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ABSTRACT

Background: The band and loop space maintainer is used to maintain the missing
space of deciduous molars which are lost early. When the second deciduous molar is
lost prematurely, the stress on the first permanent molar during different degrees of
development may vary when it is the abutment. The design and use of the space
maintainer may also lead to damage of the loop. The purpose of this article is to use
the finite element method to study the stress on the first permanent molar and the
loop with or without occlusal contact, with the first permanent molar of four
different degrees of development serving as the abutment. We aimed to guide the
clinical design and use of the space maintainer.
Methods: We developed finite element models of the mandibular first permanent
molar and the band and loop space maintainer, and simulated alveolar bone,
periodontal ligament (PDL), enamel and dentin. The four developmental stages were
1/2 (I), 2/3 (1I), 3/4 (III) and full development (IV). Ansys Workbench was used to
analyze the effects of root development and occlusal contact between the loop and the
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stress peak change was: group IV > group I > group II > group III. The change of the
equivalent stress peak value of the space maintainer under oblique load was: group
I > group IV > group II > group III, and the maximum principal stress peak change
was: group I > group IV > group II > group IIIL.

Conclusions: Our results suggested that whenever possible, choosing the teeth with
nearly complete root development as the abutment of the space maintainer is
advisable. The design and use of the band and loop space maintainer should avoid
occlusal contact with the occlusal teeth to prevent deformation of the loop.

Subjects Bioengineering, Dentistry, Radiology and Medical Imaging
Keywords Space maintainer, Root development, Three-dimensional finite element analysis

INTRODUCTION

Severe deciduous dental caries, periapical disease, and trauma can lead to premature loss of
deciduous teeth, resulting in the irregular arrangement of permanent teeth due to
insufficient eruption space for permanent teeth. Similarly, the early loss of young
permanent teeth also causes displacement of adjacent teeth, leading to malocclusion
(Wojtaszek-Lis et al., 2018; American Academy of Pediatric Dentistry, 2017). Therefore,
after the early loss of teeth in children, a space maintainer is typically used to maintain the
mesial and distal distance of the missing teeth in order to promote the normal eruption of
permanent teeth. This prevents the adjacent teeth from tilting towards the gap and the
opposite jaw teeth from extending. The band and loop space maintainer is suitable for the
premature loss of unilateral or bilateral single deciduous molars, or the premature loss of
the second deciduous molars and the complete eruption of the first permanent molars
(Pawar, 2019). When the second deciduous molar is lost early, it is necessary to use the
space maintainer to preserve the missing space in order to maintain a better arch length.
Simultaneously, the mesial displacement of the first permanent molar is more obvious, so
the clinical use of the band and loop space maintainer is necessary.

In the mixed dentition stage, the first permanent molar is still developing, meaning its
root is not fully developed. When the band and loop space maintainer is applied to the first
permanent molar, its root may not be mature, and the stress it bears may have an adverse
effect on root development. Studying the relationship between the band and loop space
maintainer and stress on immature teeth is helpful for improving the selection and design
of the space maintainer.

Finite element analysis was first proposed by Turner (1956). This method divides a
continuous entity into finite elements and replaces the original continuum with the
combination of each element. The mechanical properties of each element are studied one
by one and the stiffness balance equation of each element is established. Then the group of
the overall stiffness equilibrium equation is integrated, and the overall stiffness balance
equation is solved according to the given boundary displacement condition and load
condition. The displacements of all the nodes of the element are obtained, and the internal
forces and stress on the element are calculated accordingly, resulting in the mechanical
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properties of the whole composite. Currently, finite element analysis has become a
numerical “virtual experiment,” replacing many physical experiments. The combination of
many computational analyses based on this method and typical confirmatory experiments
can achieve high efficiency at a low cost (Se-Young et al., 2017; Zheng et al., 2016).

The purpose of this article is to use the finite element method to analyze the stress on the
first permanent molar and the loop when the band and loop space maintainer is applied to
the first permanent molars at different developmental stages.

MATERIALS AND METHODS

Equipment

Dell Precision T5820 Desktop: CPU E5-2643; winl0 64-bit; 16G RAM; 1T HDD;
GraphicsNVIDIA Quadro 4000

Mimics 19.0 (Materialize Inc. Belgium)

Proe5.0 (Parametric Technology Corporation, Boston, Massachusetts, USA)
Geomagic Studio 2013 (Geomagic Studio Product, Morrisville, North Carolina)
UGNXS8.5 (Siemens PLM Software, Plano, Texas, USA)

Ansys Workbench (ANSYS Inc, Canonsburg, Pennsylvania, USA)

Methods

A 7-year-old child with mixed dentition was selected for this study, and the mandible of
the subject was scanned by cone beam CT (CBCT data from this 7-year-old child who
needed other treatments, and the mandibular first permanent molar has no caries and no
fillings). The study protocol was approved by the Ethics Committee of Nantong
Stomatological Hospital (approval number: 2022-003-01). Written informed consent was
obtained from the parents or guardians of children. The image acquisition parameters
were: tube voltage 10 kV; tube current 20 mA; scan time 26 s; layer thickness 0.2 mm.
The field of view and three-dimensional (3D) body velocities were 15 x 15 cm and 0.3 x 0.3
and 0.3 mm, respectively. A total of 377 tomographic images were obtained, stored, and
engraved in standard DICOM format. The CT image was imported into Mimics19.0 in
DICOM format, and the three-dimensional model of the mandibular alveolar bone was
established by Mimics (Fig. 1). The model was inputted into Geomagic Studio in *.stl
format, and the protuberances and miscellaneous spots on the model surface were removed
in Geomagic Studio to make the model surface smoother. First, a three-dimensional model
of normal mandibular first permanent molars with fully developed roots was created,
followed by models of mandibular first permanent molars in the 1/2, 2/3, and 3/4 stages of
root development. Then, the root of the model was separated from the crown along the
alveolar bone and along its crown. The periodontal ligament was formed by expanding
0.15 mm using the thickening command, and a band and loop space maintainer with the
abutment of the mandibular first permanent molar was designed. Finally, using the curved
suture function, the first permanent molars, alveolar bone, periodontal ligament, and band
and loop space maintainer were converted into UGNX in *.igs format to form a solid model
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Figure 1 Preliminary 3D model. A total of 377 tomographic images were obtained, stored, and engraved in standard DICOM format. The CT
image was imported into Mimics19.0 in DICOM format, and the three-dimensional model of the mandibular alveolar bone was established by
Mimics. Full-size K] DOL: 10.7717/peerj.17456/fig-1

Figure 2 Three-dimensional model of mandibular first permanent molar and the band and loop
space maintainer. Full-size k&l DOL: 10.7717/peerj.17456/fig-2
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(Fig. 2). The solid models of the four types of first permanent molars and band and loop
space maintainer required for the experiment were built.

Four types of 3D solid models created in UGNX were imported into Proe in the *.stp
format. In Proe, the band and loop space maintainer was attached to the crown of the first
permanent molar, completing the structure. The assembled model was saved as an *.asm
file, enabling us to construct a three-dimensional solid model. This model depicted the first
permanent molar with four different degrees of root development as abutment teeth for the
band and loop space maintainer (Fig. 3).

The constructed 3D solid models were inputted into the Workbench analysis interface
through the connection between Proe and Ansys Workbench finite element analysis
software. The element division of the model was carried out using the automatic meshing
function of Workbench, resulting in the three-dimensional finite element model.

Finite element stress analysis

Definition of material and boundary conditions

It was assumed that the relative displacement of the interface between tooth and
periodontal ligament, periodontal ligament and alveolar bone, and band and loop space
maintainer in the model was zero, which was defined as a full constraint relationship.
The interface between the band and loop space maintainer and the first permanent molar
was defined as bonding. We applied a y-direction constraint to the loop, and the alveolar
bone base was set as a fixed constraint. The materials and structures in the model were
assumed to be isotropic homogeneous linear elastic materials, and the mechanical
properties of each material are shown in Table 1.

Load conditions

First permanent molar

The static loading force was set to be uniformly distributed, and the loading directions
were vertical and oblique.

Vertical loading: the direction was 15° to the long axis of the tooth, and the loading sites
were the mesial marginal crest, central fossa, distal marginal crest, mesial buccal tip, and
distal buccal tip. The total loading force was 70 N, and the force value of each loading site
was 14 N.

Oblique loading: the direction was 60° to the long axis of the tooth, and the loading
point was the middle point of the oblique surface of the proximal and distal buccal tips.
The total loading force was 70 N, and the force value of each loading site was 35 N.

Loop

To apply a static load, we uniformly distributed a 14 N force vertically at the contact edge
between the loop and the opposite jaw. The loading sites and loading directions discussed
above are shown in Fig. 4.
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Figure 3 The three-dimensional solid model of the first permanent molar with four different root
development degrees as abutment teeth as the band and loop space maintainer. The four develop-
mental stages were 1/2(I), 2/3(II), 3/4(III) and fully developed (IV).

Full-size K&] DOT: 10.7717/peerj.17456/fig-3

Table 1 Mechanics parameter of materials.

Modulus of elasticity (MPa) Poisson’s ratio
Alveolar cortial bone 13,700 0.3
Alveolar cancellous bone 1,370 0.3
PDL 69 0.45
Dentine 18,600 0.31
Enamel 84,000 0.33
Pulp 2 0.45
Stainless steel 194,020 0.3

RESULTS

In the two cases of occlusal contact between the loop and the opposite jaw, the maximum
equivalent stress and the first principal stress on the four models of root development are
shown in Table 2. The stress concentration areas of enamel and PDL are shown in Table 3.
The equivalent stress, maximum principal stress distribution, and displacement clouds of
enamel, dentin, PDL and the space maintainer are shown in Figs. 5-22. In the stress and
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Figure 4 Loading sites and loading directions. (A) Vertical decentralized loading location; (B) obli-
quely dispersed loading position. Full-size &) DOT: 10.7717/peerj.17456/fig-4

displacement cloud diagram, the size of the value is represented by color. Red, yellow,

green, and blue are used in descending order.

The main results were as follows:

(1)

(2)

(3)

(4)

The stress on enamel, dentin, periodontal ligament and alveolar bone were similar, and
the stress concentration was consistent.

According to the degree of root development of the four kinds of teeth, the maximum
equivalent stress and the first principal stress on enamel and the periodontal ligament
were the highest in group IV, while the stress on dentin was the lowest in group IV.
The maximum equivalent stress and principal stress on dentin in group IV were less
than in the other three groups.

There were no significant differences in the equivalent stress and the first principal
stress on enamel among the three groups when the root development was 1/2, 2/3
and 3/4.

When the loop was in occlusal contact with the opposing occlusal tooth, the peak value
of the equivalent stress on the space maintainer under vertical load was: group I >
group IV > group III > group II, and the maximum principal stress peak change was:
group I > group III > group II > group IV. The change of the equivalent stress peak
value of the loop under oblique load was: group I > group III > group IV > group II,
and the maximum principal stress peak change was: group III > group I > group II >
group IV. When the loop was not in occlusal contact with the opposing occlusal tooth,
the peak value of the equivalent stress on the space maintainer under vertical load was:
group IV > group I > group II > group III, and the maximum principal stress peak
change was: group IV > group I > group II > group III. The change of the equivalent
stress peak value of the space maintainer under oblique load was: group I > group IV >
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Table 2 With or without occlusal contact between the loop and the opposite jaw, the maximum equivalent stress and the first principal stress
(MPa) of each model.

Without contact With contact
Model Maximum equivalent Maximum first Maximum equivalent Maximum first principal
stress principal stress stress stress
Root Vertical Oblique Vertical Oblique Vertical Oblique Vertical Oblique
development
Space 1/2 74.8 268.2 60.9 201.9 420.6 397.0 431.7 368.0
maintainer 2/3 53.3 148.3 44.8 110.7 382.0 367.5 382.9 343.5
3/4 49.3 121.9 44.0 105.1 3823 374.5 428.0 394.4
1 106.9 261.6 80.8 194.6 388.6 368.3 376.7 328.5
Enamel 1/2 444 113.5 18.0 110.6 44.4 109.4 18.1 110.7
2/3 444 102.5 12.2 110.5 44.4 102.3 12.1 110.7
3/4 44.4 101.3 12.2 110.0 44.4 101.0 12.1 110.2
1 82.2 193.4 28.5 120.2 90.1 196.9 32.0 110.8
Dentine 1/2 349 172.9 21.2 108.9 38.8 165.0 23.0 100.2
2/3 16.8 69.7 15.1 65.7 16.6 64.4 14.4 60.6
3/4 24.7 118.5 14.2 81.2 30.9 107.3 20.7 77.1
1 5.4 14.9 4.8 16.5 6.3 13.8 4.0 15.8
PDL 1/2 52 13.0 2.1 9.5 44 12.1 2.2 9.0
2/3 2.0 6.7 1.1 4.3 1.5 5.5 1.1 3.8
3/4 1.0 2.4 0.7 3.1 1.2 2.0 0.7 2.8
1 18.3 24.5 6.6 28.8 19.2 274 6.3 26.0
Alveolar 1/2 3.0 14.7 2.7 11.2 2.8 14.9 24 11.1
bone 2/3 2.0 44 25 5.1 19 44 23 47
3/4 3.1 4.5 3.5 4.2 3.0 4.2 3.5 3.9
1 49 6.0 4.1 52 44 55 3.5 4.7

group II > group III, and the maximum principal stress peak change was: group I >
group IV > group II > group IIL

(5) When observing the overall force of the band and loop space maintainer, the stress was
concentrated on the edge of the contact between the loop and the band when there was
no occlusal contact between the loop and the opposite jaw teeth. When the loop had
poor contact with the opposite jaw, the stress was concentrated in the bend in the
middle of the loop (Fig. 22).

(6) There was occlusal contact between the loop and the jaw teeth, and the maximum
displacement appeared at the edge of the contact between the loop and the first
deciduous molars.

DISCUSSION

Space maintainers are widely used after the premature loss of deciduous teeth. Of the
various types of fixed space maintainers, band and loop space maintainers are the most
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Table 3 The stress concentration area for each model.

Model Load With or without Stress concentration area of equivalent stress Stress concentration area of first principal stress
direction  occlusal contact
Enamel PDL Enamel PDL
1 Vertical Without Occlusal force Mesial neck, buccal Occlusal force Buccal side of the buccal
loading zone mid-neck loading zone root
Vertical With Apex, buccal side neck Buccal side of the buccal
root
Oblique Without Buccal side of the lingual Buccal side of the distal
root, buccal side of the lingual root
buccal root
Oblique With Buccal side of the lingual Buccal side of the distal
root, buccal side of the lingual root
buccal root
I Vertical Without Buccal side of the lingual Mesial buccal side neck
root and buccal root
Vertical With Mesial neck, upper root Mesial buccal side neck
Oblique Without Buccal side neck, buccal Distal lingual side neck
side of the mesial buccal
root and distal lingual
root
Oblique ~ With Buccal side neck, buccal Distal lingual side neck
side of the mesial buccal
root and distal lingual
root
111 Vertical Without Mesial neck, upper buccal Upper root
root
Vertical With Buccal side neck, upper Upper root
root
Oblique Without Buccal side neck Distal lingual side neck,
lingual side of mesial
buccal root
Oblique With Buccal side neck Distal lingual side neck,
lingual side of mesial
buccal root
v Vertical Without Neck, apex Distal lingual side neck
Vertical With Neck, apex Neck of distal lingual
root
Oblique ~ Without Buccal side of the mesial Neck of distal lingual
buccal root and distal root
lingual root
Oblique  With Buccal side of the mesial Neck of distal lingual

buccal root and distal
lingual root

root

frequently used (Tuka ¢» Heidrun, 2023). This article focuses on the band and loop space
maintainer, which is suitable for unilateral or bilateral premature loss of single deciduous
molars, or premature loss of second deciduous molars with complete eruption of the first
permanent molars. In mixed dentition stage, severe periapical lesions of the second
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Figure 5 (Continued)

Full-size K&] DOT: 10.7717/peerj.17456/fig-5
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Figure 5 The equivalent stress. (A) Without contact; (B) with contact.

Full-size E&] DOL: 10.7717/peerj.17456/fig-5

deciduous molars can lead to the early loss of the second deciduous molars and the early
eruption of the first permanent molars (Almeedani et al., 2020; Reddy et al., 2018; Al-
Shahrani et al., 2015; Heilborn et al., 2011). Because the first permanent molars erupt early,
their root development is not yet complete, and there may be four stages of root
development after the eruption. In this article, the first permanent molars in four stages of
development were used as the abutment teeth to study the stress on the first permanent
molars and the space maintainer with and without poor occlusal contact between the loop
and the opposite jaw teeth.

This study is an exploratory study in the field of space maintainers. It examines the
possible root development of four types of teeth after the eruption of the first permanent
molar and analyzes the force on the teeth and the space maintainer when the first
permanent molars are used as the base teeth to make a band and loop space maintainer.
It also investigates scenarios where the loop does or does not produce poor bite contact
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Figure 6 The equivalent stress distribution clouds (I: root development of 1/2; a: vertical loading; 1: without occlusal contact; 2: with occlusal
contact). Full-size Kl DOI: 10.7717/peerj.17456/fig-6
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Figure 7 The maximum principal stress distribution clouds (I: root development of 1/2; a: vertical loading; 1: without occlusal contact; 2: with

occlusal contact).
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Figure 8 The equivalent stress distribution clouds (I: root development of 1/2; b: oblique loading; 1: without occlusal contact; 2: with occlusal

contact).
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Figure 9 The maximum principal stress distribution clouds (I: root development of 1/2; b: oblique loading; 1: without occlusal contact; 2: with

occlusal contact).
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Figure 10 The equivalent stress distribution clouds (II: root development of 2/3; a: vertical loading; 1: without occlusal contact; 2: with

occlusal contact).
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Figure 11 The maximum principal stress distribution clouds (II: root development of 2/3; a: vertical loading; 1: without occlusal contact; 2:
with occlusal contact). Full-size K&l DOT: 10.7717/peerj.17456/fig-11
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Figure 12 The equivalent stress distribution clouds (II: root development of 2/3; b: oblique loading; 1: without occlusal contact; 2: with

occlusal contact).
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Figure 13 The maximum principal stress distribution clouds (II: root development of 2/3; b: oblique loading; 1: without occlusal contact; 2:
with occlusal contact). Full-size K&l DOT: 10.7717/peerj.17456/fig-13
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Figure 14 The equivalent stress distribution clouds (III: root development of 3/4; a: vertical loading; 1: without occlusal contact; 2: with
Full-size K&l DOT: 10.7717/peerj.17456/fig-14

occlusal contact).
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Figure 21 The maximum principal stress distribution clouds (IV: fully developed; b: oblique loading; 1: without occlusal contact; 2: with
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with the occlusal teeth. Similar research has not been conducted. The finite element
analysis method is suitable for the simulation modeling and stress analysis of the jawbone,
teeth, periodontal tissue, and oral materials, and can objectively and accurately reflect the
stress distribution in the oral cavity by providing numerical results, offering a reference for
solving clinical problems.

Based on the CT data of healthy 7-year-old children, a 3D model of healthy and
standard young first permanent molars of the jaw was established, as well as a 3D model of
incomplete root development. The width of the periodontal membrane is generally
0.15-0.38 mm, is narrowest near the central fulcrum of the tooth root, and wider near the
alveolar crest and root apical hole, which is difficult to replicate in the model. For the
purpose of this experiment, the periodontal membrane structure in the model is relatively
simple, and has a uniform width of 0.2 mm wrapped around the tooth root. The research
model reflects the fine structure of tooth tissue, with clear hierarchies, fine unit division,
and good geometric similarity in spatial structure and anatomical morphology, which is
similar to and representative of the real tooth structure.

The bite force and maximum bite force of 6-12-year-old normal children during
simulated mastication were 50-100 N and 140-393 N, respectively, and the maximum
axial load when chewing and swallowing various foods was 70-150 N (Chauhan, Sharma
& Jain, 2016; Proffit & Fields, 1983; Fields et al., 1986; Tetsuya, Toshiyoshi ¢ Hiroyuki,
2005; Sonnesen & Bakke, 2005; Castelo et al., 2007). The average bite force was 78 N in 6-8-
year-old children (Anderson, 1956). Therefore, 70 N was selected as the research load to
simulate the normal physiological load during mastication (Braun, Hnat ¢» Freudenthale,
1996; Tanaka et al., 2016). When simulating median occlusion, the vertical force loading
points are set to the proximal mid-cheek apex, the distal mid-cheek apex, the midpoint of
the proximal mid-margin crest, the midpoint of the distal mid-margin crest, and the fossa.
When simulating lateral occlusion, the oblique force loading point is set to the midpoint of
the inclined cheek of the near and far middle buccal tips.

In a clinical setting, there are differences in the manufactured band and loop space
maintainers, and abnormalities when used in children, which may lead to damage of the
space maintainers (Nikhil, Jyotika e Prerna, 2016). When the space maintainer is
improperly made and the bonding is not in place, direct occlusal contact between the
mesial marginal crest of the first deciduous molar and the edge of the loop may occur.
Additionally, the influence of improper use and eating habits on the loop is minimal so the
force of the loop was also simulated at 14 N in this article. The occlusal contact between
the loop and the jaw teeth was taken into consideration, and its influence on the teeth and
the loop was analyzed.

In finite element analysis, the most important indicators analyzed are the equivalent
stress and the maximum principal stress. Equivalent stress, or Von Mises stress, mainly
examines the combined stress on the material in all directions. In finite element analysis,
the comprehensive force conditions at a certain point within the material and the position
of stress concentration in the model are best reflected by equivalent stress. Maximum
Principal Stress reflects the maximum tensile stress in different directions at a point inside
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the material, which is used to describe the actual force of the structure. Its magnitude
determines whether the material can be cracked or damaged by sheer force.

Among the maximum principal stress peaks of the four groups of loops subjected to
both occlusal and non-occlusal force, only the root development of the group experiencing
vertical and oblique loading of the dentin falls below the tensile strength of dentin 40 MPa.
Additionally, the maximum principal stress under oblique load is greater than the
maximum principal stress under vertical load, which is similar to the force analysis results
of previous studies on the dentin of mature mandibular first permanent molars. The
developed first permanent molars model established in this study is effective and reliable.
It can be used for further research in subsequent experiments. From the perspective of
dentin stress, when selecting abutment teeth for band and loop space maintainers, fully
developed roots are ideal.

Chauhan, Sharma ¢ Jain (2016) speculated that the mature root is slenderer than the
immature root, providing a larger surface area for stress transfer so the stress is distributed
on the whole root surface. However, in developing teeth, only a small surface area of the
root can be used to transfer the same load to the lower jaw, which means the stress is
concentrated on the peri-root membrane. This contradicts the conclusion of this article
which states that the stress on the periodontal ligament is greater when the root is fully
developed, compared to when it is underdeveloped. This discrepancy stems from the finite
element analysis which is the comprehensive result of the whole force and cannot be
explained by conventional physics.

When the bite force is applied on the loop, the maximum displacement occurs at the
edge of the contact between the loop and the first deciduous molar. It can be inferred that
when there is too much bite force on the loop, the contact edge between the loop and the
adjacent teeth may produce vertical displacement, leading to the deformation or sinking of
the loop. In clinical practice, the deformation or sinking as well as the loosening and
detachment of the loop due to deformation is frequently observed. When the loop is not in
the occlusal contact area, the overall force of the band and loop space maintainer is
observed, and the stress is concentrated at the edge of the contact between the band and the
loop; when the loop is in the occlusal contact area, the stress is concentrated in the bend of
the middle of the loop. The force of enamel, dentin, periodontal ligament, and alveolar
bone in the four stages of root development were not significantly different between the
two cases where there was no occlusal contact between the loop and the jaw teeth, and
there was no significant difference in the forces of enamel, dentin, periodontal ligament,
and alveolar bone. These results demonstrate that the band and loop space maintainer and
the loop’s bending design change the conduction direction of the force to a certain extent.
This redistribution of force helps alleviate stress on the root and periodontal ligament by
acting as a stress interrupter. It also prevents the first permanent molars from producing
mesial displacement, therefore maintaining the edentulous space. This study suggests that
occlusal contact between the loop and the jaw teeth should be avoided, and the stress break
design should be added during the clinical manufacturing and bonding of the band.
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CONCLUSIONS

In this study, we examined the stress on the space maintainer and the first permanent
molars. We focused on cases with missing mandibular second deciduous molars, utilizing
the first permanent molars as abutments in situations with or without occlusal contact
between the loop and the opposite jaw teeth during different stages of root development.
However, there are still some limitations. This study assumes that the periodontal ligament
is a continuous linear structure, but it is a nonlinear fiber structure. Considering the time
factor, the long-term effect of a normal masticatory load needs to be further studied.
Within the limited scope of this study, the following conclusions can be drawn:

(1) The stress interruption design should be included when making the space maintainer.
(2) During the design and bonding of the space maintainer, occlusal contact between the
loop and the jaw teeth should be avoided.

(3) The closer the root development is to maturity, the more favorable it is to the later
development of the dental arch.
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