# Association of maternal genetics with the gut microbiome and eucalypt diet selection in captive koalas (#95764)

First submission

#### Guidance from your Editor

Please submit by 10 Mar 2024 for the benefit of the authors (and your token reward) .



#### **Structure and Criteria**

Please read the 'Structure and Criteria' page for general guidance.



#### **Custom checks**

Make sure you include the custom checks shown below, in your review.



#### Raw data check

Review the raw data.



#### Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

#### **Files**

Download and review all files from the <u>materials page</u>.

- 8 Figure file(s)
- 8 Table file(s)
- 2 Raw data file(s)
- 1 Other file(s)

#### **Q** Custom checks

#### **DNA** data checks

- Have you checked the authors <u>data deposition statement?</u>
- Can you access the deposited data?
- Has the data been deposited correctly?
- Is the deposition information noted in the manuscript?

#### Vertebrate animal usage checks

- Have you checked the authors <u>ethical approval statement?</u>
- Were the experiments necessary and ethical?
- Have you checked our <u>animal research policies</u>?

## Structure and Criteria



#### Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

#### **Editorial Criteria**

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

#### **BASIC REPORTING**

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
  Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

#### **EXPERIMENTAL DESIGN**

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

#### **VALIDITY OF THE FINDINGS**

- Impact and novelty not assessed.

  Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.



Conclusions are well stated, linked to original research question & limited to supporting results.



## Standout reviewing tips



The best reviewers use these techniques

| Τ | p |
|---|---|

## Support criticisms with evidence from the text or from other sources

### Give specific suggestions on how to improve the manuscript

### Comment on language and grammar issues

### Organize by importance of the issues, and number your points

## Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

#### **Example**

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.



## Association of maternal genetics with the gut microbiome and eucalypt diet selection in captive koalas

Kotaro Kondo <sup>1</sup>, Mirei Suzuki <sup>1</sup>, Mana Amadaira <sup>2</sup>, Chiharu Araki <sup>2</sup>, Rie Watanabe <sup>2</sup>, Koichi Murakami <sup>3</sup>, Shinsaku Ochiai <sup>3</sup>, Tadatoshi Ogura <sup>Corresp., 2</sup>, Takashi Hayakawa <sup>Corresp., 4</sup>

**Background.** Koalas (*Phascolarctos cinereus*), an Australian arboreal marsupial, depend

Corresponding Authors: Tadatoshi Ogura, Takashi Hayakawa Email address: togura@vmas.kitasato-u.ac.jp, hayatak@ees.hokudai.ac.jp

on eucalyptus tree leaves (Eucalyptus spp.) for their diet. They selectively consume only a few of the hundreds of available eucalypt species. Since the koala gut microbiome is essential for the digestion and detoxification of eucalypts, their individual differences in the gut microbiome may lead to variations in their eucalypt selection and eucalypt metabolic capacity. Despite a strong relationship between the gut microbiome and eucalypt foraging in koalas, research focusing on the relationship between the gut microbiome and differences in food preferences is very limited. Therefore, we aimed to determine whether individual and regional differences exist in the gut microbiome of koalas as well as the mechanism by which these differences influence eucalypt selection. Methods. Foraging data and fecal samples of koalas were collected from two zoos in Japan. The mitochondrial phylogenic analysis was conducted to estimate the maternal origin of each koala. In addition, the koala's 16S-based gut microbiome was analyzed to determine the composition and diversity of each koala's gut microbiome. We used these data to investigate the relationship among maternal origin, gut microbiome and eucalypt diet selection. Results and Discussion. This research revealed that diversity and composition of the gut microbiome and that eucalypt diet selection of koalas differs among regions. We also revealed that the gut microbiome alpha diversity was correlated with foraging diversity in koalas. These individual and regional differences would result from vertical (maternal) transmission of the gut microbiome and represent an intraspecific variation in koala foraging strategies. Further, we demonstrated that certain gut bacteria were strongly correlated with both maternal origin and eucalypt foraging patterns. Bacteria found to be associated with maternal origin included bacteria involved in fiber digestion and degradation of secondary metabolites, such as the families Rikenellaceae PeerJ reviewing PDF | (2024:01:95764:0:1:NEW 31 Jan 2024)

<sup>1</sup> Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan

 $<sup>^{\</sup>rm 2}$  School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan

<sup>&</sup>lt;sup>3</sup> Hirakawa Zoological Park, Kagoshima, Kagoshima, Japan

<sup>&</sup>lt;sup>4</sup> Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, Japan



and Synergistaceae. These bacteria may cause differences in metabolic capacity between individual and regional koalas and influence their eucalypt selection. **Conclusion.** We showed that the characteristics of the gut microbiome and eucalyptus diet selection of koalas differ by individuals and regional origins. In addition, some gut bacteria that would influence eucalypt foraging of koalas showed the relationships with both maternal origin and eucalypt foraging pattern. Given the importance of the gut microbiome to koalas foraging on eucalyptus and their strong symbiotic relationship, future studies should focus on the symbiotic relationship and coevolution between koalas and the gut microbiome to understand individual and regional differences in eucalypt diet selection by koalas.



38

| 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2              | Association of maternal genetics with the gut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3              | microbiome and eucalypt diet selection in captive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4              | koalas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7              | Kotaro Kondo <sup>1</sup> , Mirei Suzuki <sup>1</sup> , Mana Amadaira <sup>2</sup> , Chiharu Araki <sup>2</sup> , Rie Watanabe <sup>2</sup> , Koichi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8              | Murakami <sup>3</sup> , Shinsaku Ochiai <sup>3</sup> , Tadatoshi Ogura <sup>2</sup> , Takashi Hayakawa <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10             | <sup>1</sup> Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 11             | <sup>2</sup> School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 12             | <sup>3</sup> Hirakawa Zoological Park, Kagoshima, Kagoshima, Japan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 13             | <sup>4</sup> Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, Japan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 14             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15             | Corresponding Authors:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 16             | Tadatoshi Ogura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17             | School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 18             | Email address: togura@vmas.kitasato-u.ac.jp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 19             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20             | Takashi Hayakawa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 21             | Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, Japan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 22             | Email address: hayatak@ees.hokudai.ac.jp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 23             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24             | Abatraat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 25             | Abstract  Parkey and K. J. (Pl. 1 and 1 an |
| 26             | <b>Background.</b> Koalas ( <i>Phascolarctos cinereus</i> ), an Australian arboreal marsupial, depend on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 27             | eucalyptus tree leaves ( <i>Eucalyptus</i> spp.) for their diet. They selectively consume only a few of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 28<br>20       | the hundreds of available eucalypt species. Since the koala gut microbiome is essential for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 29<br>20       | digestion and detoxification of eucalypts, their individual differences in the gut microbiome may                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 30<br>31       | lead to variations in their eucalypt selection and eucalypt metabolic capacity. Despite a strong relationship between the gut microbiome and eucalypt foraging in koalas, research focusing on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 31<br>32       | the relationship between the gut microbiome and differences in food preferences is very limited.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 33             | Therefore, we aimed to determine whether individual and regional differences exist in the gut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 33             | microbiome of koalas as well as the mechanism by which these differences influence eucalypt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3 <del>5</del> | selection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 36             | <b>Methods.</b> Foraging data and fecal samples of koalas were collected from two zoos in Japan.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | The second of the second sum and recar sumples of Rounds were confected from two 2005 in Japan.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

The mitochondrial phylogenic analysis was conducted to estimate the maternal origin of each

koala. In addition, the koala's 16S-based gut microbiome was analyzed to determine the



- composition and diversity of each koala's gut microbiome. We used these data to investigate the relationship among maternal origin, gut microbiome and eucalypt diet selection.
- 41 **Results and Discussion.** This research revealed that diversity and composition of the gut
- 42 microbiome and that eucalypt diet selection of koalas differs among regions. We also revealed
- 43 that the gut microbiome alpha diversity was correlated with foraging diversity in koalas. These
- 44 individual and regional differences would result from vertical (maternal) transmission of the gut
- 45 microbiome and represent an intraspecific variation in koala foraging strategies. Further, we
- 46 demonstrated that certain gut bacteria were strongly correlated with both maternal origin and
- 47 eucalypt foraging patterns. Bacteria found to be associated with maternal origin included bacteria
- 48 involved in fiber digestion and degradation of secondary metabolites, such as the families
- 49 Rikenellaceae and Synergistaceae. These bacteria may cause differences in metabolic capacity
- 50 between individual and regional koalas and influence their eucalypt selection.
- 51 **Conclusion.** We showed that the characteristics of the gut microbiome and eucalyptus diet
- 52 selection of koalas differ by individuals and regional origins. In addition, some gut bacteria that
- would influence eucalypt foraging of koalas showed the relationships with both maternal origin
- and eucalypt foraging pattern. Given the importance of the gut microbiome to koalas foraging on
- eucalyptus and their strong symbiotic relationship, future studies should focus on the symbiotic
- relationship and coevolution between koalas and the gut microbiome to understand individual
- 57 and regional differences in eucalypt diet selection by koalas.

#### Introduction

58

59

69 70

71

72

73 74

75

76

77 78

60 The marsupial koalas (*Phascolarctos cinereus*) live in eucalypt forests in eastern and southeastern Australia hey consume eucalypt tree leaves (*Eucalyptus* spp.) almost exclusively, 61 which are potentially toxic and not suitable for other animals. They select and depend on a few 62 eucalypt species and even conspecific eucalypt individ 63 been recorded as koala food sources, each koala may only consume 1–10 eucalypt species [1, 2]. 64 The Cape Otway population in Victoria reportedly experienced starvation and collapse of the 65 individual number due to the high density of koa The overbrowsing of their preferred trees 66 (Eucalyptus viminalis) resulted in the defoliation of these trees [3]. Notably, another eucalyptus 67

tree species, E. obliqua, is preferred by some living koalas. Other koalas that preferred E.

viminalis did not feed on E. obliqua and therefore suffered starvation, leading to their de

Thus, with regard to their extreme diet preferences, we aimed to determine the factors that lead to differences in food preferences among individual koalas.

Koalas have evident regional differences in morphology, such as size and color [4, 5], population density [6], and genetic diversity [7]. Due to these regional differences, the koalas are divided into northern (Queensland and northern New South Wales) and southern (Victorian and southern New South Wales) koalas for husbandry management and maintained under specific conditions (rearing temperature, feeding eucalypt species) suitable for each group. Previously, koalas were thought to have three subspecies based on morphological differences (*P. c. adustus*, *P. c. cinereus*, and *P. c. victor*) [4, 8]. Currently, it is known that koalas can be divided into four



80

81

82 83

84 85

86

87

88

89

90 91

92

93

94

95

96

97

98

99

100101

102

103

104105

106

107

108 109 distinct groups (two northern lineages, a central lineage, and a southern lineage) based on mtDNA analysis [9]. The genome-wide analysis also revealed that koalas are divided into five distinct group [7]. Eucalypt vegetation potentially preferred by koalas varies from region to region [1]. The nitrogen and fiber content and composition of potentially toxic plant secondary metabolites in eucalyptus are known to vary by region and species [10–12]. Therefore, koalas have had to adapt to local vegetation in terms of chemistry and change their dietary preferences [13].

The role and impact of symbiotic microorganisms on host animals have been highly recognized, including koalas [14, 15]. The gut microbiome contributes to many biological functions such as host metabolism [16], detoxification of secondary metabolites [17–19], immune system [20, 21] and behavior [22, 23]. The gut microbiome is particularly important in koalas, which use the enlarged hindgut to ferment eucalyptus: highly fibrous, low in nutrition, and rich in secondary metabolites [24, 25]. They have specifically developed their characteristics: morphology, such as large cecum and colon fermentation tanks [26]; physiology, such as adjustment of the speed of the passage of substances through the gastrointestinal tract according to their size [26]; genetics, such as the expanded repertoire of bitter taste and olfactory receptor gene family and cytochrome P450 monooxygenase (CYP) gene family [7] to adapt to appropriate eucalypt selection, ability to digest and detoxify the leaves of eucalyptus, leading to dependence on the gut microbiome [27, 28]. Koala juveniles consume their mother's feces, called pap, which contains a high concentration of microorganisms and digested eucalypt residues [29]; it enables juveniles to gain gut microorganisms necessary for their growth, development, and eucalypt digestion [30]. Despite such a strong relationship between the gut microbiome and eucalypt foraging in koalas, research focusing on the relationship between the gut microbiome and differences in food preferences is limited to only two studies (in) Cape Otway [12, 31].

Herein, we hypothesized that the adaptation of the gut microbiomes of koalas to region-specific eucalypt vegetation is associated with regional differences in eucalyptus selection. A previous study reported the food preferences of individual koalas from Japanese zoos [32]. We investigated the maternal genetics (mitochondrial lineage and gut microbiome) of captive koalas in Japan and its relationship with eucalypt diet selection. Subsequently, we investigated the relationship among mitochondrial phylogeny, eucalypt diet selection, and 16S-based gut microbiomes in captive koalas from two Japanese zoos.

111112

113

110

#### **Materials & Methods**

#### 114 Ethics statement

- 115 This study adhered to the Animals in Research: Reporting On Wildlife (ARROW) guidelines.
- 116 Sample collection and behavioral recordings were approved by Hirakawa Zoological Park and
- 117 Awaji Farm Park England Hill as collaborative projects with Hayakawa Lab of Hokkaido
- 118 University and Ogura Lab of Kitasato University and were fully performed through noninvasive



approaches, except for blood collection. To minimize suffering, blood samples were not 119 collected for the purpose of this study; instead, used residues from routine health examinations 120 were employed. Behavioral recordings were completely non-invasively conducted in the zoo-121 visitors' area and did not artificially control koalas' behavior for the purpose of this study. The 122 123 koalas were healthily kept for the purpose of public exhibitions in the zoos in the enough of enclosure (>5 m wide, >5 m depth, and >5 m height). Their environments were e(ri) hed. They 124 were always provided branches of a variety of eucalypt species scattered in the enclosure. Since 125 koalas are arboreal animals, logs were arranged in a three-dimensional manner for the koalas to 126 enjoy moving in any direction. The animal experimentation protocol was approved by the 127 President of Kitasato University through the judgment of the Institutional Animal Care and Use 128 Committee of Kitasato University (Approval No. 21-069). 129 130

**Animals** 

To perform sufficient statistical analysis, a total of 15 captive koalas were selected and examined in this study (Tables 1, S1). Of these, nine koalas obtained care at Hirakawa Zoological Park, whereas the other six obtained care at Awaji Farm Park England Hill. Four of the Awaji koalas were southern koalas (Yun, Daichi, Nozomi, and Midori), whereas the others were northern koalas. To be blind test, behavioral recording was performed by MA, CA and RW, and statistical analysis was performed by KK.

138139

157158

131

#### Mitochondrial phylogenetic analysis

Mitochondrial phylogenetic analysis, based on the study by Neaves et al. [9], was conducted to 140 141 estimate the maternal origin of each koala. Blood or fecal samples of koalas were collected to extract and purify genomic DNA. The collected blood samples were immediately mixed with 142 anticoagulants (EDTA or heparin). All samples were frozen at -20°C prior to DNA extraction. 143 Total DNA was extracted from blood samples using Qiagen DNeasy Blood and Tissue Kit 144 145 (Qiagen GmbH) and from fecal samples using QIAamp Fast DNA Stool Mini Kit (Qiagen GmbH). Next, using TaKaRa Ex Tag Hot Start Version (Takara Bio Inc.), the mitochondrial 146 DNA control region (D-loop) was amplified via polymerase chain reaction (PCR) using the 147 following primers: MaL15999M (ACC ATC AAC ACC CAA AGC TGA) and MaH16498M 148 149 (CCT GAA GTA GCA ACC AGT AG) (Fumagalli et al. 1997). The PCR conditions were as follows: initial denaturation (94°C for 10 min); followed by 35 cycles of denaturation (94°C for 150 10 s), annealing (60°C for 30 s), and extension (72°C for 60 s); and final extension (72°C for 10 151 min). The PCR products were purified via precipitation with isopropanol. Next, the purified PCR 152 products were directly sequenced using PCR primers for complete coverage in both strand 153 orientations via BigDye Terminator v3.1 Cycle Sequencing Kit and 3130 Genetic Analyzer 154 155 (Applied Biosystems). Chromatograms were imported into FinchTV (Geospiza Inc.) and analyzed. 156

The phylogeny of the sequenced D-loop region of mitochondrial DNA was analyzed with the sequences of 48 koalas reported by Neaves et al. [9]. A multiple alignment was



constructed by MUSCLE [33]. A phylogenetic tree was reconstructed using the Maximum-Likelihood (ML) method with 1,000 bootstrap resamplings using MEGA11 [34].

161162

163

164

165

166

167

168

169170

171172

173

174

175176

177

178

179

#### Foraging data and gut microbiome

Foraging data w Delected from six koalas in Hirakawa Zoological Park for 8 days between 21–30 November 2021. Subjects were housed independently (Boonda and Ito) or in cohabitation with two individuals (Himawari with Kibou and Sora with Itsuki). During foraging and feeding, all koala pairs that use the same enclosure rarely interfere with each other. At Hirakawa, four of the five eucalypt species (*E. camaldulensis*, CR; *E. microcorys*, M; *E. punctata*, P; *E. ro*, R; *E. tereticornis*, T) were fed twice a day (9:00 and 16:00). The combination of eucalyptus red at the same time and the frequency of feeding was counterbalanced. The method of behavioral recoding was determined *a priori*. Eucalypt species consumed by each koala were observed using the instantaneous appling method in 30-s intervals [35]. The observation time was 1 hour each at 9:00 am and 4:00 pm immediately after feeding by caretakers and 1 hour each at 11:00 am and 2:00 pm outside of the immediate feeding period. Finally, the observation was carried out for 8 days (a total of 3 burs).

Fecal samples were collected during foraging observation periods. Fecal sampling was performed by collecting fresh feces immediately after defecation. In case of cohabiting housed individuals, individual identification was performed by direct observation of defecation. The fecal samples of nonsubject koalas were also collected in Hirakawa and Awaji for comparison. Fresh fecal samples were collected for sampling. Finally, 2–5 fecal samples per koala and a total of 62 fecal samples were collected and stored at –20°C until DNA extraction.

180 181 182

#### 16S rRNA gene sequencing

According to Hayakawa et al. [36, 37], we performed 16S-based gut microbiome analysis using 183 collected fecal samples. After quantifying the concentration of purified fecal DNA using Qubit 184 185 dsDNA HS Assay Kit equipped with Qubit fluorometer (Thermo Fisher Scientific), we amplified the V3–V4 region of the 16S rRNA gene using KAPA HiFi Hot Start Ready Mix (Kapa 186 Biosystem, Inc., Wilmington, MA, USA). We used the following primer pair: 1S-D-Bact-0341-187 b-S-17 (forward), CCT ACG GGN GGC WGC AG; S-D-Bact-0785-a-A-21 (reverse), GAC 188 189 TAC HVG GGT ATC TAA TCC [38], with the specific overhang adaptors TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG - [3-6-mer Ns] - [forward primer] and GTC TCG 190 TGG GCT CGG AGA TGT GTA TAA GAG ACA G - [3-6mer Ns] - [reverse primer], where 3-191 6mer Ns can improve the sequencing quality [39]. After confirming PCR amplification via gel 192 electrophoresis, we purified the PCR amplicons with Agencourt AMPure XP beads (Beckman 193 Coulter, Inc.). Then, we performed index PCR using Illumina Nextera XT Index Kit (Illumina, 194 195 Inc.). Additionally, we confirmed the presence and appropriate length of index PCR products via electrophoresis and then purified index PCR products with Agencourt AMPure XP beads. All 196 index PCR products were mixed at the same molarities for constructing a library. After PhiX 197



spike-in (30%), we sequenced the library using the Illumina Miseq platform (Illumina, Inc.). ( $2 \times 301$  bp).

#### Data analysis

The MiSeq base calls were converted to FASTQ files using configureBclToFastq.pl implemented by the bcl2fastq conversion software v1.8.4 (Illumina, Inc.) (options: no-eamss, mismatches 0, and use-bases-mask Y300n,Y8,Y8,Y300n). The read pairs were demultiplexed, the primer sequences were trimmed, and those with low-quality index sequences were discarded, where the index sequences included nucleotide(s) with a quality score of <30, using clsplitseq in Claident [40] (option: mingualtag = 30).

Quality control and data analysis were performed using QIIME2 v2021.4.0 [41]. To generate amplicon sequence variants (ASVs), DADA2 v2021.4.0 [42] was used to quality filter the sequences with a read cut length of 260 (forward) and 260 (reverse) based on quality control results and denoise chimeric sequences with a read count of 1,000,000 for training the error model. The taxonomy analysis was conducted with the SILVA 138 database [43, 44]. Subsequently, sample depths were rarefied where the value was ≥0.99 for all samples using Good's coverage (4,105 sequences per sample).

We determined alpha diversity (Shannon index, Chao1, Simpson index, Simpson index of evenness, Pielou's evenness index, Faith's phylogenetic diversity, and observed features) and beta diversity (unweighted UniFrac, weighted UniFrac accard index, and Bray-Curtis dissimilarity) to analyze differences in the gut microbiome between mitochondrial lineages or between the management groups. The pairwise Kruskal-Wallis test with Benjamini-Hochberg correction was used for comparing alpha diversity, whereas permutational multivariate analysis of variance (PERMANOVA) was used to assess the effect of mitochondrial lineage on gut microbiome similarity. Individual foraging data (proportion of foraging of each eucalypt species) were used to visualize similarities in foraging patterns using nonmetric multidimensional scaling (NMDS) via *vegan* v2.6.4 in R v4.2.3. PERMANOVA was performed using the vegan package to assess the effect of mitochondrial lineage on foraging patterns.

To investigate the relationship between the diversity of individual eucalypt foraging and alpha diversity of the gut microbiome, Spearman's rank correlation coefficients were calculated. In this analysis, the Shannon index was used to indicate the diversity of individual eucalypt foraging. Analysis of composition of microbiomes (ANCOM) [45] was used to determine whether gut bacteria with characteristic relative abundances exist in each mitochondrial lineage or management group. All codes are available in Supplemental Information.

#### Results

#### Mitochondrial phylogeny

We performed phylogenetic analysis of the mitochondrial D-loop to estimate the maternal origins of the analyzed koalas (Fig. 1). A phylogenetic tree was constructed using the sequences



of five koala haplotypes from Japanese zoos as well as the sequences of 48 individuals used for phylogenetic analysis by Neaves et al. [9]. Thus, we revealed that koalas from Japanese zoos examined in this study have three different original (northern-2, N = 2; central, N = 4; and southern, N = 9).

242243

262

263264

265

266

267268

269

270

271

272273

274

275

276277

#### Gut microbiome diversity among mitochondrial lineages

We investigated the mechanism by which the maternal origins of koalas, which were determined 244 using mitochondrial phylogenetic analysis, and management groups influence the gut bacterial 245 microbiome (Dataset S1, S2). Seven indices of alpha diversity were calculated (Table S2, S3, 246 247 Fig. 2). The index that considers evenness revealed that alpha diversity was the highest in the southern lineage and lowest in the central lineage (Simpson Index; South =  $0.87 \pm 0.07$ , Center = 248  $0.75 \pm 0.08$ , North2 =  $0.84 \pm 0.04$ ; Simpson Index of Evenness; South =  $0.10 \pm 0.04$ , Center = 249  $0.04 \pm 0.01$ , North2 =  $0.06 \pm 0.01$ ). In contrast, the index considering richness revealed that the 250 251 southern lineage had the lowest alpha diversity (Chao1; South =  $103.55 \pm 28.36$ , Center = 129.84 $\pm$  19.18, North2 = 125.31  $\pm$  9.13; Faith's phylogenetic diversity; South = 6.78  $\pm$  0.98, Center = 252  $7.81 \pm 0.92$ , North2 =  $7.50 \pm 0.54$ ; and observed features; South =  $91.95 \pm 21.58$ , Center = 253  $115.57 \pm 18.18$ , North2 =  $113.25 \pm 5.36$ ). This trend was more clearly demonstrated between the 254 255 management groups (Fig. 2a, 2b) (the pairwise Kruskal–Wallis test with Benjamini–Hochberg correction; Shannon Index; South =  $4.32 \pm 0.22$ , North =  $3.96 \pm 0.50$ , P = 0.002022; Simpson 256 Index; South =  $0.90 \pm 0.02$ , North =  $0.81 \pm 0.09$ , P = 2.60E-07; Simpson Index of Evenness; 257 South =  $0.14 \pm 0.03$ , North =  $0.06 \pm 0.02$ , P = 4.12E-10; Chao1; South =  $89.18 \pm 11.66$ , North = 258  $123.30 \pm 25.96$ , P = 0.000003; Faith's phylogenetic diversity; South =  $6.28 \pm 0.50$ , North = 7.50259 260  $\pm 0.98$ , P = 0.000001; and observed features; South =  $79.80 \pm 6.94$ , North =  $109.67 \pm 20.61$ , P =2.28E-07). 261

Mitochondrial lineage have a significant impact on gut microbiome similarity (beta diversity), both qualitatively (Unweighted UniFrac) and quantitatively (weighted UniFrac) (Fig. 3) (pairwise PERMANOVA tests; Unweighted UniFrac, Center vs North2: pseudo-F = 8.03, q = 0.001, Center vs South: pseudo-F = 8.13, q = 0.001, North2 vs South: pseudo-F = 7.29, q = 0.001; number of permutations = 999; weighted UniFrac, Center vs North2: pseudo-F = 5.78, q = 0.0015, Center vs South: pseudo-F = 11.22, q = 0.0015, North2 vs South: pseudo-F = 5.09, q = 0.002; number of permutations = 999). In the same way, management groups also have a significant impact on gut microbiome similarity, both qualitatively and quantitatively (Fig. 3) (pairwise PERMANOVA tests; Unweighted UniFrac, pseudo-F = 16.698158, q = 0.001; number of permutations = 999; weighted UniFrac, pseudo-F = 27.86, q = 0.0015; number of permutations = 999).

Based on differences in gut microbiome similarity between mitochondrial lineages, we investigated whether there were bacteria that differed in relative abundance with mitochondrial lineages or management groups using ANCOM. The ANCOM results revealed significant differences in the relative abundance of 12 bacterial genera between the two management groups (Table S4, Fig. 4a). Of them, eight genera showed higher relative abundance in southern koalas,



whereas the four other genera showed higher relative abundance in northern koalas. Further, two bacterial genera showed significant differences among mitochondrial lineages (Table S5, Fig. 4b). These two genera clearly showed differences among mitochondrial lineages; they are unknown genera belonging to the families Tannerellaceae (significant in southern, W = 119) and Rikenellaceae (significant in northern 2, W = 111).

#### Relationship between eucalypt foraging and the gut microbiome

We recorded foraging data on zoo koalas to investigate the relationship between eucalyptus foraging and the gut microbiome (Fig. 5, Dataset S2). The proportion of each eucalyptus species in foraging varied greatly from individual to individual. These foraging data were used to visualize the similarity of NMDS foraging patterns (Fig. 6). PERMANOVA showed that mitochondrial lineage significantly influences foraging patterns (F = 5.88,  $R^2 = 0.68$ , P = 0.014, number of permutations = 719).

We investigated the relationship between the diversity of eucaly microbiome diversity via Spearman's rank correlation coefficients (Table S6, Fig. 7). The result shows a positive correlation between the diversity of the foraging and diversity of the gut microbiome (Spearman's rank correlation;  $\rho = 0.89$ , P = 0.009, Shannon entropy). There was a correlation with the indicator that considers evenness but not with the indicator that considers richness (Tables S6), *i.e.*, significant in Shannon, Simpson, Simpson's index of evenness, and Pielou's evenness index, but not in Chao 1, Faith's phylogenetic diversity and observed features (Spearman's rank correlation; Shannon entropy:  $\rho = 0.886$ , P = 0.009, Pielou evenness:  $\rho = 0.770$ , P = 0.036, Simpson:  $\rho = 0.830$ , P = 0.021, Simpson e:  $\rho = 0.830$ , P = 0.021, Chao1:  $\rho = 0.030$ , P = 0.479, Faith pd:  $\rho = 0.540$ , P = 0.133, Observed features:  $\rho = 0.030$ , P = 0.479).

We investigated whether gut bacteria at the genus level vary in relative abundance depending on the foraging proportion of the *Eucalyptus* species. We revealed that the relative abundance of some gut bacteria increased or decreased depending on the foraging proportion of each eucalypt species (Table S7, Fig. 8). The number of gut bacterial genera that showed a significant positive correlation was one with *E. microcorys* and two with *E. punctata* (Spearman's rank correlation with Benjamini–Hochberg correction; q < 0.05). Conversely, the number of gut bacterial genera that showed a significant negative correlation was four with *E. camaldulensis*, two with *E. microcorys*, and one with *E. robsta* (Spearman's rank correlation with Benjamini–Hochberg correction; q < 0.05).

#### **Discussion**

As the koala gut microbiome is known to be highly involved in eucalypt digestion and detoxification [28, 29], there is an increasing need to consider the gut microbiome in koala management, both *in situ* (within habitats) and *ex situ* (outside habitats) conservation [46]. In general, the abundance and composition of the gut microbiome varies in response to dietary changes [47]. However, the koala gut microbiome has been reported to be stable within



 individuals [48] and does not change significantly in response to dietary changes [31, 49]. Furthermore, there is a report that geographic distance of habitat has an influence on the similarity of the gut microbiome of wild koalas [46]. Thus, it is considerable that this stable regional difference in the koala gut microbiome could be driving a significant difference in eucalyptus selection between regions. However, research focusing on the relationship between the gut microbiome and differences in dietary preferences and its regionality is limited. Therefore, in this study we sought to elucidate how regional differences influence koalas' gut microbiomes and their eucalypt selection, and the mechanism by which these regional differences influence eucalypt selection. As a result, we showed presence of the relationship between the gut microbiome and eucalypt diet selection as well as the effect of geographical distribution on both factors by analyzing foraging data, mitochondrial lineages as indicators of regional origin, and the gut microbiome in captive koalas in Japan.

We demonstrated the influence of mitochondrial lineages on foraging patterns in eucalypt diet selection (Fig. 6). Additionally, differences in the alpha and beta diversity values of the gut microbiome were observed between mitochondrial lineages and management groups (Table S2, Figs. 2, 3). These results indicate regional variations in the koala gut microbiome and eucalypt diet selection, suggesting that different gut microbiomes in different regions may lead to variation in eucalypt diet selection. It is well known that joey koalas are fed with cecum feces, known as pap, of their mothers as an important weaning diet, after which they acquire the gut microbiome necessary for eucalypt foraging [29, 50]. Additionally, mitochondrial DNA is inherited from the mother to child [51]. Genetic factors such as detoxification and bitter taste receptor genes can also affect eucalypt diet selection [7]. Thus, the genetic inheritance in koalas may explain the differences in eucalypt foraging and the gut microbiome.

Investigating the relationship between the diversity of gut microbiomes and the diversity of koala eucalyptus foraging, we found that the more diverse gut microbiome the koalas had, the more diverse eucalyptus that they ate (Fig. 7). Only the diversity of the gut microbiome, considering evenness rather than richness, was found with the be correlated to diversity of the foraging of eucalyptus (Table S5). This finding suggests that the uniformity of the gut microbiome, rather than the presence of many bacteria, is more important for the foraging of diverse eucalypts. Since there were differences in evenness of alpha diversity among mitochondrial lineages and management groups (both highest in the southern lineage), these differences may explain the different food habits of koalas by region, *i.e.*, this may influence the number of eucalypt species preferred in different regions.

It is known that small animals need to selectively consume a high-quality diet while large animals need to consume large amounts because their energy requirements, tolerance to toxic substances, and amount of fermentable fiber vary with their body size and organ size [52–54]. There are geographical variations in koala body size, with northern individuals known to be smaller and southern individuals larger [4, 5]. Therefore, small northern individuals likely need to selectively consume eucalyptus leaves, whereas larger southern individuals need to consume large amounts of eucalyptus leaves. Thus, this need for optimal selection of foraging by body



size may have led to the selection of a gut microbiome that allows northern individuals to consume specific types of eucalypts (a composition suitable for consuming specific eucalypts) and a gut microbiome that allows southern individuals to consume many eucalypts (highly diverse, especially even, gut microbiome) (Figs. 7).

Previous studies have reported that gut bacteria influence the host diet [19]. For example, the gut bacteria reportedly contribute to oxalate degradation in the creosote bush diet of woodrats (Neotoma spp.) [17] as well as mimosine degradation in the Leucaena leucocephala diet of Australian cattle [55, 56], thus influencing diet. In koalas, differences in the composition of the gut microbiome may explain different feeding habits, revealing that fecal inoculation alters feeding habits [12, 31]. The current study revealed that the relative abundance of several gut bacteria in koalas was associated with mitochondrial lineages, management groups, and foraging proportion of each eucalypt species (Fig. 8). The family *Rikenellaceae* was associated with the northern lineage 2. This family is known to be involved in carbohydrate degradation [57]. In addition, the genus RC9 group of *Rikenellaceae* is known to play an important role in crude fiber digestion [58]. The genus *Parabacteroides* was abundantly detected in southern koalas in the management group and has been reported to possess many oligosaccharide-degrading genes and genes associated with tannin degradation [12]. The family Synergistaceae was abundantly found in southern koalas in the management group. This family is known to be involved in the degradation of secondary plant metabolites [59]. These bacteria may lead to differences in the metabolic capacities of individuals and affect the foraging patterns of different individuals and regions.

Although 16S rRNA gene sequencing performed in this study provides information on the composition and taxonomy of the gut microbiome [60], the relevant functional information is limited [19]. As duplicate functions (redundancy) of bacteria have been reported in other species [61, 62], studies have also suggested a redundancy in the gut bacterial function of koalas [46, 48]. Therefore, we believe that a metagenomic sequencing approach is warranted in the future to analyze gut microbiomes at genetic and functional levels and compare them at functional and physiological levels. Other factors such as differences in past food experience, genetics, and physiology are also likely to influence eucalyptus foraging in koalas [31, 32]. Recent studies have reported that when the host and its associated microorganisms are considered as one ecosystem (holobiont), the hologenome, which is the collective term for the host and microbial genomes, can be subject to natural selection [63]. Therefore, future studies should focus on the symbiotic relationship and coevolution between koalas and the gut microbiome to better understand individual and regional differences in eucalypt diet selection by koalas.

There are several limitations in the interpretation of the present results. First, this study used the mitochondrial lineage as the region of origin of koalas. However, the mitochondrial lineage can only divide koalas into four groups, may gexamining the relationship with regional differences in actual vegetation difficult. A method using the nuclear genome, which allows for finer groupings [7] and groupings that consider actual vegetation, would help clarify the role of the gut microbiome in adaptation to regional vegetation. Notably, the study subjects were captive



 koalas; the sample size was limited and included individuals related to each other. Although there have been reported that there are few differences in the gut microbiome between captive and wild individuals [27], it is known that the gut microbiome and preferred eucalypts of mothers and their offspring are similar [50, 64]. Therefore, additional validation is required in more unrelated individuals in the future.

Previous research has reported that geographic distance of habitat influences the similarity of the gut microbiome of wild koalas [46]. Moreover, this study revealed that captive koalas in Japan have similar gut microbiomes by region of origin. Koalas have been continuously bred and raised in Japan since the early 1980s. In Japan, breeding and cohabitation between mitochondrial lineages have also been conducted. Thus, the fact that regional characteristics in the gut microbiome have been observed even though many generations of koalas have been bred in Japan, far from their habitat, shows how robust the koala gut microbiome of koalas is and indicates that the koala gut microbiome of koalas has regional variation based on matrilineal inheritance. Given the importance of the gut microbiome for koala foraging and the strong symbiotic relationship between them, we believe that future research should focus on the three-way relationship between koalas, eucalypts, and the gut microbiome to understand koala foraging ecology and to conduct conservation management.

#### **Conclusions**

This study revealed that the diversity and composition of the gut microbiome of koalas and their eucalyptus diet selection differ by regional origin. We also found that some gut bacteria that may influence koalas' eucalypt foraging are associated with both maternal origin and eucalypt foraging patterns, and that the alpha diversity (particularly evenness) of the gut microbiome correlates with foraging diversity in koalas. These differences could result from vertical transmission of the gut microbiome based on maternal transmission and the robustness of the gut microbiome as a hindgut fermenter. These regional differences may also represent an intraspecific variation in koala foraging strategies. Investigating regional differences in eucalypt composition and genetics as well as physiology oalas is necessary to better understand koala foraging ecology.

#### **Acknowledgements**

We thank the staff of Hirakawa Zoological Park and Awaji Farm Park England Hill for their cooperation in collecting samples and sharing individual information, especially Akira Fukumori and Ayaka Ito (Hirakawa) as well as Atsushi Goto, Masato Akai, Izumi Hirayama, and Kakeru Murai (Awaji). We also thank all members of the Ogura Lab (Kitasato University) for their helpful support, especially Chie Kawase, Honami Kikuchi, and Shuntaro Kitamori for their cooperation in fecal sampling, and all members of the Hayakawa Lab (Hokkaido University) for



support and discussion. The authors also thank Hitoshi Suzuki and Shin-ichiro Aiba for their valuable comments on the manuscript.

439 440

441

#### References

- 442 [1] Moore BD, Foley WJ. A review of feeding and diet selection in koalas (Phascolarctos cinereus). Australian Journal of Zoology. 2000;48(3):317-333.
- Shipley LA, Forbey JS, Moore BD. Revisiting the dietary niche: When is a mammalian herbivore a specialist? Integr Comp Biol. 2009;49(3):274-90. doi: 10.1093/icb/icp051.
- Whisson DA, Dixon V, Taylor ML, Melzer A. Failure to Respond to Food Resource Decline
   Has Catastrophic Consequences for Koalas in a High-Density Population in Southern
   Australia. PLoS One. 2016;11(1):e0144348. doi: 10.1371/journal.pone.0144348.
- 449 [4] Melzer A, Carrick F, Menkhorst P, Lunney D, John BS. Overview, critical assessment, and conservation implications of koala distribution and abundance. Conservation Biology. 2000;14(3):619-628.
- 452 [5] Briscoe NJ, Krockenberger A, Handasyde KA, Kearney MR. Bergmann meets Scholander: geographical variation in body size and insulation in the koala is related to climate. Journal of Biogeography. 2015;42(4):791-802.
- Whisson DA, Ashman KR. When an iconic native animal is overabundant: The koala in southern Australia. Conservation Science and Practice. 2020;2(5):e188.
- Johnson RN, O'Meally D, Chen Z, Etherington GJ, Ho SYW, Nash WJ, Grueber CE, Cheng
  Y, Whittington CM, Dennison S, Peel E, Haerty W, O'Neill RJ, Colgan D, Russell TL,
  Alquezar-Planas DE, Attenbrow V, Bragg JG, Brandies PA, Chong AY, Deakin JE, Di
  Palma F, Duda Z, Eldridge MDB, Ewart KM, Hogg CJ, Frankham GJ, Georges A, Gillett
  AK, Govendir M, Greenwood AD, Hayakawa T, Helgen KM, Hobbs M, Holleley CE,
- Heider TN, Jones EA, King A, Madden D, Graves JAM, Morris KM, Neaves LE, Patel HR,
- Polkinghorne A, Renfree MB, Robin C, Salinas R, Tsangaras K, Waters PD, Waters SA,
- Wright B, Wilkins MR, Timms P, Belov K. Adaptation and conservation insights from the koala genome. Nat Genet. 2018;50(8):1102-1111. doi: 10.1038/s41588-018-0153-5.
- Sherwin WB, Timms P, Wilcken J, Houlden B. Analysis and conservation implications of
   koala genetics. Conservation Biology. 2000;14(3):639-649.
- [9] Neaves LE, Frankham GJ, Dennison S, FitzGibbon S, Flannagan C, Gillett A, Hynes E,
   Handasyde K, Helgen KM, Tsangaras K, Greenwood AD, Eldridge MD, Johnson RN.
   Phylogeography of the Koala, (Phascolarctos cinereus), and Harmonising Data to Inform
   Conservation. PLoS One. 2016;11(9):e0162207. doi: 10.1371/journal.pone.0162207.
- 472 [10] Moore BD, Wallis IR, Palá-Paul J, Brophy JJ, Willis RH, Foley WJ. Antiherbivore 473 chemistry of Eucalyptus-cues and deterrents for marsupial folivores. J Chem Ecol. 474 2004;30(9):1743-69. doi: 10.1023/b:joec.0000042399.06553.c6.
- 475 [11] Moore B D, Wallis IR, Wood JT, Foley WJ. Foliar nutrition, site quality, and temperature influence foliar chemistry of tallowwood (Eucalyptus microcorys). Ecological Monographs.



- 477 2004;74(4):553-568.
- 478 [12] Brice KL, Trivedi P, Jeffries TC, Blyton MDJ, Mitchell C, Singh BK, Moore BD. The 479 Koala (Phascolarctos cinereus) faecal microbiome differs with diet in a wild population. 480 PeerJ. 2019;7:e6534. doi: 10.7717/peerj.6534.
- 481 [13] DeGabriel JL, Moore BD, Marsh KJ, Foley WJ. The effect of plant secondary metabolites 482 on the interplay between the internal and external environments of marsupial folivores. 483 Chemoecology. 2010;20:97-108.
- 484 [14] Alberdi A, Aizpurua O, Bohmann K, Zepeda-Mendoza ML, Gilbert MTP. Do Vertebrate Gut Metagenomes Confer Rapid Ecological Adaptation? Trends Ecol Evol. 2016;31(9):689-699. doi: 10.1016/j.tree.2016.06.008.
- 487 [15] Moeller AH, Sanders JG. Roles of the gut microbiota in the adaptive evolution of mammalian species. Philos Trans R Soc Lond B Biol Sci. 2020;375(1808):20190597. doi: 10.1098/rstb.2019.0597.
- 490 [16] Holmes E, Li JV, Marchesi JR, Nicholson JK. Gut microbiota composition and activity in 491 relation to host metabolic phenotype and disease risk. Cell Metab. 2012;16(5):559-64. doi: 492 10.1016/j.cmet.2012.10.007.
- 493 [17] Kohl KD, Weiss RB, Cox J, Dale C, Dearing MD. Gut microbes of mammalian herbivores 494 facilitate intake of plant toxins. Ecol Lett. 2014;17(10):1238-46. doi: 10.1111/ele.12329.
- [18] Zhu L, Yang Z, Yao R, Xu L, Chen H, Gu X, Wu T, Yang X. Potential Mechanism of
   Detoxification of Cyanide Compounds by Gut Microbiomes of Bamboo-Eating Pandas.
   mSphere. 2018;3(3):e00229-18. doi: 10.1128/mSphere.00229-18.
- 498 [19] Dearing MD, Weinstein SB. Metabolic Enabling and Detoxification by Mammalian Gut 499 Microbes. Annu Rev Microbiol. 2022;76:579-596. doi: 10.1146/annurev-micro-111121-500 085333.
- 501 [20] Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268-73. doi: 10.1126/science.1223490.
- 503 [21] Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016;16(6):341-52. doi: 10.1038/nri.2016.42.
- [22] Leitão-Gonçalves R, Carvalho-Santos Z, Francisco AP, Fioreze GT, Anjos M, Baltazar C,
   Elias AP, Itskov PM, Piper MDW, Ribeiro C. Commensal bacteria and essential amino
   acids control food choice behavior and reproduction. PLoS Biol. 2017;15(4):e2000862. doi:
   10.1371/journal.pbio.2000862.
- [23] Jia Y, Jin S, Hu K, Geng L, Han C, Kang R, Pang Y, Ling E, Tan EK, Pan Y, Liu W. Gut
   microbiome modulates Drosophila aggression through octopamine signaling. Nat Commun.
   2021;12(1):2698. doi: 10.1038/s41467-021-23041-y.
- 512 [24] Cork SJ, Hume ID, Dawson TJ. Digestion and metabolism of a natural foliar diet 513 (Eucalyptus punctata) by an arboreal marsupial, the koala (Phascolarctos cinereus). Julial 514 of comparative physiology. 1983;153:181-190.
- 515 [25] Cork SJ, Foley WJ. (1997). Digestive and metabolic adaptations of arboreal marsupials for dealing with plant antinutrients and toxins. In: Saunders N, Hinds LA, editors. Marsupial



- Biology: Recent Research, New Perspectives. Sydney: University of New South Wales Press; 1997. p. 204-226.
- [26] Cork SJ, Sanson GD. Digestion and nutrition in the koala: a review. Biology of the Koala.
   1991;129-144.
- [27] Barker CJ, Gillett A, Polkinghorne A, Timms P. Investigation of the koala (Phascolarctos cinereus) hindgut microbiome via 16S pyrosequencing. Vet Microbiol. 2013;167(3-4):554-64. doi: 10.1016/j.vetmic.2013.08.025.
- [28] Baker ME, Soo RM, Dennis PG, Morrison M, Tyson GW, Hugenholtz P. Gene and genome centric analyses of koala and wombat fecal microbiomes point to metabolic specialization
   for Eucalyptus digestion. PeerJ. 2017;5:e4075. doi: 10.7717/peerj.4075.
- 527 [29] Osawa R, Blanshard WH, Ocallaghan PG. Microbiological studies of the intestinal 528 microflora of the koala, Phascolarctos-cinereus. 2. Pap, a special maternal feces consumed 529 by juvenile koalas. Australian journal of zoology. 1993;41(6):611-620.
- 530 [30] Minchin K. Notes on the weaning of a young koala (Phascolarctos cinereus). Records of the South Australian Museum. 1937;6:1-3.
- [31] Blyton MDJ, Soo RM, Whisson D, Marsh KJ, Pascoe J, Le Pla M, Foley W, Hugenholtz P,
   Moore BD. Faecal inoculations alter the gastrointestinal microbiome and allow dietary
   expansion in a wild specialist herbivore, the koala. Anim Microbiome. 2019;1(1):6. doi:
   10.1186/s42523-019-0008-0.
- [32] Ogura T, Nakayama T, Yamabe K, Shigeno H, Tani Y, Yugawa M, Shibata E, Miyakawa E,
   Ohata M. Koalas (Phascolarctos cinereus) utilise volatile compounds to choose preferred
   Eucalyptus leaves. Journal of Zoo and Aquarium Research. 2019;7(2):94–101.
- [33] Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput.
   Nucleic Acids Res. 2004;32(5):1792-7. doi: 10.1093/nar/gkh340.
- 541 [34] Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis 542 Version 11. Mol Biol Evol. 2021;38(7):3022-3027. doi: 10.1093/molbev/msab120.
- [35] Altmann J. Observational study of behavior: sampling methods. Behaviour. 1974;49(3):227 67. doi: 10.1163/156853974x00534.
- [36] Hayakawa T, Nathan SKSS, Stark DJ, Saldivar DAR, Sipangkui R, Goossens B, Tuuga A,
   Clauss M, Sawada A, Fukuda S, Imai H, Matsuda I. First report of foregut microbial
   community in proboscis monkeys: are diverse forests a reservoir for diverse microbiomes?
   Environ Microbiol Rep. 2018;10(6):655-662. doi: 10.1111/1758-2229.12677.
- [37] Hayakawa T, Sawada A, Tanabe AS, Fukuda S, Kishida T, Kurihara Y, Matsushima K, Liu
   J, Akomo-Okoue EF, Gravena W, Kashima M, Suzuki M, Kadowaki K, Suzumura T, Inoue
   E, Sugiura H, Hanya G, Agata K. Improving the standards for gut microbiome analysis of
   fecal samples: insights from the field biology of Japanese macaques on Yakushima Island.
   Primates. 2018;59(5):423-436. doi: 10.1007/s10329-018-0671-x.
- 554 [38] Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO. Evaluation 555 of general 16S ribosomal RNA gene PCR primers for classical and next-generation 556 sequencing-based diversity studies. Nucleic Acids Res. 2013;41(1) doi:

#### **PeerJ**

- 557 10.1093/nar/gks808.
- [39] Lundberg DS, Yourstone S, Mieczkowski P, Jones CD, Dangl JL. Practical innovations for
   high-throughput amplicon sequencing. Nat Methods. 2013;10(10):999-1002. doi:
   10.1038/nmeth.2634.
- 561 [40] Tanabe AS, Toju H. Two new computational methods for universal DNA barcoding: a benchmark using barcode sequences of bacteria, archaea, animals, fungi, and land plants. PLoS One. 2013;8(10):e76910. doi: 10.1371/journal.pone.0076910.
- [41] Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N,
   Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE,
   Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh
   PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QIIME allows analysis
   of high-throughput community sequencing data. Nat Methods. 2010;7(5):335-6. doi:
   10.1038/nmeth.f.303.
- [42] Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581-3.
   doi: 10.1038/nmeth.3869.
- 573 [43] Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Gregory Caporaso J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin. Microbiome. 2018;6(1):90. doi: 10.1186/s40168-018-0470-z.
- [44] Robeson MS 2nd, O'Rourke DR, Kaehler BD, Ziemski M, Dillon MR, Foster JT, Bokulich
   NA. RESCRIPt: Reproducible sequence taxonomy reference database management. PLoS
   Comput Biol. 2021;17(11):e1009581. doi: 10.1371/journal.pcbi.1009581.
- 580 [45] Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis. 2015;26:27663. doi: 10.3402/mehd.v26.27663.
- 583 [46] Littleford-Colquhoun BL, Weyrich LS, Hohwieler K, Cristescu R, Frère CH. How microbiomes can help inform conservation: landscape characterisation of gut microbiota helps shed light on additional population structure in a specialist folivore. Anim Microbiome. 2022;4(1):12. doi: 10.1186/s42523-021-00122-3.
- 587 [47] Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH.. The influence of diet on the gut microbiota. Pharmacological research. 2013;69(1):52-60.
- [48] Eisenhofer R, Brice KL, Blyton MD, Bevins SE, Leigh K, Singh BK, Helgen KM, Hough I,
   Daniels CB, Speight N, Moore BD. Individuality and stability of the koala (Phascolarctos cinereus) faecal microbiota through time. PeerJ. 2023;11:e14598. doi: 10.7717/peerj.14598.
- [49] Blyton MDJ, Pascoe J, Hynes E, Soo RM, Hugenholtz P, Moore BD. The koala gut
   microbiome is largely unaffected by host translocation but rather influences host diet. Front
   Microbiol. 2023;14:1085090. doi: 10.3389/fmicb.2023.1085090.
- 595 [50] Blyton MDJ, Soo RM, Hugenholtz P, Moore BD. Maternal inheritance of the koala gut 596 microbiome and its compositional and functional maturation during juvenile development.



- 597 Environ Microbiol. 2022;24(1):475-493. doi: 10.1111/1462-2920.15858.
- 598 [51] Giles RE, Blanc H, Cann HM, Wallace DC. Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci U S A. 1980;77(11):6715-9. doi: 10.1073/pnas.77.11.6715.
- 600 [52] Geist V. On the relationship of social evolution and ecology in ungulates. American zoologist. 1974;14(1):205-220.
- 602 [53] Gaulin SJ. A Jarman/Bell model of primate feeding niches. Human ecology. 1979;7:1-20.
- [54] Takatsuki S, Padmalal UKGK. Food Habits of Sika Deer on Kinkazan Island, Northern
   Japan with Reference to Local Variations, Size Effects, and Comparison with the Main
   Island. In: McCullough DR, Takatsuki S, Kaji K, editors. Sika Deer. Tokyo: Springer; 2009.
   p. 113–123.
- [55] Pratchett D, Jones RJ. Use of DHP-degrading rumen bacteria to overcome toxicity in cattle grazing irrigated leucaena pasture. Tropical Grasslands. 1991;25:268-274.
- [56] Derakhshani H, Corley SW, Al Jassim R. Isolation and characterization of mimosine, 3, 4
   DHP and 2, 3 DHP degrading bacteria from a commercial rumen inoculum. J Basic
   Microbiol. 2016;56(5):580-5. doi: 10.1002/jobm.201500590.
- 612 [57] Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, Tuohy K. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57(1):1-24. doi: 10.1007/s00394-017-1445-8.
- [58] Qiu M, Hu J, Peng H, Li B, Xu J, Song X, Yu C, Zhang Z, Du X, Bu G, Huang A, Han X,
   Zeng X, Yang C, Kong F. Research Note: The gut microbiota varies with dietary fiber levels
   in broilers. Poult Sci. 2022;101(7):101922. doi: 10.1016/j.psj.2022.101922.
- [59] Allison MJ, Mayberry WR, Mcsweeney CS, Stahl DA. Synergistes jonesii, gen. nov., sp. nov.: a rumen bacterium that degrades toxic pyridinediols. Systematic and Applied Microbiology. 1992;15(4):522-529.
- [60] Gołębiewski M, Tretyn A. Generating amplicon reads for microbial community assessment
   with next-generation sequencing. J Appl Microbiol. 2020;128(2):330-354. doi:
   10.1111/jam.14380.
- 624 [61] Moya A, Ferrer M. Functional Redundancy-Induced Stability of Gut Microbiota Subjected 625 to Disturbance. Trends Microbiol. 2016;24(5):402-413. doi: 10.1016/j.tim.2016.02.002.
- [62] Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O'Connor MI, Ackermann M, Hahn
   AS, Srivastava DS, Crowe SA, Doebeli M, Parfrey LW. Function and functional
   redundancy in microbial systems. Nat Ecol Evol. 2018;2(6):936-943. doi: 10.1038/s41559-018-0519-1.
- 630 [63] Zilber-Rosenberg I, Rosenberg E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev. 2008;32(5):723-35. doi: 10.1111/j.1574-6976.2008.00123.x.
- 633 [64] Martin R, Handasyde KA. The koala: natural history, conservation and management. 634 Krieger Pub Co; 1999.



The ML tree of the D-loop in koalas.

This is inferred using the Tamura three-parameter model with a discrete Gamma distribution (five categories), which has the lowest Bayesian Information Criterion scores (unrooted). The tree with the highest logarithmic likelihood (-990.84) is shown. The percentage ( $\geq 50\%$ ) of trees based on 1,000 bootstrap replications is shown below the branches. This tree shows four clades (Northern 1, Northen 2, Central, and Southern), which corresponding to the clades found by Neaves et al. [9].



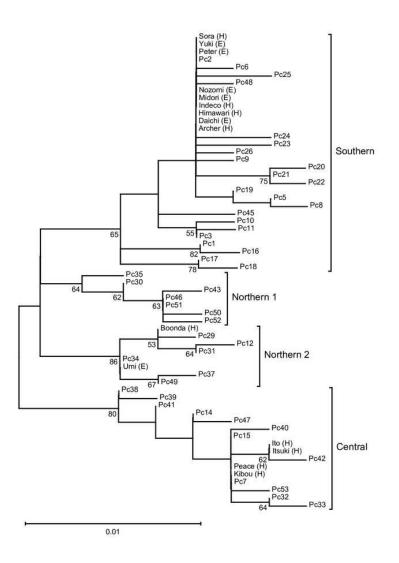



Fig. 1



The difference in alpha diversity between management groups in (a) Shannon index and (b) Chao1 and mitochondrial lineages in (c) Shannon index and (d) Chao1.

Statistical tests are conducted by the pairwise Kruskal–Wallis test with Benjamini–Hochberg correction.

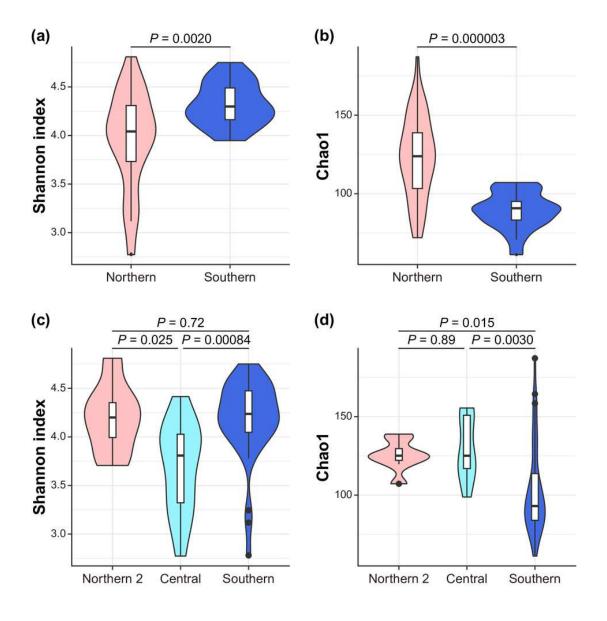



Fig. 2

Management groups and mitochondrial lineages significantly influenced the gut bacterial community.

Clustered by the management groups in **(a)** unweighted UniFrac (pairwise PERMANOVA tests: pseudo-F = 16.698158; P = 0.001; number of permutations = 999) and **(b)** weighted UniFrac (pairwise PERMANOVA tests: pseudo-F = 27.864924; P = 0.001; number of permutations = 999). Clustered by mitochondrial lineages in **(c)** unweighted UniFrac (pairwise PERMANOVA tests, Center vs North2: pseudo-F = 8.025514; q = 0.001; Center vs South: pseudo-F = 8.133812; q = 0.001; North2 vs South: pseudo-F = 7.289387; q = 0.001; number of permutations = 999) and **(d)** weighted UniFrac (pairwise PERMANOVA tests, Center vs North2: pseudo-F = 5.784462; q = 0.0015; Center vs South: pseudo-F = 1.216916; q = 0.0015; North2 vs South: pseudo-F = 5.085741; q = 0.002; number of permutations = 999).



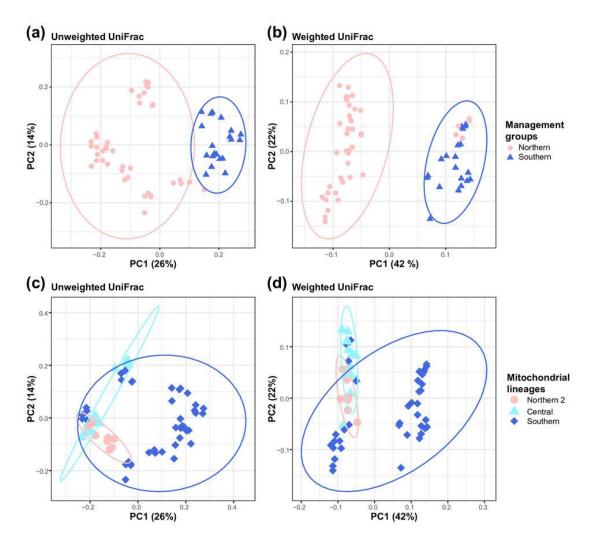



Fig. 3



Volcano plot of the results of the analysis of the composition of microbiomes (ANCOM) between (a) management groups or (b) mitochondrial lineages at the genus level.

Each circle represents a taxon. Those with statistically significant differences based on the *W* statistics between mitochondrial lineages are colored red.



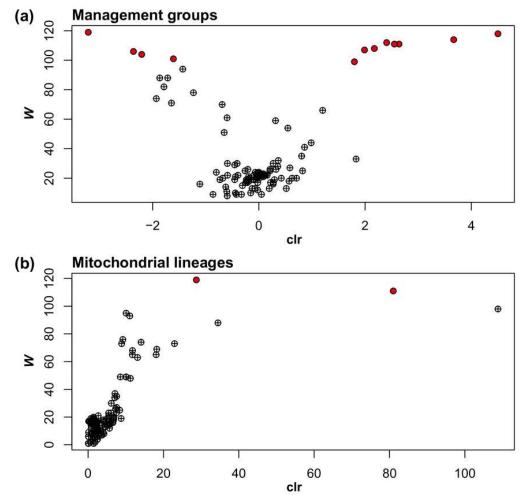



Fig. 4



Diet proportion of each individual. *Eucalyptus camaldulensis*, CR; *E. microcorys*, M; *E. punctata*, P; *E. robsta*, R; *E. tereticornis*, T.



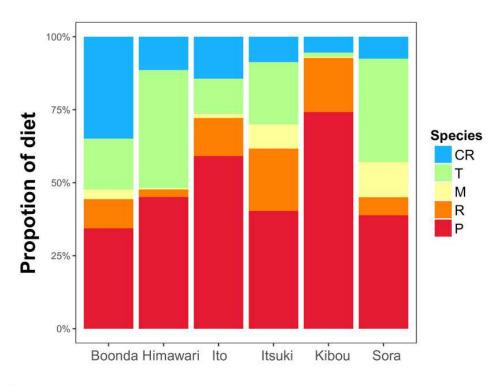



Fig. 5



Results of NMDS using foraging data.

Mitochondrial lineages significantly influenced the foraging pattern (F = 5.88;  $R^2 = 0.677$ ; P = 0.014; number of permutations = 719).



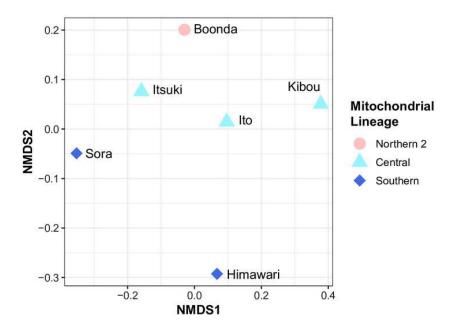



Fig. 6



Correlation between the foraging diversity and gut microbiome diversity (Shannon index).

A significant correlation was observed between foraging diversity and gut microbiome diversity (Spearman's rank correlation;  $\rho = 0.886$ , P = 0.009).



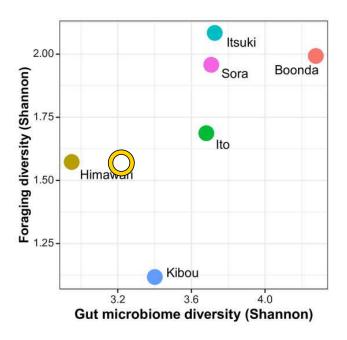



Fig. 7



The heat map shows changes in the relative abundance of gut bacteria because of changes in the proportion of eucalypt species in the diet.

Spearman's rank correlation was conducted with Benjamini-Hochberg correction, and bacteria with significant correlations are indicated with an asterisk (q < 0.05; See Table S7 for individual values.). The genera with the correlation coefficient  $|\rho|$  of > 0.7 are shown.



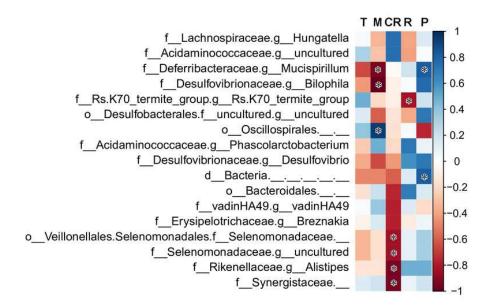



Fig. 8



Table 1(on next page)

Data on koalas included in this study.



**Table 1** Data on koalas included in this study.

|          |          |     |             |          |            |            | Number   |
|----------|----------|-----|-------------|----------|------------|------------|----------|
|          |          |     |             |          |            |            | of fecal |
| Zoo      | Name     | Sex | <b>A</b> ge | Foraging | mtDNA      | Management | samples  |
| Hirakawa | Boonda   | M   | 11          | +        | Northern 2 | Northern   | 3        |
|          | Himawari | F   | 2           | +        | Southern   | Northern   | 2        |
|          | Itsuki   | M   | 1           | +        | Central    | Northern   | 3        |
|          | Ito      | F   | 4           | +        | Central    | Northern   | 4        |
|          | Kibou    | F   | 2           | +        | Central    | Northern   | 4        |
|          | Sora     | M   | 1           | +        | Southern   | Northern   | 3        |
|          | Indeco   | F   | 2           | -        | Southern   | Northern   | 5        |
|          | Archer   | M   | 3           | -        | Southern   | Northern   | 5        |
|          | Peace    | F   | 1           | -        | Central    | Northern   | 3        |
| Awaji    | Yuki     | M   | 13          | -        | Southern   | Southern   | 5        |
|          | Daichi   | M   | 8           | -        | Southern   | Southern   | 5        |
|          | Nozomi   | F   | 14          | _        | Southern   | Southern   | 5        |
|          | Midori   | F   | 25          | _        | Southern   | Southern   | 5        |
|          | Umi      | F   | 8           | -        | Northern 2 | Northern   | 5        |
|          | Peter    | M   | 6           |          | Southern   | Northern   | 5        |