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ABSTRACT
Micturition serves an essential physiological function that allows the body to eliminate
metabolic wastes and maintain water-electrolyte balance. The urine spot assay (VSA),
as a simple and economical assay, has been widely used in the study of micturition
behavior in rodents. However, the traditional VSAmethod relies on manual judgment,
introduces subjective errors, faces difficulty in obtaining appearance time of each
urine spot, and struggles with quantitative analysis of overlapping spots. To address
these challenges, we developed a deep learning-based approach for the automatic
identification and segmentation of urine spots. Our system employs a target detection
network to efficiently detect each urine spot and utilizes an instance segmentation
network to achieve precise segmentation of overlapping urine spots. Compared with
the traditional VSAmethod, our system achieves automated detection of urine spot area
of micturition in rodents, greatly reducing subjective errors. It accurately determines
the urination time of each spot and effectively quantifies the overlapping spots. This
study enables high-throughput and precise urine spot detection, providing important
technical support for the analysis of urination behavior and the study of the neural
mechanism underlying urination.

Subjects Biochemistry, Computational Biology, Urology
Keywords Animal model, Automatic recognition, Deep learning, Lower urinary tract, Void spot
assay

INTRODUCTION
Micturition, a complex neuromuscular activity, is governed by the central nervous system
and is vital for maintaining physiological health (Adriaansen et al., 2017; Yao et al., 2018).
In many mammals, this basic physiological process also fulfills several biological functions,
including socialization, reproduction, and territorial marking (Hou et al., 2016; Keller et
al., 2018). Dysfunctions in the lower urinary tract, such as urinary frequency, urgency,
and incontinence, can significantly impair a patient’s quality of life (Abarbanel et al.,
2003). Consequently, a comprehensive understanding of neuromodulatory mechanisms
during both normal and abnormal micturition is essential for guiding clinical diagnostics
and treatments (Yu et al., 2014). Various methods exist for assessing lower urinary tract
function, ranging from noninvasive voiding spot assay (VSA) and metabolic cage testing
to more invasive urodynamic studies (Sartori, Kessler & Schwab, 2021).
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In experimental animal models, particularly rodents, VSA techniques are widely used
by many researchers to evaluate spontaneous micturition patterns, thus playing a pivotal
role in exploring lower urinary tract physiology and its neurobiological underpinnings.
VSA was validated for evaluation of bladder function and found correlations with certain
cystometric pressures but not others (Hodges et al., 2008). Some researchers associated
ketamine treatment in mice with increased voiding on VSA despite unchanged cystometric
results (Rajandram et al., 2016). The voiding frequency inHtr3amutantmice was evaluated
through VSA analysis, which was not corroborated by cystometric assessments (Ritter et al.,
2017). The VSA approach was also utilized for sex-specific behavioral analysis related to sex
hormones (Wu et al., 2009). In addition, some studies were conducted to assess age-related
urothelial changes in male mice with a 4-hour free-access assay (Desjardins, Maruniak &
Bronson, 1973). A 4-hour water-restricted assay was used by associating 1 integrin knockout
in mice with mechanosensory bladder overactivity (Kanasaki et al., 2013). However, within
the previous studies, traditional VSA techniques present challenges in analysis, especially
when dealing with overlapping urinary spots, which are time-consuming and subject to
data analysis variability and errors. Additionally, these methods often fail to precisely
determine the timing of micturition behaviors (Wegner et al., 2018). To overcome these
limitations, the development of an efficient, automated VSA analysis method is imperative.
Such a method would enhance data reproducibility and comparability, enable unbiased
urine spot detection and segmentation, and reduce the time and potential errors associated
with manual analysis. Ultimately, this advancement would offer more accurate insights
into neural control mechanisms and micturition behavior interpretation.

Deep learning, a significant branch of artificial intelligence (AI), has achieved remarkable
achievements in image processing. Its applications span fromobject detection, classification,
and localization to behavior recognition, action tracking, and event detection, becoming
increasingly prevalent (Abdollahzadeh et al., 2021; Hillsley, Santos & Rosales, 2021). In
medical image analysis, deep learning has successfully identified fractures in X-ray
images and detected tumors in MRI scans (Black et al., 2020; Wang et al., 2023). These
advancements highlight AI’s potential in interpreting visual information and offer novel
perspectives and tools for assessing lower urinary tract function. Deep learning’s real-time
processing capabilities are particularly beneficial for dynamic bioprocess analysis, including
automated urine spot video evaluations.

This article introduces an innovative deep learning-based method for the automatic
identification and segmentation of urine spots. Utilizing advanced algorithms and
consistent image quantization techniques, this method completely automates urine spot
analysis. It effectively recognizes and segments crucial features in urine spot images,
enhancing the speed, accuracy, and user-friendliness of assessing lower urinary tract
dysfunctions. Experimental results demonstrate that this method significantly reduces
subjective errors and processes large volumes of image data more efficiently and accurately
than traditional VSA techniques. This results in considerable reductions in analysis time
and cost while improving the accuracy and efficiency of urine phenotyping in mice.
Offering a more objective and standardized assessment, it provides reliable data for
studying lower urinary tract dysfunctions in mice. Furthermore, this study is the first to
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integrate video recording with deep learning for continuous observation and quantitative
analysis of urination behavior in mice. It can continuously capture the temporal and
spatial distribution and frequency of urination events, as well as their correlation with
mice behavior. This innovative method offers substantial technical support for analyzing
urination mechanisms, screening therapeutic drugs, and developing new high-throughput
urinary function assessment tools.

MATERIALS & METHODS
Animal
All animal procedures were strictly conducted according to institutional guidelines and
protocols, having obtained approval from the InstitutionalAnimalCare andUseCommittee
of the Guangxi University (GXU-2024-003). Four male and female mice, aged between 2
and 5 months with a C57BL/6J genetic background were obtained from the Laboratory
Animal Center at the Guangxi University. Subsequently, the mice were housed in groups,
with a maximum of five individuals per cage, under a 12-hour light-dark cycle while
having ad libitum access to water and food (Keller et al., 2018). Euthanasia of the animals
was carried out using an intraperitoneal injection of a dosage three times higher than that
of pentobarbital sodium before finishing the experiments. This method was employed to
ensure humane and ethical treatment of the mice during the euthanasia process.

Spontaneous void spot assay
In this experiment, a double-layer structure device was designed to observe the urination
behavior of mice. The size of the upper structure was 27 × 15 × 20 cm. The lower
compartment was equipped with a 365 nm ultraviolet (UV) lamp (DJ Black-24BLB; ADJ
Lighting, Los Angeles, CA, USA). Neutral filter paper (Xinxing) absorbed the urine of
the mice, and the lower compartment had mirrored walls. The UV lamp was activated
and videos were captured using a Lenovo computer equipped with Logitech software and
a video camera with 1,280 × 720 pixel resolution. Under these conditions, urine spots
deposited on the filter paper could be detected by UV illumination. The experimental
animals were domesticated in the behavioral chamber for three consecutive days before
the experiment (Fig. 1A) (Verstegen et al., 2019).

Image acquisition and analysis
After the experiment was completed, the recording device was turned off and a video
describing the urine diffusion process was generated. The filter paper at the bottom was
air-dried and returned to its original position, while the overhead infrared light was turned
off. UV light was utilized to enhance the visibility of the urine spots, and images were
captured with a camera. Throughout the process, we ensured that the pixel dimensions of
both images and videos were 1,280× 720, and collected mouse urination videos as training
samples (Fig. 1B). The boundary information of each urination point was manually labeled
(Fig. 2A). Next, we used our customized AutoVSA software for analysis. Figure 1 shows
an example of filter paper under UV irradiation. Filter paper photos were saved in JPEG
format.
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Figure 1 AutoVSA recording chamber device and urinary spot quantification analysis. (A) Sponta-
neous void spot assay photographic device. (B) Real-time video recording and storage device; schematic
representation of the void-spot assay for lower urinary tract assessments in urology. (C) Representative
images of filter paper with known urine volumes. (D) Calibration curve (subfigures can be accessed via
https://doi.org/10.6084/m9.figshare.25539451.v1).

Full-size DOI: 10.7717/peerj.17398/fig-1

Conversion from area to volume
Mouse urine was used as an intermediate medium to enable quantitative determination
of urine volume. Different volumes of urine were pipetted onto experimental neutral
filter paper, and the spot area was converted to volume by constructing a standard curve
correlating the known urine volume to the corresponding urine spot area on the filter
paper (Fig. 1C) (Sugino et al., 2008). When the volume was below 100 microliters, there
was a linear relationship between volume and area with an R2 value of 0.9973 (Fig. 1D).
Thus, urine volume can be accurately calculated based on different filter paper types and
urine spot sizes.

Statistical analysis
Statistical analysis was performed by comparing the two independent groups. For normally
distributed data, the Student’s t -test was used. In cases where the data deviated from a
normal distribution, a nonparametric test for independent samples was used. p-values
below 0.05 were considered statistically significant differences.

AutoVSA
AutoVSA is a deep learning-based approach for automatically segmenting VSA images
and videos. It comprises a detection network and a tracking network to perform instance
segmentation and location tracking of urine spots, utilizing the YOLACT (Bolya et al.,
2019) and DeepSort (Pujara & Bhamare, 2022) frameworks.
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Figure 2 Workflow for processing sample urinary spots Data collection, annotation, andmethod
framework pipeline. (A) Data collection and annotation. (B) Spot detection network structure, including
computer-generated cross-sectional crops of the spot’s surface, averaging classification scores, and visual
comparisons of selected results on the training dataset. (C) AutoVSA tracking framework.

Full-size DOI: 10.7717/peerj.17398/fig-2

Detection framework
In this study, the YOLACT algorithm is employed for the spot detection. The algorithm
integrates rapid localization with precise pixel-level segmentation techniques. YOLACT
uses Feature Pyramid Networks (FPNs) and Depth Separable Convolution for feature
extraction. An anchor frame mechanism predicts the target’s location and species. The
second stage involves a series of prototypes and a novel linear combination of coefficients,
significantly speeding up the segmentation process by dynamically generating segmentation
masks for each instance and predicting mask coefficients concurrently (Fig. 2B).

Tracking framework
The tracking framework primarily relies on the DeepSort algorithm. This algorithm
encompasses state estimation, trajectory processing, and matching challenges. It leverages
target motion and appearance data to reduce object ID switches. The Kalman filter predicts
the target position and is integrated with the Hungarian algorithm and Intersection of
Union (IoU) for trajectory estimation. Time and position data are recorded to track
urination points in videos (Yadav et al., 2022). The marsupial distance quantifies motion
information correlation, reflecting uncertainty in state measurements (Durve et al., 2023;
Veeramani, Raymond & Chanda, 2018). Given the relatively slow diffusion rate of urine
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spots, emphasizing motion information correlation as the primary matching metric is
instrumental in analyzing the dynamics of the urine spots (Fig. 2C).

Training of AutoVSA
Due to the limited data, image enhancement techniques like translation, rotation, and
affine transformation were applied during training to produce three derivative images
from each original image. A total of 2,600 images were utilized for the training and
analysis of the deep learning model. All images have a uniform resolution of 1280*720
pixels .The LabelMe image annotation tool generated a JSON format file, segmenting the
image dataset into a 9:1 training-to-validation ratio. The pre-trained YOLACT model and
PyTorch framework were selected for parameter tuning, employing a stochastic gradient
descent (SGD) optimization algorithm with a learning rate of 0.001, momentum of 0.9,
and weight decay of 0.0001. Post-training, the model was applied to urine spot images and
validated against manually labeled data (Guan et al., 2017; Xu et al., 2023). Leveraging the
robust performance of ResNet-50 in image classification, YOLACT was chosen to achieve
accurate pixel-level segmentation.

Postprocessing
Watershed algorithms have proven effective in manually analyzing overlapping urine
spots, particularly in quantifying and resolving overlaps. We utilized these algorithms
for automated segmentation to address the separation of overlapping mouse urine spots.
The method applies a watershed algorithm to automatically segment the target region’s
gray gradient by mimicking water flow, eroding filled edges, locating the center of mass,
and reconstructing the boundary. This automated process effectively distinguishes non-
concentric overlapping circles into distinct regions, accurately representing individual
mouse urine spots (Fig. 3).

Evaluation and statistical analysis
To ensure the accuracy of the results, this study conducted experimental evaluations on
a standard test dataset that is widely recognized as a benchmark for rigorously testing the
capabilities of instance segmentationmethods. The raw image data collectedwere organized
into the standard COCO dataset format after data preprocessing of the images. In these
experiments, this article uses commonly used metrics such as AP (average precision) and
the mean average precision (mAP) to evaluate the accuracy of the detection algorithms
(Ran et al., 2023). mAP, as a commonly used evaluation metric in the field of computer
vision, is widely used in tasks such as instance segmentation, object detection, and image
categorization, and can provide a more comprehensive evaluation result (Cattaneo et al.,
2020; Sanchez, Romero & Morales, 2020).

The study employs a suite of metrics—Precision (P), Recall (R), F1 score, and mean,
average precision (mAP)—to benchmark the efficacy of surgical tool detection algorithms,
see [22] for more details on these parameters.

P(%)=
TP

TP+FP
×100
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Figure 3 Overlapping urine spot segmentation process.
Full-size DOI: 10.7717/peerj.17398/fig-3

R(%)=
TP

TP+FN
×100
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Precision quantifies the ratio of accurately identified positives within the set of predicted
positives, while Recall assesses the proportion of true positives out of all actual positives. In
this context, true positives (TP) denote correctly identified positive instances, false positives
(FP) denote incorrectly labeled positives, true negatives (TN) refer to correctly labeled
negatives, and false negatives (FN) indicate wrongly labeled negatives. The computation
of P, R, and F1 follows established formulae. Importantly, mAP serves as a metric for
evaluating object detection accuracy, averaging the AP across categories, derived from
the area under the Precision-Recall (PR) curve. Here, ‘n’ represents the category count.
The research adopts prevalent COCO challenge metrics for object detection assessment,
including AP and its variants AP50, AP75, APS (small object area), APM (medium object
area), and APL (large object area), with AP50 and AP75 denoting AP at IoU thresholds of 0.5
and 0.75, respectively. The metrics APS, APM, and APL denote the Average Precision (AP)
for object detections of varying scales, with APS applying to bounding boxes under 322

pixels, APM to those within 322 to 962 pixels, and APL to those exceeding 962 pixels. Given
the dataset’s exclusive inclusion of large surgical instruments, characterized by bounding
boxes surpassing 962 pixels, computation of APS and APM is rendered irrelevant. Moreover,
within this dataset, the APL metric is observed to converge with the overall AP measure.
AP50 represents the average accuracy when the IoU threshold is set to 50%. If the IoU
between the predicted bounding box and the true bounding box is greater than or equal
to 50%, it is considered to be a correct detection. AP50 is more lenient, which reflects the
model’s ability to detect larger-sized speckles or targets with more distinctive boundaries.
AP75 denotes the average accuracy when the IoU threshold is set to 75%, which is a more
stringent evaluation criterion. AP75 can be a more precise measure of the model’s detection
accuracy for small-sized spots or targets with less distinct boundaries.

RESULTS
AutoVSA represents an efficient deep learning-based technique for the automatic
detection and segmentation of urine spots. To evaluate its accuracy and efficiency
in analyzing autonomously voided urine spot data, the performance of AutoVSA was
assessed in comparison with state-of-the-art tools like ImageJ and SOLOv2. Additionally,
AutoVSA’s predictions were contrasted with manually labeled ground truth and alternative
computational methods. The comparative results are illustrated in Fig. 4. As depicted,
AutoVSA demonstrates high accuracy in detecting and segmenting urine spots across
various image dataset sizes, exhibiting a low omission rate in identification and providing
precise edge outlining for urine spots of varying sizes in typical images (Fig. 4).

Algorithm yields superior segmentation results. This study tested its effectiveness on
urine spot segmentation of various sizes, as presented in Fig. 4. To evaluate segmentation
accuracy, we employed mAP metric across different scales. A higher mAP value indicates
closer alignment of the algorithm’s segmentation with manually labeled results. The results
show that the algorithm used in this article has good robustness and accuracy in segmenting
objects. To evaluate the performance of the model at the pixel level, this article employs the
mAP evaluationmetric at different scales (Liu et al., 2020). Of particular note, the YOLACT
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Figure 4 Instance segmentation results of urine spot images on C57BL/6J mice. The segmentation re-
sults from AutoVSA, Image J of urine spots are compared with the region of interest (ROI).

Full-size DOI: 10.7717/peerj.17398/fig-4

Table 1 Comparison of pixel-level segmentation accuracy on the dataset.

Backbone AP(%) AP50(%) AP75(%) APS(%) APM(%) APL(%)

YOLACT Res-50-FPN 29.3 56.1 27.2 18.7 59.8 73.6
SOLOv2 Res-50-FPN 22.3 36.7 24 9.9 57.8 76

algorithm achieves excellent performance in detection and segmentation at small (18.7%),
medium (59.8%), and large (73.6%) scales as presented in Table 1. These findings, detailed
in Fig. 4 and Table 1, highlight its exceptional performance. However, some limitations
were noted in SOLOv2, including instances of incomplete segmentation and discrepancies
in segmentation size (Fig. 4).

Comparison with different architectures & Fiji
Comparative analyses using Fiji and AutoVSA showed that the points on the scatterplot
were in close agreement with the equation line, indicating that there were no significant
differences between the mice and the corresponding controls in terms of number, area,
and frequency across the 30 images (Fig. 5).
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Figure 5 Comparison between Fiji and our software. Exemplary images of filter paper analysis obtained
through Python and Fiji software.

Full-size DOI: 10.7717/peerj.17398/fig-5

Furthermore, this study implemented dynamic detection and segmentation of urine
spots in video data through a GUI interface using AutoVSA (Fig. 6). The method has the
advantage to accurately detect and segment detailed information for each urination event,
including spot number, frequency, interval, and location (Fig. 7). In summary, AutoVSA
demonstrates robust performance on both image and video data at various scales, offering
significant advantages over other tools. This evidence supports the method’s feasibility and
validity in assessing the volume of tiny cavities in normal mice (Table 2).

The results indicate that AutoVSA offers higher accuracy and reliability in urine spot
detection and segmentation tasks compared to the traditional ImageJ method. It effectively
recognizes and segments urine spots in various images and excels across different image
scales, significantly outperforming existing tools. The study confirms AutoVSA’s feasibility
and effectiveness in assessing urinary output in mice, providing a precise and efficient tool
for studying lower urinary tract function.

DISCUSSION
In recent years, theVSAmethodhas beenwidely used in the field of spontaneousmicturition
research due to its simplicity, low cost, and non-invasiveness (Chen et al., 2017; Sugino et
al., 2008). The quantitative analysis of VSA is indispensable for an in-depth understanding
of the normal physiological and pathological states of the urinary system; however, it faces
the challenges of the complexity of the traditional manual urological spot analysis methods
(e.g., ImageJ) (Carattino et al., 2023), which is time-consuming and susceptible to the
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Figure 6 GUI interface of the software for quantitative analysis of video data with urine spots. Capture
images show the tracking effect of video with Urine spots in four time periods.

Full-size DOI: 10.7717/peerj.17398/fig-6

Figure 7 Quantitative analysis of video data with urine spots. Capture images show the tracking effect
of video with Urine spots in four time periods.

Full-size DOI: 10.7717/peerj.17398/fig-7

influence of subjective judgment, especially in the scenario of overlapping spots (Chen et al.,
2017; Hill et al., 2018;Wegner et al., 2018). This is especially true in the case of overlapping
urine spots. To overcome these challenges, this study introduces AutoVSA, an automated
image processing method employing convolutional neural networks for the automatic
detection and segmentation of urine spots. This enhances data processing efficiency and
accuracy. AutoVSA allows researchers to assess murine urination function more efficiently
and non-invasively, automatically quantifying key parameters like frequency, volume, and
distribution. Additionally, this study pioneers the integration of video-based dynamic
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Table 2 The results from the laboratory-standard VSA analyses (Fiji) were compared with those of
AutoVSA analyses.

Analytical method Average number of spots counted Average area (cm2) Total of time

Fiji 19± 2.72 105.33± 8.40 40 min
SOLOv2 17± 2.26 194.98± 8.90 2s
AutoVSA 18± 2.21 104.45± 8.40 2s

Notes.
Values are means± SE; n= 30.

analysis in VSA technology, enabling precise differentiation of voiding events over various
time scales. This innovation marks a significant advancement in VSA technology.

In the realm of medical image segmentation, instance segmentation techniques are
extensively applied in biomedical research, including cell image segmentation and lung
tumor detection (Black et al., 2020; Dai et al., 2023; de Brevern, Jia & Sun, 2017; Wang et
al., 2023). This article assesses the performance of YOLACT and ImageJ in detecting and
segmenting urine spots in mice. The findings reveal that both methods closely align with
manual analysis inmeasuring urine spot number and area. YOLACT, a single-stage, end-to-
end instance segmentation network, surpasses traditional methods by integrating a feature
pyramid network (FPN) for multi-scale semantic information fusion and fine-grained
feature extraction. Data in Table 1 underscores YOLACT’s leading edge in segmenting
urine spots with notable precision and comprehensive coverage, reflected inmAPS (18.7%),
mAPM (59.8%), and mAPL (73.6%) across different scales. Cross-validation with Fiji and
AutoVSA aligns closely with theoretical expectations, demonstrating YOLACT’s reliable
quantification of urination metrics without significant deviation from the control group
in the evaluated image set (Fig. 5). It excels in segmenting urine spots of varying sizes and
significantly enhances processing speed and efficiency. We find that while the deep learning
model fails to reach the level of human experts in some cases, it shows similar or even higher
performance in most cases. Errors in the model can affect the analysis results in two ways:
false negatives through missed urine spotting, and false positives through misidentifying
other objects as urine spots. Missed detections can lead to an underestimation of voiding
events, while false positives can lead to an overestimation of voiding events. Our model
shows advantages in reducing leakage detection, which is particularly important for those
studies that investigate parameters such as frequency and volume of urination and studies
of neural mechanisms related to urination. This study pairs YOLACT with the DeepSort
target tracking algorithm, resulting in efficient and accurate detection and segmentation of
urine spot video, greatly outperforming traditional manual methods. This automated urine
spot analysis system will aid researchers in understanding the physiological mechanisms of
urination, potentially accelerating drug screening and the development of new therapies.
Overall, this approach facilitates high-throughput, unbiased analysis of urinary biomarkers,
serving as a valuable tool in urinary function studies. Comparison with other models, like
YOLOv7, would be performed in the future for a further investigation.

In this research, we have rigorously explored and investigated the challenges faced
by VSA image processing, and in particular, we have proposed an innovative solution
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to the uraemic overlap problem (Luo et al., 2023). Researchers typically employ various
algorithms, including region-based, edge, thresholding, and cluster analysis. The watershed
segmentation algorithm, a region-based method, is recognized for its straightforward
implementation and effective contour extraction. However, it is prone to noise sensitivity
and image interference, leading to over-segmentation. To mitigate this issue, we introduce
a novel algorithm for color image segmentation that combines deep learning with the
watershed technique. Initially, advanced filtering techniques preprocess the image to
reduce noise impact. Then, a deep learning model identifies the urethra, and segmentation
is executed using the watershed algorithm on gradient images. This approach curtails over-
segmentation caused by minor variations by setting an appropriate threshold, yielding
more precise and reliable automatic segmentation results.

With the ongoing advancement of deep learning technology, we anticipate further
enhancements in various aspects, such as diversifying network architectures, innovating
loss functions, and optimizing training strategies. To advance themethod’s performance, we
aim to overcome the current limitations and investigate new techniques to further refine
urine spot detection in the future. We will enhance model performance by employing
larger, more diverse datasets and broadly implementing automatic identification and
segmentation for rapid online detection and localization of task-specific null spots. The
study demonstrates that deep learning can effectively automate VSA image analysis for
recording and identifying urination patterns, enabling precise, high-throughput detection
and supporting research into urination behavior and its neural mechanisms.

CONCLUSIONS
This study investigated the detection and segmentation of mouse urine spots, proposing
a novel automated analysis method based on deep learning. This method employs
deep learning algorithms for the automatic identification and segmentation of urine
spots, effectively handling overlapping spots through post-processing with the watershed
algorithm. Compared to traditional manual processing, this study achieves standardization
and automation of the entire analysis process, minimizing user intervention. Experimental
results indicate superior performance over traditional methods in segmenting urine spots
under ultraviolet irradiation. This automated analysis method facilitates standardization
in urine spot analysis, advances lower urinary tract function studies, and enhances
understanding of the physiological mechanisms of the urinary system. In conclusion,
this study presents a new, feasible approach for the automatic detection and segmentation
of urine spots in mice using deep learning techniques.
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