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ABSTRACT

Background. Patients in serious condition due to COVID-19 often require special

care in intensive care units (ICUs). This disease has affected over 758 million people
and resulted in 6.8 million deaths worldwide. Additionally, the progression of the

disease may vary from individual to individual, that is, it is essential to identify the
clinical parameters that indicate a good prognosis for the patient. Machine learning
(ML) algorithms have been used for analyzing complex medical data and identifying
prognostic indicators. However, there is still an urgent need for a model to elucidate
the predictors related to patient outcomes. Therefore, this research aimed to verify,

through ML, the variables involved in the discharge of patients admitted to the ICU
due to COVID-19.

Methods. In this study, 126 variables were collected with information on demography,
hospital length stay and outcome, chronic diseases and tumors, comorbidities and risk
factors, complications and adverse events, health care, and vital indicators of patients
admitted to an ICU in southern Brazil. These variables were filtered and then selected
by a ML algorithm known as decision trees to identify the optimal set of variables for
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predicting patient discharge using logistic regression. Finally, a confusion matrix was
performed to evaluate the model’s performance for the selected variables.

Results. Of the 532 patients evaluated, 180 were discharged: female (16.92%), with
a central venous catheter (23.68%), with a bladder catheter (26.13%), and with an
average of 8.46- and 23.65-days using bladder catheter and submitted to mechanical
ventilation, respectively. In addition, the chances of discharge increase by 14% for each
additional day in the hospital, by 136% for female patients, 716% when there is no
bladder catheter, and 737% when no central venous catheter is used. However, the
chances of discharge decrease by 3% for each additional year of age and by 9% for each
other day of mechanical ventilation. The performance of the training data presented a
balanced accuracy of 0.81, sensitivity of 0.74, specificity of 0.88, and the kappa value was
0.64. The test performance had a balanced accuracy of 0.85, sensitivity 0.75, specificity
0.95, and kappa value of 0.73. The McNemar test found that there were no significant
differences in the error rates in the training and test data, suggesting good classification.
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This work showed that female, the absence of a central venous catheter and bladder
catheter, shorter mechanical ventilation, and bladder catheter duration were associated
with a greater chance of hospital discharge. These results may help develop measures
that lead to a good prognosis for the patient.

Subjects Epidemiology, Infectious Diseases, Public Health, Data Mining and Machine Learning,
COVID-19
Keywords COVID-19, Intensive care unity, Critical care, Machine learning, Epidemiology

INTRODUCTION

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has been one of the most
significant global public health crises in recent history. Since its appearance in Wuhan,
China, in December 2019, more than 758 million cases and 6.8 million deaths have
been reported (World Health Organization , WHO). The most severe patients often must
be admitted to intensive care units (ICUs) (Phua et al., 2020). Nevertheless, accurately
discerning the prognostic variables crucial for predicting patient discharge amidst the
heterogeneous manifestations of COVID-19 poses a great challenge (Esakandari et al.,
2020). In recent times, several studies have employed machine learning (ML) algorithms to
forecast patient outcomes (Islam et al., 2022; Jamshidi et al., 2021; Kar et al., 2021). Thus,
diverse sets of variables yield varying model performances. Utilizing a comprehensive set of
variables might offer substantial insights for developing a model with optimal performance.
Hence, integrating advanced techniques such as ML into prognostic modeling could provide
insights for comprehending this complexity and improving patient care strategies.

ICU patients often have critical conditions associated with high morbidity and mortality
rates (Taylor et al., 2021), including during the COVID-19 pandemic. According to a
multicenter study, the death rate from COVID-19 in patients admitted to the ICU
was 41.6% (Armstrong, Kane ¢ Cook, 2020). Furthermore, studies carried out in Africa
have shown a mortality rate of 31.5% (African COVID-19 Critical Care Outcomes Study
Investigators, 2021), 24% in Europe (Wendel Garcia et al., 2020), and almost 40% in Brazil
(Zeiser et al., 2022), where the high mortality rates of patients hospitalized in UTI are
frequently observed in public hospitals (Soares Pinheiro et al., 2020).

The main risk factors of mortality involving critically ill patients admitted to the ICU
are extended length of stay, age, sex, heart disease, multiple organ failure, sepsis, severe
trauma, and acute respiratory failure (Auld et al., 2022; Otero et al., 2020; Soares Pinheiro
et al., 2020). Treatment is often challenging as each patient may respond differently;
however, in general, treatment may involve the use of advanced life support such as
mechanical ventilation (Fadel et al., 2020), corticosteroid therapy (Phua et al., 2020),
renal replacement (Hajjar et al., 2021), and use of antiretrovirals (Beigel et al., 2020). In
addition, continuous monitoring and rigorous clinical evaluation are essential to ensure
hemodynamic stability and prevent complications (Poor et al., 2020).

Investigating the variables correlated with the death of patients with COVID-19 in
the ICU may be fundamental for understanding the disease and improving treatment
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strategies (Liu et al., 2020; Pijls et al., 2021). Data of patients with COVID-19 has been
explored utilizing ML to forecast their prognosis (Kamel et al., 2023) because it represents
asophisticated and adaptable approach to classification modeling by analyzing large datasets
to unveil significant latent relationships or patterns (Zakariaee et al., 2023). Studies indicate
that, in predicting clinical outcomes among COVID-19 patients, ML methods demonstrate
superior accuracy compared to conventional statistical models (Afrash et al., 2022).

Several approaches exist to identify variables related to a negative outcome, with the
decision tree being one of these methods (Elhazmi et al., 2022). The decision tree is a
technique based on ML used in medicine capable of identifying and correlating several
variables involved with the patient’s outcome to assist in elaborating strategies to improve
their prognosis (Giotta et al., 2022; Kingsford ¢ Salzberg, 2008). This analysis can help
clinicians identify risk factors for mortality in patients with COVID-19 in the ICU,
allowing early and effective interventions to be implemented to improve clinical outcomes.

Knowing that, in Brazil, the number of critically ill patients and mortality in the ICU
has reached alarming levels and that the identification of variables involved with discharge
is crucial for successful treatment and reduction of mortality, the objective of this research
was to verify through machine learning the variables involved in the outcome of patients
admitted to the intensive care unit due to COVID-19. The results can help develop more
effective preventive and therapeutic measures and patient care, providing better treatment
and reducing the negative impact on public health.

MATERIALS & METHODS
Study design

This is an observational study with information from the medical records of patients
admitted to the intensive care unit due to COVID-19 in a Municipal Hospital in Parana
between March 2020 and July 2021 to verify the clinical aspects related to patient discharged.

Settings

This study was divided into four stages: (1) Data collection, (2) filtering of variables

to remove those that do not meet the criteria, (3) selection of variables with the best
performance to explain the outcome, and forth) identification of variables to estimate the
risk for the outcome. The steps developed in this study can be seen in Fig. 1.

Data collection

A spreadsheet was structured containing four groups of variables for data collection. In
the first group are the information related to the sociodemographic characteristics of the
patients. As for the second group, information about signs, symptoms, results of imaging,
and laboratory tests at the time of hospitalization was gathered. The same variables as the
second group were also collected for the third group, but three days after hospitalization.
Finally, in the fourth group, there are the same variables as in groups 2 and 3, however,
obtained at the time of the patient’s outcome, that is, if he was discharged from the hospital
or died. Patient information was collected using the Epimed Monitor ICU Database®, a
platform where all clinical information of patients admitted to the ICU in Brazil is stored
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Figure 1 Steps for identifying variables related to patient outcome.
Full-size &l DOI: 10.7717/peer;j.17428/fig-1

(Zampieri et al., 2017). Data came from electronic case report forms (eCRF) from which

information is gathered through integration between electronic records (medical and/or

administrative) of the hospital and manual entry of data made by a manager responsible

for entering consecutively the information of each patient in the database (Zampieri et al.,
2017).

Variables
One hundred twenty-six variables were collected from each patient and grouped into seven
groups for a better understanding of the variable’s nature, shown in Table 1.

Participants

The study included all patients over 18 years of age admitted to the ICU of a public
municipal hospital, a reference in the care of patients diagnosed with COVID-19, in the
state of Parand, southern region of Brazil.

Statistical analysis

Filtering

Prior data processing was initially carried out to eliminate variables with little or no
information and redundancies in five steps. First, the variance of the variables was
calculated, and those that showed almost zero variance were eliminated from the final
set. Second, variables with more than 50% missing values were eliminated, that is, variables
without information. Third, the information gain expressed by each variable was identified,
and those with values lower than one were discarded. Fourth, the sensitivity and specificity
of each variable were analyzed to verify its importance for the model using the receiver
operating characteristic (ROC) curve, and those below 0.51 were discarded. Finally, a
Pearson correlation analysis was used, and variables with solid correlations, i.e., greater
than 0.75, were removed to avoid collinearity. Steps 1, 3, and 4 are described below.

To identify variables with zero variance, those variables with the same value in all
lines were checked, and those with almost zero variance when meeting the following
requirements: (a) regarding the frequency ratio according to the calculation of the
frequency of the highest value prevalent divided by the frequency of the second most
prevalent value is greater than 19; and (b) when the percentage of unique values given by
the number of unique values divided by the total number of samples (times 100) is less
than 10%. Therefore, variables classified as almost zero variance were eliminated.
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Table 1 Variables collected from the Epimed Monitor ICU Database for use in this study. Maringa,

Parana, 2023.

Classification

Variables

Personal

Patient stay and outcome

Chronic diseases and tumors

Comorbidities and risk factors

Complications and adverse events

Healthcare

Personal: Age, gender, weight, height (cm);

ICU stay duration, hospital stay duration, unit outcome
(treatment/hospitalization outcome);

Insuficiéncia renal cronica ndo dialitica, insuficiéncia renal
cronica dialitica, cirrose child A ou B, cirrose child C,
insuficiéncia hepitica, tumor sélido locorregional, tumor
solido metastdtico, sitio do tumor, doenca hematoldgica
maligna, tipo de doenga hematoldgica maligna, nome da
doenga hematoldgica maligna;

Immunosuppression, severe COPD, AIDS, systemic arterial
hypertension, asthma, uncomplicated diabetes (type 1 or
2), complicated diabetes (type 1 or 2), angina, previous
myocardial infarction, arrhythmia, hypothyroidism,
hyperthyroidism, peripheral arterial disease, chronic
arterial fibrillation, rheumatic disease, sequelae of stroke,
stroke without sequelae, dementia, smoking, alcoholism,
psychiatric disease, morbid obesity, malnutrition, ischemic
heart disease, dyslipidemia, history of pneumonia;

Delirium obnubilation stupor or coma, seizure or epilepsy,
focal neurological deficit, cardiac rhythm disorders,
respiratory failure in the first hour, cardiac arrhythmias

in the first hour, cardiopulmonary arrest in the first

hour, acute kidney injury in the first hour, asystole in the
first hour, pulseless electrical activity in the first hour,
atrial fibrillation in the first hour, sustained ventricular
tachycardia in the first hour, acute respiratory failure in
the first hour, arrhythmias, cardiopulmonary arrest, acute
kidney injury, pulseless electrical activity, atrial fibrillation,
sustained ventricular tachycardia, non-invasive mechanical
ventilation, cardiac rhythm disorders, hypovolemic or
hemorrhagic shock, septic shock, anaphylactic or undefined
shock, BMI;

Failure of non-invasive ventilation, duration of mechanical
ventilation, tracheostomy, high-flow mask, duration

of hemodialysis, extended hemodialysis in acute

kidney injury, hemodialysis, asystole, non-invasive
ventilation, vasopressors, hemodialysis in the first hour,
mechanical ventilation in the first hour, non-invasive
ventilation in the first hour, vasopressors in the first hour,
decision on palliative care, chemotherapy, radiotherapy,
solid organ transplant, autologous blood transfusion,
intestinal transplant, lung transplant, kidney transplant,
neurosurgery, central venous catheter, Foley catheter,
MAP catheter, intra-aortic balloon, minimally invasive
hemodynamic monitoring, red blood cell concentrate
transfusion, fresh frozen plasma, thrombolytic agents, NYH
classification 2 or 3, use of steroids;

(continued on next page)
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Table 1 (continued)

Classification Variables

Vital signs Lowest SBP 1 h, lowest DBP 1 h, lowest MAP 1 h, highest
HR 1 h, highest RR 1 h, highest Temperature 1 h, lowest
Glasgow Coma Scale 1 h, highest Leukocyte Count 1 h,
lowest Platelet Count 1 h, highest Creatinine 1 h, highest
Bilirubin 1 h, highest pH 1 h, lowest pH 1 h, highest PaO2
1 h, lowest PaO2 1 h, highest PalCO 21 h, lowest PaCO2
1 h, highest FiO2 1 h, lowest FiO2 1 h, highest PaO2/FiO2
Ratio 1 h, lowest PaO2/FiO2 Ratio 1 h, highest Lactate 1 h,
Urea, BUN.

Algorithms were applied using the method proposed by Zawadzki ¢ Kosinski (2019),
which finds important ranks of discrete attributes based on their entropy with a continuous
class attribute. Therefore, variables with little or no information gain, that is, values below
one, were ignored.

A function called filterVarImp from the caret package in R was used, which applies an
algorithm to calculate the two probabilities of dichotomous variables to generate an ROC
curve and calculate the area under the curve (AUC) (Kuhn ¢ Johnson, 2013). The AUC
ranges from 0 to 1 and serves as a measure of variable importance, as an AUC of 0.5 would
indicate that a variable cannot discriminate between the two possibilities. An AUC of 1,
on the other hand, suggests a variable capable of completely separating the possibilities
(Silveira et al., 2020). Therefore, those variables with AUC values lower than 0.51 were
eliminated.

Variable selection

For the preparation of decision tree and Random Forest, we segmented the filtered dataset
into 80% training and 20% testing sets, to ensure model generalization. This method
facilitates an internal validation process: the model is trained on one subset of the data and
subsequently tested on another independent subset. This division of the dataset enables an
evaluation of the model’s capacity to extrapolate predictions to novel instances.

A decision tree is a data analysis technique that uses a set of rules to divide data into
smaller, more homogeneous groups. It is a supervised machine learning model used to
predict the value of a target variable based on various characteristics. The tree is constructed
by dividing the data set into smaller subsets based on the characteristic that best separates the
values of the target variable. This division is done through an algorithm where each branch
represents a choice or condition that can lead to a specific result (Venkatasubramaniam et
al., 2017). Then, the subsets are split again until the final leaves of the tree contain enough
information to predict the target variable. The goal is to identify patterns and relationships
between variables in a data set to make predictions and decisions. When applied to complex
problems, the decision tree can help simplify data interpretation and find solutions more
efficiently. As a result, the decision tree has been widely used in areas such as medicine
(Hajjej et al., 2022; Rokach ¢ Maimon, 2005).

Subsequently, Random Forest (RF) was employed to identify potential variables
associated with patient discharge. The RF classification model underwent training using
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10-fold cross-validation on the training dataset. We also used the XGBoost algorithm
for predicting patient outcomes and subsequently compared its performance against
RF (Denisko & Hoffman, 2018; Montomoli et al., 2021; Shanbehzadeh, Nopour & Kazemi-
Arpanahi, 2022). However, the XGBoost algorithm demonstrated inferior performance
compared to decision trees, prompting us to maintain the latter as our chosen method
for classification. Ultimately, the model’s performance was verified using the confusion
matrix to evaluate the parameters of sensitivity, specificity, accuracy, kappa agreement
test, and McNemar’s Test. These variables were then inserted into the logistic regression to
determine the chances of the patient progressing to discharge.

All results from the variable selection performed in each of the steps described above
are available for further analysis in the supplementary document (https:/doi.org/10.6084/
m9.figshare.c.6975699).

Logistics regression

Logistic regression (LR) was employed due to its interpretability, simplicity, and widespread
usage in medical research settings, making it feasible to develop prognostic models for
COVID-19 patients (Gutiérrez-Pérez et al., 20225 Zapata et al., 2023). This analysis is an
efficient technique that can be used for the classification of two classes. Variables potentially
associated with discharge indicated by RF were jointly evaluated using the LR to estimate
the odds ratio. Although variables that were highly correlated with each other during data
processing were discarded to avoid collinearity problems, variance inflation factor (VIF)
was also used in order to detect multicollinearity in the data, and variables with VIF values
above ten were removed (Menard, 2002). Finally, the quality of the logistic regression fit was
verified with the assistance of the half-normal plot and simulated envelope from the “hnp”
package in the R software (Moral, Hinde ¢» Demétrio, 2017), and the absence of extreme
outliers was confirmed through residual analysis. Statistical analyses were conducted using
R software version 4.2 (R Core Team, 2022) and were considered statistically significant
when p < 0.05.

Ethic
This study was approved by the Human Research Ethics Committee of Centro Universitario
Ingd according to process no 4.276.900.

Data availability
Data can be accessed at https:/doi.org/10.6084/m9.tigshare.c.6975699.

RESULTS

Population characteristic

In total, 532 patients were included in the study between March 2020 and July 2021.
According to Table 2, most patients were male (57.14%), without severe COPD (93.05%),
and with arterial hypertension (70.11%). The majority, 66.92%, of patients did not have
complicated diabetes (type 1 or 2), 92.29% did not have complicated diabetes (type 1 or
2), 79.51% were not morbidly obese, and 89.85% did not have hypothyroidism. Regarding

Dos Santos et al. (2024), PeerJ, DOI 10.7717/peerj.17428 7122


https://peerj.com
https://doi.org/10.6084/m9.figshare.c.6975699
https://doi.org/10.6084/m9.figshare.c.6975699
https://doi.org/10.6084/m9.figshare.c.6975699
http://dx.doi.org/10.7717/peerj.17428

Peer

patient care, most did not need non-invasive ventilation in the first hour (68.8%) or
vasopressors (62.03%). However, 59.77% required vasopressors, 86.65% a central venous
catheter, 90.41% a bladder catheter, and 73.87% an arterial catheter. Only 9.21% needed
a transfusion. Regarding relative frequencies, the people who died presented one or more
conditions: hypertension, need for vasopressors, central venous catheter, bladder catheter,
and/or arterial catheter.

Regarding the continuous variables, in Table 3, it can be seen that the mean and median
values for age, highest creatinine at 1 hour, BUN, and duration of mechanical ventilation
were lower in the group of patients who were discharged compared to those who died.
Conversely, the length of hospital stay had lower mean and median values in the group
of deceased patients, possibly because the clinical progression to death is faster than the
recovery process in COVID-19 patients admitted to the ICU. Of the 126 variables collected
in this study, only 22 remained to classify patients progressing to discharge in order of
importance: duration of mechanical ventilation, hospital length stay, age, BUN, highest
creatinine 1 h, central venous catheter, bladder catheter, true vasopressors, acute respiratory
failure in the first hour, non-invasive ventilation failure, sex, vasopressors in the first hour,
uncomplicated diabetes (type 1 or 2), tracheostomy, hypothyroidism, systemic arterial
hypertension, non-invasive ventilation in the first hour, morbid obesity, arterial catheter,
transfusion, complicated diabetes, and severe COPD. Therefore, these variables were used
in logistic regression to estimate the Odds Ratio for discharge. The results of the logistic
regression are presented in Table 4.

According to Table 4, the chances of patients being discharged were 136% higher (OR
2.36;95% CI [1.28-4.44]; p=0.007) in females, 14% higher (OR 1.14; 95% CI [1.10-1.19];
p <0.001) as hospital length stay increases, 737% higher when there was no central venous
catheter (OR 8.37; 95% CI [2.41-30.44]; p < 0.001), 716% higher when there was no
bladder catheter (OR 8.16; 95% CI [2.30-32.14]; p = 0.002). However, they decrease by
3% for each additional year of age (OR 1.97; 95% CI [0.95-0.99]; p =0.011), and 9%
smaller (OR 0.91; 95% CI [0.86-0.96]; p =0.001) for each additional day of mechanical
ventilation.

Table 5 presents the confusion matrix as a performance report of the variables used in
RF and logistic regression to verify the variables associated with the patient’s discharge.
Regarding the training data of RF, the balanced accuracy (proportion of correctly classified
cases) could predict 80.5% of the classification, with a sensitivity (true positive rate) of
90.1% and specificity (true negative rate) of 70.9%. The positive predictive value (PPV)
expresses the proportion of true positive cases among all positive predictions, which was
84.9%, and the negative predictive value does the same for true negatives (NPV), which was
79.8%. The kappa (a measure of agreement between observed and predicted classifications)
was 62.6%, and the McNemar’s test (used to compare error proportions between models)
was not significant (p > 0.07). For the test data, balanced accuracy was 98.2%, sensitivity of
100%, specificity of 96.5%, PPV of 98.4%, NPV of 100%, kappa of 97.4% and McNemar’s
test was not significative.

Considering the training data, the logistic regression presents a balanced accuracy of
81.7%; that is, the model corrected 81% of the predictions, with a sensitivity of 74.6%
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Table 2 Absolute and relative frequency of clinical variables of patients admitted to the intensive care
unit with COVID-19, Maringa, Parana, 2023.

Variables N (%)

Total Discharge Death
Sex
Female 228 (42.86%) 90 (16.92%) 138 (25.94%)
Male 304 (57.14%) 90 (16.92%) 214 (40.23%)
COPD severe
No 495 (93.05%) 171 (32.14%) 324 (60.9%)
Yes 37 (6.95%) 9 (1.69%) 28 (5.26%)
Systemic arterial hypertension
No 159 (29.89%) 64 (12.03%) 95 (17.86%)
Yes 373 (70.11%) 116 (21.8%) 257 (48.31%)
Uncomplicated diabetes
No 356 (66.92%) 116 (21.8%) 240 (45.11%)
Yes 176 (33.08%) 64 (12.03%) 112 (21.05%)
Complicated diabetes
No 491 (92.29%) 169 (31.77%) 322 (60.53%)
Yes 41 (7.71%) 11 (2.07%) 30 (5.64%)
Morbid obesity
No 423 (79.51%) 136 (25.56%) 287 (53.95%)
Yes 109 (20.49%) 44 (8.27%) 65 (12.22%)
Hypothyroidism
No 478 (89.85%) 164 (30.83%) 314 (59.02%)
Yes 54 (10.15%) 16 (3.01%) 38 (7.14%)
Non-invasive ventilation in the first hour
No 366 (68.8%) 121 (22.74%) 245 (46.05%)
Yes 166 (31.2%) 59 (11.09%) 107 (20.11%)
Vasopressors in the first hour
No 330 (62.03%) 130 (24.44%) 200 (37.59%)
Yes 202 (37.97%) 50 (9.4%) 152 (28.57%)
Acute respiratory failure in the first hour
No 329 (61.84%) 119 (22.37%) 210 (39.47%)
Yes 203 (38.16%) 61 (11.47%) 142 (26.69%)
Vasopressors
No 214 (40.23%) 95 (17.86%) 119 (22.37%)
Yes 318 (59.77%) 85 (15.98%) 233 (43.8%)
Failure of non-invasive ventilation
No 428 (80.45%) 148 (27.82%) 280 (52.63%)
Yes 104 (19.55%) 32 (6.02%) 72 (13.53%)
Tracheostomy
No 440 (82.71%) 136 (25.56%) 304 (57.14%)
Yes 92 (17.29%) 44 (8.27%) 48 (9.02%)

(continued on next page)
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Table 2 (continued)

Variables N (%)

Total Discharge Death
Central venous catheter
No 71 (13.35%) 54 (10.15%) 17 (3.2%)
Yes 461 (86.65%) 126 (23.68%) 335 (62.97%)
Indwelling bladder catheter
No 51 (9.59%) 41 (7.71%) 10 (1.88%)
Yes 481 (90.41%) 139 (26.13%) 342 (64.29%)
PAM catheter
No 139 (26.13%) 72 (13.53%) 67 (12.59%)
Yes 393 (73.87%) 108 (20.3%) 285 (53.57%)
Transfusion
No 483 (90.79%) 167 (31.39%) 316 (59.4%)
Yes 49 (9.21%) 13 (2.44%) 36 (6.77%)

Table 3 Descriptive of continuous variables.

Variables Discharge Death
Age (years)

Mean 57.32 63.72
Median 60 65
Standard deviation 16.71 14.01
Length of hospital stay (days)

Mean 23.65 14.08
Median 17.5 12
Standard deviation 40.24 20.99
Highest creatinine 1 h (mg/dL)

Mean 1.03 1.36
Median 0.7 0.8
Standard deviation 1.43 2.07
BUN (mg/dL)

Mean 28.59 37.92
Median 22.65 30.84
Standard deviation 21.13 26.77
Duration of mechanical ventilation (days)

Mean 8.46 9.7
Median 6 8
Standard deviation 10.2 8.12

regarding the ability to classify truly positive cases, and the specificity of 88.9% showing
the ability to organize negative instances correctly and the kappa value of 64.5%. The test
data’s balanced accuracy was 85.5%, sensitivity 75.8%, and specificity 95.3%. The kappa
value was 73.9%, which indicates a substantial agreement between the predictions and the
valid classifications. At the same time, the McNemar test showed no significant differences
between the proportions of errors made by the models.
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Table 4 Multivariate logistic regression to detect variables related to discharge. Maringa, PR, 2023.

Variables Odds ratio Standard  95% IC p-value
error
(Intercept) 0.25 0.44 0.01-7.39 0.428
Age 0.97" 0.01 0.95-0.99 0.011
Sex [F] 2.36 0.75 1.28-4.44 0.007
Length of hospital stay 114" 0.02 1.10-1.19 <0.001
COPD severe [No] 2.94 2.42 0.63-15.58 0.190
Systemic Arterial Hypertension [No] 1.19 0.42 0.60-2.36 0.613
Uncomplicated diabetes [No] 0.91 0.30 0.48-1.72 0.766
Complicated diabetes [No] 0.70 0.42 0.22-2.42 0.552
Morbid obesity [No] 0.77 0.28 0.37-1.60 0.469
Hypothyroidism [No] 2.14 1.06 0.84-5.96 0.124
Non-invasive ventilation in the first hour [No] 1.38 0.54 0.64-3.01 0.417
Vasopressors in the first hour [No] 0.95 0.48 0.35-2.55 0.924
Acute respiratory failure in the first hour [No] 0.49 0.20 0.22-1.08 0.075
Vasopressors [No] 1.03 0.51 0.38-2.74 0.956
Highest creatinine 1 h 1.02 0.07 0.85-1.16 0.799
BUN 1.00 0.01 0.98-1.01 0.677
Non-invasive Ventilation Failure [No] 0.58 0.25 0.25-1.36 0.212
Duration of mechanical ventilation 0.91" 0.03 0.86-0.96 0.001
Tracheostomy [No] 0.47 0.21 0.19-1.14 0.098
Central Venous Catheter [No] 8.37" 5.37 2.41-30.44 0.001
Indwelling bladder catheter [No] 8.16 5.40 2.30-32.14 0.002
PAM catheter [No] 1.95 0.88 0.79-4.71 0.140
Transfusion [No] 1.60 0.81 0.61-4.46 0.350
Notes.
“p <0.05.
"p<0.01.
DISCUSSION

Machine learning can identify patterns in the variables involved in the outcome of patients
admitted to the intensive care unit due to COVID-19 and propose interventions and
decision-making to improve epidemiological data and build care plans.

Investigating and knowing the variables involved in the death and discharge of patients
in serious situations are relevant metrics for improving treatment, diagnosis, and quality
of care, reducing length of stay and mortality. This is the first study to collect 126 variables
to determine associated factors that contributed to the death or discharge of these patients.
Among the main factors, the variables, hospital length stay, central venous catheter, and
bladder catheter, were related to the discharge of patients admitted to the ICU with
COVID-19. In contrast, age and duration of mechanical ventilation were related to greater
chances of going to death. The model’s performance that detected these variables was
satisfactory since the training and test data results are similar.

Chimbunde et al. (2023) utilized RF to predict determinants of COVID-19 mortality in
South Africa. Surprisingly, their analysis revealed that being female was associated with
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Table 5 Confusion matrix showing the performance of training and test data with the variables used in logistic regression.

Random forest Logistic regression

Train Test Train Test
Outcome Discharge Death Discharge Death Discharge Death Discharge Death
Discharge 95 24 28 0 100 27 22 3
Death 39 220 1 64 34 217 7 61
Performance
Accuracy 0.833 0.989 0.838 0.892
95% Confidence interval 0.791-0.869 0.941-0.999 0.797-0.874 0.811-0.947
Kappa 0.626 0.974 0.645 0.739
McNemar’s test p-value 0.07 1.000 0.442 0.342
Precision 0.849 0.984 0.787 0.880
Recall 0.901 1.000 0.746 0.758
F1 score 0.874 0.992 0.716 0.814
Sensitivity 0.901 1.000 0.746 0.758
Specificity 0.709 0.965 0.889 0.953
Positive predictive value 0.849 0.984 0.787 0.880
Negative predictive value 0.798 1.000 0.864 0.897
Accuracy balance 0.805 0.982 0.817 0.855

increased mortality, contrary to findings from our study and others, which suggested that
being female was protective (Elhazmi et al., 2022; Kar et al., 2021). Itis noteworthy that their
study incorporated different variables than ours. This highlights that the choice of variables
can significantly impact the variables identified as associated with the outcome. Moreover,
their model exhibited different performance metrics compared to ours, achieving a recall
of 76% and a precision of 87%, whereas our model achieved a higher recall of 90.1%
and precision of 84.9%, indicating that our model correctly identified more true positives
(Chimbunde et al., 2023; Hicks et al., 2022).

Prolonging hospital length stay was related to patient improvement, and this can be
corroborated by Rees et al. (2020), who carried out a systematic review of the length of
hospital stay and found that patients who were discharged had a more extended hospital
stay than those who died after admission (Rees et al., 2020). However, this variable is
complex since other studies have detected the opposite. This difference may be related to
different criteria used to admit patients to ICUs and the particularities adopted regarding
patient care in each location where the studies were conducted (da Costa Sousa et al., 2022;
Gupta et al., 2020).

Non-use of a central venous catheter was another variable correlated with patient
discharge. Around 5% to 10% of individuals infected with COVID-19 have clinical
conditions that require hospitalization in the ICU and the use of mechanical ventilation
(Pericas et al., 2020; Wu & McGoogan, 2020). In severe cases, the occurrence rate of acute
kidney injury and septic shock is 15% and 20%, respectively (Ng et al., 2020). Consequently,
administering vasoactive agents or hemodialysis is often necessary, and central venous
access is expected (Chun et al., 2020). The central venous catheter is a medical device used
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in patients who require long-term treatments or large-volume infusions, enabling rapid
infusions of volumes and medications that cannot be administered through peripheral
vascular access (Dias et al., 2022). In this sense, the importance of this instrument in
stabilizing the patient and increasing the survival rate is observed. However, not many
specific studies have evaluated the use of this instrument in the ICU for patients with
COVID-19; on the contrary, some studies have shown a risk of contracting infections and
other thrombolytic problems arising from this procedure (Lugon et al., 2022).

Another interesting finding in this study was the non-use of the bladder catheter as
a predictive variable for patient discharge. Although it is also an instrument capable of
evaluating specific renal parameters of patients, it can help doctors make decisions for
the patient’s clinical improvement. However, it is frequently associated with urinary
tract infections in ICUs (Diaz Polldn et al., 2022; Ong et al., 2021). This underscores the
importance of minimizing invasive procedures and implementing strategies to reduce
the risk of catheter-associated complications in critically ill patients with COVID-19.
Addressing these factors may potentially improve patient outcomes and shorten hospital
stays.

Regarding the risks of death, studies have investigated the relationship between age and
duration of mechanical ventilation with the death of patients with COVID-19 admitted to
the ICU (Grasselli et al., 20205 Richardson et al., 2020; Wang et al., 2020). In general, there
is a tendency for older patients to have a higher risk of dying, and patients who require
mechanical ventilation for more prolonged periods also have a higher risk of death (Auld
et al., 20205 Domecq et al., 2021). The same was corroborated in this study, in which the
average age of death was people over 60 years old.

It was possible through technology to verify the presence of these variables involved in the
discharge and deaths of patients admitted to the intensive care unit. This study suggests that
paying more attention to these variables is necessary to prevent the condition’s progression
and increase complications. The use of machine learning in the ICU is evolving but is
still limited to diagnostic and prognostic values. Henry et al. (2015) developed a machine
learning methodology using the MIMIC Clinical Database (Multiparametric Intelligent
Monitoring in Intensive Care) —II. They created a model that considers the censoring
effects of clinical interventions on the clinical outcomes of patients. This model, called
targeted real-time early warning score (TREWScore), can identify patients at high risk
of developing septic shock; it was created in 2015 and is already being applied in some
hospitals worldwide (Henry et al., 2015; Niemantsverdriet et al., 2021). Therefore, it is likely
that the use of machine learning tools will become more and more frequent in the future.
In this way, this research confirms the findings of previous studies where machine learning
demonstrated reliability in determining death and discharge variables.

This study has some limitations. The first is that it is an observational study in which
the limits are due to the possibility that some essential variables have not been taken into
account or the identification of risk variables. However, more than 126 variables were used
here and were carefully selected to create a robust analysis model. The second limitation
is that this is a study from a hospital in southern Brazil, which makes it challenging to
make generalizations at a global level. However, as technical procedures are standardized
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across the national territory, and considering that Brazil has continental dimensions and
the diversification of the Brazilian people, it is possible to infer that results can be obtained
in other locations within the national territory. Finally, we evaluated the generalizability
using the same dataset divided into training and testing sets. This practice is discouraged
due to potential demographic biases, as well as biases introduced during data collection,
processing, and organization. However, validating the model on additional datasets beyond
the original development dataset may not always be feasible due to ethical, technical, or
financial constraints associated with sharing clinical data (Yang, Soltan & Clifton, 2022).

CONCLUSIONS

The use of machine learning techniques was possible to identify variables associated with
the discharge of patients admitted to the ICU due to COVID-19. The results indicate
that factors such as gender, length of hospital stay, presence of central venous catheter,
and bladder catheter were significantly related to the likelihood of hospital discharge.
Additionally, the study demonstrated that age and duration of mechanical ventilation had
a negative impact on the chances of patient discharge. Both the Random Forest and logistic
regression models showed satisfactory performance in predicting hospital discharge, with
consistent results between training and test data. These findings suggest that the use

of ML can be a valuable tool in identifying prognostic factors and supporting clinical
decision-making in critically ill COVID-19 patients in the ICU.
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