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ABSTRACT
Background. The anthropause during the recent COVID-19 pandemic provided a
unique opportunity to examine the impact of human activity on seabirds. Lockdowns in
Peru prevented people from visiting coastal areas, thereby reducing garbage disposal on
beaches and the movement of microplastics into the ocean. This cessation of activities
likely led to a temporary decrease in plastic pollution in coastal regions. We aimed to
investigate this phenomenon in inshore-feeding neotropic cormorants (Nannopterum
brasilianus) along the Circuito de Playas Costa Verde (CPCV), situated on the coastal
strip of Lima, Peru (∼ 11 million people).
Methods. We collected and analyzed fresh pellets along the CPCV before (over 11
months) and during the pandemic lockdowns (over 8 months).
Results. Our findings revealed a significant reduction in the occurrence of plastic
in pellets during the pandemic period (% Oc = 2.47, n= 647 pellets) compared to
pre-pandemic conditions (% Oc = 7.13, n= 800 pellets). The most common plastic
debris item found in the pellets was threadlike microplastic. Additionally, our study
highlights the direct correlation between human presence on beaches and the quantity
of microplastics (mainly threadlike) found in cormorant pellets. We suggest that the
reintroduction of these materials into the sea, previously accumulated on the coast, is
likely facilitated by the movement and activity of beachgoers toward the ocean.

Subjects Animal Behavior, Conservation Biology, Zoology, Environmental Impacts, COVID-19
Keywords COVID-19, Plastic, Seabirds, Cormorants, Anthropause, Lockdowns, Nannopterum
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INTRODUCTION
During the COVID-19 pandemic, the term ‘‘anthropause’’ was coined to describe the
global reduction in human activity. This unusual and temporary decline had a significant
impact on the environment (Rutz, 2022). The decrease in human mobility provided a
unique opportunity to study how fauna responds to such a reduction (Bíl et al., 2021; Coll,
Ortega-Cerdà & Marcarell-Roller, 2021; Madhok & Gulati, 2022; Markard & Rosenbloom,
2020).
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The lockdowns and curfews implemented during 2020–2021 provided an opportunity
to study the effects of human activity on the environment by comparing conditions
before, during, and after the pandemic in sites with varying levels of social mobility
restrictions (Rutz et al., 2020). This unique opportunity allowed detailed analysis of the
various interactions between humans and wildlife, which is crucial for the development
of conservation policies (Bates et al., 2021). The diversity of studies on the effects of the
anthropause on animals has increased due to the lockdowns worldwide, indicating that
this period was crucial for many species affected by human activity (Manenti et al., 2020;
Perkins, Shilling & Collinson, 2021; Schrimpf et al., 2021).

As a result of the anthropause, changes in animal behavior have been reportedworldwide.
The use of roads, airports, and recreational areas for resting and breeding by various animal
taxa was commonly observed (Manenti et al., 2020; Schrimpf et al., 2021). The behavior
responses varied depending on the species, type of human mobility, and time scale. For
instance, birds which typically fed in residential gardens were seen less frequently because
homeowners were more frequently using their backyards for recreation during lockdowns
(Madhok & Gulati, 2022). Furthermore, changes in road use during lockdowns led to
a significant reduction in wildlife mortality, with notable decreases in wildlife-vehicle
collisions in countries like Estonia, Spain, Israel, and the Czech Republic, as well as a
50% reduction in hedgehog mortality on roads in areas of Poland (Bíl et al., 2021; Łopucki
et al., 2021). The occupancy of beaches by wildlife was also affected during lockdowns.
Crabs, endangered sea turtles, iguanas, and various species of seabirds had the opportunity
to occupy areas that were frequently visited by tourists (Soto et al., 2021). However, the
absence of control, surveillance, andmanagement led to increased threats to native wildlife,
due to the invasion of non-native species and illegal hunting in some locations (Manenti et
al., 2020).

Among the groups of birds that have benefited from the anthropause are
seabirds (Hentati-Sundberg et al., 2021; Schrimpf et al., 2021). For example, magnificent
frigatebirds (Fregata magnificens), laughing gulls (Leucophaeus atricilla), and cormorants
(Phalacrocoracidae) were commonly observed on urban beaches (Soto et al., 2021).
However, other species were affected by the absence of human activity in tourist areas. A
reduction in reproductive success in common murres (Uria aalge) was reported due to
disturbance from white-tailed eagles (Haliaeetus albicilla) when tourists were not present
in the murres’ breeding areas (Hentati-Sundberg et al., 2021). Nonetheless, while studies
of the effects of the anthropause have been conducted on some beaches in Latin America
(Soto et al., 2021) marine pollution, particularly plastic contamination, remains a pressing
concern worldwide. Lima, a coastal city with over 11 million inhabitants (INEI , 2022), is
notably affected, presenting high levels ofmarine pollution (Ayala, Cabrera & Quispe, 2007;
Purca & Henostroza, 2017; Tapia et al., 2018; Gambini et al., 2019). One of the most visited
beaches in Lima is the Circuito de Playas Costa Verde (CPCV), which not only receives
millions of visitors during the summer but is also with high levels of plastic contamination
(Blondet, Plaza-Salazar & Barona, 2023), including microplastics (De-la Torre et al., 2020).

Despite such challenges, along a 16 km stretch of the coastline, CPCV offers areas for
recreation, education, sports, and vehicle transit (Majluf, 2014; ATUC, 2022). A group
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of 460 neotropic cormorants are common residents along the CPCV (Lozano-Sanllehi
& Zavalaga, 2021). This species is susceptible to indirect plastic ingestion from its prey
(Azzarello & Vleet, 1987), making it an indicator for measuring the anthropause’s effect
on marine plastic pollution. By analyzing regurgitated pellets with indigestible elements
(Barrett et al., 2007), crucial information about the incidence of plastic in the diet of
neotropic cormorants can be obtained (Barrett et al., 2007). However, there is a noticeable
lack of such information in Peru.

On March 16, 2020, Peruvian authorities implemented the first mandatory COVID-19
lockdown, which endured for several months. Given the circumstances and the notable
presence of microplastics on beaches (Chen & Chen, 2020; Bayo, Rojo & Olmos, 2019;
Retama et al., 2016), coupled with the substantial foot traffic typically observed in these
areas before the pandemic, it is likely that plastic materials were introduced into the sea
through the movement of people between the beach and the water. Furthermore, tourists
bathing in the sea contribute to microplastic pollution in coastal waters by shedding textile
fibers from their clothing (Akkajit et al., 2021). We hypothesized that during the lockdown
in Peru, plastic ingestion by neotropic cormorants would significantly decrease compared
to before the lockdowns. Consequently, the objective of this study was to compare the
occurrence of plastics in the pellets of neotropic cormorants on CPCV before and during
the COVID-19 pandemic.

MATERIALS & METHODS
Study area
The CPCV is a 16-km narrow coastal strip located in Lima, Peru, that experiences high
traffic of vehicles and people throughout the year. The main characteristics of the CPCV
include beaches, parks, sports centers, restaurants, clubs, parking areas located adjacent to
the beaches, and infrastructure for pedestrian and vehicular traffic. The highway has two
to three lanes designated for vehicular traffic in both directions. The median strip contains
public lighting poles and telephone cables that serve as perching sites for neotropic
cormorants at four main locations along the highway (Lozano-Sanllehi & Zavalaga, 2021).
A total of 1,447 neotropic cormorant pellets were collected from a specific section of this
highway (collection started at−12.124764◦S,−77.039605◦W and ended at−12.122067◦S,
−77.044313◦W, Fig. 1) in the district ofMiraflores betweenOctober 27, 2019, and February
28, 2021.

Definition of the pandemic phases
We examined the contents and the frequency of occurrence (%FO) of the pellets to identify
plastic and other anthropogenic non-plastic debris before (pre-pandemic) and during
(pandemic) the COVID-19 lockdowns in Lima, Peru. Likewise, to determine any changes
in diet composition of cormorants between phases, we calculated the relative number of
prey items (%NU) for each phase by sorting and counting the otoliths identified to species
level in the pellets. Pre-pandemic phase refers to the time before March 16, 2020, when
human activities in Peru and the CPCV were not restricted. Throughout the year, people
frequented the beaches for leisure, with the highest number of visitors during the austral
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Figure 1 Map of the study area depicting part of the Circuito de Playas Costa Verde (CPCV) in the dis-
trict of Miraflores. The inset illustrates the specific section of the CPCV where the neotropic cormorant
(Nannopterum brasilianus) pellets were collected.

Full-size DOI: 10.7717/peerj.17407/fig-1

summer (December–March). Despite the high influx of vehicles and people, neotropic
cormorants were regularly seen perching on the light poles and telephone lines (Majluf,
2014; Lozano-Sanllehi & Zavalaga, 2021).

Before the pandemic, pellet collection was facilitated by a little wide area in the median
strip located in the southern portion of the study area. During the pandemic, the restriction
of vehicular circulation also allowed access to other areas along the narrow highway
median for pellet collection. However, after the pandemic, the small area designated for
pellet collection was closed, and vehicle access to the highway was restored, presenting a
challenge to the continuation of pellet collection.

During the pandemic phase, access to the CPCV and nearby beaches was either
completely prohibited (full lockdown) or restricted (partial lockdown) for people and
vehicles (Table 1). Beaches were entirely off-limits to the public fromMarch 16 to October
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Table 1 List of restriction measures on the Circuito de Playas Costa Verde (CPCV) highway and
beaches during the Covid-19 pandemic phase in Peru.

COVID-19 measure Related decree Dates Restrictions on the CPCV

1. Full lockdown 044-2020- PCM,
080-2020-PCM and
1484-LD

16 Mar.–1 Jul. 2020 No access for people
and vehicles to the
beach and the highway.
(1 Mayo: Reactivation of
fisheries activities)

2. Strict partial
lockdown

116-2020- PCM 2 Jul.–22 Oct. 2020 Access was limited to weekdays
only, with no access permit-
ted on weekends. Pedestrians
were allowed access to the high-
way on weekends, but not to the
beaches, except for non-contact
watersports (e.g., surfing, swim-
ming).

3. Partial lockdown 170-2020-PCM and
184-2020- PCM

23 Oct.–31 Dec. 2020 Pedestrians were allowed
partial access to the beach
from Monday to Thursday.
The highway and beaches
were closed over the weekend.
However, the beaches were open
for non-contact water sports
activities during weekdays.
(25 Nov.-23 Dec.: The highway
was also open on Sundays)
(24, 25, and 31 Dec.: No public
access to the highway and
beaches)

4. Strict partial
lockdown

202-2020-PCM,
002-2021-PCM, and
008-2021-PCM

1 Jan.–24 Feb. 2021 Access to the beaches only for
non-contact watersports. The
highway was only closed on
Sundays from 5 am to 12.30 pm.
(Second wave of COVID-19 in
Perú.)

5. End of lockdown 208-2020- PCM 25 Feb. 2021 Entrance to the beaches and the
highway was permitted.

22, 2022. However, they were partially accessible from October 23, 2020, until February
28, 2021.

Collection and analysis of pellets
During the pre-pandemic phase (October 2018–February 2020), a total of 11 visits were
conducted. On each visit, a minimum of 11 and a maximum of 138 fresh pellets were
collected as part of a project monitoring the neotropic cormorant diet. These pellets were
stored in a freezer (−40 ◦C) for subsequent analysis.

During the pandemic phase (July 2020–February 2021) a total of 19 weekly visits were
conducted to the study area, with between 11 and 77 fresh pellets being collected during
each visit. All pellets were collected during the morning hours to obtain a greater quantity
of fresh pellets, which were then individually packaged in 5 × 32 cm paper bags and
frozen. Twenty-four hours before analysis, the pellets were defrosted in water and placed
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on individual Petri dishes. All solid components (such as fish otoliths, vertebrae, shells,
plastic, and others) were sorted and allowed to dry at room temperature. In this case, the
otoliths found were considered to evaluate the changes and composition in the diet of the
cormorants. After the sorting process, the otoliths were further washed and dried to remove
any obstructing organic matter or debris. For the identification of the species pertaining
to the otoliths we employed the use of the identification guides by Oré-Villalba (2017)
and García-Godos (2001) as well as the UIEM (Unidad de Investigación de Ecosistemas
Marinos) private otolith collection for reference.

For the plastic debris, if required, a stereoscope (10x magnification) was employed to
classify specific plastic debris subcategories, as described by Franeker et al. (2011):

• Sheetlike: Sheets derived from plastic bags.
• Threadlike: Filaments like ropes, threads, and plastic fibers.
• Fragment: Pieces of plastic objects such as bottles, boxes, toys, and tools.

The plastic debris (>0.1 mm) were measured using a digital caliper (Mitutoyo 150
mm, accuracy 0.1 mm). They were also classified according to their size into microplastics
(5 mm), mesoplastics (≥ 5 mm and≤ 25 mm) and macroplastics (>25 mm). Additionally,
non-plastic debris (>0.1 mm) such as glass, metal, paint chips, balloons, and fibers, were
also measured in the same manner. All debris were grouped, counted, and separated
according to their characteristics.

Data analysis
During each sampling phase, the frequency of occurrence (%FO) of plastic was determined
by dividing the count of pellets containing plastic debris by the total number of pellets
collected, and then multiplying by 100. In some cases, pellets were collected on different
days or weeks within a month. For data analyses, these collections were pooled in a single
month. To test for differences in plastic intake by cormorants and prevalence of type of
debris before and during the pandemic, a 2 ×2 Chi-square contingency table was used
(Silva-Costa & Bugoni, 2013). Additionally, the average litter load in pellets was calculated
by dividing the number of anthropogenic items found per month by the total number
of pellets found per month. This approach facilitated the reporting of the average loads
of plastic and other anthropogenic materials to determine if these loads also vary with
lockdown levels. The Mann–Whitney U test was used to compare the litter load per pellet
between phases as data distribution did not follow the normality criteria (Shapiro–Wilks,
W = 0.564, P < 0.0001). Changes in diet composition were tested with a paired t -test by
comparing the %NU of the main prey.

All field procedures were ethically approved by the committee of ethics Universidad
Cientifica del Sur (Constancia N ◦ 057-CIEI-AB-CIENTÍFICA-2021).

RESULTS
Pellet composition
Plastic debris and non-plastic debris were found in 96 out of 1,447 pellets analyzed (%FO
= 6.63) during both the pre-pandemic and pandemic phases. The total number of debris
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Table 2 Composition of plastic and non-plastic debris found in 1,447 analyzed pellets of the neotropic
cormorant,N. brasilianus, on the Circuito de Playas Costa Verde (CPCV), Lima, Perú, during both the
pre-pandemic and pandemic phases. The table provides a summary of anthropogenic categories, with
their respective median sizes, size ranges, item counts, and percentage occurrence in pellets.

Plastic categories Median
(mm)

Size
(Range mm)

Items
(n)

Pellets
(n)

%FO
(pellets)

Sheetlike 6.26 28.91 24 21 1.45
Threadlike 13.63 200.61 96 35 2.42
Fragments 5.94 24.8 23 22 1.52
Rubbish categories Median(mm) Size(Range mm) Items

(n)
Pellets
(n)

%FO
(pellets)

Glass 7.70 6.68 3 3 0.21
Wood 12.09 7.49 3 3 0.21
Metal 10.67 14.56 4 4 0.28
Fibers 23.44 51.26 10 10 0.69
Balloon 9.71 0 1 1 0.07
Paint chip 2.15 1.07 2 2 0.14

items identified was 179, of which 150 were classified as plastic debris. Threadlike items
(micro and mesoplastics) were the most common plastic debris category compared to
sheetlike and fragment items (Table 2). The occurrence of threadlike items in pellets with
debris items showed no significant difference before (%FO = 39%) and during (%FO =
56%) the pandemic period (Chi-square, χ2

= 0.953, P = 0.329, df = 1).
In addition to plastic, various other types of anthropogenic materials found in 23 out

of 1,447 pellets were identified and classified as non-plastic debris. The most encountered
category was fibers, followed by metal, glass, wood, paint chips and balloons (Table 2).

Phases of COVID-19 and the presence of anthropogenic materials
During the pre-pandemic phase, 57 pellets (%FO = 7.13, N = 800) contained plastic,
whereas the content of 13 pellets (%FO = 1.62, N = 800) was identified as non-plastic
debris. In the pandemic phase, 16 pellets (%FO = 2.47, N = 647) contained plastic debris,
and no pellets contained non-plastic debris. This difference was significant (Chi-squared
= 16.47, df = 1,p-value <0.0001, Fig. 2). There was a clear fluctuation in the percentage
occurrence of plastic in the cormorant pellets both prior and during the COVID-19
pandemic (Fig. 2), but when data is grouped within seasons of the year (spring, summer
and winter, no data for autumn), no significant differences in the percentage of occurrence
of plastic in cormorant pellets were found during pre-pandemic (Chi-square = 0.052,
df = 1,p-value = 0.974) nor during pandemic phases (Chi-square = 1.38, df = 1,p-value
= 0.5).

During the pre-pandemic phase, there was a significantly higher overall litter load per
pellet (Mann–Whitney U -test, U = 71, p-value = 0.028, Fig. 3). In February 2021, there
was a peak of litter load attributed to the presence of one exceptional single pellet containing
57 litter items; apart from this anomaly, the litter load during this period was consistently
low.
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2019 2020 20212018

1. Full lockdown
SD 044-2020-PCM
(16 Mar. - 1 Jul. 2020)
SD 080-2020-PCM and 
LD 1484 (reactivation 
of fisheries activities - 1 
May 2020)

2. Strict partial 
lockdown
SD 116-2020 PCM
(2 Jul. - 22 Oct. 2020)

5. End of lockdown 
SD 282-2021 PCM
(25 Feb. 2021)

3. Partial lockdown
SD 170-2020 and 184-2020 PCM
(23 Oct. - 31 Dec. 2020)

4. Strict partial  
lockdown
SD 202-2020, 002-2021 
and 008-2021 PCM
(1 Jan. - 24 Feb. 2021)

Without restrictions 

n = 800 n = 647

138 

138 

95 

15 
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77 

60 
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51 

90 

25 

18 

18 

66 

263 
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26 
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Figure 2 Overall monthly percentage of occurrence of plastic in the pellets ofN. brasilianus during
the pre-pandemic (blue) and pandemic (orange) phases of COVID-19 on the Circuito de Playas Costa
Verde (CPCV), Lima, Perú. The numbers along the lines indicate the number of pellets collected each
month. N= total number of pellets collected prior and during the pandemic. The top legend describes the
restrictions imposed by government authorities during the pandemic.

Full-size DOI: 10.7717/peerj.17407/fig-2

Thediet of neotropic cormorants primarily consisted of five fish species, which accounted
for 99% and 97% of the total prey species by number before and during the pandemic,
respectively. There was no significant difference in the type of prey and the percentage
numerical abundance (%NU) between the two phases (Paired t -test, t = 0.0762, df = 4,
P = 0.24). The main fish prey included big nose anchovy (Anchoa nasus), which comprised
56% before the pandemic and 35% during the pandemic, minor stardrum (Stellifer minor)
at 20% vs. 23%, Peruvian anchovy (Engraulis ringens) at 10% vs. 17%, lorna drum (Sciaena
deliciosa) at 9% vs 16%, and Peruvian silverside (Odontesthes regia) at 4% vs. 6%.

In terms of the classification of plastics by size during the analyzed periods, it was
observed that during the pre-pandemic phase, 17.19% were macroplastics, 48.44% were
mesoplastics, and 34.38% were microplastics. However, during the pandemic, these
percentages shifted to 17.33% for macroplastics, 73.33% for mesoplastics, and 9.33% for
microplastics. As mentioned previously, regarding the classification by type of plastic, it
is important to clarify that no significant differences were found between the evaluated
periods. However, the most common type of plastic observed throughout the study was
threadlike (Fig. S4).
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2019 2020 20212018

1. Full lockdown
SD 044-2020-PCM
(16 Mar. - 1 Jul. 2020)
SD 080-2020-PCM and 
LD 1484 (reactivation 
of fisheries activities - 1 
May 2020)

2. Strict partial 
lockdown
SD 116-2020 PCM
(2 Jul. - 22 Oct. 2020)

5. End of lockdown 
SD 282-2021 PCM
(25 Feb. 2021)

3. Partial lockdown
SD 170-2020 and 184-2020 PCM
(23 Oct. - 31 Dec. 2020)

4. Strict partial  
lockdown
SD 202-2020, 002-2021 
and 008-2021 PCM
(1 Jan. - 24 Feb. 2021)

Without restrictions 

n = 800 n = 647

Figure 3 Overall monthly litter load (average number of elements per pellets that measure the num-
ber of plastic and other anthropogenic items) of plastic items and non-plastic items in the pellets of
N. brasilianus during the pre-pandemic (blue) and pandemic (orange) phases of COVID-19 on the Cir-
cuito de Playas Costa Verde (CPCV), Lima, Perú. The top legend describes the restrictions imposed by
government authorities during the pandemic.

Full-size DOI: 10.7717/peerj.17407/fig-3

DISCUSSION
This study revealed that the occurrence of plastic in neotropic cormorant pellets fromCPCV
beaches, Lima’smost recreational coastal areas, was three times lower and had a higher litter
load per pellet during a period of COVID-19 lockdowns in Peru compared to pre-pandemic
conditions. The reduction in plastic ingestion is likely attributed to restrictions on beach
access for beachgoers. Neotropic cormorants did not shift the type or relative abundance
of prey consumed between the two phases. Therefore, any differences observed in the
occurrence of plastic cannot be attributed to a change in diet if secondary plastic ingestion
may have occurred. A lower volume of microplastic in the marine ecosystem seems to
be an immediate response to a reduction of littering on beaches during the mandatory
lockdowns (Zambrano-Monserrate, Ruano & Sanchez-Alcalde, 2020; Okuku et al., 2021;
Orzama-González, Castro-Rodas & Statham, 2021; Soto et al., 2021), butmicroplastic found
in cormorant pellets probably needed years to decades to breakdown from their original
source (Gregory, 2009;Andrady, 2011), remaining in themarine environment even after the
onset of lockdowns. However, the response by cormorants in reducing plastic ingestion was
almost immediate, which suggests that other processes may be involved. Large amounts of
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plastic particles had been already detected on the CPCV (Blondet, Plaza-Salazar & Barona,
2023) and microplastic debris in other beaches in Lima (Purca & Henostroza, 2017; De-la
Torre et al., 2020) prior to the COVID-19 pandemic.

Two possible explanations for the quick turnover observed could be attributed to the
introduction of microplastics into the sea due to the high presence of people engaging in
recreational activities. These activities, such as swimming and surfing, have been shown to
generate microplastic fibers through the shedding of clothing fibers (Retama et al., 2016;
Akkajit et al., 2021; Luo et al., 2022), categorized as ‘‘threadlike’’ in this study, which were
the most common type of microplastic andmesoplastic identified throughout the course of
the study. Alternatively, it is suggested that microplastics were no longer displaced into the
sea by beachgoers during their recreational activities when access was restricted. It is worth
noting that sandy beaches may experience a greater reintroduction of microplastics, as sand
can easily contain this type of residue (Vermeiren et al., 2021), which can then be transported
to the sea, particularly critical in beaches adjacent to the collection site. These factors may
also explain the progressive increase in plastic presence in pellets when restrictions on beach
access were relaxed months after the onset of the pandemic. Additionally, oceanographic
processes such as local currents and upwelling further influence the dynamics of plastic
distribution in coastal areas. Region-specific oceanographic processes, as highlighted by
Manay et al. (2021), contribute to the accelerated presence of microplastics in coastal
environments (Lebreton, Greer & Borrero, 2012; Eriksen et al., 2014).

Neotropic cormorants are considerably affected by entanglement in ghost nylon nets
and the use of plastic for their nests (Ayala et al., 2023). Plastic has already permeated
the marine trophic web in Peru, with reports in fish (De-la Torre et al., 2019; Fernández
& Anastasopoulou, 2019), seabirds (Thiel et al., 2018; Díaz-Santibañez, Clark & Zavalaga,
2023), and marine mammals (Perez-Venegas et al., 2020; Santillán, Saldaña Serrano &
De-la Torre, 2020). Given the common occurrence of threadlike plastic in marine sediment
(Cisneros, Montero & Guevara, 2021), it is crucial to recognize its impact on the marine
ecosystem. Being benthic divers (Quintana et al., 2004), neotropic cormorants consume
benthic andmesopelagic fish (Galarza, 1968;Casaux et al., 2009;Petracci et al., 2009;Muñoz
Gil et al., 2012). As a result, they are likely to ingest this type of plastic through trophic
transfer from their prey. This finding is consistent with Franco et al. (2019) and Álvarez,
Barros & Velando (2018), who noted that threadlike plastic was the most frequently
encountered category of plastic debris among seven seabird species. Nevertheless, the
possibility of direct ingestion of plastic particles during underwater prey pursuit cannot
be ruled out, considering their potential persistence within the water column—whether
suspended, floating at the sea surface, or buried in the bottom sediment. This is particularly
relevant as neotropic cormorants exhibit a foraging behavior that involves the exploitation
of mid-water and bottom-dwelling fish (Casaux et al., 2009; Petracci et al., 2009). The
observed high density of plastic fragments and microplastics on the beaches of the
CPCV (Blondet, Plaza-Salazar & Barona, 2023) and neighboring coastal areas (Purca &
Henostroza, 2017; Gambini et al., 2019) implies that the transport of such materials to the
sea is likely facilitated by tidal movements, ocean swells, and human activities along the
beaches.
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Overall, plastic items were found in 7.13% of neotropic cormorant pellets during
the pre-pandemic phase. These results are very similar to those reported by the Guanay
cormorant in the coast of Peru (7% frequency of occurrence) (Díaz-Santibañez, Clark &
Zavalaga, 2023) and within the range reported in other cormorant species (Robards, Piatt
& Wohl, 1995; Acampora, Newton & O’Connor, 2017; O’Hanlon et al., 2017; Brookson et
al., 2019; Franco et al., 2019; Baak et al., 2020). While our study provides insights into the
immediate effects of lockdown measures on plastic ingestion by neotropic cormorants,
it is crucial to acknowledge the complexity of plastic pollution dynamics, influenced by
various factors. These factors include but are not limited to, human activities unrelated to
the pandemic, such as the impact of wastewater treatment plants (WWTPs). Currently,
only one WWTP, La Chira, is responsible for wastewater treatment in southern Lima, yet
there is insufficient evidence to confirm its efficacy in waste eradication (ATUC, 2023).
Moreover, WWTPs do not fully eliminate microplastics, with removal rates sometimes
falling below 30% (Lyare & Bond, 2020; Xu, Bai & Ye, 2021). Thus, the significant influence
of WWTPs on the occurrence of microplastics and mesoplastics in the sea near CPCV
cannot be overlooked. Future research endeavors should delve deeper into this aspect to
comprehensively understand how human activities and environmental factors collectively
contribute to plastic pollution and its uptake by marine organisms.

CONCLUSIONS
In this study, a decrease in the frequency of plastic occurrence in neotropical cormorant
pellets was observed, from 7.13% in the pre-pandemic phase to 2.47% during the
COVID-19 pandemic. This highlights the potential impact of beach access restrictions
on reducing marine plastic pollution. However, the presence of plastics was not completely
eradicated even with reduced human activity, suggesting the need for further research
to fully understand the various factors that contribute to this type of pollution, such as
WWTPs. Additionally, a post-pandemic examination of neotropical cormorant pellets
could have provided a more complete understanding of anthropogenic plastic pollution.
Unfortunately, post-pandemic access to the pellet collection area was restricted due to
inaccessibility or safety concerns, which limited their collection. Despite this limitation,
our findings indicate that neotropical cormorant pellets can be an effective non-invasive
tool for monitoring plastic pollution in marine environments.
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