultures of *P. ostreatus*


Enzymatic activity of DyeP in fermentation with glucose (blue circle), glucose supplemented with 500 ppm of AYG (yellow squares), glycerol (green diamonds), and glycerol supplemented with 500 ppm of AYG (orange triangles). Each point represents the mean of three replicates. Error bars indicate the standard error.

Analysis of gene expression of the three P. ostreatus dye peroxidases

Heatmap representing gene expression profiles of *Pleos*-DyeP genes during fermentation with Glucose, Glycerol, and Glycerol Supplemented with 500 ppm of AYG.

