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ABSTRACT
Background. High-intensity sprint exercises (HIS) are central to sprinter training
and require careful monitoring of athlete muscle fatigue to improve performance and
prevent injury. While the countermovement jump (CMJ) may be used to monitor
neuromuscular fatigue (NMF), little is known about the specific effects from HIS. The
purpose of this study is to investigate the effects of HIS on the CMJ to assess its utility
for assessing NMF following HIS.
Methods. Tenmale collegiate 400m sprinters completed a 400m sprint fatigue protocol
and underwent five CMJ-testing sessions (baseline, 3 minutes, 10 minutes, 1 hour and
24 hours) over two days. Three CMJ trials, performed on a force plate, were completed
each trial, with rating of perceived exertion (RPE) recorded as a subjective fatigue
measure. Changes in RPE, CMJ variables, force-time and power-time curves at baseline
and post fatigue were assessed.
Results. Significant changes were observed in most variables following the fatigue
protocol. In particular, concentric mean power remained significantly lower after 24
hours compared to baseline. In addition, the force-time curves exhibited a significant
reduction in all conditions following the fatigue protocol. This decline was most
pronounced within 50–75%of the concentric phase relative to baseline measurements.
Conclusion.Results indicate that theCMJmay be a useful tool formonitoring fatigue in
at least 400m sprinters. These data also indicate thatHISmay disproportionately reduce
force output in during concentric movement. These insights may improve training
prescriptions and injury prevention strategies for sprint athletes.

Subjects Kinesiology, Biomechanics, Sports Injury, Sports Medicine
Keywords Sprinter, Neuromuscular function, Athlete monitoring, Countermovement jump

INTRODUCTION
Sprint running events in athletics epitomize the pursuit of peak human performance,
challenging athletes to cover set distances in the shortest possible time. Sprinter primarily
perform high-intensity sprint exercises during their daily training and competitions,
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typically ranging from 80 to 100% of their maximum sprint velocity (Haugen et al., 2019).
Meticulously designed long-term training plans are then necessary to manage the above
training and optimize sprint performance (Haugen et al., 2019). A critical aspect of these
training programs is the assessment of internal load (i.e., athletes’ psychophysiological
response to training), using both subjective and objective measurements (Impellizzeri,
Marcora & Coutts, 2019). Such assessments are crucial for not only enhancing performance
but also preventing training-related injuries or illness (McGuigan, 2017). However, there
remains a lack of consensus on the most effective methods for evaluating training
adaptations in sprinters, including subjective measures, heart rate monitoring, blood
lactate levels and jumping exercises to assess the power capability (Suzuki et al., 2006;
Jimenez-Reyes et al., 2016; Cristina-Souza et al., 2019; Coyne et al., 2021).

Neuromuscular fatigue is part of the broader concept of fatigue and refers to a reduction
in maximum voluntary contractile force. It is result of deficits within the central nervous
system, in the neural drive to the muscle, or within the muscle itself (McGuigan, 2017).
The countermovement jump (CMJ) stands out as an objective assessment tool, widely
recognized for its utility in monitoring neuromuscular function across diverse sports
disciplines and environments (Claudino et al., 2017). The CMJ’s appeal lies in its simplicity,
the established correlation between CMJ performance and athletic performance in various
sports, and its proven validity (Gathercole et al., 2015c; McGuigan, 2017). This has led to
its widespread adoption for assessing neuromuscular function in diverse sports contexts
(Taylor et al., 2012).

In general, muscle fatigue leads to a reduction in maximum voluntary contractile force
that muscles can generate. Consequently, CMJ analysis has traditionally focused on overall
metrics such as peak andmean values related to the jump’s concentric phase, with particular
attention to jump height and peak power (Cormack et al., 2008a; Jimenez-Reyes et al., 2016).
However, this focus may not fully capture nuanced neuromuscular changes associated with
muscle fatigue (Gathercole et al., 2015a; Knicker et al., 2011). Taylor (2012) found that
variables related to the eccentric phase of the CMJ were the most indicative of muscle
fatigue following continuous resistance training interventions. In addition, acute fatigue
from continuous vertical jumps was shown to reduce lower limb flexion during the braking
phase of subsequent CMJ (Rodacki, Fowler & Bennett, 2001;McNeal, Sands & Stone, 2010).
This realization has prompted Gathercole et al. (2015a); Gathercole, Sporer & Stellingwerff
(2015b) to advocate for more comprehensive approach, incorporating variables from both
the eccentric and concentric phases of the CMJ and considering movement strategies.
Further expanding this perspective, recent studies (Philpott et al., 2021; Hughes et al., 2022;
Thomas, Jones & Dos’Santos, 2022) have delved into analyzing CMJ variables using ground
reaction force and examining the force-time and power-time curves, thereby offering a
deeper understanding of muscle fatigue, variations in force exertion characteristics, and
gender differences. Hughes et al. (2022) particularly emphasized the value of statistical
parametric mapping (SPM) in analyzing the force-time curve obtained from the CMJ,
shedding light on alterations in movement strategies induced by muscle fatigue. These
methods may potentially be used to assess muscle fatigue in sprinters. However, research
specifically targeting sprinters remains scarce. Jimenez-Reyes et al. (2016) explored muscle
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fatigue in sprint training using the CMJ, focusing solely on jump height. Such a singular
measure does not provide a comprehensive understanding of the muscle fatigue induced
by high-intensity sprint exercise.

Therefore, this study aims to comprehensively explore the effects of high-intensity sprint
exercise on neuromuscular function, utilizing the CMJ as an assessment tool for sprint
athletes. By elucidating these effects, the findings may contribute to our understanding
of optimal training loads and appropriate training interventions, ultimately aiming to
minimize the risk of injuries among sprint athletes. We hypothesize that high-intensity
sprint exercise significantly influences both the eccentric and concentric phases of the CMJ
due to the high intensity of the exercise.

METHODS
Experimental designs
Our study employed a two-day experimental design, incorporating a single fatigue protocol
and five CMJ-testing sessions to investigate the effects of high-intensity sprint exercise on
neuromuscular function as assessed by the CMJ (Fig. 1).

Day 1 involved baseline CMJ measurement, followed by the high-intensity sprint
exercise as the fatigue protocol (details of which are elaborated in a subsequent section).
Neuromuscular function was then assessed using the CMJ at 3 min, 10 min, and 1 h after
the fatigue protocol to capture immediate and short-term recovery responses. The Day 2
included a final CMJ assessment conducted 24 h after fatigue protocol to assess the recovery
status.

Participants and familiarization
Ten male university sprint athletes specializing in 400 m (age: 21.6 ± 1.5 years; height:
174.2 ± 2.9 cm; weight: 65.7 ± 5.0 kg; personal record: 48.87 ± 1.60 s) participated in the
study. Throughout the testing period, participants refrained from engaging in any exercise
activities other than this study’s protocol. Comprehensive oral and written explanations of
the study, including its purpose, procedures, and potential risks were provided. Informed
consent was obtained in writing, and the study protocol was approved by the Ethics
Committee of the Faculty of Health and Sports Sciences at the University of Tsukuba (IRB
ID: tai 022-68).

Participants underwent a single CMJ practice session one week prior to the experiment
to ensure familiarity with the proper technique. They received visual demonstrations and
were instructed to focus on ‘squatting quickly and jumping as high as possible’. Each
participant completed 8–10 repetitions until CMJ technique was performed as consistently
as possible. There was no restriction imposed on the depth of the squat.

Fatigue protocol
The fatigue protocol for this study involved a 400 m sprint as the high-intensity sprint
exercise, chosen to replicate sprint velocity and duration typically experienced by
competitive sprinters. The 400 m was performed on the rubber surface of an outdoor
track to closely simulate the conditions under which sprint-induced muscle fatigue occurs.
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Figure 1 Schematic representation of the study timeline including familiarization, fatigue protocol
and fatigue-sensitivity sections.

Full-size DOI: 10.7717/peerj.17443/fig-1
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Participants performed the 400 m wearing spike shoes and initiated their sprint from
starting blocks at the sound of a pistol signal. The sprint was captured using a high-speed
video camera (HC-WX2M; Panasonic, Tokyo, Japan) at a frame rate of 120 frames per
second. The 400 m time was determined by timing from the appearance of smoke from
the starter’s pistol to the instant the participant’s torso crossed the finish line.

CMJ-Testing session
Participants performed three CMJ trials with 1.5 min of rest in between. Trials were
performed on a force plate (1,000 Hz; Kistler, Winterthur, Switzerland) and sampled
at 1,000 Hz using dedicated software (Ex-Jumper T, DKH, Tokyo, Japan) to obtain
ground reaction force data. Calibration was performed for each trial to ensure accuracy by
minimizing the deviation between actual values and measurement results. All trials were
performed with their hands on hips to negate upper limb influence.

We also recorded a rating of perceived exertion (RPE) as the participant’s subjective
level of whole-body fatigue during each CMJ-testing session. The rating was based on
the Borg scale (Borg, 1982), which has 15 levels ranging from 6 to 20. Participants visited
the research facility at the same pre-determined time (± 1.5 h) and participated in the
CMJ-testing session on a total of five times.

Baseline measurement
Participants, wearing training shoes, performed a 20-minute warm-up consisting of light
jogging (∼5 min), dynamic stretching, and a 50 m sprint. After the warm-up, participants
performed five CMJ practices. Ten minutes later, the baseline CMJ-testing session began
(Fig. 1).

Fatigue sensitivity measurement
At 3 and 10 min after the fatigue protocol, three CMJ practices were performed before each
testing session. At 1 h, a 10-minute warm-up consisting of dynamic stretching and three
CMJ practices was performed. At 24 h, the same warm-up as at baseline was performed.

Countermovement jump variables
Ground reaction force data obtained from the CMJ were categorized into distinct phases
(i.e., eccentric phase and concentric phase) according to the method of Chavda et al.
(2018) (Fig. 2). CMJ variables were then calculated for each phase using Microsoft Excel
(Microsoft, Redmond, WA, USA). These CMJ variables are described in Table 1. In this
study, force, impulse, and power were normalized to the body mass of each participant.
To ensure the validity and reliability of these variables, we averaged the values from three
CMJ trials and represented each participant’s performance per session (Taylor et al., 2010).
The force-time and power-time curves the CMJ were normalized to 50% of the time in the
eccentric phase (from the start point to the end of braking point) and 50% of the time in
the concentric phase (from the end of braking point to the take-off).

Statistical analysis
We conducted statistical analysis on RPE and CMJ variables utilizing IBM SPSS version 25
(SPSS Statistics, IBM, NY, USA). We employed a one-way analysis of variance (ANOVA)
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Figure 2 Force-time curve example of counter movement jump (CMJ) and definition of phase divi-
sion. This figure was created by the authors based on Chavda et al. (2018).

Full-size DOI: 10.7717/peerj.17443/fig-2

Table 1 Description of jump height and CMJ variables.

Variable Abbreviation Description

Jump height (cm) JH The maximum jump height achieved, calculated using peak
velocity

Peak force (N/kg) PF Greatest force achieved during the jump
Peak power (W/kg) PP Greatest power achieved during the jump
Eccentric impulse (Ns/kg) EccI Force exerted eccentrically multiplied by the time taken

eccentrically
Concentric impulse (Ns/kg) ConI Force exerted concentrically multiplied by the time taken

concentrically
Eccentric mean power (W/kg) EccMP Mean power generated during the eccentric phase of the

jump
Concentric mean power (W/kg) ConMP Mean power generated during the concentric phase of the

jump
Eccentric duration (s) EccDur Time of eccentric contraction during the jump
Concentric duration (s) ConDur Time of concentric contraction during the jump
Eccentric duration: Concentric duration (Time) ED: CD The ratio of eccentric duration to concentric duration

to explore the main effects across the conditions: baseline, 3 minutes (3 min), 10 minutes
(10 min), 1 hour (1 hr), and 24 hours (24 hr) after the fatigue protocol. Where the
assumption of sphericity was violated as indicated by Mauchly’s test, we applied the
Greenhouse-Geisser correction. In instances where main effects reached statistical
significance, we performed Bonferroni’s post hoc tests to discern between-condition
differences. Effect sizes were expressed using Partial Eta2 (squared) (η2) values, with
thresholds for small (0.04), moderate (0.25), and large (0.64) effects as recommended by
Ferguson (2009). The level of statistical significance was set at P < 0.05.
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Additionally, we employed Statistical Parametric Mapping (SPM) with a paired t -
test to compare the force-time and power-time curves of the CMJ with baseline and
post-fatigue protocol conditions. SPM analysis was conducted using the spm1d code (v.
M0.1, http://www.spm1d.org) in MATLAB (Mathworks, Natick, MA, USA). A significance
threshold for the SPM{t*} was set at P < 0.05.

RESULTS
Fatigue protocol
Participants completed the 400 m sprint as the fatigue protocol in 50.59± 3.0 s on average,
which is 96.8% of their personal bests. The mean sprint velocity throughout the race was
7.93 ± 0.45 m/s.

CMJ variables
Table 2 show the mean and SD of RPE and CMJ variables at baseline, 3 min, 10 min, 1 hr,
and 24 hr. All variables were affected by the fatigue protocol and a significant main effect
of condition was observed for these variables. Baseline RPE values were significantly lower
than at 3 and 10 min (3 min: p= 0.001, 10 min: p= 0.001). Additionally, RPE at 3 min
was significantly higher than at 10 min, 1 hr and 24 hr (10 min: p= 0.02, 1 hr: p= 0.001,
24 hr: p= 0.001). Further, RPE at 10 min was significantly higher than at 1 hr and 24 hr
(1 hr: p= 0.001, 24 hr: p= 0.001). RPE at 24 hr was 11.5% lower than baseline.

Regarding jump height (JH), baseline values were significantly higher than at 3 and
10 min (3 min: p= 0.003, 10 min: p= 0.013). Moreover, JH at 3 min was significantly
lower than at 10 min, 1 hr and 24 hr (10 min: p= 0.004, 1 hr: p= 0.002, 24 hr: p= 0.002).
Similarly, JH at 10 min was significantly lower than at 1 hr and 24 hr (1 hr: p= 0.016,
24 hr: p= 0.006). JH at 24 hr was 5.6% lower than baseline.

For peak force (PF), baseline values were significantly higher than at 3 min and 24 hr
(3 min: p= 0.033, 24 hr: p= 0.033), and PF at 3 min was significantly lower than at 10 min
(p= 0.022). PF at 24 hr was 11.4% lower than baseline. As for peak power (PP), baseline
values were significantly higher than at 3 min, 10 min and 24 hr (3 min: p= 0.004, 10 min:
p= 0.013, 24 hr: p= 0.011), and PP at 3 min was significantly lower than at 10 min, 1 hr
and 24 hr (10 min: p= 0.006, 1 hr: p= 0.017, 24 hr: p= 0.014). PP at 24 hr was 7.4% lower
than baseline (p= 0.011).

Eccentric impulse (EccI) values at 3 min were significantly lower than at 10 min, 1 hr
and 24 hr (10 min: p= 0.029, 1 hr: p= 0.005, 24 hr: p= 0.007). EccI at 24 hr was 0.1%
higher than baseline. Eccentric mean power (EccMP) at 3 min was significantly lower than
at 1 hr and 24 hr (1 hr: p= 0.049, 24 hr: p= 0.006). EccMP at 24 hr was 2.5% higher than
baseline.

Regarding concentric impulse (ConI), baseline values were significantly higher than
at 3 and 10 min (3 min: p= 0.004, 10 min: p= 0.011), with values at 3 min being lower
than 1 hr and 24 hr (1 hr: p= 0.014, 24 hr: p= 0.005). Additionally, Conl at 10 min was
significantly lower than at 24 hr (p= 0.003). ConI at 24 hr was 2.9% lower than baseline.
For concentric mean power (ConMP), baseline values were significantly higher than at
3 min, 10 min and 24 hr (3 min: p= 0.002, 10 min: p= 0.005, 24 hr: p= 0.009), with values
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Table 2 Comparisons of RPE, JH and CMJ variables at baseline, 3 minutes (3 min), 10 minutes (10 min), 1 hour (1 hr) and 24 hours (24 hr) after fatigue protocol.

Baseline 3 min 10 min 1 hr 24 hr Main Effect
F (4,45)

Effect size
(partial η2)

Mean± SD Mean± SD Mean± SD Mean± SD Mean± SD

RPE (a.u.) 10.40± 3.03 a,b 18.80± 1.14 e,f ,g 16.60± 1.51 h,i 11.00± 2.40 9.20± 3.26 50.03* 0.85
JH (cm) 49.03± 6.00 a,b 34.10± 6.54 e,f ,g 41.09± 4.55 h,i 45.96± 4.02 46.27± 3.61 26.84* 0.75
PF (N/kg) 17.28± 2.26 a,d 14.43± 2.12 e 15.95± 2.20 15.61± 2.34 15.31± 1.76 7.12* 0.44
PP (W/kg) 65.19± 7.01 a,b,d 50.19± 5.49 e,f ,g 57.03± 3.99 61.18± 6.20 60.34± 4.86 20.41* 0.69
EccI (Ns/kg) 1.35± 0.28 1.16± 0.25 e,f ,g 1.28± 0.31 1.31± 0.23 1.35± 0.19 7.57* 0.46
ConI (Ns/kg) 3.08± 0.24 a,b 2.51± 0.33 f ,g 2.78± 0.20 i 2.94± 0.16 2.99± 0.17 21.60* 0.71
EccMP (W/kg) 6.53± 1.43 5.75± 1.46 f ,g 6.40± 1.63 6.38± 1.20 6.70± 1.16 7.03* 0.44
ConMP (W/kg) 35.89± 4.04 a,b,d 24.59± 4.25 e,f ,g 30.00± 2.29 32.61± 3.07 32.42± 2.62 26.70* 0.75
EccDur (s) 0.35± 0.05 b 0.33± 0.04 0.32± 0.04 0.34± 0.05 0.34± 0.04 4.27* 0.32
ConDur (s) 0.25± 0.04 a,b,c,d 0.28± 0.04 0.26± 0.04 0.27± 0.03 0.27± 0.03 8.74* 0.49
ED: CD (Time) 0.73± 0.14 a,b,d 0.86± 0.16 0.83± 0.13 0.81± 0.16 0.83± 0.15 11.66* 0.56

Notes.
Significant difference between conditions (p< 0.05).

abaseline vs 3 min.
bbaseline vs 10 min.
cbaseline vs 1 hr.
dbaseline vs 24 hr.
e3 min vs 10 min.
f3 min vs 1 hr.
g3 min vs 24 hr.
h10 min vs 1 hr.
i10 min vs 24 hr.
j1 hr vs 24 hr.
*Significant main effect (p= 0.001).
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Figure 3 Mean± SD relative force and SPMt* output statistics in the CMJ for baseline and fatigue
conditions (3 min, 10 min, 1 hr, and 24 hr).Where the SPMt*curve exceeds the critical threshold (dot-
ted line), this area is shaded and a statistically significant differences exist at those nodes with p values pro-
vided for each supra-threshold cluster. baseline= red; fatigue conditions= blue.

Full-size DOI: 10.7717/peerj.17443/fig-3

at 3 min being significantly lower than at 10 min, 1 hr and 24 hr (10 min: p= 0.002, 1 hr:
p= 0.006, 24 hr: p= 0.009). ConMP at 24 hr was 9.7% lower than baseline (p= 0.009).

Eccentric duration (EccDur) at baseline was significantly higher than 10min (p= 0.022).
EccDur at 24 hr was 3.4% lower than baseline. Regarding concentric duration (ConDur),
the baseline being significantly lower than at all subsequent conditions (3 min: p= 0.005,
10 min: p= 0.018, 1 hr: p= 0.034, 24 hr: p= 0.015). ConDur at 24 hr was 10.1% higher
than baseline (p= 0.015). In terms of the ratio of eccentric duration:concentric duration
(EC:CD), baseline values were significantly lower than at 3 min, 10 min and 24 hr (3 min:
p= 0.001, 10 min: p= 0.001, 24 hr: p= 0.019). ED:CD at 24 hr was 14.0% higher than
baseline (p= 0.019).

Force-time curve and power-time curve in CMJ
Figs. 3 and 4 display the results of the force-time curve and the power-time curve,
respectively, comparing baseline measurements to those taken at 3 min, 10 min, 1 hr and
24 hr after the fatigue protocol. For the force-time curve, there were significant differences
observed between the baseline and each subsequent condition: between baseline and 3 min
(48.6–74.8%), 10 min (58.9–70.2%), 1 hr (48.4–66.0%), and 24 hr (62.0–69.8%).

Concerning the power-time curve, significant variations were observed between the
baseline and other conditions with the exception of the 1 hr. Specifically, there were
notable differences between baseline and 3 min (56.1–90.0%), 10 min (65.6–87.6%), and
24 hr (65.9–88.2% and 98.3–99.4%).

DISCUSSION
The purpose of this study was to comprehensively explore the effects of high-intensity
sprint exercise on neuromuscular function, utilizing the CMJ as an assessment tool for
sprint athletes. Our findings revealed that the 400m sprint alters the ED:CD in the CMJ and
significantly reduces force output in during concentric movement. On the other hand, the
eccentric phase variables, such as EccI and EccMP, returned to their baseline after 10 min.
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Figure 4 Mean± SD relative power and SPMt* output statistics in the CMJ for baseline and fatigue
conditions (3 min, 10 min, 1 hr, and 24 hr).Where the SPMt*curve exceeds the critical threshold (dot-
ted line), this area is shaded and a statistically significant differences exist at those nodes with p values pro-
vided for each supra-threshold cluster. baseline= red; fatigue conditions= blue.

Full-size DOI: 10.7717/peerj.17443/fig-4

These findings confirm our hypothesis that high-intensity sprint exercise significantly
impacts both the eccentric and concentric phases of the CMJ, highlighting its utility in
sprinters’ muscle fatigue monitoring.

The importance of objective indicators
The 400 m sprint requires athletes to maintain high velocity throughout the race. This
event is characterized as a prolonged sprint, largely due to the significant fatigue resulting
from the glycolytic effort (Zouhal et al., 2010) and is considered to be one of the most
demanding events in athletics (Hanon & Gajer, 2009). Hirvonen et al. (1992) compared the
development of fatigue during the 400 m sprint with the 100 m, 200 m and 300 m sprints.
They reported that a decrease in velocity occurred after 200 m and that at the end of 400 m,
creatine phosphate stores were depleted, and lactate concentrations attained an individual
maximum. Given these observations, the 400 m sprint, as a single sprint exercise, was
proposed as a valid way for inducing muscle fatigue in sprinters.

In this study, some CMJ variables such as PP, ConMP, ConDur and CD: ED were
significantly changed after 24 hr compared to baseline. This aligns with previous studies
indicating that CMJ variables can vary over a period of several days after fatiguing exercise
(McLellan, Lovell & Gass, 2011; Cormack, Newton & McGuigan, 2008b). Our findings
support those observations, suggesting that a single 400 m sprint can lead to detectable
muscle fatigue persisting over several days.

In assessing fatigue, we incorporated both subjective assessment of physical fatigue,
using the RPE, and objective measures from each CMJ-testing session. Notably, our results
showed deviations between the subjective RPE and objective CMJ variables such as PP
and ConMP, especially evident at 24 h (see Table 2). These discrepancy suggests that while
participants might subjectively feel recovered, the CMJ can detect residual neuromuscular
fatigue, underlining the importance of objective measures in fatigue assessment.

Previous studies have highlighted the usefulness of subjective measures in assessing
athlete fatigue (Costa et al., 2022; Selmi et al., 2022). However, our results underscore
the need for a comprehensive approach that integrates both subjective and objective

Hasegawa et al. (2024), PeerJ, DOI 10.7717/peerj.17443 10/18

https://peerj.com
https://doi.org/10.7717/peerj.17443/fig-4
http://dx.doi.org/10.7717/peerj.17443


evaluations. Lourenço et al. (2023) investigated this interplay between objective (i.e.,
jumping exercise) and subjective fatigue assessments in football players, finding only a weak
correlation between them. This suggests that subjective assessments might reflect more
psychological and sociological aspects, emphasizing the need for multifaceted approach to
assess muscle fatigue in athletes.

Therefore, we advocate for a combined use of subjective assessments and objective
measures, such as the CMJ, to provide a more nuanced understanding of muscle fatigue,
particularly in sprinters. Such an approach will enhance the precision of fatigue assessments
and contribute to more effective training and recovery strategies for athletes.

CMJ variables
The results of this study revealed significant changes in most CMJ variables following
the fatigue protocol, as detailed in Table 2. Notably, several variables exhibited distinct
recovery patterns. In particular, variables associated with the concentric phase, such as
PP and ConMP, demonstrated a sustained decrease even after 24 h compared to baseline,
suggesting prolonged effects of fatigue. In contrast, variables associated with the eccentric
phase, including EccI and EccMP, showed a more rapid return to baseline levels.

This differentiation in recovery between the concentric and eccentric phases aligns with
the findings of Viitasalo et al. (1993), which noted that more pronounced effects of muscle
fatigue in the concentric phase during jumping exercises. This is further supported by
previous studies on low-velocity repetitive running such as the Yo-Yo test and exercises
performed during rugby matches, which indicated a diminished ability for force exertion
in the concentric phase following such exercises (McLellan, Lovell & Gass, 2011; Gathercole
et al., 2015a). The findings of this study corroborate these previous studies, suggesting
that high-intensity sprint exercises specifically challenge and potentially diminish the
force-generating capacity of muscles during the concentric phase of movement.

On the other hand, EccI and EccMP returned to their baseline levels after 10 min.
Moreover, after the fatigue protocol, EccDur decreased, while ConDur increased, leading
to a higher ED:CD. This shift implies that participants performed the CMJ in a relatively
concentricmanner compared to baseline.Rodacki, Fowler & Bennett (2001) observed a 20%
reduction in eccentric displacement following acute fatigue induced by repetitive CMJs,
which was associated with less knee flexion, while hip and ankle angular displacement
remained unchanged. Although this study did not directly measure lower limb joint
displacements in CMJ, it is suggested that EccDur may shorten as a result of reduced
displacement in the eccentric phase due to the effects of muscle fatigue.

Reducing the amount of knee flexion increases joint stiffness at the end of the eccentric
phase of the jump (Rodacki, Fowler & Bennett, 2001). Such increased leg stiffness has
been interpreted as a subconscious strategy employed to maintain or maximize stretch-
shortening-cycle (SSC) performance under muscle fatigue. Furthermore, minimizing the
eccentric phase during the CMJ under fatigue conditions could be related to the strategy
of avoiding muscle damage caused by eccentric muscle contraction (Rodacki, Fowler &
Bennett, 2001). It is suggested that the muscle fatigue induced by the 400 m sprint may have
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altered the athletemovement strategy and contributed to an earlier recovery bymaintaining
the ability to exert force in the eccentric phase while avoiding greater muscle damage.

Another possible factor influencing the early recovery of this eccentric phase variables
is the participants characteristics. Eccentric contraction generates greater forces for a
given angular velocity than other contraction types (Hortobágyi & Katch, 1990), resulting
in greater muscle damage. Margaritelis et al. (2021) examined the dynamics of creatine
kinase, finding that muscle damage is triggered by muscle unaccustomedness in response
to high-intensity eccentric exercise. Therefore, non-sprinters might experience more severe
eccentric muscle damage following 400m sprint. On the other hand, the participants in this
study, accustomed to frequent sprint training, likely have a higher tolerance for eccentric
loads on the muscles during sprinting. This adaptation may have contributed to less
muscle damage and facilitated earlier recovery. Nonetheless, without the measurement
of biomarkers such as creatine kinase to detect muscle damage, these conclusion remain
some-what unclear.

Force-time curve and power-time curve in CMJ
The force-time curves were significantly lower around 50–75% in all compared to baseline
(3 min: 48.6–74.8%, 10 min: 58.9–70.2%, 1 hr: 48.4–66.0%, and 24 hr: 62.0–69.8%), and
these effects were also observed at 1 and 24 hr (as shown in Fig. 3). Given that the 50%
point is the end of braking point, which is the transition from the eccentric phase to the
concentric phase (Fig. 2), it is suggested that high-intensity sprint exercise may affect the
ability to exert force during the early part of concentric phase, especially in a more flexed
position.

Similarly, the power-time curves showed a significant decrease compared to baseline
fromaround 60% to around the peak power point (as shown in Fig. 4, 3min: 56.1–90.0%, 10
min: 65.6–87.6%, and 24 hr: 65.9–88.2% and 98.3–99.4%). The phases in which significant
differences were observed differed from those in the force-time curves. It is suggested that
the reduced ability to exert force around the braking point may lead to the reduced ability
to exert power up to around the peak power point in the concentric phase.

Previous studies have shown the effects of various exercise-induced muscle fatigue on
the CMJ, particularly in the concentric phase and the SSC movement (Rodacki, Fowler
& Bennett, 2001; Nicol, Avela & Komi, 2006; Gathercole et al., 2015a). Moreover, training
in a fatigued state may increase the risk of injury (Schwiete et al., 2023). For example, to
minimize the risk of injury in squats, it is necessary to use proper movement mechanics,
such as keeping the lumbar spine neutral and avoiding excessive trunk flexion during the
ascent (Myer et al., 2014). However, decreased force exertion in the flexed position under
muscle fatigue may result in a loss of lumbar spine control. Furthermore, in an attempt
to compensate for force, there may be a loss of proper movement mechanics by exerting
force in an overstressed posture.

Consequently, this study suggests that post high-intensity sprint exercises, training
activities demanding greater force exertion in a flexed position, such as weight training
involving deeply flexed hip joints,might be reconsidered. Sprinters and their coaches should
be aware of the implications of the posture, squat depth, and load in training sessions
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following high-intensity sprint training, particularly when planning weight training or
similar activities the following day.

Usefulness of the CMJ test for sprinters
SSC muscle function during running is characterized by pre-activation to resist ground
impact, followed by braking (the eccentric phase) and subsequent push-off (the concentric
phase) (Komi, 2000). These actions result in a complex loading of the neuromuscular system
(Nicol, Avela & Komi, 2006), involving metabolic, mechanical and neural components
(Komi, 2000). It is therefore suggested that the 400 m sprint might have similarly complex
effects on neuromuscular function.

Neuromuscular fatigue is broadly classified into peripheral and central components,
based on the origin of fatigue mechanisms, either distally or proximally to the
neuromuscular junction, respectively (Gandevia, 2001), with evidence suggesting their
interdependence (Jubeau et al., 2014). Peripheral fatigue is defined as a reduction in
the muscle force-generating capacity of skeletal muscles due to changes distal to the
neuromuscular junction (Ross et al., 2007). Peripheral factors responsible for this reduced
force capacity relate to metabolic changes such as altered intracellular milieu and depletion
of energy substrates. Central fatigue involves an voluntary reduction in motor drive by the
central nervous system, aiming to prevent catastrophic changes in homeostasis (Ament &
Verkerke, 2009; Gandevia, 2001). Although reduced muscle function is thought to indicate
fatigue, neuromuscular fatigue may also be manifested by qualitative changes in motor
control (Ament & Verkerke, 2009). It is posited that neural changes might mitigate the
effects of fatigue on muscle function by altering intra- and inter-limb strategies, such as
through synergistic muscle activation, and load distribution among motor units (Knicker
et al., 2011).

In this study, the decrease in variables like PP and ConMP, alongside changes in the
ED:CD, indicate that the 400 m sprint could induce neuromuscular fatigue, including
peripheral and central components. The CMJ is highlighted as a valuable tool for assessing
not just force output but also changes in movement strategies, suggesting its efficacy as a
comprehensive test for detecting neuromuscular fatigue in sprinter.

LIMITATION
A limitation of this study is the somewhat narrow scope of the fatigue protocol employed,
whichmay not fully encapsulate the variety of trainingmodes typically utilized by sprinters.
In this study, 400 m sprint was used as the fatigue protocol, but sprinters in actual training
situations often engage in diverse trainings, including sprints at an individual’s maximum
velocity and resistance training using the slope of a hill (Haugen et al., 2019). Therefore, the
specific muscle fatigue experienced in such varied training regimens may differ from what
was induced and analyzed in our study. Thus, future research would need to understand
the nuances of muscle fatigue induced by different modes of sprint training using the CMJ.
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CONCLUSION
Our results suggest that variables associated with the concentric phase, such as PP and
ConMP, may be the best indicators of fatigue in trained sprinters. We also suggest that
focusing on changes in movement strategy (i.e., ED:CD)may enable a more comprehensive
assessment of muscle fatigue. Furthermore, our use of SPM analysis provided deeper
insights, suggesting that this reduced force capacity is especially notable in the early part
of the concentric phase. Based on our findings, sprinters and their coaches can utilize the
CMJ in the training field to assess muscle fatigue. Assessing the adaptation of the body to
training by performing the CMJ once or twice a week may allow the prescription of an
appropriate training load (e.g., sprinting velocity, running distance). In addition, avoiding
weight training with the lower limb joints in a more flexed position after high-intensity
sprint exercise may contribute to reducing the risk of injury. Thus, CMJ may provide
answers not only to the setting of a more optimal training load but also to the choice of
training means for sprinter.
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