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Dye peroxidases (DyePs) (E.C. 1.11.1.19) are heme peroxidases that catalyze oxygen
transfer reactions similar to oxygenases. DyePs utilize hydrogen peroxide (H,0,) both as

an electron acceptor co-substrate and as electron donor when oxidized to its respective
radical. The production of DyePs as well as lignin-modifying enzymes (LME) are regulated
by the carbon source, while less readily metabolizable carbon sources improve LME
production. In this research, we analyzed the effect of glycerol on Pleurotus ostreatus
growth, total DyePs activity and the expression of three Pleos-DyeP genes (Pleos-DyeP1,
Pleos-DyeP2 and Pleos-DyeP4) through real time RT-gPCR, monitoring the time-course of P.
ostreatus cultures supplemented either with glycerol or glucose and Acetyl Yellow G (AYG)
dye. Our results indicate that glycerol negatively affects P. ostreatus growth resulting in a

biomass production of 5.31 and 5.62 g/L with growth rates (u) of 0.027 h* and 0.023 h* for
fermentations in the absence and presence of AYG dye respectively. In contrast, 7.09 g/L

and 7.20 g/L of biomass, with p of 0.033 h*and 0.047 h* were observed in the equivalent
control fermentations with glucose. Nevertheless, higher DyeP activity levels were
obtained on glycerol, as 4043 IU/L and 4902 IU/L, equivalent to a 2.6-fold and 3.16-fold
higher than the activity observed when glucose is used as carbon source. We explored the
differential requlation of the DyeP genes in P. ostreatus by the carbon source, the growth
phase, as well as the influence of the dye . Throughout the fermentation, we observed
both up-and down- regulation of the three DyeP genes evaluated. In the control media, the
highest induction was for the Pleos-DyeP1 gene, equivalent to a 11.1-fold increase in the
relative expression (log,) at the stationary phase of the culture (360 h). In addition,

glycerol preferentially induced Pleos-DyeP1 and Pleos-DyeP2 genes, leading to a 11.61 and

4.28-fold increase after 144 h respectively. On the other hand, an increase in the induction
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level of Pleos-DyeP1 and Pleos-DyeP2 of 12.86 and 4.02-fold after 360 h and 504 h of
culture respectively were observed in the presence of AYG. To our knowledge, this is the
first report describing the effect of a less metabolizable carbon source such as glycerol on
the differential expression of DyeP encoding genes and the corresponding activity. These
suggest that the observed glycerol effect on DyeP activity results from the absence of
carbon catabolite repression, probably present in glucose cultures.
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Abstract

Dye peroxidases (DyePs) (E.C. 1.11.1.19) are heme peroxidases that catalyze oxygen transfer
reactions similar to oxygenases. DyePs utilize hydrogen peroxide (H,O,) both as an electron
acceptor co-substrate and as electron donor when oxidized to its respective radical. The
production of DyePs as well as lignin-modifying enzymes (LME) are regulated by the carbon
source, while less readily metabolizable carbon sources improve LME production.

In this research, we analyzed the effect of glycerol on Pleurotus ostreatus growth, total DyePs
activity and the expression of three Pleos-DyeP genes (Pleos-DyeP1, Pleos-DyeP2 and Pleos-
DyeP4) through real time RT-qPCR, monitoring the time-course of P. ostreatus cultures
supplemented either with glycerol or glucose and Acetyl Yellow G (AYG) dye.

Our results indicate that glycerol negatively affects P. ostreatus growth resulting in a biomass
production of 5.31 and 5.62 g/L with growth rates (u) of 0.027 h'! and 0.023 h-! for
fermentations in the absence and presence of AYG dye respectively. In contrast, 7.09 g/L and
7.20 g/L of biomass, with p 0of 0.033 h-'and 0.047 h-! were observed in the equivalent control
fermentations with glucose. Nevertheless, higher DyeP activity levels were obtained on glycerol,
as 4043 TU/L and 4902 IU/L, equivalent to a 2.6-fold and 3.16-fold higher than the activity
observed when glucose is used as carbon source.
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We explored the differential regulation of the DyeP genes in P. ostreatus by the carbon source,
the growth phase, as well as the influence of the dye. Throughout the fermentation, we observed
both up-and down- regulation of the three DyeP genes evaluated. In the control media, the
highest induction was for the Pleos-DyeP1 gene, equivalent to a 11.1-fold increase in the relative
expression (log,) at the stationary phase of the culture (360 h). In addition, glycerol preferentially
induced Pleos-DyeP1 and Pleos-DyeP2 genes, leading to a 11.61 and 4.28-fold increase after
144 h respectively. On the other hand, an increase in the induction level of Pleos-DyeP1 and
Pleos-DyeP2 of 12.86 and 4.02-fold after 360 h and 504 h of culture respectively were observed
in the presence of AYG.

To our knowledge, this is the first report describing the effect of a less metabolizable carbon
source such as glycerol on the differential expression of DyeP encoding genes and the
corresponding activity. These suggest that the observed glycerol effect on DyeP activity results
from the absence of carbon catabolite repression, probably present in glucose cultures.

Introduction

The ligninolytic enzymes of white rot fungi are mainly produced during secondary metabolism.
Activation of this metabolism occurs under limiting conditions, such as concentration and origin
of bioavailable carbon and/or nitrogen sources (Alfaro et al., 2020, Aro et al., 2005, Elisashvili
etal, 2002; Faison & Kirk, 1985; Mikiashvili et al., 2006, Staji¢ et al., 2006). It has been
reported that the ligninolytic isoenzymes encoded by members of a gene family, often exhibit
variations in their differential expression, catalytic properties, regulation mechanisms, and
cellular location (Fernandez-Fueyo et al., 2014; Garrido-Bazan et al., 2016, Janusz et al., 2013;
Knop et al., 2015). Furthermore, analyses of the promoters of ligninolytic enzymes encoding
genes in the P. ostreatus genome have revealed the presence of different putative responsive
elements (Janusz et al., 2013; Knop et al., 2015; Piscitelli et al., 2011). These elements include
carbon catabolite repressor binding elements (CRE), nitrogen response (Nit2), xenobiotic-
response elements (XRE), metal-response elements (MRE), and heat-shock elements (HSE),
among other elements, which may be involved in the regulation of gene expression in response
to environmental conditions (Jiao et al., 2018; Todd et al., 2014). Carbon catabolite repression
(CCR) in combination with different signaling pathways play a crucial role in the utilization of
different carbon sources in P. ostreatus and other Basidiomycota fungi (Daly et al., 2019; Suzuki
et al., 2008, Toyokawa et al., 2016, Yoav et al., 2018). The existence of an ortholog of Crel, the
main transcriptional regulator in the CCR pathway, has also been demonstrated and may
participate in this regulatory process (Alfaro et al., 2020; Pareek et al., 2022, Yoav et al., 2018).
Furthermore, it has been shown that Crel is regulated by cAMP-dependent protein kinase
A(PKA) (Boominathan & Reddy, 1992, de Assis et al., 2020; Pareek et al., 2022), and both Crel
and PKA may be involved in the induction of genes encoding lignin-modifying enzymes in P,
ostreatus (Toyokawa et al., 2016).

As part of their wood degradation system P. ostreatus produces dye-decolorizing peroxidases
(DyePs; EC 1.11.1.19). These enzymes are heme peroxidases, and their name reflects their
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ability to degrade several anthraquinone dyes. They utilize the heme group as redox cofactor to
catalyze the hydrogen peroxide-mediated oxidation of a wide range of molecules, including dyes,
aromatic and lignin models compounds, some of which are poorly metabolized by other heme
peroxidases (Catucci et al., 2020, Singh & Eltis, 2015; Xu et al., 2021). Within the P. ostreatus
genome, four DyeP genes coding for dye-decolorizing peroxidase activity have been identified:
Pleos-DyeP1, Pleos-Dyep2, Pleos-PyeP3 and Pleos-DyeP4 (Ruiz-Duerias et al., 2011). Up to
date, limited reports on factors regulating DyeP production exist. In a previous study we
explored the effect of dyes on the differential expression of P. ostreatus DyeP encoding genes
and DyeP activity, showing that dyes had an induction effect on DyeP activity (Cuamatzi-Flores
et al., 2019). Additionally, an extracellular proteome analysis during P. ostreatus growth on
lignocellulosic material revealed the exclusive synthesis of Pleos-DyeP4 together with several
versatile peroxidases (VPs) and manganese peroxidases (MnPs) enzymes (Ferndandez-Fueyo et
al., 2015). Glycerol can be used as a carbon and energy source for several basidiomycetes
including P. ostreatus. Furthermore, the activity of some LMEs increases when glycerol or other
less metabolizable carbon sources are used instead of glucose which could imply that the
glycerol mediates carbon catabolite de-repression of LMEs. Giving the physiological relevance
of DyePs enzymes in several group of organisms and their potential biotechnological
applications, this research aims to investigate the impact of glycerol as a carbon source in the
production and differential regulation of DyePs in P. ostreatus.

Materials & Methods

Microorganism

P ostreatus from the American Type Culture Collection (ATCC 32783) (Manassas, Virginia,
U.S.A.) was used in this research. The white rot fungus strain was grown and maintained in
potato dextrose agar (PDA).

Dye Decolorization on Agar Plate

Petri dishes containing glucose or glycerol as carbon source, 500 ppm of Acetyl yellow G (AYG)
(dye content 95%) (SIGMA-ALDRICH 250309) and agar 15g/L were inoculated with 0.4 cm?
mycelia plugs taken from the periphery of a P. ostreatus colony growing on PDA at 25 °C and
incubated during seven days. The inoculum was placed mycelium facing down, on the center of
the plate. Then, the plates were incubated at 25 °C for eight days. The fungal colony growth and
the effect on the dye were documented by daily photographs throughout the period of incubation.

Submerged culture conditions and growth kinetics characterization

The composition of the medium, selection of Acetyl yellow G dye and the conditions for the
submerged cultures were adapted from Cuamatzi-Flores et al.,( 2019). In this study we
conducted four type of P. ostreatus cultures: with either glucose (GM) or glycerol (GlyM), as
carbon source, as well as with the complementary addition of 500 ppm of Acetyl yellow G
(GAYG and GIyAYG ) (dye content 95%) (SIGMA-ALDRICH 250309). Each flask out of three
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per fermentation type was inoculated with three mycelial plugs (4 mm diameter) taken a steel
punch from the periphery of P. ostreatus colonies grown for 7 d at 25°C in Petri dishes
containing potato dextrose agar. The cultures were incubated at 25°C for 23 days on a rotary
shaker (SEV-PRENDO 650M) with constant shaking of 120 rpm. Three flasks were taken as
samples every 24 h from 120 h (5 d) to 552 h (23 d) of fermentation. The supernatant was
obtained by filtering the cultures using Whatman No. 4 filter paper and stored at -20°C. Glucose
was determined by the DNS Method (Miller, 1959), while glycerol consumption was assessed as
described by Kuhn et al., (2015). Dye peroxidase activity was measured by following the
degradation of ABTS (Salvachua et al., 2013), while the percentage of dye decolorization was
determined at fixed time intervals as proposed by Upadhyay & Przystas, (2023). The mycelium
was rinsed with 0.9% NaCl and stored at -70°C until subjected to the total RNA extraction or dry
weight measurement (X, g/L). The specific growth rate (i) was obtained for each replicate from
the logistic equation (X = X /(1 + (Xinax — Xo/Xo) - e™1)) using 100 permutations in R software,
version 4.3.0 (R Development Core Team, 2023).

The decolorization of AYG dye was monitored spectrophotometrically at A.x (390 nm). All
experiments were performed in triplicate. The growth curves were established with dry biomass
measurements from each fermentation.

RNA extraction and RT-qPCR

The total RNA was isolated from frozen mycelia harvested at different time-points of the
fermentation, using the NTES extraction protocol. The concentration was quantified
spectrophotometrically, and the purity was determined by the absorbance ratio at OD 260/280.
The RNA was treated with RNAse-free DNase I (Invitrogen). The final RNA concentration was
set to 300 ng/ul, after which 3 pg of total RNA was reverse-transcribed into cDNA in a volume
of 20 ul using M-MuLV Reverse Transcriptase (Fermentas), following the manufacturer’s
protocol.

The RT-qPCR reactions were performed in a StepOne Plus thermal cycler (Applied Biosystems),
using Maxima SYBR Green/ROX qPCR Master Mix (ThermoFisher) to detect the amplification
of product. Specific primers were designed to amplify the transcripts of the thre Pleos-DyeP
genes identified in the genome (Table 1). The reaction mixture, the amplification program, the
melting curve, and the selection of the reference genes were adapted from Garrido-Bazan et al.,
(2016). According to their expression stability under the studied culture conditions and the
reference index consisting of the geometric mean of the best-performing housekeeping genes,
peptidase (pep) gene was used for RT-qPCR data normalization.

The RT-qPCR reactions were carried out in triplicates with a template-free negative control
performed in parallel.

Results
Effect of carbon source on P. ostreatus growth and AYG Dye decolorization in Plate Assays
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158 Figure 1 shows the growth and decolorization capacity of P. ostreatus on agar plates of glucose
159 and glycerol supplemented with 500 ppm of AYG dye. Although P. ostreatus was able to grow
160 in both glucose and glycerol media, a higher growth rate is clearly observed on glucose, either
161 alone or supplemented with AYG dye. This differential growth pattern led to the development of
162 larger fungal colony over the 192 h of incubation. Furthermore, different changes in the color of
163 the AYG dye were observed during the experiment. In media containing glucose, the AYG dye
164 transitioned from yellow to reddish hues over time, whereas such color alterations were not

165 evident in the glycerol-supplemented medium.

166 These findings suggest a significant influence of the carbon source on both, growth kinetics of P.
167 ostreatus and AYG dye oxidation, highlighting the role of carbon substrate in shaping fungal
168 metabolism.

169

170 Effect of glycerol on Pleurotus ostreatus growth, dye peroxidase activity and Acetyl Yellow
171 G dye decolorization in submerged fermentation

172

173  Growth kinetics characterization and AYG decolorization

174  To quantitatively analyze the changes observed on plate assays, submerged cultures were

175 conducted. The comparison of P. ostreatus growth in submerged fermentation with glucose or
176  glycerol as carbon source alone or supplemented with AYG dye is shown in Figure 2.

177  Variation on the maximal biomass (Xmax) reached were both higher in glucose and

178  glucose/AYG cultures (7.09 g/L and 7.20 g/L, respectively) compared to glycerol or

179 glycerol/AYG (5.31g/L and 5.62 g/L, respectively). The same differences were observed in

180 growth rate (u), with values for p 0of 0.033 h! and 0.047 h! were obtained for glucose and

181  glucose/AYG -media higher than 0.027 h'! and 0.023 h™! observed for glycerol and

182 glycerol/AYG media, respectively. Interestingly, the addition of the AYG dye does not

183  significantly affect biomass production (Xmax), as no substantial differences were observed
184  when compared both cultures with and without the dye.

185 Consequently, carbon source depletion is faster in the presence of AYG dye when glucose is
186 used as the carbon source (Figure 3). In effect, glucose depletion was observed after 336 h of
187  culture, compared to 240 h in the fermentation with the AYG dye, as expected considering the
188 already reported higher growth rate. However, although the specific growth rates were rather
189 similar with glycerol as carbon source, depletion occurred at 400 h, as opposed to 312 h in the

190 fermentation supplemented with the AYG dye. _

193  Furthermore, the decolorization percentage during glucose fermentations increased gradually
194  over the fermentation-course, reaching percentages of 100 % after 552 h, contrary to the glycerol
195 fermentation where 10.8 % decolorization was observed just after 48 h and a maximum of 22 %
196 discoloration after 552 h (Figure 4). Markedly, the carbon source had a discernible impact on the
197 rate of dye decolorization.
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Effect of glycerol and AYG dye on DyeP activity production

The effect of glycerol and AYG dye on dye peroxidases production by P. ostreatus is shown in
Figure 5. The highest titers of dye peroxidase activity (4043 and 4903 UI/L) were observed when
glycerol and glycerol with AYG were employed as carbon source, reaching maximum levels at
408 h and 360 h, respectively. On the other hand, [GWeTiactVityllevels were obtained in glucose
and glucose with AYG cultures (1551 and 2882 UI/L) at 312 and 288 h, respectively. It is
noteworthy that independently of the carbon source, the addition of AYG dye consistently
induced the production of DyeP, as concluded from the higher activity levels observed early in
the fermentation.

De-repression of Pleos-DyeP genes expression and differential regulation in response to
glycerol and AYG dye

The transcriptional response of Pleos-DyeP genes to glycerol as carbon source and to the
addition of a synthetic dye (AYG) was also evaluated. Figure 6 and supplementary table 2, show
the influence of the carbon source and the AYG dye on the expression patters of DyeP genes,
revealing a dynamic up-/down-regulation pattern over the course of fermentation for the three
evaluated DyeP genes (Pleos-DyeP1, Pleos-DyeP2 and Pleos-DyeP4).

The highest induction levels in the control media were for the Pleos-DyeP1 and Pleos-DyeP4
genes, with 11.12 and 8.28-fold increase in the relative expression level (log,) after 360 h and
168 h respectively. Additionally, gene expression profiles indicated that glycerol induced Pleos-
DyeP1 and Pleos-DyeP2 genes, with a 11.61- and 4.28-fold increase observed after 144 h,
respectively. On the other hand, AYG addition results in a 12.86 and 4.02-fold increase
induction levels after 360 h and 504 h of culture for Pleos-DyeP1 and Pleos-DyeP2, respectively.
Interestingly, under these experimental conditions, expression of Pleos-DyeP4 was not detected.
These findings underscore the intricate dynamics of gene expression in response to different
carbon sources and the presence of AYG dye, shedding light on the regulatory mechanisms
governing dye peroxidase production in P. ostreatus.

Discussion

To test the influence of glycerol on growth, dye peroxidase expression/production, and the
effectiveness on AYG dye decolorization compared to glucose, we cultured P. ostreatus both on
plate and in liquid cultures.

Effect of carbon source on growth

In this research, we first evaluated the effect of glycerol as a carbon source on P. ostreatus
growth, both on plate assays and submerged fermentation. Glycerol exhibited lower efficiency
as a carbon source compared to glucose, significantly affecting both growth rate and biomass
production. Glycerol can be used as a carbon and energy source for several groups of fungi;
however, its utilization efficiency varies among fungi and, compared to glucose, often glycerol
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metabolism results less efficient (Klein et al., 2017; Liu et al., 2012; Mikiashvili et al., 2006;
Urek & Pazarlioglu, 2007). Our findings confirm previous research demonstrating that P.
ostreatus growth is affected by a complex carbon source such as glycerol resulting in reduced
biomass production and altered growth rates (Mikiashvili et al., 2006, Tinoco et al., 2011).

Effect of glycerol and AYG dye on DyeP activity production and dye decolorization

We demonstrate here that the use of glycerol instead of glucose resulted in a 3-fold increase in
dye peroxidase activity. Similar observations were reported by Roch et al., (1989) with
Phanerochaete chrysosporium growing under carbon limitation with glycerol as carbon source,
affecting both P. chrysospoorium growth and increased lignin peroxidase activity. Many studies
on medium composition effects concerning lignin-modifying enzymes (LME) production have
primarily focused on optimizing laccase activity or global LME induction, rather than
specifically examining dye decolorizing peroxidase (DyeP). Tinoco et al., (2011) optimized a
culture medium for laccase production by P. ostreatus, using copper and lignin as inducers. In
contrast to our findings, they did not observe significant influence of glucose or glycerol on
laccase production. However, they noted a positive effect of xylose on laccase activity. On the
other hand, they did observe a positive effect of peptone and yeast extract as nitrogen sources.
Several reports indicate that the production of lignin modified enzymes (LME) in basidiomycetes
is dependent on the carbon and nitrogen sources, as well as the presence of aromatic compounds
in the culture medium (Elisashvili et al., 2018, Faison & Kirk, 1985; Mansur et al., 1998;
Mikiashvili et al., 20006, Stajic et al., 2006, Thiribhuvanamala et al., 2017). For instance,
Elisashvili et al., (2002), demonstrated the effect of different carbon sources and aromatic
compounds on the lignocellulolytic enzyme activity of different edible and medicinal
basidiomycetes, concluding that it is possible not only to substantially increase the
lignocellulolytic activity, but also to lead their preferential synthesis by supplementing with
nutritional compounds in the culture medium. In many basidiomycetous fungi laccases are
expressed constitutively and this constitutive low expression is often enhanced by inducers such
as aromatic compounds. In effect, the addition of cellobiose, mannitol and xylan as carbon
sources and the aromatic compound 2,5-xylidine, increased up to 20-fold the induction of laccase
activity depending on the fungal strain (Armas et al., 2019, Castanera et al., 2012; Scheel et al.,
2000; Téllez-Téllez et al., 2005). According with Jiao et al., (2018), the addition of small
aromatic molecules in the culture medium could increase the yield of laccase activating the
laccase gene transcription by binding on the xenobiotic response element (XRE) of the target
gene.

In our study, the production of DyeP was primarily observed during the stationary phase (268-
552 h) of the P. ostreatus culture. In general, ligninolytic enzymes are produced as secondary
metabolites (Elisashvili et al., 2020; Hammel, 1997; Mester & Field, 1998; Thiribhuvanamala et
al., 2017). 1t is assumed that the metabolized substrate is essential for fungi not only for the
synthesis of lignin degrading enzymes, but also to produce peroxide as well as effectors of the
ligninolytic system (Faison & Kirk, 1985). According with Buswell et al., (1984),
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Phanerochaete chrysosporium growth on glycerol leads to carbon limitation which can affect the
onset of secondary metabolism. That condition has been reported as favoring the carbon
catabolite de-repression of both CAZ and ligninolytic enzymes (Kern, 1990, Peng et al., 2021;
Suzuki et al., 2008). Aro et al., (2005) reported that the expression of gene encoding ligninolytic
enzymes, is generally triggered by the depletion of nutrient nitrogen, carbon or sulfur. However,
this does not apply to laccase-encoding genes, whose production can be detected at early
fermentation stages.

On the other hand, the efficiency of AYG decolorization was considerably affected by the carbon
source. We observed decolorization percentages of 45 % and 10 % decolorization after 48 h in
glucose and glycerol, respectively (Figure 4). Furthermore, in glucose, complete decolorization
was observed after 552 h. The efficiency of dye decolorization can be favored by co-metabolism
with different carbon sources. Glucose, sucrose, fructose and glycerol are among the most
extensively studied carbon sources (Casas et al., 2013; Civzele et al., 2023, Haider et al., 2019;
Leung & Pointing, 2002; Merino et al., 2019; Rao et al., 2019). Furthermore, analysis of Pleos-
DyeP1 expression on both carbon sources evaluated suggests the decolorization associated with
DyeP1 activity.

The ability of P. ostreatus to metabolize a wide variety of toxic compounds is primarily
attributed to their non-specific multi-enzyme oxidative system (Eichlerova et al., 2002; Garrido-
Bazan et al., 2016, George et al., 2023; Grandes-Blanco et al., 2013; Kunjadia et al., 2016,
Slosarcikova et al., 2020). Cuamatzi-Flores et al., (2019) reported that when glucose was the
sole carbon source, addition of Acetyl Yellow G (AYG), Remazol Brilliant Blue R (RBBR) or
Acid Blue 129 (AB129) dyes increased DyeP activity, ultimately achieving complete
decolorization. When grown in liquid media, transformation of RBBR dye by P. ostreatus seems
to be mainly via laccase oxidation. However, dye decolorization peroxidase and veratryl alcohol
oxidase were also produced (Palmieri et al., 2005). Eichlerova et al., (2006), evaluated the
decolorization capacity of Orange G and Remazol Brilliant Blue R (RBBR) dye and ligninolytic
enzyme production of eight different Pleurotus species. The main enzymes detected were Lac
and MnP whose production was strongly influenced by the type of cultivation media and the
presence of a dye. Ottoni et al., (2014), reported that in Trametes versicolor, glycerol is an
important substrate for oxidative metabolism, promoting higher laccase production and
consequently, increasing the decolorization process of Reactive Black 5.

De-repression of Pleos-DyeP genes expression and differential regulation in response to
glycerol and AYG dye

In this study, glycerol was used as an alternative substrate to examine the transcriptional
responses of P. ostreatus DyeP genes, and to investigate the potential participation of carbon
catabolite de-repression in their regulation. Our analysis of DyeP gene expression profiles
revealed significant variations influenced by the carbon source, growth phase, and the presence
of AYG dye. These variations led to up- and down-regulation patterns over the fermentation
period in the three evaluated Pleos-DyeP genes. Interestingly, the addition of glycerol and AYG
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dye induced early-stage expression of Pleos-DyeP1 (144 hours). In contrast, the expression of
Pleos-DyeP4 was not detected in glycerol cultures.

The effect of chemical dyes on P. ostreatus on DyeP activity and gene expression profile has
been previously reported. The addition of dyes results in an induction effect on the enzyme
activity and the expression profiles of DyeP genes, with maximum induction level detected for
DyP4 gene at the end of the fermentation (Cuamatzi-Flores et al., 2019). The potential XRE,
Crel and Nit2 binding sites motifs identified in the promoter of the three DyeP genes analyzed
(Supplementary Table 1), suggest that DyeP genes transcription among others can be regulated
by xenobiotics, carbon and nitrogen sources respectively. The frequency of these cis-acting
elements varies between genes from 0 for XRE in DyeP2 gene, 1 for Crel in the three genes and
3 for Nit2 in DyeP4.

Carbon catabolite repression (CCR) has been a focal point of research in the Ascomycota (Adnan
etal., 2018, De Assis et al., 2021, Strauss et al., 1999). However, several studies on the
Basidiomycota have demonstrated that CCR, in combination with different signaling pathways,
plays a key role in the utilization of different carbon sources in these group of fungi (Hu et al.,
2020, Janusz et al., 2013; Nakazawa et al., 2019; Toyokawa et al., 2016, Zhang et al., 2022).
The presence of an ortholog of Crel and its participation as main regulator in CCR has been also
demonstrated (Daly et al., 2019; Jiao et al., 2018; Pareek et al., 2022, Yoav et al., 2018). Yoav
et al., (2018), conducted genetic modifications on the transcriptional regulator Crel in Pleurotus
ostreatus PC9 strain, observing that the secretion level of CAZymes, including lignin modifying
enzymes, were not exclusively dependent on Crel activity. According with Pareek et al., (2022),
Crel in the basidiomycete Coprinopsis cinerea, similarly as in ascomycetes mediates regulation
of CAZymes (carbohydrate-active enzymes) however, LMEs were downregulated in the C.
cinerea crel mutants, indicating that these enzymes fall under different regulation from that of
CAZymes. Daly et al., (2019) shed light on the widespread glucose-mediated CCR of plant
biomass utilization in the white-rot basidiomycete Dichomitus squalens. Glucose-mediated
repression of secreted CAZyme genes but not of genes encoding proteases suggested that CCR
has been maintained by the fungus to strongly conserve nitrogen use in its nitrogen-scarce woody
biotope. In Aspergillus nidulans cross-talk between signaling pathways, such as the one between
the protein kinase A (PKA), high osmolarity glycerol (HOG) and mitogen-activated protein
kinases (MAPK) pathways, are required for the utilization of different carbon sources.
Furthermore, MAPKSs regulate the carbon catabolite repressor CreA activating HOG pathway,
PKA activity and CCR (de Assis et al., 2020; de Assis et al., 2021).

Furthermore, regulation of Crel by cAMP-dependent protein kinase A(PKA) has been well-
established (Boominathan & Reddy, 1992, de Assis et al., 2020; Pareek et al., 2022). This
regulatory mechanism also extends to the induction of genes encoding lignin-modifying enzymes
in Pleurotus ostreatus (Toyokawa et al., 2016).

Conclusions
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The fungus Pleurotus ostreatus can grow on glycerol as carbon source inducing the production
of dye peroxidase activity. The analysis of the promoters of DyeP encoding genes has revealed
the presence of several putative cis-regulatory elements, including the CCR Crel-binding site.
Notably, the induction of DyeP genes at earlier stages in the presence of glycerol suggests a
potential regulation by CCR. However, as has previously been reported, alternative regulation
mechanisms may be involved, requiring further studies to establish the overall mechanisms by
which DyeP and other oxidases produced by P. ostreatus are transcriptionally regulated.
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gPCR primers (type - forward or reverse - and sequences) and amplification length and

efficiency for the P. ostreatus dye peroxidase genes and the selected reference gene.
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Table 1. Primers used in this study. gPCR primers (type — forward or reverse — and sequences) and
amplification length and efficiency for the P. ostreatus dye peroxidase genes and the selected reference

gene.
Product si
Gene Transcript ID®  Direction® Sequence (5’ to 3’) o (E;) s1z€ Efficiency®
Fw CGCTTGAGTTGATCCAGAAA
Pleos_DyeP1 62271 104 2.21
Rv TATTTCCTTCGGCTTCCTCA
Fw TACATTCTTGCCGCTGGAT
Pleos_DyeP2 1092668 117 1.87
Rv GCGAGAACCTGCTTGAACTT
Fw ATGAACACTTCGGCTTCCTC
Pleos_DyeP4 1069077 R 64 2.03
v GGCAAGTACCGCAGATAAG
Fw CGGAGGACATTCTTGTTCAC
pep 1092697 142 1.89
Rv AGATCGGTAACCCACACGAG

Note: ®Transcript ID and gene nomenclature refer to the annotation of P. ostreatus PC15 genome
version 2.0 (http://genome.jgi-psf.org/ PleosPC15_2/PleosPC15_2. home.html), ®°Fw, Forward; Ry,
reverse, °Efficiency for primers used in gPCR
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Figure 1

Plate decolorization of AYG dye by P. ostreatus

The fungus was incubated on agar plates supplemented with glucose or glycerol as carbon

source as well as complemented with the AYG dye. Reverse (R) and front side (F)
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Figure 2

Growth kinetics and specific growth rate values (u) for P. ostreatus fermentations

(A) Growth curve for glucose (blue circles), glucose supplemented with 500 ppm of AYG
(yellow squares), glycerol (darkcyan diamonds), and glycerol supplemented with 500 ppm of
AYG (orange triangles). Each point represents the mean of three replicates. The continuous

line represents the best fit of the measured data to the logistic model. (B) Specific growth

rate (h™) in each fermentation. Each bar represents the mean of three replicates. Statistical
significance was calculated with t-test (* = p < 0.05, ** p < 0.01). The error bars in both

panels represent the standard error.
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Figure 3

Carbon source consumption

During the fermentation with glucose (blue circle), glucose supplemented with 500 ppm of
YAG (yellow squares), glycerol (green diamonds), and glycerol supplemented with 500 ppm

of YAG (orange triangles). Each point represents the mean of three replicates. Error bars

indicate the standard error.

10 & _
\ “'1?
N,
I \ L &
\ Q‘
\ ALY
8+ \g A %+\
3 * -
> \
Pt " %
S \ I =
2 B I +\
E Qh‘\ = l' I \
3 (3 I \
c \ \
'§ 4 "‘\2 I \
o &
\
2.

0 50 100 150 200 250 300 350 400 450 500

Time (h)

Peer] reviewing PDF | (2023:11:92673:0:2:NEW 16 Nov 2023)



PeerJ Manuscript to be reviewed

Figure 4

Decolorization percentage

Effect of carbon source on AYG dye decolorization during the time course of fermentation

100 [ ]Glycerol|
/1 Glucose )
80
60

Decolorization (%)

S
\ij
\Sg

e

] L ]
20 77
I
0 I " I " " ' L " . ¥ . " L
0 48 96 144 192 240 288 384 432 480 552
Time (h)

Sy
-
SRR,

Peer] reviewing PDF | (2023:11:92673:0:2:NEW 16 Nov 2023)



PeerJ

Figure 5

DyeP activity in the cultures of P. ostreatus

Enzymatic activity of DyeP in fermentation with glucose (blue circle), glucose supplemented
with 500 ppm of AYG (yellow squares), glycerol (green diamonds), and glycerol

supplemented with 500 ppm of AYG (orange triangles). Each point represents the mean of

three replicates. Error bars indicate the standard error.
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Figure 6

Analysis of gene expression of the three P. ostreatus dye peroxidases

Heatmap representing gene expression profiles of Pleos-DyeP genes during fermentation

with Glucose, Glycerol, and Glycerol Supplemented with 500 ppm of AYG.
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