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ABSTRACT
Deciphering the targets of microRNAs (miRNAs) in plants is crucial for
comprehending their function and the variation in phenotype that they cause. As the
highly cell-specific nature of miRNA regulation, recent computational approaches
usually utilize expression data to identify the most physiologically relevant targets.
Although these methods are effective, they typically require a large sample size and
high-depth sequencing to detect potential miRNA-target pairs, thereby limiting their
applicability in improving plant breeding. In this study, we propose a novel
miRNA-target prediction framework named kmerPMTF (k-mer-based prediction
framework for plant miRNA-target). Our framework effectively extracts the latent
semantic embeddings of sequences by utilizing k-mer splitting and a deep
self-supervised neural network. We construct multiple similarity networks based on
k-mer embeddings and employ graph convolutional networks to derive deep
representations of miRNAs and targets and calculate the probabilities of potential
associations. We evaluated the performance of kmerPMTF on four typical plant
datasets: Arabidopsis thaliana, Oryza sativa, Solanum lycopersicum, and Prunus
persica. The results demonstrate its ability to achieve AUPRC values of 84.9%, 91.0%,
80.1%, and 82.1% in 5-fold cross-validation, respectively. Compared with several
state-of-the-art existing methods, our framework achieves better performance on
threshold-independent evaluation metrics. Overall, our study provides an efficient
and simplified methodology for identifying plant miRNA-target associations, which
will contribute to a deeper comprehension of miRNA regulatory mechanisms in
plants.
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INTRODUCTION
MicroRNAs (miRNAs) are small no-coding RNAmolecules, approximately 22 nucleotides
in length, that significantly influence post-transcriptional gene regulation (Du & Zamore,
2007; Pasquinelli, Hunter & Bracht, 2005). They are critical regulators of developmental
and physiological processes in plants, including growth regulation, stress responses, and
genome integrity preservation (Axtell & Bowman, 2008; Chen, 2005; Liu et al., 2018;
Pagano et al., 2021; Yang, Xue & An, 2007). However, a comprehensive understanding of
the nuanced interplay between miRNAs and the target they regulate remains an advancing
research field. This understanding gap emphasizes the importance of additional
explorations to decipher the complexity of miRNA-target association (Alexiou et al., 2009;
Axtell & Bowman, 2008). Greater understanding of this relation can enrich our
comprehension of many molecular-level biological phenomena and foster innovative
strategies for plant breeding and crop enhancement (Liu, Li & Cairns, 2012; Liu & Wang,
2019; Ravichandran et al., 2019; Riolo et al., 2021; Singh et al., 2023). Therefore, the quest
for this knowledge promises substantial advancements in plant biology and agriculture.
Understanding and interpreting the roles and functions of miRNAs in plants is a vital area
of scientific research (Pagano et al., 2021). Unraveling the intricate interconnections
involving these molecules and the process by which they induce phenotype alterations is of
utmost importance in plant biology. Among various aspects of miRNAs, their unique and
highly-specific regulatory nature stands out, stimulating research interest and further
examination in plant biology (Guo et al., 2019, 2021a). With the progression in this
research field, modern computational methods have become essential tools. These
methods prioritize the use of expression data, facilitating the identification and
understanding of the most physiologically relevant targets, thereby offering substantial
insights into the functions of miRNAs. Such insights greatly impact our understanding of
various biological phenomena.

Computational methodologies serve as an efficient avenue for establishing
miRNA-target pairs (Chen et al., 2017; Riolo et al., 2021). Nevertheless, practical
applications of these methodologies, especially in real-world situations, often encounter
challenges (Chen et al., 2017; Huang et al., 2019b; Zhang et al., 2021b). These challenges
primarily stem from the inherent design of the methodologies, which necessitate large
sample sizes and in-depth sequencing to adequately identify potential miRNA-target pairs.
Although this prerequisite is essential for the validity of the research, it introduces
inevitable complications to its implementation. Consequently, the identification process
evolves into an increasingly resource-intensive and time-consuming task, often resulting in
limitations in its applicability, particularly in areas such as advancing plant breeding
(Asefpour Vakilian, 2020; Fridrich, Hazan & Moran, 2019; Pagano et al., 2021). These
interconnecting challenges considerably impede wider applications and restrict the
potential for ongoing development and contribution of this research to the understanding
of miRNA functions. This, in turn, stifles the possibility of achieving pivotal investigative
breakthroughs that can only be remedied through the development of strategic solutions.
The sustenance and advancement of this specialized research field are contingent upon
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these methodological improvements, fostering a promising future. With these refinements,
the field of miRNA research can harness its full potential, paving the way for
groundbreaking scientific discoveries.

Deep learning, a significant subfield of machine learning techniques, has recently
become an integral tool in genomics, proving its worth in predicting precise miRNAs and
target pairs (Kuang, Zhao & Yang, 2023; Wang et al., 2020). Within the vast sphere of
genomic science, comprehending the sophisticated network of interactions and
connections between miRNAs and their respective targets is fundamental. It is crucial to
note that this interaction chiefly regulates gene expression–a foundational process vital for
numerous biological occurrences (Chen, 2005; Guo et al., 2019; Liu, Li & Cairns, 2012;
Pasquinelli, Hunter & Bracht, 2005). Examples include plant growth, evolution, and an
organism’s adaptive response to a wide array of external environmental through complex
processing layers, deep learning offers a considerable benefit in refining the prediction of
these pivotal miRNA-target pairs. Consequently, it supports a more in-depth exploration
of the intricate mechanisms that control gene regulatory networks, emphasizing its
indispensability in contemporary genomic research.

The sphere of plant genomics requires focused attention towards the utilization of deep
learning methods. Considering the vast array of miRNAs discovered within the plant
kingdom, each with its important regulatory roles, the accurate prediction of these pairs is
crucial for understanding plant biology specifics (Chen, 2005). The multifaceted and
pivotal functions of these miRNAs have boosted the need for elevated computational tools
and techniques, thereby endorsing the application of graph neural networks (GNNs) (Yan
et al., 2022; Zhang et al., 2021b). GNNs proffer distinct benefits, augmenting their
capability to facilitate computations not merely on grid-like data but also on
non-Euclidean structured graph data. GNNs are designed to exploit the rich geometric
data in network structures, thereby providing a robust framework that allows for the
integration of a node’s neighborhood information to generate an informed output
(Veličković, 2023; Zhang et al., 2021c; Zhou et al., 2020). This characteristic has proved
crucial in areas where data are predominantly non-Euclidean, enabling the modeling of
complex, unstructured real-world phenomena. They excel in scenarios where data
irregularities prevail and have an exceptional capacity to identify and interpret complex
relationship patterns between nodes in a network, making them ideally suited for
modelling complex interaction patterns between miRNAs and target genes. Among
various types of GNNs, graph convolutional neural networks (GCNs) have emerged as a
leading paradigm, particularly their use has transformed biological sciences where the
prediction of biological relationship pairs is essential (Huang et al., 2019a; Kipf & Welling,
2016; Zhang et al., 2019). Functioning by approximating the spectral graph convolutions
into practical spatial convolutions, GCNs have paved the way to novel methods of
understanding intricate biological interactions. The ability to handle topological
irregularities in data makes them highly applicable in biological networks, where the
accurate prediction of relationship pairs directly influences the understanding of biological
processes and mechanisms (Sun et al., 2019). Hence, the use of GCNs shows great promise
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in decoding complex biological relationships, underscoring their importance in the
advancement of science and technology.

Traditional methodologies, dependent on sequence complementarity, often showcase
their limitations when confronted with complex genomic structures and interactions (Dai
& Zhao, 2011; Jones-Rhoades & Bartel, 2004; Meng, Shao & Chen, 2011), such as
psRNATarget (Dai & Zhao, 2011), Targetfinder (Fahlgren et al., 2007) and Target-align
(Xie & Zhang, 2010). These techniques frequently struggle to appropriately manage the
intricate structures, hindering advances in knowledge and technology pertaining to
genomics. Hence, the amalgamation of deep learning principles and graph neural
networks (GNNs) emerges as a powerful tool to tackle these challenges, such as MiRTDL
based on neural network design (Cheng et al., 2015), SG-LSTM-FRAME based on random
walk strategy (Xie et al., 2020) and MeSHHeading2vec framework based on graph
embedding algorithms (Guo et al., 2021b). These approaches, underpinned by artificial
intelligence, hold immense potential for critical breakthroughs within the realm of
genomics. By efficaciously deciphering and predicting the myriad of interaction patterns
and information flows within miRNA-mediated gene regulatory networks, our
comprehension of these networks can be significantly enhanced (Madhumita & Paul,
2022). This enhanced understanding is particularly crucial within plant biology, where
such networks often demonstrate unique complexities and potential applications (Lai,
Wolkenhauer & Vera, 2016; Pio et al., 2014). Utilizing these advanced computational
strategies not only enables innovative exploration and sophisticated interpretation of
genomic data, but also potentiates the development of novel applications of genomic
science. This paradigm shift could fundamentally transform the field, triggering a new era
of discoveries and advancements (Kurubanjerdjit et al., 2013). Such paradigm shift can
propel us further on the path to understanding life’s blueprint, facilitating the development
of interventions for various plant diseases and mutations, and contributing to a more
sustainable and resilient agricultural sector.

In this study we introduce kmerPMTF, an innovative and intricate framework
developed specifically for predicting plant-specific miRNA-target associations.
The kmerPMTF combines the utilization of k-mer splitting and a high-end self-supervised
neural network to astutely extract the cryptic yet crucial semantic embeddings in
sequences. Through engaging k-mer embeddings, we enhance our design by constructing
multiple similarity networks to designate a complex web of interrelations among the
variables. By integrating graph convolutional networks, our computational model becomes
more refined, extracting both profound and complex representations of miRNAs and their
corresponding targets. A comprehensive evaluation performed on kmerPMTF across four
unique plant data sets revealed excellent predictive performance on threshold-independent
evaluation metrics, thereby situating kmerPMTF as a leading framework compared to
existing methodologies. Our study emphasizes the proficiency of kmerPMTF in foreseeing
new miRNA-target associations, supported by the successful application of small RNA
sequencing - a process further validated by our framework. In its essence, kmerPMTF
serves as a beacon of advancement, streamlining the identification of plant miRNA-target
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associations. Its impact extends beyond just predictions, facilitating a deeper
understanding of miRNA regulatory mechanisms within the intricate realm of plant life.

MATERIALS AND METHODS
In the current study, we primarily aim to predict potential associations between plant
miRNA and genes (MGA), treating this task as link prediction within the complex
structure of a heterogeneous graph. To increase the effectiveness of our task, we propose a
novel framework centered on GCN principles. This framework enables the learning of
latent node representations from graph-structured data, offering a deeper understanding
of the relationships within the graph. In contrast to less thorough learning methodologies,
our framework emphasizes extracting significant insights captured within the relational
web of a graph. In the following section, we will meticulously dissect and explain our
proposed framework, offering a rigorous walkthrough and detailed exposition of its unique
components. This strategy aims to enhance understanding and provide insights into our
novel approach.

K-mer frequency counter
DNA/RNA sequences, being the building blocks of genetics, demonstrate discernible
structures and patterns due to their biochemical composition. This consistency makes
tools derived from information theory, such as cross-entropy, suitable for performing
frequency analysis on these sequences (Compeau, Pevzner & Tesler, 2011). Many of the
methods used in this analysis break down each individual sequence into numerical
components. These components often include frequencies that stem from the incidence of
word types or substrings of a definite length (k-mers) within the sequences. The frequency
analysis of k-mers is a valuable technique in genomics as it enables the characterization of
DNA/RNA sequences into quantifiable units. If two sequences display high degrees of
similarities, their respective distributions of derived k-mer frequencies also align; they echo
these similarities, subsequently creating a correlation signature. In contrast, sequences that
are dissimilar or unrelated will showcase contrasting frequency distributions. Recognizing
this principle, we employ a counter to meticulously transform miRNA and target gene
sequence information into numerical descriptors based on k-mer frequencies, thereby
converting bio-information into digestible mathematical representation. Specifically, we
employ an iterative fragment selection approach for each sequence, treating it as an
assembly of length k. A sequence of length m, for instance, can be disassembled into m-k+1
sequence fragments, akin to a puzzle being separated into smaller pieces. The miRNA
sequence comprises four bases that are fundamental to the genetic code: adenine (A),
uracil (U), cytosine (C), and guanine (G). For example, in a scenario where we select a
k-value of 7 during an experiment, this allows us to generate sequence fragments akin to
AAAAAAA, AAAAAAU, AAAAAAC, AAAAAAG,…, and GGGGGGG, thus yielding an
extensive palette of 16,384 (4^7) unique combinations. Such variations demonstrate the
richness of genetic data. Consequently, the process transforms the character sequences of
miRNA and target genes into a structured, standardized numerical matrix withN × 16,384,
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where N is the total number of miRNA and target, providing a format that is highly
advantageous for further computational analysis and machine learning algorithms.

K-mer frequency counter
Embeddings are known to represent the underlying characteristics of semantics, enabling
convolutional neural models to effectively capture hidden deep semantics. In the field of
genomics, it has been demonstrated that k-mer embeddings offer superior performance
and advantages for deep learning models (Fang, Deng & Li, 2022; Trabelsi, Chaabane &
Ben-Hur, 2019). Motivated by these findings, we have designed a self-supervised deep
neural network (SDNN) comprising four convolution layers, aimed at extracting deep
semantics from the k-mer frequency matrix. In our approach, the frequency vector of each
sequence serves as the input for SDNN and undergoes deep self-encoding and self-
decoding, a process that is iterated multiple times in a loop. To facilitate learning in each
fully connected layer, we apply a hyperbolic tangent activation function, which effectively
centers the data around zero and enhances the subsequent layer’s learning process.
The final output of embedding learner is a matrix Mkmer 2 R NmiRNAþNtargetð Þ�Nembedding , where
NmiRNA and Ntarget is the number of miRNA and target gene, respectively. Nembedding is the
dimensions of learning embeddings.

Heterogeneous graph construction
To represent known associations between miRNA and target genes more effectively, a
heterogeneous graph was constructed based on miRNA-target associations, target
similarity network and miRNA similarity network. Let the heterogeneous is G ¼ v; eð Þ,
where v ¼ NmiRNA; Ntarget

� �
representing NmiRNA miRNA nodes and Ntarget target gene

nodes and e is a set of edges between nodes. Suppose that the labels of some links, e inG are
given, the goal is to predict if there is any potential link between any miRNA-target pair
that have not yet previously been established.

Here, we denote miRNA-target association as a binary matrix AmiRNA�target

2 0; 1f gNmiRNA�Ntarget . AmiRNA�target
i;j is equal to 1, if a miRNA mi has association with a

target tj; otherwise A
miRNA�target
i;j ¼ 0. The pairwise similarities between NmiRNA miRNA

are denoted as a similarity matrix SmiRNA with SmiRNA
i;j as its i; jð Þth entry; the pairwise

similarities between Ntarget target genes are denoted as a similarity matrix Starget with Stargeti;j

as its i; jð Þth entry. The similarities in SmiRNA or Starget can be measured based on the k-mer
frequency matrix by cosine or Jaccard based on a general threshold 0.5 (Cheng et al., 2015;
Guo et al., 2021b; Xie et al., 2020). Mathematically, the heterogeneous graph G can be
represented by an adjacency matrix AH:

AH ¼ SmiRNA AmiRNA�target

AmiRNA�targetT Starget

� �
2 R NmiRNAþNtargetð Þ� NmiRNAþNtargetð Þ: (1)

Graph convolutional network
GCN (Kipf & Welling, 2016) and its variants (Defferrard, Bresson & Vandergheynst, 2016;
Du et al., 2017; Hamilton, Ying & Leskovec, 2017; Veličković et al., 2017) generally learn
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node features through a three-step process: message passing, aggregation and
representation update. The critical step is feature aggregation, in which a node aggregates
feature information from its topology neighbors and itself in each convolution layer.
The GCN model relies on the adjacent matrix of graph and the feature matrix of nodes.
For a given miRNA-target heterogeneous graph G ¼ AH, each node in a GCN network
generally contains its own features that belong to the feature matrix Mkmer (Kipf &Welling,
2016), so an identity matrix is always added to the adjacency matrix:

ÂH ¼ AH þ IH (2)

where AH is the adjacency matrix of heterogeneous graph as Formula (1), IH is the identity
matrix.

Current approaches to designing localized convolutional filters on graphs can be
roughly classified into two categories: spatial and spectral approaches. Spatial-based
approaches construct the filter localization based on local information from neighboring
nodes, which may be limited in terms of matching local neighbors (Bruna et al., 2013).
On the other hand, spectral-based approaches rely on the spectrum of the graph Laplacian
for filter design (Kipf &Welling, 2016). A well-defined localization operator on graphs was
introduced by employing a Kronecker delta function implemented in the spectral domain.
In contrast to spatial-based approaches, spectral-based approaches typically exhibit
superior performance in graph learning (Ayat et al., 2019; Ding et al., 2021; Huang et al.,
2019a). As the number of nodes and dimensions of feature vectors in graph G usually
thousands or tens of thousands. It is time consuming for traditional spatial approach when
decomposing the Laplacian matrix spectrum, and convolutional operation often directly
performs on global that weakens the local information (Bruna et al., 2013). Therefore, a
spectral approach that rely on the spectrum of graph Laplacian was proposed (Defferrard,
Bresson & Vandergheynst, 2016). Unlike the traditional spatial approach, the graph
convolution in spectral approach is defined on graph as the product of the input signal and
the filter gu in the Fourier domain. Let us denote the symmetric normalized Laplacian
matrix of AH is Lspectral:

Lspectral ¼ UH�HUH
t (3)

where UH is the eigenvector matrix and �H ¼ diag k1; k2; k3; . . . ; kNmiRNAþNtarget

� �
is the

diagonal matrix of eigenvalues.
Here, the Fourier transform of Mkmer is represented as UH

tMkmer. However, that
calculation of getting eigenvector matrix and eigenvalues diagonal matrix is expensive with
the increasing scale of graph. Thus, a modified GCN based on Chebyshev polynomials
TK xð Þ ¼ 2xTK�1 xð Þ � TK�2 xð Þ was used here for features representation to reduce the
computational complexity (Defferrard, Bresson & Vandergheynst, 2016). As a result, the
filter gu can be defined and represented as follows:

gu �Hð Þ ¼ PK
K¼0

uKTK
~�H

� �
(4)
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gu � Mkmer ¼
PK
K¼0

uKTK ~Lspectral
� �

Mkmer (5)

where u 2 RK is a vector of Chebyshev coefficients, ~�H ¼ 2�H

kmax
� IH, ~LH ¼ 2LH

kmax
� IH,

IH is the identity matrix and K is the Kth-order neighborhood.
Since the Chebyshev polynomials are recursively (Hammond, Vandergheynst &

Gribonval, 2011), the formulation can be simplified by limiting K = 1 (Kipf & Welling,
2016). Finally, the spectral GCN can be represented as:

gu � Mkmer ¼ CELU u D
�
1
2

H IN þ AHð ÞD
�
1
2

H

0
B@

1
CA

0
B@

1
CA (6)

HmiRNA
spectral

Htarget
spectral

" #
¼ gu � Mkmer (7)

where DH is the diagonal matrix with diagonal entry DH½ �i;j ¼
P

j AH½ �i;j, HmiRNA
spectral is the

embedding of miRNA and Htarget
spectral is the embedding of target genes.

Edge representation construction and probabilities prediction
After GCN encoding, we concatenate HmiRNA and Htarget as the feature vector for each
miRNA-target pairs, so as a result, the features of each miRNA-target pairs are the
combination of the features of its miRNA and target gene. Then, the multilayer perceptron
(MLP) is used as a supervised learning model to predict the association probabilities.
The MLP contains three fully connected layers. The input for MLP is miRNA-target pair
feature vector, which is extracted using the GCN. Since the prediction can be deemed as a
two-class problem, we chose a sigmoid activation function for the final layer.

Overall loss and optimization
For model training, we used the binary cross-entropy (BCE) loss function and the Adam
optimizer for learning model parameters. The BCE B can be represented as follow:

B ¼ �
P

i;j 2Y[Y� yij log y
^
ij þ 1� yij

� �
log 1� y

^
ij

� �� �
N

(8)

where N is the number of pairs, yij is the true label of the edges, which will be 1 or 0, Y and
Y� denote the set of all nodes contained in the positive edges set and negative edges set,
respectively.

To mitigate the issue of overfitting, we employ L2-regularization:

L2 ¼ k
2N

X
v

v2 (9)

where k is a hyperparameter, v is an element in the parameter matrices W.
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As a result, the overall loss function for training is L ¼ B þ L2. The whole model via
back propagation algorithm in an end-to-end manner can be trained.

Evaluation metrics
After constructing the framework, the final step involves evaluating the performance of our
model to provide users with an understanding of its utility and weaknesses. Model
evaluation is conducted using five-fold cross-validation (5-CV). We categorize all
recognized miRNA-target pairs as the positive dataset and evenly divide them into five
portions. An unknown miRNA-target pair suggests that no evidence from biological
experimentation can confirm the association between the miRNA and target nodes.
All such unspecified miRNA-target associations constitute the negative dataset. For each
iteration, we select four-fifths of the positive samples and an equivalent number of
randomly chosen negative examples as the training set. In contrast, the test set comprises
the remainder of the positive dataset and all the remaining negative samples (Su et al.,
2022; Xuan et al., 2022). The accuracy of the model is evaluated using the receiver
operating characteristic curve (ROC). As a primary evaluation metric, the area under the
ROC curve (AUROC) is adopted. Considering its bias towards imbalanced datasets, the
precision-recall curve (PRC) is also utilized, with the area under the PRC curve (AUPRC)
chosen as another primary evaluation metric. The performance of our model can be
assessed using AUROC or AUPRC without requiring specific thresholds. Additionally,
other evaluation metrics including accuracy (ACC), recall (REC), precision (PRE), and F1-
score (F1) are calculated as follows:

ACC ¼ TPþ TN
TPþ TNþ FPþ FN

(10)

REC ¼ TP
TPþ FN

(11)

PRE ¼ TP
TPþ FN

(12)

F1 ¼ 2� REC� PRE
RECþ PRE

(13)

where TP is true positive, FP is false positive, FN is false negative, and TN is true negative
in the predicting results.

Hyperparameters and model implementation
Prediction performance is contingent on several hyperparameters. The efficacy of model
training is particularly influenced by two critical hyperparameters. We conducted a series
of combinatorial experimental tests. The first is the learning rate of the optimizer
lr 2 0:00001; 0:00005; 0:0001; 0:00015; 0:00003f g, which essentially determines the
step size at each iteration while moving toward a minimum of a loss function. The second
is the number of epochs ne 2 500; 1; 000; 2; 000; 3; 000; 5; 000f g, dictating the number
of times the learning algorithm will work through the entire training dataset. Our study
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involved iteratively testing on four distinct plant datasets. Our results revealed that a
learning rate of 0.0001 is optimal, maintaining a delicate balance between adequate
learning speed and prevention of any overshoots. Consequently, in our model, we adhered
to this learning rate for training. Simultaneously, we found it beneficial to set the number
of epochs to 3000, giving the model ample opportunity to learn from the data without
overfitting. As for the L2-regularization coefficient L 2 0:0001; 0:0005; 0:001; 0:002;f
0:004g, a parameter used to prevent overfitting by discouraging complex models, we set it
to 0.0005. During the optimization process, priority was given to one specific parameter for
adjustments, while the other two parameters were held constant at their nominal values.
Following each optimization cycle, the optimal value of the parameter was used to redefine
its nominal value.

Our model, kmerPMTF, was realized using the robust capabilities of the PyTorch
framework (v2.0.0) (Paszke et al., 2019), built specifically for high-performance machine
learning. Additional functionality was incorporated from numpy (v1.23.5), pandas
(v1.5.3). Other key resources included the PyTorch Geometric (v2.3.0) (Fey & Lenssen,
2019), a geometric deep learning extension library for PyTorch, and scikit-learn (v1.2.2)
(Pedregosa et al., 2011), a free software machine learning library for Python. Both the
training and testing stages were performed using CUDA v11.0 on Tesla V100S, embracing
the power of GPU acceleration to train our model and perform predictions efficiently.

RESULTS
Design of the kmerPMTF framework
The kmerPMTF is an open-source python command-line utility that serves as a fast and
reliable framework for predicting plant miRNA-target associations (MTA). It utilizes the
deep learning graph convolution theory to train a specific model for a given plant.
The kmerPMTF framework consists of two modules: a ‘graph constructing’module, which
constructs a miRNA-target graph from the sequences of specific plant miRNAs and target
genes, and a ‘graph training’module, which utilizes a graph convolutional network to learn
the representations and train a specific plant prediction model (Fig. 1). The main reason
for having both modules is that distinct graph construction approach probably contributes
to the graph training module. Besides, by adjusting the training parameters according to
different datasets, an optimal prediction model for specific plants can be obtained.
Therefore, splitting the framework into two modules can enhance the ease of use and the
degree of customization. This will allow users to easily train suitable models for different
plants using the kmerPMTF framework.

The ‘graph constructing’ module consists of two components: a k-mer frequency
counter, which counts the frequency of k-mer, and a learner, which learns embeddings.
This module takes the nucleotide sequences of both miRNA and target gene as input.
The k-mer frequency is utilized to compute the similarity that is necessary for constructing
a heterogeneous graph and feeding it to a self-supervised deep neural network (SDNN)
that learns embeddings serve as attributes for the graph nodes. Next, integrate the miRNA
similarity, target gene similarity, known miRNA-target pairs, and k-mer frequency as a
heterogeneous graph to generate an output that can be used for graph convolution
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operations (Fig. S1A). The ‘graph training’ module consists of a series of graph neural
network layers that comprise a typical graph convolutional network (GCN) architecture.
The purpose of this architecture is to learn the topological structure and node semantics
from the graph. The heterogeneous graph constructed by the previous module serves as
input to this module. After extracting node representation through three layers of graph
convolution, we pair the nodes to obtain edge representations, which are then fed into a
multilayer perceptron (MLP) to compute the probabilities of all edges in the heterogeneous
graph. We consider the prediction of associations between miRNA and target gene as a

miRNA
sequence

target
sequence

k-mer frequency
count

miRNA similarity
network

Target similarity
network

Node embedding

Ntarget
NmiRNA

Known miRNA-target
associations

Heterogeneous graph

Graph convolutionp

MLP

0.94
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link prediction task. The probabilities of the predicted edges between miRNA and target
gene are regarded as the probability of a regulatory relationship between a specific miRNA
and gene (Fig. S1B).

The kmerPMTF outperforms published methods
The primary goal of kmerPMTF is to predict the binary classification of miRNA-target
gene. We evaluated the effectiveness and performance of kmerPMTF by comparing it with
popular deep learning and traditional machine learning methods. Four typical plant
datasets, namely Arabidopsis thaliana, Oryza sativa, Solanum lycopersicum, and Prunus
persica, were employed in the comparison. Arabidopsis thaliana is a classic model plant
which has been widely used in plant genetic studies (Koornneef &Meinke, 2010; Somerville
& Koornneef, 2002), the other three are representative model plants in the field of crops,
vegetables and fruit trees (Aranzana et al., 2019; Izawa & Shimamoto, 1996; Kimura &
Sinha, 2008), respectively. All the miRNA information and known miRNA-target gene
pairs are obtained from Plant miRNA Encyclopedia project (PmiREN) (Guo et al., 2021a),
which provides high-confidence MIR and regulatory relationships by integrating several
databases and many datasets. The four plant genome datasets used in our study contained
a range of 27,416 to 42,189 genes and 221 to 699 MIRs. The number of pairs formed
between miRNA and their target genes ranged from 2,181 to 17,809 (Table 1).

For the deep learning comparison, we selected MiRTDL (Cheng et al., 2015), dgMDL
(Luo et al., 2019) and SG-LSTM-FRAME (Xie et al., 2020). MiRTDL utilizes the traditional
convolutional neural network (CNN) model, whereas dgMDL employs the multimodal
deep belief network (DBN), which can be regarded as a stack of restricted Boltzmann
machine. In contrast, SG-LSTM-FRAME is designed based on a random walk strategy to
predict potential relationships. Furthermore, to demonstrate the efficacy of graph
convolutional network in extracting deep topological semantics, we conducted
experiments using our datasets in the MeSHHeading2vec framework (Guo et al., 2021b)
and graph attention networks (GAT) (Veličković et al., 2017), which employs graph
embedding and graph neural networks. We configured the parameters of the
aforementioned methods in accordance with the recommended guidelines of the author.
All four of these methods are categorized under deep learning. We tested our plant datasets
using these models. Besides, to exemplify the effectiveness of deep learning, we conducted
experiments on our dataset using traditional machine learning techniques. Specifically, we
applied the Adaboost, SVM-SVC and random forest algorithms to our data. All the results

Table 1 Four plant datasets used in this study.

Species Gene number MIR number Pairs

Arabidopsis thaliana 27,416 221 3,646

Oryza sativa 42,189 699 17,809

Solanum lycopersicum 34,658 324 2,181

Prunus persica 26,873 293 6,251
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consistently indicate that kmerPMTF is the optimal choice for the plant datasets, as it
achieves the highest AUPRC values of 0.84, 0.91, 0.80 and 0.82 in Arabidopsis thaliana,
Oryza sativa, Solanum lycopersicum and Prunus persica, respectively (Fig. 2 and Fig. S2).

Parametric sensitivity analysis
As different parametric can affect model performance, we explored the parameters of
graph construction, embedding generation and model training of our experiments.
We first explored the influence of the length of k-mer selected for the frequency counter.
For four models in this work, we set the k-mer length to be 7 bp. This value is within the
range of typical transcription factor binding site lengths (5–9 bp) (Stormo, 2000; Tsai et al.,
2006; Yu, Lin & Li, 2016). To test the robustness of our framework, we further set a series
of k-mer lengths (5, 7, 9 bp) within this range for testing. The results showed that for the
four plants selected in this study, although the model performed best when the k-mer
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Figure 2 The performances of kmerPMTF compare with other methods in terms of AUPRC,
AUROC, PRE, REC, F1 and ACC, where error bar represents the 0.95 confidence interval of
different metrics. Full-size DOI: 10.7717/peerj.17396/fig-2
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length was 7 bp, the influence of different k-mer lengths on the fluctuations of the models
AUPRC and AUROC did not exceed 5% and 8%, respectively. Secondly, we explored
different methods of generating similarity network. Cosine and Jaccard similarity were
tested, and we discovered that cosine similarity might be more suitable in our cases.
Thirdly, we tested k-mer embedding dimensions used as node attributes for graph
convolution. We selected different dimensions from the range of 16–512 for testing.
The results show that when the dimension is greater than or equal to 128, the performance
is improved by 2–5%, while the RAM consumption is increased by three times compared
when it is less than 128. Our experiments demonstrate that selecting the appropriate
hyperparameter k-mer can enhance the model effect. Additionally, our framework
mitigates the impact of inaccurate k-mer selection on performance reduction.

Examination of the graph components
Our framework, kmerPMTF, is constructed with its foundation firmly anchored on the
established principles of the ChebNet graph convolutional model. kmerPMTF skillfully
leverages the nuanced semantics of sequence k-mer, forming a comprehensive
heterogeneous graph. This, in turn, creates a rich tapestry of information, ripe for analysis
by our model. Further adding a level of sophistication, the framework employs a spectral
graph convolutional network. This method facilitates the extraction of profound and
detailed representations, which prove instrumental for accurate and precise predictions.
As part of our rigorous validity checks and to assess the robustness of kmerPMTF, we
adopt an experimental approach during the training phase. Certain components from the
heterogeneous graph are deliberately omitted in this process. The objective of this strategy
is to zero in on the individual contributions of the elements and test the framework’s
capability to sustain its performance amidst these variable conditions. In parallel, we also
design and implement a node feature elimination strategy. This systematic approach is
aimed at assessing the degree to which each k-mer embedding is necessary and contributes
to the overall success of the model. We initiate five model variations as follows, each
evolved from the original and expressing a unique set of parameters and settings.

– miT+TT+mimi: It is a Chebyshev GCN model that uses a graph with all elements but
lacks node features.

– miT+TT+feat: It is a Chebyshev GCN model that uses a graph including node features
but lacks a miRNA-miRNA semantics similarity network.

–miT+TT: It is a Chebyshev GCN model that uses a graph which lacks both node features
and miRNA-miRNA semantics similarity network.

–miT+mimi+feat: It is a Chebyshev GCNmodel that uses a graph including node features
but lacks a target-target semantics similarity network.

– miT+mimi: It is a Chebyshev GCN model that uses a graph which lacks both node
features and target-target semantics similarity network.

Upon employing a 5-fold cross-validation for each variant model, a significant
decrease in the AUROC is observably evident when compared with the original model
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(miT+TT+mimi) (Table 2). The integration of features from miRNA and target genes
markedly improves the model’s capability to assimilate multiple strata of representation,
thereby potentially amplifying its performance.

Case studies
In this section, we conduct case studies to further validate the predictive performance of
the model kmerPMTF in real situations. In peach, the gene PpTIR1 (Prupe.4G037400 and
Prupe.4G037200) as a target of miR393a and miR393b and have been verified using the
GUS assay (Ma et al., 2023). We also select miR171c and miR408 in Arabidopsis as a case,
which is involved in plant growth and development, stress response and hormone
signaling (Gao et al., 2022; Pei et al., 2023). As biologists are more interested in the top
prediction, we finally choose the top five associated target genes from the prediction results
and validate them on the latest database PmiREN (Guo et al., 2021a) and TarDB (Liu et al.,
2021) (Table 3). We can find that all the top five target genes have been supported by
existing databases and experiment study. The results from the case studies suggest that
kmerPMTF is an effective tool in plant miRNA-target pair prediction.

DISCUSSION
In this study, we introduce a novel framework named kmerPMTF (k-mer-based prediction
framework for plant miRNA-target) for predicting the targets of microRNA (miRNA) in
plants. Current computational approaches, which rely on large sample size and high-depth
sequencing, have limitations in their applicability in plant breeding. The kmerPMTF
framework overcomes these constraints by using k-mer splitting and a deep self-supervised
neural network for efficient extraction of latent semantic embeddings of sequences.
The framework creates multiple similarity networks based on k-mer embeddings and
applies graph convolutional networks to develop deep representations of miRNAs and
targets, and to calculate their potential association probabilities.

The model’s performance was evaluated on four typical datasets: Arabidopsis thaliana,
Oryza sativa, Solanum lycopersicum, and Prunus persica, where it achieved AUPRC values
of 84.9%, 91.0%, 80.1%, and 82.1% respectively in a 5-fold cross-validation. These results
indicate a superior level of performance on threshold-independent metrics when
compared to several other state-of-the-art methods, demonstrating the effectiveness of
kmerPMTF. Moreover, our model serves as a guiding reference for interaction prediction
research across numerous computational biology domains, especially offering substantial

Table 2 AUROC of different variation model in ablation study.

Models Arabidopsis thaliana Oryza sativa Solanum lycopersicum Prunus persica

miT+TT+mimi 0.84 0.91 0.80 0.82

miT+TT+feat 0.58 0.61 0.54 0.55

miT+TT 0.51 0.52 0.51 0.49

miT+mimi+feat 0.64 0.53 0.57 0.66

miT+mimi 0.59 0.71 0.61 0.61
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insights for relative studies focused on miRNA-target interaction prediction (Liu et al.,
2020; Wang et al., 2022; Zhang et al., 2021a, 2021b).

Since kmerPMTF is a machine learning model, its performance heavily depends on the
quality and completeness of the input data. If the data is biased, incomplete, or noisy, the
performance of the model could be significantly affected. The graph convolutional
networks require significant computational resources, especially for large datasets. This
might limit the usage of the model in resource-constrained environments or for very
large-scale analyses. Deep learning models, in general, are often criticized for being ‘black
boxes’, as they make predictions that are hard to interpret. While kmerPMTF might be
able to achieve high prediction accuracy, it might not provide direct biological insights into
why certain miRNAs associate with specific targets. While these potential common
limitations exist, none of them undermine the overall value of the framework. They merely
point to future works that could further improve upon the existing method.

CONCLUSIONS
In summary, the study provides a simplified and efficient method for identifying plant
miRNA-target associations. On a broader scope, it contributes to a deeper understanding
of miRNA regulatory prediction work in plants. The model and methodology also have a
significant practical application, as they can enhance plant breeding efforts by enabling

Table 3 The top 5 predicted target genes of four real cases.

Species miRNA Ranking Target Score Evidence

Peach miR393a 1 Prupe.4G187100 0.95 PmiREN

2 Prupe.3G311800 0.93 PmiREN

3 Prupe.4G037400 0.92 GUS assay

4 Prupe.4G037200 0.91 GUS assay

5 Prupe.8G042000 0.91 PmiREN

Peach miR393b 1 Prupe.3G311800 0.98 PmiREN

2 Prupe.4G037400 0.98 GUS assay

3 Prupe.1G173300 0.97 PmiREN

4 Prupe.8G241400 0.96 PmiREN

5 Prupe.2G295400 0.96 PmiREN

Arabidopsis miR171c 1 AT3G47170 0.98 PmiREN

2 AT3G60630 0.98 PmiREN

3 AT4G00150 0.98 PmiREN, TarDB

4 AT2G45160 0.98 PmiREN, TarDB

5 AT5G08300 0.97 PmiREN, TarDB

Arabidopsis miR408 1 AT1G72230 0.99 PmiREN

2 AT2G44790 0.99 PmiREN

3 AT3G02200 0.98 PmiREN, TarDB

4 AT1G15830 0.97 PmiREN

5 AT2G02850 0.96 PmiREN, TarDB
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accurate predictions about miRNA and target associations without the need for extensive
sample sizes or in-depth sequencing.
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