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Dye peroxidases (DyePs) (E.C. 1.11.1.19) are heme peroxidases that catalyze oxygen
transfer reactions similar to oxygenases. DyePs utilize hydrogen peroxide (H2O2) both as
an electron acceptor co-substrate and as electron donor when oxidized to its respective
radical. The production of DyePs as well as lignin-modifying enzymes (LME) are regulated
by the carbon source, while less readily metabolizable carbon sources improve LME
production. In this research, we analyzed the eûect of glycerol on Pleurotus ostreatus
growth, total DyePs activity and the expression of three Pleos-DyeP genes (Pleos-DyeP1,
Pleos-DyeP2 and Pleos-DyeP4) through real time RT-qPCR, monitoring the time-course of P.
ostreatus cultures supplemented either with glycerol or glucose and Acetyl Yellow G (AYG)
dye. Our results indicate that glycerol negatively aûects P. ostreatus growth resulting in a
biomass production of 5.31 and 5.62 g/L with growth rates (¿) of 0.027 h-1 and 0.023 h-1 for
fermentations in the absence and presence of AYG dye respectively. In contrast, 7.09 g/L
and 7.20 g/L of biomass, with ¿ of 0.033 h-1 and 0.047 h-1 were observed in the equivalent
control fermentations with glucose. Nevertheless, higher DyeP activity levels were
obtained on glycerol, as 4043 IU/L and 4902 IU/L, equivalent to a 2.6-fold and 3.16-fold
higher than the activity observed when glucose is used as carbon source. We explored the
diûerential regulation of the DyeP genes in P. ostreatus by the carbon source, the growth
phase, as well as the inûuence of the dye . Throughout the fermentation, we observed
both up-and down- regulation of the three DyeP genes evaluated. In the control media, the
highest induction was for the Pleos-DyeP1 gene, equivalent to a 11.1-fold increase in the
relative expression (log2) at the stationary phase of the culture (360 h). In addition,
glycerol preferentially induced Pleos-DyeP1 and Pleos-DyeP2 genes, leading to a 11.61 and
4.28-fold increase after 144 h respectively. On the other hand, an increase in the induction
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level of Pleos-DyeP1 and Pleos-DyeP2 of 12.86 and 4.02-fold after 360 h and 504 h of
culture respectively were observed in the presence of AYG. To our knowledge, this is the
ûrst report describing the eûect of a less metabolizable carbon source such as glycerol on
the diûerential expression of DyeP encoding genes and the corresponding activity. These
suggest that the observed glycerol eûect on DyeP activity results from the absence of
carbon catabolite repression, probably present in glucose cultures.
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22 Abstract

23 Dye peroxidases (DyePs) (E.C. 1.11.1.19) are heme peroxidases that catalyze oxygen transfer 

24 reactions similar to oxygenases. DyePs utilize hydrogen peroxide (H2O2) both as an electron 

25 acceptor co-substrate and as electron donor when oxidized to its respective radical. The 

26 production of DyePs as well as lignin-modifying enzymes (LME) are regulated by the carbon 

27 source, while less readily metabolizable carbon sources improve LME production.  

28 In this research, we analyzed the effect of glycerol on Pleurotus ostreatus growth, total DyePs  

29 activity and the expression of three Pleos-DyeP genes (Pleos-DyeP1, Pleos-DyeP2 and Pleos-

30 DyeP4) through real time RT-qPCR, monitoring the time-course of P. ostreatus cultures 

31 supplemented either with glycerol or glucose  and Acetyl Yellow G (AYG) dye.

32 Our results indicate that glycerol negatively affects P. ostreatus growth resulting in a biomass 

33 production of 5.31 and 5.62 g/L with growth rates (ý) of 0.027 h-1 and 0.023 h-1 for 

34 fermentations in the absence and presence of AYG dye respectively. In contrast, 7.09 g/L and 

35 7.20 g/L of biomass, with ý of 0.033 h-1 and 0.047 h-1 were observed in the equivalent control 

36 fermentations with glucose. Nevertheless, higher DyeP activity levels were obtained on glycerol, 

37 as 4043 IU/L and 4902 IU/L, equivalent to a 2.6-fold and 3.16-fold higher than the activity 

38 observed when glucose is used as carbon source.
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39 We explored the differential regulation of the DyeP genes in P. ostreatus by the carbon source, 

40 the growth phase, as well as the influence of the dye. Throughout the fermentation, we observed 

41 both up-and down- regulation of the three DyeP genes evaluated. In the control media, the 

42 highest induction was for the Pleos-DyeP1 gene, equivalent to a 11.1-fold increase in the relative 

43 expression (log2) at the stationary phase of the culture (360 h). In addition, glycerol preferentially 

44 induced Pleos-DyeP1 and Pleos-DyeP2 genes, leading to a 11.61 and 4.28-fold increase after 

45 144 h respectively. On the other hand, an increase in the induction level of Pleos-DyeP1 and 

46 Pleos-DyeP2 of 12.86 and 4.02-fold after 360 h and 504 h of culture respectively were observed 

47 in the presence of AYG. 

48 To our knowledge, this is the first report describing the effect of a less metabolizable carbon 

49 source such as glycerol on the differential expression of DyeP encoding genes and the 

50 corresponding activity. These suggest that the observed glycerol effect on DyeP activity results 

51 from the absence of carbon catabolite repression, probably present in glucose cultures.

52

53 Introduction

54 The ligninolytic enzymes of white rot fungi are mainly produced during secondary metabolism. 

55 Activation of this metabolism occurs under limiting conditions, such as concentration and origin 

56 of bioavailable carbon and/or nitrogen sources (Alfaro et al., 2020; Aro et al., 2005; Elisashvili 

57 et al., 2002; Faison & Kirk, 1985; Mikiashvili et al., 2006; Staji� et al., 2006). It has been 

58 reported that the ligninolytic isoenzymes encoded by members of a gene family, often exhibit 

59 variations in their differential expression, catalytic properties, regulation mechanisms, and 

60 cellular location (Fernández-Fueyo et al., 2014; Garrido-Bazán et al., 2016; Janusz et al., 2013; 

61 Knop et al., 2015). Furthermore, analyses of the promoters of ligninolytic enzymes encoding 

62 genes in the P. ostreatus genome have revealed the presence of different putative responsive 

63 elements (Janusz et al., 2013; Knop et al., 2015; Piscitelli et al., 2011). These elements include 

64 carbon catabolite repressor binding elements (CRE), nitrogen response (Nit2), xenobiotic-

65 response elements (XRE), metal-response elements (MRE), and heat-shock elements (HSE), 

66 among other elements, which may be involved in the regulation of gene expression in response 

67 to environmental conditions (Jiao et al., 2018; Todd et al., 2014). Carbon catabolite repression 

68 (CCR) in combination with different signaling pathways play a crucial role in the utilization of 

69 different carbon sources in P. ostreatus and other Basidiomycota fungi (Daly et al., 2019; Suzuki 

70 et al., 2008; Toyokawa et al., 2016; Yoav et al., 2018). The existence of an ortholog of Cre1, the 

71 main transcriptional regulator in the CCR pathway, has also been demonstrated and may 

72 participate in this regulatory process (Alfaro et al., 2020; Pareek et al., 2022; Yoav et al., 2018). 

73 Furthermore, it has been shown that Cre1 is regulated by cAMP-dependent protein kinase 

74 A(PKA) (Boominathan & Reddy, 1992; de Assis et al., 2020; Pareek et al., 2022), and both Cre1 

75 and PKA may be involved in the induction of genes encoding lignin-modifying enzymes in P, 

76 ostreatus (Toyokawa et al., 2016).

77 As part of their wood degradation system P. ostreatus produces dye-decolorizing peroxidases 

78 (DyePs; EC 1.11.1.19). These enzymes are heme peroxidases, and their name reflects their 
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79 ability to degrade several anthraquinone dyes. They utilize the heme group as redox cofactor to 

80 catalyze the hydrogen peroxide-mediated oxidation of a wide range of molecules, including dyes, 

81 aromatic and lignin models compounds, some of which are poorly metabolized by other heme 

82 peroxidases (Catucci et al., 2020; Singh & Eltis, 2015; Xu et al., 2021). Within the P. ostreatus 

83 genome, four DyeP genes coding for dye-decolorizing peroxidase activity have been identified: 

84 Pleos-DyeP1, Pleos-Dyep2, Pleos-PyeP3 and Pleos-DyeP4 (Ruiz-Dueñas et al., 2011). Up to 

85 date, limited reports on factors regulating DyeP production exist. In a previous study we 

86 explored the effect of dyes on the differential expression of P. ostreatus DyeP encoding genes 

87 and DyeP activity, showing that dyes had an induction effect on DyeP activity (Cuamatzi-Flores 

88 et al., 2019). Additionally, an extracellular proteome analysis during P. ostreatus growth on 

89 lignocellulosic material revealed the exclusive synthesis of Pleos-DyeP4 together with several 

90 versatile peroxidases (VPs) and manganese peroxidases (MnPs) enzymes (Fernández-Fueyo et 

91 al., 2015). Glycerol can be used as a carbon and energy source for several basidiomycetes 

92 including P. ostreatus. Furthermore, the activity of some LMEs increases when glycerol or other 

93 less metabolizable carbon sources are used instead of glucose which could imply that the 

94 glycerol mediates carbon catabolite de-repression of LMEs. Giving the physiological relevance 

95 of DyePs enzymes in several group of organisms and their potential biotechnological 

96 applications, this research aims to investigate the impact of glycerol as a carbon source in the 

97 production and differential regulation of DyePs in P. ostreatus. 

98

99 Materials & Methods

100  Microorganism

101 P ostreatus from the American Type Culture Collection (ATCC 32783) (Manassas, Virginia, 

102 U.S.A.) was used in this research. The white rot fungus strain was grown and maintained in 

103 potato dextrose agar (PDA).

104

105 Dye Decolorization on Agar Plate

106 Petri dishes containing glucose or glycerol as carbon source, 500 ppm of Acetyl yellow G (AYG) 

107 (dye content 95%) (SIGMA-ALDRICH 250309) and agar 15g/L were inoculated with 0.4 cm2 

108 mycelia plugs taken from the periphery of a P. ostreatus colony growing on PDA at 25 °C and 

109 incubated during seven days. The inoculum was placed mycelium facing down, on the center of 

110 the plate. Then, the plates were incubated at 25 °C for eight days. The fungal colony growth and 

111 the effect on the dye were documented by daily photographs throughout the period of incubation.

112

113 Submerged culture conditions and growth kinetics characterization

114 The composition of the medium, selection of Acetyl yellow G dye and the conditions for the 

115 submerged cultures were adapted from Cuamatzi-Flores et al.,( 2019). In this study we 

116 conducted four type of P. ostreatus cultures: with either glucose (GM) or glycerol (GlyM), as 

117 carbon source, as well as with the complementary addition of 500 ppm of Acetyl yellow G 

118 (GAYG and GlyAYG ) (dye content 95%) (SIGMA-ALDRICH 250309). Each flask out of three 
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119 per fermentation type was inoculated with three mycelial plugs (4 mm diameter) taken a steel 

120 punch from the periphery of P. ostreatus colonies grown for 7 d at 25°C in Petri dishes 

121 containing potato dextrose agar. The cultures were incubated at 25°C for 23 days on a rotary 

122 shaker (SEV-PRENDO 650M) with constant shaking of 120 rpm. Three flasks were taken as 

123 samples every 24 h from 120 h (5 d) to 552 h (23 d) of fermentation. The supernatant was 

124 obtained by filtering the cultures using Whatman No. 4 filter paper and stored at -20°C. Glucose 

125 was determined by the DNS Method (Miller, 1959), while glycerol consumption was assessed as 

126 described by Kuhn et al., (2015). Dye peroxidase activity was measured by following the 

127 degradation of ABTS (Salvachúa et al., 2013), while the percentage of dye decolorization was 

128 determined at fixed time intervals as proposed by Upadhyay & Przystas, (2023). The mycelium 

129 was rinsed with 0.9% NaCl and stored at -70°C until subjected to the total RNA extraction or dry 

130 weight measurement (X, g/L). The specific growth rate (ý) was obtained for each replicate from 

131 the logistic equation (X = Xmax/(1 + (Xmax � X0/X0)·e-m·t)) using 100 permutations in R software, 

132 version 4.3.0  (R Development Core Team, 2023). 

133 The decolorization of AYG dye was monitored spectrophotometrically at ümax (390 nm). All 

134 experiments were performed in triplicate. The growth curves were established with dry biomass 

135 measurements from each fermentation. 

136

137 RNA extraction and RT-qPCR

138 The total RNA was isolated from frozen mycelia harvested at different time-points of the 

139 fermentation, using the NTES extraction protocol. The concentration was quantified 

140 spectrophotometrically, and the purity was determined by the absorbance ratio at OD 260/280. 

141 The RNA was treated with RNAse-free DNase I (Invitrogen). The final RNA concentration was 

142 set to 300 ng/¿l, after which 3 ¿g of total RNA was reverse-transcribed into cDNA in a volume 

143 of 20 ¿l using M-MuLV Reverse Transcriptase (Fermentas), following the manufacturer�s 

144 protocol.

145 The RT-qPCR reactions were performed in a StepOne Plus thermal cycler (Applied Biosystems), 

146 using Maxima SYBR Green/ROX qPCR Master Mix (ThermoFisher) to detect the amplification 

147 of product. Specific primers were designed to amplify the transcripts of the thre Pleos-DyeP 

148 genes identified in the genome (Table 1). The reaction mixture, the amplification program, the 

149 melting curve, and the selection of the reference genes were adapted from Garrido-Bazán et al., 

150 (2016). According to their expression stability under the studied culture conditions and the 

151 reference index consisting of the geometric mean of the best-performing housekeeping genes, 

152 peptidase (pep) gene was used for RT-qPCR data normalization.

153 The RT-qPCR reactions were carried out in triplicates with a template-free negative control 

154 performed in parallel.

155

156 Results

157 Effect of carbon source on P. ostreatus growth and AYG Dye decolorization in Plate Assays
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158 Figure 1 shows the growth and decolorization capacity of P. ostreatus on agar plates of glucose 

159 and glycerol supplemented with 500 ppm of AYG dye. Although P. ostreatus was able to grow 

160 in both glucose and glycerol media, a higher growth rate is clearly observed on glucose, either 

161 alone or supplemented with AYG dye. This differential growth pattern led to the development of 

162 larger fungal colony over the 192 h of incubation. Furthermore, different changes in the color of 

163 the AYG dye were observed during the experiment. In media containing glucose, the AYG dye 

164 transitioned from yellow to reddish hues over time, whereas such color alterations were not 

165 evident in the glycerol-supplemented medium. 

166 These findings suggest a significant influence of the carbon source on both, growth kinetics of P. 

167 ostreatus and AYG dye oxidation, highlighting the role of carbon substrate in shaping fungal 

168 metabolism.

169

170 Effect of glycerol on Pleurotus ostreatus growth, dye peroxidase activity and Acetyl Yellow 
171 G dye decolorization in submerged fermentation
172

173 Growth kinetics characterization and AYG decolorization 
174 To quantitatively analyze the changes observed on plate assays, submerged cultures were 

175 conducted. The comparison of P. ostreatus growth in submerged fermentation with glucose or 

176 glycerol as carbon source alone or supplemented with AYG dye is shown in Figure 2.    

177 Variation on the maximal biomass (Xmax) reached were both higher in glucose and 

178 glucose/AYG cultures (7.09 g/L and 7.20 g/L, respectively) compared to glycerol or 

179 glycerol/AYG (5.31g/L and 5.62 g/L, respectively). The same differences were observed in 

180 growth rate (ý), with values for ý of 0.033 h-1 and 0.047 h-1 were obtained for glucose and 

181 glucose/AYG -media higher than 0.027 h-1 and 0.023 h-1 observed for glycerol and 

182 glycerol/AYG media, respectively.  Interestingly, the addition of the AYG dye does not 

183 significantly affect biomass production (Xmax), as no substantial differences were observed 

184 when compared both cultures with and without the dye. 

185 Consequently, carbon source depletion is faster in the presence of AYG dye when glucose is 

186 used as the carbon source (Figure 3). In effect, glucose depletion was observed after 336 h of 

187 culture, compared to 240 h in the fermentation with the AYG dye, as expected considering the 

188 already reported higher growth rate. However, although the specific growth rates were rather 

189 similar with glycerol as carbon source, depletion occurred at 400 h, as opposed to 312 h in the 

190 fermentation supplemented with the AYG dye. These findings suggest that P. ostreatus can 

191 metabolize the carbon source more efficiently in the presence of the dye, leading to accelerated 

192 carbon source depletion. 

193 Furthermore, the decolorization percentage during glucose fermentations increased gradually 

194 over the fermentation-course, reaching percentages of 100 % after 552 h, contrary to the glycerol 

195 fermentation where 10.8 % decolorization was observed just after 48 h and a maximum of 22 % 

196 discoloration after 552 h (Figure 4). Markedly, the carbon source had a discernible impact on the 

197 rate of dye decolorization.  

PeerJ reviewing PDF | (2023:11:92673:0:2:NEW 16 Nov 2023)

Manuscript to be reviewed

Review lines 189 to 192. I believe I have an error in interpreting figure 3



198

199 Effect of glycerol and AYG dye on DyeP activity production 
200 The effect of glycerol and AYG dye on dye peroxidases production by P. ostreatus is shown in 

201 Figure 5. The highest titers of dye peroxidase activity (4043 and 4903 UI/L) were observed when 

202 glycerol and glycerol with AYG were employed as carbon source, reaching maximum levels at 

203 408 h and 360 h, respectively. On the other hand, lower activity levels were obtained in glucose 

204 and glucose with AYG cultures (1551 and 2882 UI/L) at 312 and 288 h, respectively. It is 

205 noteworthy that independently of the carbon source, the addition of AYG dye consistently 

206 induced the production of DyeP, as concluded from the higher activity levels observed early in 

207 the fermentation.

208

209 De-repression of Pleos-DyeP genes expression and differential regulation in response to 
210 glycerol and AYG dye
211 The transcriptional response of Pleos-DyeP genes to glycerol as carbon source and to the 

212 addition of a synthetic dye (AYG) was also evaluated. Figure 6 and supplementary table 2, show 

213 the influence of the carbon source and the AYG dye on the expression patters of DyeP genes, 

214 revealing a dynamic up-/down-regulation pattern over the course of fermentation for the three 

215 evaluated DyeP genes (Pleos-DyeP1, Pleos-DyeP2 and Pleos-DyeP4). 

216  The highest induction levels in the control media were for the Pleos-DyeP1 and Pleos-DyeP4 

217 genes, with 11.12 and 8.28-fold increase in the relative expression level (log2) after 360 h and 

218 168 h respectively. Additionally, gene expression profiles indicated that glycerol induced Pleos-

219 DyeP1 and Pleos-DyeP2 genes, with a 11.61- and 4.28-fold increase observed after 144 h, 

220 respectively.  On the other hand, AYG addition results in a 12.86 and 4.02-fold increase 

221 induction levels after 360 h and 504 h of culture for Pleos-DyeP1 and Pleos-DyeP2, respectively. 

222 Interestingly, under these experimental conditions, expression of Pleos-DyeP4 was not detected. 

223 These findings underscore the intricate dynamics of gene expression in response to different 

224 carbon sources and the presence of AYG dye, shedding light on the regulatory mechanisms 

225 governing dye peroxidase production in P. ostreatus.

226

227 Discussion

228 To test the influence of glycerol on growth, dye peroxidase expression/production, and the 

229 effectiveness on AYG dye decolorization compared to glucose, we cultured P. ostreatus both on 

230 plate and in liquid cultures.    

231

232 Effect of carbon source on growth 
233 In this research, we first evaluated the effect of glycerol as a carbon source on P. ostreatus 

234 growth, both on plate assays and submerged fermentation.  Glycerol exhibited lower efficiency 

235 as a carbon source compared to glucose, significantly affecting both growth rate and biomass 

236 production. Glycerol can be used as a carbon and energy source for several groups of fungi; 

237 however, its utilization efficiency varies among fungi and, compared to glucose, often glycerol 
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238 metabolism results less efficient (Klein et al., 2017; Liu et al., 2012; Mikiashvili et al., 2006; 

239 Urek & Pazarlioglu, 2007). Our findings confirm previous research demonstrating that P. 

240 ostreatus growth is affected by a complex carbon source such as glycerol resulting in reduced 

241 biomass production and altered growth rates (Mikiashvili et al., 2006; Tinoco et al., 2011).  

242  

243 Effect of glycerol and AYG dye on DyeP activity production and dye decolorization
244 We demonstrate here that the use of glycerol instead of glucose resulted in a 3-fold increase in 

245 dye peroxidase activity. Similar observations were reported by Roch et al., (1989) with 

246 Phanerochaete chrysosporium growing under carbon limitation with glycerol as carbon source, 

247 affecting both P. chrysospoorium growth and increased lignin peroxidase activity. Many studies 

248 on medium composition effects concerning lignin-modifying enzymes (LME) production have 

249 primarily focused on optimizing laccase activity or global LME induction, rather than 

250 specifically examining dye decolorizing peroxidase (DyeP). Tinoco et al., (2011) optimized a 

251 culture medium for laccase production by P. ostreatus, using copper and lignin as inducers. In 

252 contrast to our findings, they did not observe significant influence of glucose or glycerol on 

253 laccase production. However, they noted a positive effect of xylose on laccase activity. On the 

254 other hand, they did observe a positive effect of peptone and yeast extract as nitrogen sources.

255 Several reports indicate that the production of lignin modified enzymes (LME) in basidiomycetes 

256 is dependent on the carbon and nitrogen sources, as well as the presence of aromatic compounds 

257 in the culture medium (Elisashvili et al., 2018; Faison & Kirk, 1985; Mansur et al., 1998; 

258 Mikiashvili et al., 2006; Staji� et al., 2006; Thiribhuvanamala et al., 2017). For instance, 

259 Elisashvili et al., (2002), demonstrated the effect of different carbon sources and aromatic 

260 compounds on the lignocellulolytic enzyme activity of different edible and medicinal 

261 basidiomycetes, concluding that it is possible not only to substantially increase the 

262 lignocellulolytic activity, but also to lead their preferential synthesis by supplementing with 

263 nutritional compounds in the culture medium. In many basidiomycetous fungi laccases are 

264 expressed constitutively and this constitutive low expression is often enhanced by inducers such 

265 as aromatic compounds. In effect, the addition of cellobiose, mannitol and xylan as carbon 

266 sources and the aromatic compound 2,5-xylidine, increased up to 20-fold the induction of laccase 

267 activity depending on the fungal strain (Armas et al., 2019; Castanera et al., 2012; Scheel et al., 

268 2000; Téllez-Téllez et al., 2005). According with Jiao et al., (2018), the addition of small 

269 aromatic molecules in the culture medium could increase the yield of laccase activating the 

270 laccase gene transcription by binding on the xenobiotic response element (XRE) of the target 

271 gene. 

272 In our study, the production of DyeP was primarily observed during the stationary phase (268-

273 552 h) of the P. ostreatus culture. In general, ligninolytic enzymes are produced as secondary 

274 metabolites (Elisashvili et al., 2020; Hammel, 1997; Mester & Field, 1998; Thiribhuvanamala et 

275 al., 2017). It is assumed that the metabolized substrate is essential for fungi not only for the 

276 synthesis of lignin degrading enzymes, but also to produce peroxide as well as effectors of the 

277 ligninolytic system (Faison & Kirk, 1985). According with Buswell et al., (1984), 
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278 Phanerochaete chrysosporium growth on glycerol leads to carbon limitation which can affect the 

279 onset of secondary metabolism. That condition has been reported as favoring the carbon 

280 catabolite de-repression of both CAZ and ligninolytic enzymes (Kern, 1990; Peng et al., 2021; 

281 Suzuki et al., 2008). Aro et al., (2005) reported that the expression of gene encoding ligninolytic 

282 enzymes, is generally triggered by the depletion of nutrient nitrogen, carbon or sulfur. However, 

283 this does not apply to laccase-encoding genes, whose production can be detected at early 

284 fermentation stages.

285 On the other hand, the efficiency of AYG decolorization was considerably affected by the carbon 

286 source. We observed decolorization percentages of 45 % and 10 % decolorization after 48 h in 

287 glucose and glycerol, respectively (Figure 4).  Furthermore, in glucose, complete decolorization 

288 was observed after 552 h. The efficiency of dye decolorization can be favored by co-metabolism 

289 with different carbon sources. Glucose, sucrose, fructose and glycerol are among the most 

290 extensively studied carbon sources (Casas et al., 2013; Civzele et al., 2023; Haider et al., 2019; 

291 Leung & Pointing, 2002; Merino et al., 2019; Rao et al., 2019). Furthermore, analysis of Pleos-

292 DyeP1 expression on both carbon sources evaluated suggests the decolorization associated with 

293 DyeP1 activity.  

294 The ability of P. ostreatus to metabolize a wide variety of toxic compounds is primarily 

295 attributed to their non-specific multi-enzyme oxidative system (Eichlerova et al., 2002; Garrido-

296 Bazán et al., 2016; George et al., 2023; Grandes-Blanco et al., 2013; Kunjadia et al., 2016; 

297 alosar
íková et al., 2020).  Cuamatzi-Flores et al., (2019) reported that when glucose was the 

298 sole carbon source, addition of Acetyl Yellow G (AYG), Remazol Brilliant Blue R (RBBR) or 

299 Acid Blue 129 (AB129) dyes increased DyeP activity, ultimately achieving complete 

300 decolorization. When grown in liquid media, transformation of RBBR dye by P. ostreatus seems 

301 to be mainly via laccase oxidation. However, dye decolorization peroxidase and veratryl alcohol 

302 oxidase were also produced (Palmieri et al., 2005). Eichlerová et al., (2006), evaluated the 

303 decolorization capacity of Orange G and Remazol Brilliant Blue R (RBBR) dye and ligninolytic 

304 enzyme production of eight different Pleurotus species. The main enzymes detected were Lac 

305 and MnP whose production was strongly influenced by the type of cultivation media and the 

306 presence of a dye. Ottoni et al., (2014), reported that in Trametes versicolor, glycerol is an 

307 important substrate for oxidative metabolism, promoting higher laccase production and 

308 consequently, increasing the decolorization process of Reactive Black 5. 

309

310 De-repression of Pleos-DyeP genes expression and differential regulation in response to 
311 glycerol and AYG dye
312 In this study, glycerol was used as an alternative substrate to examine the transcriptional 

313 responses of P. ostreatus DyeP genes, and to investigate the potential participation of carbon 

314 catabolite de-repression in their regulation. Our analysis of DyeP gene expression profiles 

315 revealed significant variations influenced by the carbon source, growth phase, and the presence 

316 of AYG dye. These variations led to up- and down-regulation patterns over the fermentation 

317 period in the three evaluated Pleos-DyeP genes. Interestingly, the addition of glycerol and AYG 
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318 dye induced early-stage expression of Pleos-DyeP1 (144 hours). In contrast, the expression of 

319 Pleos-DyeP4 was not detected in glycerol cultures.

320 The effect of chemical dyes on P. ostreatus on DyeP activity and gene expression profile has 

321 been previously reported. The addition of dyes results in an induction effect on the enzyme 

322 activity and the expression profiles of DyeP genes, with maximum induction level detected for 

323 DyP4 gene at the end of the fermentation (Cuamatzi-Flores et al., 2019). The potential XRE, 

324 Cre1 and Nit2 binding sites motifs identified in the promoter of the three DyeP genes analyzed 

325 (Supplementary Table 1), suggest that DyeP genes transcription among others can be regulated 

326 by xenobiotics, carbon and nitrogen sources respectively. The frequency of these cis-acting 

327 elements varies between genes from 0 for XRE in DyeP2 gene, 1 for Cre1 in the three genes and 

328 3 for Nit2 in DyeP4.

329 Carbon catabolite repression (CCR) has been a focal point of research in the Ascomycota (Adnan 

330 et al., 2018; De Assis et al., 2021; Strauss et al., 1999). However, several studies on the 

331 Basidiomycota have demonstrated that CCR, in combination with different signaling pathways, 

332 plays a key role in the utilization of different carbon sources in these group of fungi (Hu et al., 

333 2020; Janusz et al., 2013; Nakazawa et al., 2019; Toyokawa et al., 2016; Zhang et al., 2022). 

334 The presence of an ortholog of Cre1 and its participation as main regulator in CCR has been also 

335 demonstrated (Daly et al., 2019; Jiao et al., 2018; Pareek et al., 2022; Yoav et al., 2018). Yoav 

336 et al., (2018), conducted genetic modifications on the transcriptional regulator Cre1 in Pleurotus 

337 ostreatus PC9 strain, observing that the secretion level of CAZymes, including lignin modifying 

338 enzymes, were not exclusively dependent on Cre1 activity. According with Pareek et al., (2022), 

339 Cre1 in the basidiomycete Coprinopsis cinerea, similarly as in ascomycetes mediates regulation 

340 of CAZymes (carbohydrate-active enzymes) however, LMEs were downregulated in the C. 

341 cinerea cre1 mutants, indicating that these enzymes fall under different regulation from that of 

342 CAZymes. Daly et al., (2019) shed light on the widespread glucose-mediated CCR of plant 

343 biomass utilization in the white-rot basidiomycete Dichomitus squalens. Glucose-mediated 

344 repression of secreted CAZyme genes but not of genes encoding proteases suggested that CCR 

345 has been maintained by the fungus to strongly conserve nitrogen use in its nitrogen-scarce woody 

346 biotope. In Aspergillus nidulans cross-talk between signaling pathways, such as the one between 

347 the protein kinase A (PKA), high osmolarity glycerol (HOG) and mitogen-activated protein 

348 kinases (MAPK) pathways, are required for the utilization of different carbon sources. 

349 Furthermore, MAPKs regulate the carbon catabolite repressor CreA activating HOG pathway, 

350 PKA activity and CCR (de Assis et al., 2020; de Assis et al., 2021). 

351 Furthermore, regulation of Cre1 by cAMP-dependent protein kinase A(PKA) has been well-

352 established (Boominathan & Reddy, 1992; de Assis et al., 2020; Pareek et al., 2022). This 

353 regulatory mechanism also extends to the induction of genes encoding lignin-modifying enzymes 

354 in Pleurotus ostreatus (Toyokawa et al., 2016). 

355

356 Conclusions
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357 The fungus Pleurotus ostreatus can grow on glycerol as carbon source inducing the production 

358 of dye peroxidase activity. The analysis of the promoters of DyeP encoding genes has revealed 

359 the presence of several putative cis-regulatory elements, including the CCR Cre1-binding site. 

360 Notably, the induction of DyeP genes at earlier stages in the presence of glycerol suggests a 

361 potential regulation by CCR. However, as has previously been reported, alternative regulation 

362 mechanisms may be involved, requiring further studies to establish the overall mechanisms by 

363 which DyeP and other oxidases produced by P. ostreatus are transcriptionally regulated. 

364

365
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Table 1(on next page)

Primers used in this study

qPCR primers (type 3 forward or reverse 3 and sequences) and ampliûcation length and
eûciency for the P. ostreatus dye peroxidase genes and the selected reference gene.
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1

2 Table 1. Primers used in this study. qPCR primers (type � forward or reverse � and sequences) and 

3 amplification length and efficiency for the P. ostreatus dye peroxidase genes and the selected reference 

4 gene.

Gene Transcript IDa Directionb Sequence (5� to 3�)
Product size 

(bp)
Efficiencyc

Fw CGCTTGAGTTGATCCAGAAA
Pleos_DyeP1 62271

Rv TATTTCCTTCGGCTTCCTCA
104 2.21

Fw TACATTCTTGCCGCTGGAT
Pleos_DyeP2 1092668

Rv GCGAGAACCTGCTTGAACTT
117 1.87

Fw
ATGAACACTTCGGCTTCCTC

Pleos_DyeP4 1069077
Rv

GGCAAGTACCGCAGATAAG
64 2.03

Fw CGGAGGACATTCTTGTTCAC
pep 1092697

Rv AGATCGGTAACCCACACGAG
142 1.89

5

6 Note: aTranscript ID and gene nomenclature refer to the annotation of P. ostreatus PC15 genome 

7 version 2.0 (http://genome.jgi-psf.org/ PleosPC15_2/PleosPC15_2. home.html), bFw, Forward; Rv, 

8 reverse, cEfficiency for primers used in qPCR

9

10
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Figure 1
Plate decolorization of AYG dye by P. ostreatus

The fungus was incubated on agar plates supplemented with glucose or glycerol as carbon
source as well as complemented with the AYG dye. Reverse (R) and front side (F)
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Figure 2
Growth kinetics and speciûc growth rate values (¿) for P. ostreatus fermentations

(A) Growth curve for glucose (blue circles), glucose supplemented with 500 ppm of AYG
(yellow squares), glycerol (darkcyan diamonds), and glycerol supplemented with 500 ppm of
AYG (orange triangles). Each point represents the mean of three replicates. The continuous
line represents the best ût of the measured data to the logistic model. (B) Speciûc growth

rate (h-1) in each fermentation. Each bar represents the mean of three replicates. Statistical
signiûcance was calculated with t-test (* = p < 0.05, ** p < 0.01). The error bars in both
panels represent the standard error.
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Figure 3
Carbon source consumption

During the fermentation with glucose (blue circle), glucose supplemented with 500 ppm of
YAG (yellow squares), glycerol (green diamonds), and glycerol supplemented with 500 ppm
of YAG (orange triangles). Each point represents the mean of three replicates. Error bars
indicate the standard error.
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Figure 4
Decolorization percentage

Eûect of carbon source on AYG dye decolorization during the time course of fermentation
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Figure 5
DyeP activity in the cultures of P. ostreatus

Enzymatic activity of DyeP in fermentation with glucose (blue circle), glucose supplemented
with 500 ppm of AYG (yellow squares), glycerol (green diamonds), and glycerol
supplemented with 500 ppm of AYG (orange triangles). Each point represents the mean of
three replicates. Error bars indicate the standard error.
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Figure 6
Analysis of gene expression of the three P. ostreatus dye peroxidases

Heatmap representing gene expression proûles of Pleos-DyeP genes during fermentation
with Glucose, Glycerol, and Glycerol Supplemented with 500 ppm of AYG.
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