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ABSTRACT
Reference evapotranspiration (ET0 ) is a significant parameter for efficient irrigation
scheduling and groundwater conservation. Different machine learning models have
been designed for ET0 estimation for specific combinations of available
meteorological parameters. However, no single model has been suggested so far that
can handle diverse combinations of available meteorological parameters for the
estimation of ET0. This article suggests a novel architecture of an improved hybrid
quasi-fuzzy artificial neural network (ANN) model (EvatCrop) for this purpose.
EvatCrop yielded superior results when compared with the other three popular
models, decision trees, artificial neural networks, and adaptive neuro-fuzzy inference
systems, irrespective of study locations and the combinations of input parameters.
For real-field case studies, it was applied in the groundwater-stressed area of the Terai
agro-climatic region of North Bengal, India, and trained and tested with the daily
meteorological data available from the National Centres for Environmental
Prediction from 2000 to 2014. The precision of the model was compared with the
standard Penman-Monteith model (FAO56PM). Empirical results depicted that the
model performances remarkably varied under different data-limited situations.
When the complete set of input parameters was available, EvatCrop resulted in the
best values of coefficient of determination (R2 = 0.988), degree of agreement
(d = 0.997), root mean square error (RMSE = 0.183), and root mean square relative
error (RMSRE = 0.034).

Subjects Agricultural Science, Computational Science, Data Mining and Machine Learning,
Ecohydrology
Keywords Reference evapotranspiration, Machine learning model, Neuro-fuzzy model,
Evapotranspiration estimation, Water resource management, Groundwater conservation

INTRODUCTION
The agriculture sector of India consumes a considerable amount of groundwater resources
for irrigation (Khajuria, Yoshikawa & Kanae, 2013; Dhawan, 2017). The replacement of
groundwater mostly depends on rainfall. Unfortunately, a negative trend in the annual
rainfall is observed in India (Radhakrishnan et al., 2017), which is detrimental to the
groundwater reserve. Moreover, the increasing demand for food crops and irrigation water

How to cite this article Banerjee G, Sarkar U, Sarkar S, Ghosh I. 2024. EvatCrop: a novel hybrid quasi-fuzzy artificial neural network
(ANN) model for estimation of reference evapotranspiration. PeerJ 12:e17437 DOI 10.7717/peerj.17437

Submitted 28 September 2023
Accepted 30 April 2024
Published 31 May 2024

Corresponding author
Indrajit Ghosh, ighosh@accollege.in

Academic editor
Timothy Scheibe

Additional Information and
Declarations can be found on
page 17

DOI 10.7717/peerj.17437

Copyright
2024 Banerjee et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.17437
mailto:ighosh@�accollege.in
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.17437
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/


creates additional stress on groundwater resources (Roy, Nilson & Pal, 2008). In the Terai
agro-climatic region of North Bengal in India, a massive amount of groundwater is used
for irrigation, especially during the rabi season (November to May). Due to the lack of
knowledge for precise estimation of irrigation water, most layman farmers use traditional
flood irrigation methods and waste a considerable amount of precious groundwater, which
creates a major problem of moderate to extreme groundwater stress during the rabi season
(Sahoo et al., 2021). Therefore, a model for precise estimation of crop water requirement
for efficient irrigation practices is now very significant for conserving groundwater
resources and sustaining agriculture.

Reference evapotranspiration (ET0) is a significant parameter for measuring the crop
water requirement. Several methods and models have been suggested worldwide for the
estimation of ET0 using region-specific meteorological parameters. Among them, the Food
and Agriculture Organization recommended the Penman-Monteith method (FAO56PM)
as the benchmark method for estimating ET0 (Pandey, Dabral & Pandey, 2016), and its
performance was validated against lysimetric data in diverse climatic conditions worldwide
(Xu et al., 2013; Ghamarnia et al., 2015). However, the major limitation of the FAO56PM
method is that a complete set of meteorological parameters that are required for estimating
ET0 are challenging to obtain or may not be available for most regions in developing
countries (Djaman, Irmak & Futakuchi, 2017; Wu et al., 2020). To overcome the data
inadequacy problem, several empirical models based on limited meteorological parameters
were suggested, such as the Hargreaves-Samani model (Hargreaves & Samani, 1985), the
Priestly-Taylor model (Priestley & Taylor, 1972), the Irmak model (Irmak et al., 2003), the
Makkink model (Makkink, 1957), etc. However, due to region-specific limitations and poor
portability, these models are not good enough for the efficient estimation of ET0 (Wu et al.,
2020). Therefore, alternative and efficient methods that estimate ET0 within a tolerable
range using limited meteorological parameters are needed (Mattar, 2018; Kisi & Alizamir,
2018).

As an alternative, several artificial intelligence (AI) techniques were proposed for
estimating ET0 (Heddam et al., 2018). These techniques were more popular than direct and
indirect methods due to their capacity to tolerate incomplete or imprecise information.
At an early stage, as a popular AI technique, several fuzzy inference systems (FIS) were
attempted for ET0 modeling, those included (Odhiambo, Yoder & Yoder, 2001; Patel, Patel
& Bhatt, 2014; Faybishenko, 2012), etc. However, these models did not survive due to
severe drawbacks, such as domain experts’ scarcity, rule ambiguity, and the improper
design of the membership functions (Wang, 2015). Several variants of decision tree (DT)
based algorithms were attempted to design ET0 estimation models with fewer inputs. Kisi
(2016) suggested three different regression approaches to estimate ET0. Salahudin et al.
(2023) used a decision tree (DT) model along with a random forest and a boosted tree
model to predict ET0 using limited climatic inputs for Pakistan. The other contributions
were made by Feng et al. (2017), Fan et al. (2018), and Huang et al. (2019). However, there
are some general problems with these decision tree-based models. They require a large
amount of data (Ehteram et al., 2019), a large tree structure for proper modeling of the ET0

(Üneş, Kaya & Mamak, 2020), and suffer from overfitting (Elbeltagi et al., 2022).
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Moreover, they cannot express complex relations between the input and the output. Many
investigators have used artificial neural network (ANN) to model ET0, such as Bruton,
McClendon & Hoogenboom (2000), Kumar et al. (2002), Xu et al. (2006), Chattopadhyay,
Jain & Chattopadhyay (2009), Yassin, Alazba & Mattar (2016), Antonopoulos &
Antonopoulos (2017), Üneş et al. (2018), Gocić & Arab Amiri (2021), Kaya et al. (2021),
Pinos (2022), Azzam et al. (2022), Dadrasajirlou et al. (2022), Heramb et al. (2023), and
Patle et al. (2023). Researchers reported that, like a decision tree, the ANN-based models
are also prone to overfitting and require large datasets for their training (Pinos, 2022).
Furthermore, there is no standard method to determine the structure of a neural network
for modeling a problem (Azzam et al., 2022). Instead of using a standalone application,
several hybrid systems endeavoured to provide better solutions. Among them, neuro-fuzzy
systems have gained popularity in various complex domains. A typical fuzzy system is
hybridised with an ANN to design a neuro-fuzzy system that combines the benefits of
fuzzy logic and artificial neural networks. It is evident that, compared to a standalone fuzzy
system or an ANN, hybrid neuro-fuzzy systems, especially adaptive neuro-fuzzy inference
systems (ANFIS), confirmed better accuracy for ET0 modeling (Ladlani et al., 2014; Kisi
et al., 2015; Patil & Deka, 2017; Salih et al., 2019; Kaya & Taşar, 2019; Üneş, Kaya &
Mamak, 2020; Güzel et al., 2023). However, the ANFIS models suffer from several
significant drawbacks. They are data-driven models without a physical basis (Tabari et al.,
2013). The entire learning process of ANFIS is fixed; it is impossible to manipulate the
mapping of the input to the output (Üneş, Kaya & Mamak, 2020). Moreover, there is no
established rule for modeling the structure of an ANFIS model (Aghelpour,
Bahrami-Pichaghchi & Kisi, 2020).

Although the accuracies of the existing models were good enough, no study has
reported an alternative architecture and application of a hybrid model for a more precise
estimation of ET0. In this article, we propose a novel architecture of a hybrid model for
efficient estimation of daily evapotranspiration, targeted for crop irrigation (EvatCrop).
Our proposed model was applied for estimating ET0 in the Terai agro-climatic region of
North Bengal, India, and compared with the other three popular models, DT, ANN, and
ANFIS, using the same datasets. The empirical results demonstrate that EvatCrop excelled
over DT, ANN, and ANFIS for modeling daily ET0.

The specific objectives of this study were: (1) to suggest a novel architecture of a
neuro-fuzzy model for better estimation of ET0, (2) to study the model performance under
various input combinations of meteorological parameters for ET0 estimation in the Terai
agro-climatic region of North Bengal in India, and (3) to compare the performance of our
proposed model with other three prevailing models, DT, ANN, and ANFIS.

MATERIALS AND METHODS
Study area
For the case study, the proposed model was applied in the Terai agro-climatic region of
North Bengal, India. This area (9,614 sq. km) is located in the northern part of the state of
West Bengal in India, from 25.94 �N to 27.00 �N and 88.41 �E to 89.87 �E (Mandal et al.,
2022). Figure S1 (ESRI, 2009), presents a geographic map of the study area. This region is
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characterized by humid to hot sub-humid weather conditions. The minimum and
maximum monthly average temperature during the rabi season (November to April) is
about 13.9 �C and 27.2 �C, respectively, and during the kharif season (May to October), it
is about 23.2 �C and 29.7 �C, respectively. The average monthly rainfall in this region is
around 37.6 mm during the rabi season and 543 mm during the kharif season. The average
monthly wind speed during the rabi season is between 1.0 and 1.2 m/s, whereas during the
kharif season, it is between 0.88 and 1.97 m/s. The northern part is covered with forests,
and the rest of the area (6,055 sq. km) contains agricultural lands with sandy clay loam to
silty clay loam soil textures. The livelihood of the people of this area is primarily based on
agriculture, resulting in intensive agricultural activities. Most cultivations in this area
depend on groundwater irrigation during the rabi season. Rural farmers use traditional
flood irrigation methods without precisely estimating the actual crop water requirement.
Such indiscriminate use of groundwater resources threatens groundwater conservation. A
recent study reported that a large part of this region is now subjected to moderate to
extreme groundwater stress during the rabi season (Sahoo et al., 2021). Based on the
availability of authenticated datasets, we selected three study locations dispersed across the
Terai agro-climatic region of North Bengal, India. The three study locations are Berubari
(latitude 26.38 �N, longitude 88.75 �E), Jayanti (latitude 26.70 �N, longitude 89.69 �E), and
Tamaguri (latitude 26.07 �N, longitude 89.38 �E), as shown in Fig. S1 (ESRI, 2009).

Datasets
The study used five meteorological parameters as inputs to estimate ET0 (mm/day).
The five inputs were the minimum atmospheric temperature (Tmin) (�C), maximum
atmospheric temperature (Tmax) (�C), wind speed (Ws) (m/s; at 2 m above ground),
relative humidity (Rh) (%), and solar radiation (Sr) (MJ m�2 d�1). The latest available
meteorological datasets for three locations were obtained from National Centres for
Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) databases
that provide benchmarked datasets (https://swat.tamu.edu/data/cfsr). The time variant
data of each input parameter and that of the reference ET0 of the three study locations are
presented in Figs. S2 to S4.

No preprocessing was carried out as there were no missing values or outliers observed in
the datasets. The statistical measures, such as minimum (Min), maximum (Max), standard
deviation (Sd), coefficient of variation (Cv), and skewness coefficient (Sk), of each input
parameter are presented in Table S1. It was observed that the skewness coefficient of wind
speed (Ws) has a positive value, while other parameters have both positive and negative
skewness coefficients. The lowest coefficient of variation was recorded for the maximum
temperature.

The acquired datasets were divided into two parts: 70% for training (from 1st January
2000 to 16th March 2010), consisting of 3,278 samples, and the rest 30% for model testing
(from 17th March 2010 to 31st July 2014), having 1,598 samples. The training sets were
used for model construction, while the test sets were used to evaluate the model’s
performance.
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MATERIALS AND METHODS
Combinations of input parameters
Due to various constraints, the complete dataset of all input parameters may not
always be available from all study locations. In such circumstances, limited input
parameters are available instead of a complete set of five input parameters. Our model was
designed to deal with various combinations of five meteorological parameters: Tmin, Tmax,
Ws, Rh, and Sr . A total of eight possible combinations of five input parameters were
considered to estimate ET0 for three study locations. The eight possible input
combinations (C1 to C8) of meteorological parameters are presented in Table S2. The
two input parameters Tmin and Tmax are measured using a common instrument
(a thermometer) and are always available in pairs. This pair of input parameters was
considered the base combination.

Reference values of ET0

EvatCrop was designed based on the supervised learning algorithm. For proper training
and testing of the model, the estimated values of ET0 were compared with the reference
(target) values of ET0. The FAOPM56 method is recognized as the only standard method
to compare the performances of any other models used for estimating ET0 (Quinn, Parker
& Rushton, 2018; Valipour, Gholami Sefidkouhi & Raeini-Sarjaz, 2020; Sarma &
Bharadwaj, 2020). The reference values of ET0 (mm/day) were calculated using the
FAOPM56 method (Allen et al., 1998):

ET0PM ¼ 0:408� D� ðRa � GÞ þ c� 900
Tþ273 � u2 � ðes � eaÞ

Dþ c� ð1þ 0:34� u2Þ (1)

where the variables Ra, G, T, u2, es, ea, D, and c bear the same meaning and units as
previously described in Banerjee, Sarkar & Ghosh (2022). All these variables were
estimated using 24 additional equations involving different atmospheric inputs such as
temperature, humidity, wind speed, etc., as suggested by Allen et al. (1998) to estimate ET0.

Model architecture
Unlike a typical neuro-fuzzy system, our proposed EvatCropmodel is a neuro-quasi-fuzzy
system. The novelty in the architecture of this model is that an artificial neural network
(ANN) is hybridized with a quasi-fuzzy inference system instead of a classical fuzzy
inference system. It consists of two modules: a quasi-fuzzy module and an ANN module.
The quasi-fuzzy module is coupled with an ANN module in such a way that it accepts the
meteorological parameters as inputs and processes them to give the interim outputs. These
interim outputs are then fed to the ANN module as inputs. After processing, the ANN
module provides the estimated value of ET0 as the final output. This model utilizes the
merits of both fuzzy systems and neural networks. The model architecture and the process
flow diagram are presented in Figs. S5 and S6, respectively. The model was implemented
using the Scikit-learn library package in Python.
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Quasi fuzzy module
A typical fuzzy inference system (FIS) consists of four functional components: a fuzzifier, a
knowledgebase, an inference engine, and a defuzzifier (Odhiambo, Yoder & Yoder, 2001).
The fuzzifier transforms the real numerical inputs into relevant fuzzy sets. The knowledge
base contains the rule base (a group of control rules) and a database that defines the
information about the membership of each fuzzy set. The inference engine fires some
selected rules based on the control strategy and generates fuzzy outputs. Finally, the fuzzy
output is transformed into numerical output by the defuzzyfier. Our proposed quasi-fuzzy
module does not have any defuzzifier component. The defuzzifier component is replaced
by a normalization component that normalizes the outputs produced by the inference
engine before feeding them to the ANN module. An input interface unit is designed to
accept any input combination out of the eight combinations (C1 to C8).

Fuzzyfication
The membership functions of each of these five input variables were constructed from the
datasets of each input parameter. Three fuzzy linguistic values or labels; (low,medium, and
high) were considered for each of these five input parameters. Fuzzification was achieved
by characterizing input data space for each parameter into three fuzzy labels; low,medium,
and high. The degree of membership (l) of data points in the respective fuzzy labels was
determined by three membership functions as presented by Eqs. (2)–(4).

llowðxÞ ¼
1; x ¼ l
m�x
m�l; l < x < m

0; x ¼ m

8><
>: (2)

lmediumðxÞ ¼

0; x ¼ l
x�l
m�l ; l < x < m
h�x
h�l ; m < x < h

0; x >¼ h

8>>><
>>>:

(3)

lhighðxÞ ¼
0; x <¼ m

x�m
h�m ; m < x < h
1; x >¼ h

8<
: (4)

where l and h are the minimum and maximum values of each parameter observed in the
respective data space and m ¼ ðh� lÞ=2. The shape of the membership functions of each
parameter, their degree of overlap, and data spaces were elicited through the review of
literature, interviews with experts, and current agricultural practices. The fuzzy
membership functions of five input parameters for three study locations are presented in
Figs. S7–S9.

Fuzzy rule base and inferencing

The rule base consists of rules with an antecedent-consequent or IF-THEN structure.
The antecedent (IF part) is formed by all possible combinations of premises obtained from
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five input variables with three fuzzy labels (low, medium, and high). The premises are
combined using a fuzzy union operator (AND). The consequent part is obtained by
applying fuzzy product triangular norms (t-norms) operations (Chien, 1990; Bag &
Samanta, 2015). The product t-norm is one of the popular methods used for merging the
values of two or more fuzzy sets into a single value and can efficiently combine the criteria
in multi-criteria decision-making (Hájek, 1998). It is applied in control to formulate
assumptions of rules as conjunctions of fuzzy premises.

For example, the structure of the i� th rule (Ri) for three input parameters Tmin, Tmax

and Ws is defined as:
Ri ! IF (Tmin IS low) AND (Tmax IS medium) AND (Ws IS medium) THEN Pi.
where Pi is the product t-norm defined as:

Pi ¼ llowðTminÞ � lmediumðTmaxÞ � lmediumðWsÞ (5)

For eight possible combinations of input parameters, a total of 575 rules were framed.
These 575 rules were divided into eight rule groups (RG1 to RG8). Each rule group
contained all possible unique rules designed for the respective combination of input
parameters. Some examples of rules are:

Rule 16:! IF (Tmin IS low) AND (Tmax ISmedium) AND (Ws IS high) AND (Rh IS low)
THEN P16 =llowðTminÞ � lmediumðTmaxÞ � lhighðWsÞ � llowðRh)

Rule 49:! IF (Tmin ISmedium) AND (Tmax IS high) AND (Ws ISmedium) AND (Rh IS
low) THEN P49 =lmediumðTminÞ � lhighðTmaxÞ � lmediumðWsÞ � llowðRh)

Rule 65: ! IF (Tmin IS high) AND (Tmax IS medium) AND (Ws IS low) AND (Rh IS
medium) THEN P65 =lhighðTminÞ � lmediumðTmaxÞ � llowðWsÞ � lmediumðRh)

In a typical fuzzy system, some selected rules are activated to give the output. Unlike a
typical fuzzy system, in our proposed quasi-fuzzy module, all the rules in a rule group are
activated to generate a set of outputs. As the rule base contains the complete set of all
possible rules, the dependency on the judgment of any human expert for rule optimization
is circumvented. A rule group selector was incorporated to select the respective rule group
to be activated for a particular input combination.

Normalization unit
The quasi-fuzzy module is designed by replacing the defuzzifier of a typical FIS with a
normalization unit. As the rules and their numbers are different in each rule group, the
proportionate contribution of each rule should be considered. The proportional
contribution is obtained by normalization. The normalization unit calculates the
proportionate contribution of the output of each rule in a particular rule group. This
normalized output of a rule is considered an interim output. For the i� th rule with output
Pi, the normalized output is:

Ii ¼ PiPN
i¼1 Pi

(6)

where N is the total number of rules in a rule group (RG).
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After normalization, the set of rules in a rule group produces a set of normalized
outputs. For convenience, the set of normalized outputs is called the interim output vector
{I}. The interim output vector {I} is considered as input to the ANN module. The rule
groups along with the number of rules in each rule group for each set of input parameters
are presented in Table S3.

Artificial neural network module
Multilayer perceptrons (MLP) are one of the most popularly used ANN models (Almeida,
2020). In general, MLP models are trained using supervised learning algorithms such as
backpropagation, Levenberg-Marquardt, L-BFGS, stochastic gradient descent, adaptive
moment estimation, etc. The MLPs have a wide range of applications in hydrological
research, including streamflow forecasting (De Faria et al., 2022), rainfall forecasting (Diop
et al., 2020), monthly pan evaporation prediction (Zounemat-Kermani et al., 2021), etc.
The ANN module in our proposed system consists of eight MLPs, each having an input
layer, a hidden layer, and an output layer of nodes (Cinar, 2020). Each MLP is designed to
accept the interim output vector {I} produced by a particular rule group (RG).

For optimization, each MLP was trained using stochastic gradient descent (SGD),
Adam, and the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)
optimization algorithms (Byrd et al., 1995). Empirically, it was observed that the MLPs
trained with the L-BFGS algorithm led to more accurate results as compared to the others.
The L-BFGS optimizer belongs to the quasi-newton family of optimizers, with significant
advantages over the two other training algorithms, as it provides a stable solution and
requires less hyperparameter tuning. In L-BFGS optimization, the training begins by
initializing the weights with small random numbers. After each iteration, the weights are
updated using Eqs. (7) and (8) (Byrd et al., 1995).

wkþ1 ¼ wk þ gkdk (7)

dk ¼ �HkrEðwkÞ (8)

where wk is the weights at iteration k, gk is the learning rate, dk is the direction of search,Hk

is the inverse of the estimated Hessian matrix, and rEðwkÞ is the partial derivative of the
error function. The best value of other hyperparameters of the MLPs i.e., the activation
function and the number of neurons in the hidden layer were obtained by a grided search
method. The optimum values are provided in Table S4.

Performance metrics
Evaluation of the performance of a model and a comparative analysis with other
contemporary models play a significant role in any model-building process. For evaluation
and comparison of the performances of different models, several metrics have been
suggested in the literature. Instead of a single metric, a combination of multiple metrics is
more trustworthy for evaluating a model (Chai & Draxler, 2014). In this article, a
well-accepted performance evaluation strategy was adopted where the performance of each
model was evaluated in terms of four common metrics; coefficient of determination (R2),
degree of agreement (d), root mean squared error (RMSE), and root mean squared relative

Banerjee et al. (2024), PeerJ, DOI 10.7717/peerj.17437 8/23

http://dx.doi.org/10.7717/peerj.17437/supp-4
http://dx.doi.org/10.7717/peerj.17437/supp-5
http://dx.doi.org/10.7717/peerj.17437
https://peerj.com/


error (RMSRE). R2 and d are two goodness metrics that measure the model’s accuracy.
The R2 projects the relation between the actual and estimated values, and d measures the
consistency between them. RMSE and RMSRE are two error metrics that project the errors
in the estimated values. The mathematical equations of the evaluation metrics are defined
below (Tao et al., 2018; Yaghoubi, Bannayan & Asadi, 2020).

R2 ¼
Pn

i¼1 ðET0PMi � ET0PiÞ2Pn
i¼1 ðET0PMi � ET0PÞ2

(9)

d ¼ 1�
Pn

i¼1 ðET0Pi � ET0PMiÞ2Pn
i¼1 ðjET0Pi � ET0PMj þ jET0PMi � ET0PMjÞ2

(10)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðET0PMi � ET0PiÞ2
s

(11)

RMSRE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ET0PMi � ET0Pi

ET0PMi

� �2
s

(12)

where ET0PMi is the reference value of ET0 obtained using the FAOPM56 method, ET0Pi is
the estimated value, ET0PM is the mean value of reference evapotranspiration obtained
using FAOPM56method, ET0P is the mean predicted value of reference evapotranspiration
and n is the total number of input patterns.

For a comprehensive study of the performance of our proposed model in comparison to
other prevailing models, two other metrics, average goodness (Ag) and average error (Ae)
were used. Where Ag is the average value of two goodness metrics: coefficient of
determination (R2), and degree of agreement (d), and is defined as:

Ag ¼ R2 þ d
2

(13)

Similarly, Ae is the average value of two error metrics: root mean squared error (RMSE)
and root mean squared relative error (RMSRE), and is defined as:

Ae ¼ RMSE þ RMSRE
2

(14)

A higher value of Ag indicates a better goodness of fit, while a lower value of Ae indicates
a better performance of a model.

RESULTS ANALYSIS
In order to compare EvatCrop with other models for estimating daily ET0, we developed
three other prevalent machine learning models: a decision tree (DT), an artificial neural
network (ANN), and an adaptive neuro-fuzzy inference system (ANFIS). All the models
were compared together using the same training and testing datasets obtained from three
study locations, Berubari, Jayanti, and Tamaguri, in the Terai agro-climatic region of
North Bengal. The standard reference values of ET0 (ET0PM) were calculated using the
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FAO56PM method (Eq. (1)). The tools and techniques used to develop the DT, ANN, and
ANFIS models are described as an overview.

Decision tree (DT)
A DT model uses a greedy technique to build a decision tree from root to leaf nodes. A
feature that best divides the data into two or more parts is used as the root node of the tree.
Thereafter, until a stopping criterion is met, the tree is developed by recursively splitting
the data into smaller subsets depending on the feature values. The aim of a decision tree is
to find the feature that yields the greatest information gain for each split, resulting in a tree
that illustrates the relationships between characteristics and the target variable (Duda, Hart
& Stork, 2006; Murty & Devi, 2015). For the present study, the DT model was developed
using the scikit-learn library package in Python. The two hyperparameters: the maximum
depth and the minimal cost-complexity pruning were adjusted using a fivefold grided
search strategy using the training dataset. The range of maximum depth was set between 2
and 16 and the minimal cost-complexity pruning was set between 0.0 and 1.0.

Artificial neural network (ANN)
Artificial neural network (ANN) models try to mimic the information processing
techniques of a biological neuron (Fausett, 2006). A classical ANN model consists of
processing units called artificial neurons, which are interconnected using synaptic weights,
and it learns patterns from data by adjusting these weights. Various architectures were
proposed to design an ANN using a variety of activation functions. For the comparative
study, the ANN model was implemented using the scikit-learn library package in Python.
A two-layer ANN model with one hidden layer and one output layer was developed.
The activation functions, the values of hyperparameters, and the number of hidden layer
neurons were adjusted using a five-fold grided search strategy using the training dataset.
The outperforming activation functions were selected by trial and error. The number of
hidden layer neurons was set between 2 and 16. Three learning algorithms: the adaptive
moment estimation, the L-BFGS, and the stochastic gradient descent were used to train the
model, and the best one was selected for the present study.

Adaptive neuro fuzzy inference system (ANFIS)
The ANFIS model was first proposed by Jang (1993). This hybrid model combines the
benefits of fuzzy logic and artificial neural networks using a three-stage architecture. In the
first stage, the input variables are transformed into fuzzy sets using membership functions.
In the second stage, a decision is achieved by applying a set of IF-THEN rules to the fuzzy
inputs. The final stage reduces the outputs of the previous stage to a single crisp value by
using defuzzification. The parameters for the rule antecedents and membership
functions are weighted to reduce the difference between what happened and what was
predicted. Due to the interpretability of fuzzy logic and the capacity for learning and
adaptation of an ANN, the ANFIS excels at solving complicated, non-linear issues that
traditional rule-base systems find challenging (Du & Swamy, 2013; Patel & Gianchandani,
2011). For the present study, the ANFIS model was developed using the ANFIS toolbox
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(https://in.mathworks.com/help/fuzzy/anfis.html) of MATLAB (version R2022a).
The total number of fuzzy membership functions was set to three, and the parameters
associated with membership functions (pre-parameters) of the developed ANFIS model
were adjusted by a backpropagation algorithm on the training datasets.

Estimating ET0 of the Berubari location
The values of the four primary metrics (R2, d, RMSE, and RMSRE) along with two
combination metrics; average goodness (Ag) and average error (Ae) obtained for the four
models (DT, ANN, ANFIS, and EvatCrop) at the training and testing phases for the
Berubari location are summarised in Tables S5 and S6, respectively. All four models were
compared in terms of Ag and Ae against different input combinations (from C1 to C8).
The results presented in Table S5, depict that in the training phase, the EvatCrop was the
most accurate model for all input combinations. The ANN was the worst model, whatever
the input combinations. Table S5 depicts that for combinations C2, C5, and C8, ANFIS has
the same accuracy compared to EvatCrop in the training phase. For other input
combinations, DT and ANFIS fought neck-to-neck to secure second place. The results in
Table S5 show that DT, ANN, and ANFIS were not quite as good as EvatCrop. They were
about the same for input combinations C2, C5, C6, and C8 when it came to Ag (differences
ranging from 0.10% to 1.83%) and Ae (differences ranging from 2.66% to 68.69%).
The performances of all the models are very poor and unacceptable for C1, C3, C4, and C7.
In conclusion, in the training phase, for five input combinations, the performances of DT,
ANFIS, and the EvatCrop are comparable to each other. For the four input combinations
C6, C7, and a three-input combination C2, the accuracy differences between all four
models are also marginal, while the ANN is the worst model in all the cases.

In the testing phase, all the models were compared against different input combinations.
Table S6 shows that EvatCrop did better than all the other models in terms of having the
highest Ag (from 0.675 for C1 to 0.992 for C8) and the lowest Ae (from 0.116 for C8 to
0.737 for C1), no matter what combinations of inputs were used. It was the best performer
with all input parameters (combination C8). However, the performances of other models
vary with input combinations. In Table S6, we can see that DT, ANN, and ANFIS are not
as good as EvatCrop when it comes to Ag (differences range from 0.50% to 1.65%) and Ae
(differences range from 20.53% to 40.23%) for input combinations C2, C5, and C6.
The DT model was the least accurate model for C1 (with Ag = 0.650 and Ae = 0.764), C2
(with Ag = 0.971 and Ae = 0.228), C3 (with Ag = 0.672 and Ae = 0.737), C5 (with
Ag = 0.967 and = 0.242), and C6 (with Ag = 0.977 and Ae = 0.201). For C4, ANN is the
worst performing (with Ag = 0.710 and Ae = 0.705). Whereas, ANFIS was the least
accurate model for C7 (with Ag = 0.639 and Ae = 0.814) and C8 (with Ag = 0.658 and
Ae = 0.821). A possible reason is that the ANFIS model is developed using the grid
partition approach, where the number of rules increases exponentially with the increasing
number of input parameters, leading to increased computation time and reduced
performance. A similar observation was reported by Yeom & Kwak (2018). Additionally,
the ANFIS model suffers from an out-of-range problem in the test set that further degrades
its performance, as described by Fu et al. (2020).
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To study the impact of the meteorological inputs on model accuracy at the Berubari
location, we provide a detailed analysis of the results during the testing phase using
EvatCrop as the best optimum model. As reported in Table S5, using only two inputs, Tmin

and Tmax (C1), the EvatCrop model provided the lowest accuracy (Ag = 0.675 and
Ae = 0.737). Using three input variables, when wind speed Ws was added with Tmin and
Tmax (C2), the performances of the EvatCrop model increased significantly. The value of
Ag was increased by about 31.00% from 0.675 to 0.981, and the value of Ae was decreased
by almost 75.00% from 0.737 to 0.184. When relative humidity (Rh) or solar radiation (Sr)
was added with two inputs (Tmin and Tmax) instead of Ws (C3 and C4), the estimation
accuracy of the EvatCrop model dropped significantly. The Ag value was cut down by
26.60% for combination C3 and 36.18% for combination C4. Correspondingly, the Ae
values were increased by 73.00% for combination C3 and 72.00% for combination C4.
When four parameters were used as inputs (combinations C5, C6, and C7), two
combinations with Ws (C5 and C6) produced reasonably good results. The average value
of Ag for EvatCrop against two combinations, C5 and C6, was obtained as 0.988, which is
almost 27.00 and 23.00% better than that of combinations C3 and C4, respectively.
Correspondingly, the average value of Ae for EvatCrop against two combinations C5 and
C6 was observed to be 0.147, which represents a huge drop of 78.40% and 76.10% for
combinations C5 and C6, respectively. However, when Ws was not present in the
four-input combination (C7), the accuracy of all the models dropped significantly.
For combination C7 instead of C5, the value of Ag was cut down by 19.35% for EvatCrop.
Similarly, when combination C7 was taken instead of C6, the values of Ag were decreased
by 20.00% for EvatCrop.

The results presented in Tables S5 and S6 indicate that better accuracy was achieved
when the wind speed (Ws) was available as one of the input parameters. This observation
specifies that the meteorological parameter wind speed (Ws) significantly contributes to
estimating the ET0 across the targeted study region. Similar observations were reported by
Traore, Wang & Kerh (2010) in the Sudano-Sahelian zone of Burkina Faso, Yang et al.
(2019) in China, and the literature survey conducted by Amani & Shafizadeh-Moghadam
(2023). Although the complete set of five input parameters provided the highest estimation
accuracy for ET0, fairly good performance was achieved with the other three input
combinations, C2, C5, and C6. Based on estimation accuracy, the input combinations are
ranked as C8, C6, C5, C2, C7, C4, C3, and C1. The results presented in Tables S5 and S6
summarise that (i) the EvatCrop was the most accurate model for estimating ET0 at the
Berubari location; (ii) the ANFIS model performed worst in the testing phase for
combinations C7 and C8 due to the out-of-range problem; and (iii) the combinations that
include Ws as one of the input parameters (combinations C2, C5, C6, and C8) produce
more accurate results than those without Ws. Figure S10 presents the scatter plots of
reference values ET0PM versus the values of ET0 estimated by the EvatCrop against eight
input combinations. This figure shows that the highest performance for ET0 estimation
was achieved when all the input parameters were available. Figures S11 and S12 display the
boxplot and Tailor diagrams, respectively of the four models for a better comparative
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analysis of the results obtained in the testing phase. Additionally, the distribution plots for
the estimated and reference ET0 are provided in Fig. S13.

Estimating ET0 of the Jayanti location
Results obtained in the training phase at the Jayanti location are reported in Table S7.
From Table S7, we observe that in the training phase, the EvatCrop model comparatively
outperformed all other models for input combinations C1, C3, C4, C5, and C7, and for the
other combinations, the DT model was the best. In the case of combinations C2, C6, and
C8, DT performed 0.20% (2.84%), 0.30% (14.43%), and 0.50% (62.03%) better than the
EvatCrop in terms of Ag (Ae), respectively. It is to be noted that, in the training phase, the
ANFIS model exhibited the same performance as EvatCrop in terms of Ag for
combinations C5, C6, and C8. For the other five combinations (C1, C2, C3, C4, and C7),
the ANFIS and DT models secured the second position with nearly equal performances.
For the combinations C2, C5, C6, and C8, the accuracy of all the models was similar in
terms of Ag (difference ranging from 0.10% to 2.10%) and Ae (difference ranging from
3.53% to 80.64%). In conclusion, for combination C8, the DT, ANFIS, and EvatCrop
models produced their best results, and their performances were comparable to each other.
Whereas, the ANN model performed worst.

Table S8 summarizes the results obtained in the testing phase for the Jayanti location.
The results indicate that EvatCrop performed best with the highest (lowest) average values
of Ag (Ae), irrespective of the input combinations. The accuracies of the other three
models, DT, ANN, and ANFIS, are also comparable with EvatCrop for input combinations
C1, C4, C5, and C6 in terms of Ag (differences ranging from 0.20% to 2.05%) and Ae
(differences ranging from 0.79% to 53.28%). Except for input combinations C7 and C8, the
DT model exhibited the poorest performance (Ag ranging from 0.731 to 0.956 and Ae
ranging from 0.210 to 0.519).

To reveal the impact of the meteorological inputs on model accuracy, an in-depth
analysis was performed based on the results summarised in Table S8 in the testing phase.
The EvatCrop exhibited the highest level of accuracy at the Jayanti location when all five
inputs (Tmin, Tmax,Ws, Rh, and Sr) were considered as inputs (combination C8). The input
combination C1 with only two input variables (Tmin and Tmax) produced the worst results
(Ag = 0.784 and Ae = 0.504). From Table S8, it is observed that the differences in accuracy
in terms of Ag (Ae) in comparing C1 to C8 are 31.28% (73.41%). The value of Ag (Ae)
decreased (increased) by 12.83% (65.01%) when we removed Ws from combination C8
(combination C7). But when we removed Rh instead of Ws (combination C6), the
performance of EvatCropmarginally tarnished in terms of Ag (decreased by 0.10%) and Ae
(increased by 2.19%). By removing Sr from C8 (combination C5), Ag was reduced by
3.76%, and Ae was increased by 42.73%. It is to be noted that among the three four-input
combinations, C6 produced the comparatively best accuracy, as observed in Table S8.
For three input combinations, when we removed Ws from combination C6 (combination
C4), the performance of EvatCrop decreased further by 17.53% in terms of Ag and
increased by 62.78% with respect to Ae. The drop in Ag and rise in Ae were reasonably
small when we replaced Sr by Rh in C4 (combination C3). The Ag decreased by 2.71% and
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the Ae increased by 7.36%. However, when Rh was replaced by Ws in combination C3
(combination C2), the overall performance of EvatCrop increased significantly. The Ag
increased by 16.56%, and the Ae dropped by 82.00%. The results presented in Tables S7
and S6 summarize that (i) EvatCrop is the most accurate model for estimating ET0 in the
testing set at Jayanti location; (ii) for combinations C2, C6, and C8, the DT model suffered
from overfitting of data in the training phase, whereas the performance degraded in the
testing phase; (iii) the ANFIS model failed to provide a good estimation for combinations
C7 and C8 due to an out-of-range problem; and (iv) the input combinations with Ws

(combinations C2, C5, C6, and C8) yielded more accurate results than the other four
combinations without Ws.

The scatterplots of the reference values of ET0 (ET0PM) and the predicted values of ET0

are presented in Fig. S14 for the training and testing phases. Additionally, boxplots, Taylor
diagrams. and distribution plots are provided for the testing phase in Figs. S15–S17,
respectively.

Estimating ET0 of the Tamaguri location
From the results reported in Table S9, the EvatCrop proved to be the most accurate model
during the training phase for all input combinations at the Tamaguri location. The ANN
model was the least accurate model, whatever the input combinations. The ANFIS model
displayed the same accuracy as that of EvatCrop for input combination C8 in terms of Ag.
However, ANFIS was slightly inferior to EvatCrop for the combinations C1 to C7 in terms
of Ag (differences ranging from 1.50% to 4.00%) and Ae (differences ranging from 3.31%
to 3.96%), respectively. For combinations C1, C3, C4, and C7, the accuracies of the DT,
ANFIS, and EvatCrop were found to be very low. In conclusion, the performance of DT,
ANFIS, and EvatCrop varied marginally from one another in the training phase for almost
all the input combinations.

The results obtained in the testing phase at the Tamaguri location are reported in
Table S10. From Table S10, it is observed that, regardless of the input combinations, the
EvatCrop was the most accurate model in terms of the highest values of Ag and the lowest
values of Ae. The performances of the ANFIS model were very poor against the
combinations C7 and C8 due to the out-of-range problem (Ag ranging from 0.548 to 0.948
and Ae ranging from 0.110 to 0.558). But compared to the performance of ANFIS at
Berubari and Jayanti, its performance was relatively acceptable (Ag = 0.948) at Tamaguri
for combination C8. The main reason for this is the lesser number of outliers in the testing
set, as observed from the boxplot (Fig. S19H). Contrary to the results obtained in the
training phase, the ANN model performed comparatively better in the testing phase in
terms of Ag (difference ranging from 1.00% to 3.61%) and Ae (difference ranging from
0.780% to 45.000%). The DT model ranked in third place, whereas the ANFIS was the
worst.

To study the impact of the meteorological inputs on model accuracy at the Tamaguri
location, the results obtained in the testing phase by using EvatCrop are summarised in
Table S10. Using two inputs (Tmin and Tmax) (combination C1), the EvatCrop exhibited its
lowest accuracy (Ag = 0.661 and Ae = 0.641). When wind speed Ws was considered with
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Tmin and Tmax (combination C2), the performance of EvatCrop was remarkably improved.
Ag was increased by around 47.66% from 0.661 to 0.976, whereas Ae was declined by
72.54% from 0.641 to 0.176. However, it is to be pointed out that the accuracy of EvatCrop
decreased significantly when relative humidity (Rh) or solar radiation (Sr) was considered
instead of Ws, with two inputs (Tmin and Tmax) (C3 and C4). Ag values were reduced by
28.68% for combination C3 and 27.46% for combination C4. Accordingly, for combination
C3, the Ae values increased by 70.96%, and for combination C4, the increase was 70.71%.
In the case of four input combinations (combinations C5, C6, and C7), two combinations
with Ws (C5 and C6) yielded reasonably acceptable results. The EvatCrop scored an
average Ag value of 0.984 against two combinations, C5 and C6, which was 41.34 and
38.98% better than combinations C3 and C4, respectively. Accordingly, it was found that
the average value of Ae for EvatCrop against two combinations C5 and C6 was 0.141,
indicating a significant decrease of 76.73% and 76.54%, respectively, for combinations C5
and C6. However, the accuracy of all the models was significantly decreased whenWs was
not included in the four-input combination (C7). The value of Ag was reduced by 23.82%
when combination C7 was used instead of combination C5. Comparably, the value of Ag
decreased by 24.75% when combination C7 was used in place of C6. From the results
reported in Tables S9 and S10, it is concluded that (i) out of the four models, the EvatCrop
turned out to be the most accurate model, (ii) the out-of-range problem prevents the
ANFIS model from providing an acceptable accuracy for combinations C7, and (iii) input
combinations with Ws (combinations C2, C5, C6, and C8) yielded more accurate results
than the other four combinations without Ws.

Figure S18 provides the scatterplots for estimated values against the reference values of
ET0 in the training and testing phases at the Tamaguri location. For a more intensive
analysis of the results, the boxplots, Taylor diagrams, and distribution plots for the testing
phase are also presented in Figs. S19–S21, respectively.

DISCUSSION
In the present article, we have proposed a novel quasi-fuzzy ANN model, EvatCrop, for
estimating ET0 for the terai agro-climatic region of the North Bengal region, India.
The estimated ET0 values of EvatCrop have been compared with the reference ET0PM

values under various input combinations. The ET0 predictions of ET0 are found to be
highly acceptable for combinations C2, C5, C6, and C8, with an average R2 value of 0.973.

Since ET0 estimation is very region-specific, the EvatCrop was compared with the other
relevant models reported in the literature for the Indian context. Kumar (2023) conducted
an experiment with three machine learning models (Random Forest, gradient boosted
trees, support vector machines) and one deep learning model (long-short term memory)
for ET0 estimation in data-scare conditions for Uttarakhand, India, and reported that the
Random Forest and gradient boosted trees achieved the highest accuracy with an average
R2 value of 0.920 in the testing phase. Compared to this, EvatCrop recorded the highest
average R2 value of 0.982 for the test set. Patle et al. (2023) developed ANN and multiple
linear regression models to estimate ET0 in the semi-humid regions of Sikkim, India.
The highest value of R2 was reported at 0.820 in the testing dataset. Ehteram et al. (2019)
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proposed an improved support vector machine model optimized using the cuckoo search
algorithm for ET0 estimation in Uttarakhand, India. The highest R2 value reported was
0.944, which is less than that of EvatCrop (with R2 = 0.982). Patil & Deka (2017) studied
the performance of hybrid wavelet-ANN and wavelet-ANFIS for forecasting ET0 in arid
regions of India. The lowest value of RMSE reported was 0.586 mm/day for the
wavelet-ANNmodel. In comparison, the lowest average value of RMSEwas 0.201 mm/day.
For the Northern Punjab region of India, Saggi & Jain (2019) reported a deep learning
model for estimation of ET0 that exhibited the best R2 and RMSE values of 0.990 and
0.269 mm/day, respectively. Although the R2 values of the deep learning model were better
than EvatCrop (R2 = 0.982), the performance of EvatCrop in terms of the RMSEmetric was
better with 0.201 mm/day. Some models had higher R2 values than EvatCrop. These
included the ANN-Grey Wolf optimizer hybrid model (with RMSE = 0.059 mm/day)
suggested by Tikhamarine et al. (2019) and the ANN model created by Heramb et al.
(2023) (with R2 = 0.996). Overall, EvatCrop is a promising model with high accuracy for
estimating ET0 in the terai agro-climatic region of North Bengal, India, where no such
models have been proposed to date.

CONCLUSION
Precise estimation of ET0 is a prime issue for efficient irrigation scheduling and better
conservation of groundwater resources. In this article, we have suggested a novel
architecture of a hybrid quasi-fuzzy ANN model for the estimation of daily ET0 using
prevalent metrological parameters. The efficiency and utility of EvatCrop were evaluated
by using five prevalent meteorological parameters as inputs. EvatCrop was also compared
with three other popular models, DT, ANN, and ANFIS, for eight different input
combinations of five meteorological parameters at three study locations. By analysing the
results obtained in the testing phase, the following conclusions would be drawn: the
EvatCrop excelled over the other popular models, DT, ANN, and ANFIS, for the three
study locations, irrespective of the input combinations of the meteorological parameters.
For most input combinations at three study locations, the accuracy of ANFIS was slightly
better than that of ANN, and the DT was the least performing model. Therefore, EvatCrop
is the best model for the said region. In most cases, ANN ranked second, followed by
ANFIS and DT. At the three study locations, the variation in the performance of all the
models for estimating ET0 is very similar, despite the variations in the input combinations.
All the models provide their best accuracy when all five meteorological parameters are
considered as inputs and perform worst when only two inputs (Tmin and Tmax) are
available. The accuracies of the four models are endurable for the three-input and
four-input combinations only when the wind speed (Ws) is considered as one of the input
parameters. This observation leads to the conclusion that the input combinations withWs

yield more accurate results than the other four combinations withoutWs, and it is the most
contributing parameter for the estimation of ET0 in this region. From the obtained results,
we can further conclude that, due to an out-of-range problem, the ANFIS fails to provide
good accuracy against a five-input and one of the three-input combinations at all three
locations. This study provides a guideline for selecting the most promising input
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combination of meteorological parameters to achieve the best possible estimation accuracy
of ET0 when a complete set of parameters is unavailable.

The limitations of this study are: (i) that our proposed model was trained and tested
using datasets obtained from a particular region, and its performance in other
agro-climatic regions was not evaluated; and (ii) that the impact of meteorological
parameters other than the five meteorological parameters was not studied. However, our
proposed model outperformed the other models in the Terai agro-climatic region of North
Bengal, India. Further validation of our proposed model is required to ensure its
superiority in other regions with meteorological parameters other than five prevalent
meteorological parameters, which is our future target.
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