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ABSTRACT
Accurately detecting the anthocyanin content in eggplant peel is essential for effective
eggplant breeding. The present study aims to present a method that combines hyper-
spectral imaging with advanced computational analysis to rapidly, non-destructively,
and precisely measure anthocyanin content in eggplant fruit. For this purpose,
hyperspectral images of the fruits of 20 varieties with diverse colors were collected,
and the content of the anthocyanin were detected using high performance liquid
chromatography (HPLC) methods. In order to minimize background noise in the
hyperspectral images, five preprocessing algorithmswere utilized on average reflectance
spectra: standard normalized variate (SNV), autoscales (AUT), normalization (NOR),
Savitzky–Golay convolutional smoothing (SG), and mean centering (MC). Addition-
ally, the competitive adaptive reweighted sampling (CARS) method was employed
to reduce the dimensionality of the high-dimensional hyperspectral data. In order to
predict the cyanidin, petunidin, delphinidin, and total anthocyanin content of eggplant
fruit, two models were constructed: partial least squares regression (PLSR) and least
squares support vector machine (LS-SVM). The HPLC results showed that eggplant
peel primarily contains three types of anthocyanins. Furthermore, there were significant
differences in the average reflectance rates between 400–750 nm wavelength ranges
for different colors of eggplant peel. The prediction model results indicated that the
model based on NOR CARS LS-SVM achieved the best performance, with a squared
coefficient of determination (R2) greater than 0.98, RMSEP and RMSEC less than
0.03 for cyanidin, petunidin, delphinidin, and total anthocyanin predication. These
results suggest that hyperspectral imaging is a rapid and non-destructive technique for
assessing the anthocyanin content of eggplant peel. This approach holds promise for
facilitating the more effective eggplant breeding.
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INTRODUCTION
Anthocyanins have a C6-C3-C6 skeleton as their structural basis and are often glycosylated
(Castañeda Ovando et al., 2009). The characteristics of hydroxylated groups, the types and
the number of bonded sugars to their structure; the aliphatic or aromatic carboxylates linked
to the sugar in the molecule, and their positions have collectively led to the identification
of approximately 23 anthocyanidins (Castañeda Ovando et al., 2009). In plants, only
pelargonidin, cyanidin, peonidin, malvidin, petunidin, and delphinidin have been detected
(de Pascual-Teresa & Sanchez-Ballesta, 2007). Apart from showcasing a range of vibrant
colors, the anthocyanins also play a crucial role in the plant’s stress response (Kaur et al.,
2023; Naing & Kim, 2021; Yan et al., 2022). The augmentation of anthocyanin content in
plants has garnered increasing attention from researchers as a means to enhance plant
quality and resilience against biotic and abiotic stress (Kaur et al., 2023; Li & Ahammed,
2023). More importantly, the anthocyanins have important implications in the field for
improving human health (Speer et al., 2020; Tsuda, 2012).

Eggplant (Solanum melongena L) is an economically important vegetable that is widely
grownworldwide. The fruit of eggplant is rich in phenolic compounds such as anthocyanin,
chlorogenic acid and vitamin P, all of which are beneficial for human health (Basuny, Arafat
& El-Marzooq, 2012; Dong et al., 2020; Plazas et al., 2013; Todaro et al., 2009). Because of
its high content of phenolics, eggplant has been classified among the top ten vegetables
with antioxidant capacity (Niño Medina et al., 2017). The color of the eggplant fruit
varies from white, green, purple,and dark-purple, depending on the type and content
of anthocyanin (Niño Medina et al., 2017). Several results indicate that the eggplant peel
anthocyanins contain delphinidin, petunidin, malvidin, and cyanidin depending on the
eggplant variety and anthocyanins extraction methods (Basuny, Arafat & El-Marzooq,
2012; Ferarsa et al., 2018; Niño Medina et al., 2017; Nothmann, Rylski & Spigelman, 1976).
Currently, there were two primary methods for measuring the anthocyanin content of
the eggplant peel: HPLC for individual anthocyanin analysis and the pH differential
method for total monomeric anthocyanin quantification (Ferarsa et al., 2018; Zhang et al.,
2014). Both methods require grinding the sample and extracting anthocyanins, a process
that consumes several hours and is time-consuming and labor-intensive. Therefore, it is
difficult to measure anthocyanin content on a large scale. For example, to map the QTLs
that regulate the anthocyanin biosynthesis, the anthocyanin content was only detected
by visual discrimination based on color as the samples are often several hundred or
even thousands (Guan et al., 2022; Toppino et al., 2020). Furthermore, these methods are
destructive and result in the production of chemical residues. Thus, it is crucial to establish
an efficient method for measuring anthocyanins content and type.

Hyperspectral imaging is a high-throughput method used for analyzing plant
phenotypes, including abiotic, biotic, and chemical properties testing (Sarić et al., 2022).
Due to its advantages in high-throughput and non-destructive detection, it excels in
chemical property testing, particularly in the analysis of anthocyanins, and has been
widely utilized (Caporaso et al., 2018; Chen et al., 2015; Dai et al., 2023; Fernandes et al.,
2011; Hernández-Hierro et al., 2013; Li et al., 2023; Pandey et al., 2017; Qin & Lu, 2008;

Ma et al. (2024), PeerJ, DOI 10.7717/peerj.17379 2/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.17379


Tian et al., 2020; Yang et al., 2015; Zhang et al., 2017). For example, Zhang et al. (2017)
found that the squared correlation coefficient (R2) and root mean square error (RMSE) for
anthocyanins in wine grape skins reached 0.87 and 0.1442 (g/L M3G), respectively. Yang
et al. (2015) demonstrated that the optimal predictive model for quantifying anthocyanins
in lychee pericarp during storage achieved an R2 value of 0.896 and RMSE of 0.567%.
The SAE-GA-ELM-based model used to predict anthocyanin content in mulberry fruits
achieved the best performance, with an R2 of 0.97 in the training dataset and an RMSE of
0.22 mg/g in both the training and testing datasets (Li et al., 2023). These findings indicate
that hyperspectral imaging technology can be used for non-destructive detection of plant
anthocyanins in fruit peels.

In the present study, we aim to develop a prediction model that connects hyperspectral
imaging with anthocyanin content for non-destructive detection in eggplant peels. This
research provides a foundation for eggplant breeding andmay have significant implications
for future studies.

MATERIALS AND METHODS
Plant material
A total of 20 eggplant varieties bred by the Chinese Academy of Tropical Agricultural
Sciences, South Subtropical Crop Research Institute were selected. These 20 eggplant
varieties encompass a range of colors including white, green, light-purple, green-purple,
and dark-purple. In total, 277 eggplant fruits were collected, consisting of 10 samples of
white color, 28 samples of green color, 111 samples of light-purple color, 17 samples of
green-purple color, and 111 samples of dark-purple color (Table S1).

Hyperspectral image acquisition
The imaging system comprised of a SOC70VP hyperspectral camera and a lamp holder.
The hyperspectral camera covered wavelengths ranging from 400 to 1,000 nm with an
approximate resolution of 0.6 nm with 128 pixels (channels) in the wavelength dimension.
The lamp holder accommodated two Philips halogen lamps with a power rating of 500
Watts at 220 volts. The eggplant and spectralon were positioned beneath the hyperspectral
camera to allow reflection of the light emitted by the halogen lamps.

Following hyperspectral imaging, one mm uniformly thick peel was collected using a
sharp knife immediately, frozen using liquid nitrogen, and stored at−80 ◦C for subsequent
anthocyanin content analysis. Reflectance values were calculated using the SRAnal 710
software. ROI extraction and the calculation of the average reflectance were performed
using ENVI 5.3.

Anthocyanin extraction
The identification andquantification of anthocyanins in eggplant peel were conducted using
High Performance Liquid Chromatography (HPLC) methods. Six types of anthocyanins
were detected, namely delphinidin, cyanidin, petunidin, pelargonidin, paeonidin, and
malvidin. The extraction and hydrolysis methods for anthocyanins were adjusted based
on the procedure outlined in HPLC(2014). The extraction process involved a solution
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consisting of anhydrous ethanol, water, and hydrochloric acid in a ratio of 2:1:1. To
initiate the extraction, 1.0 g of powder was accurately weighed and transferred into a
10 mL volumetric flask with a stopper. The extractant was then added to the mark, and
the mixture was vigorously shaken for 1 min. Ultrasonic extraction was subsequently
performed under light-protected conditions for 30 min. For the hydrolysis of anthocyanins
to anthocyanidins, the extract obtained from ultrasonic extraction underwent a boiling
water bath for 1 h. After cooling, additional extractant was added to bring the total volume
to 10 mL. The mixture was thoroughly shaken and allowed to settle. The supernatant was
collected and filtered through a 0.22 µm organic membrane.

HPLC analysis of anthocyanins
The HPLC analysis followed the reference method for determining anthocyanidins in plant
origin products-High performance liquid chromatography in Deineka & Grigor’ev (2004).
The HPLC system utilized for the analysis was the LC-20A equipped with a UV detector.
A mobile phase A consisting of formic acid and water in a ratio of 1:9 was used for the
HPLC analysis. Meanwhile, mobile phase B consisted of methanol, acetonitrile, water, and
formic acid in a ratio of 22.5:22.5:40:10. The analysis employed a gradient elution method
with specific time intervals and percentages of mobile phase B as follows: 0–2 min: 7–40%
B; 2–11 min: 40–67% B; 11–12 min: 67–100% B; 12–14 min: 100% B; 14–15 min: 100–7%
B; 15–20 min: 7% B. Each sample was injected with a volume of 10 µl, and three replicates
were performed for each sample.

The standards for delphinidin, cyanidin, petunidin, pelargonidin, peonidin, and
malvidin were acquired from Sigma. The total content of anthocyanin was determined by
summing the quantities of these six types of anthocyanins.

Hyperspectral data preprocessing
To reduce the influence of factors such as background noise on the average reflectance,
pre-processing was performed on the average reflectance data, as shown in Table 1 using
Matlab 2020a (TheMathWorks Inc., Natick, MA, USA). Following pre-processing, the data
were divided into a training dataset and a test dataset at a ratio of 7:3 using the randperm
function.

Feature variables extraction
To reduce the number of input variables and improve the model efficiency, the spectral
data features were extracted by CARS as described by Li et al. (2009) with the default
parameters.

Modeling algorithms
The LS-SVM were implemented using Matlab 2020a with LS-SVMlabv1_8. PLSR were
completed by using Matlab 2020a. The flowchart of PLSR analysis is shown in Fig. 1. The
following statistical parameters were calculated:
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Table 1 The pre-processing of average reflectance.

Preprocessing method

1 Non-Preprocessing
2 SNV (Standard Normalized Variate)
3 AUT (Autoscales)
4 NOR (Normalize)
5 SG (Savitzky-Golay Convolutional)
6 MC (Mean Centering)

root mean square error of prediction (RMSEP).
root mean square error of calibration (RMSEC).

RMSE=

√√√√1
n

n∑
i=1

(Measurementi-Predicatedi)2

R2
p (coefficient of determination of Prediction).

R2
C (coefficient of determination of Calibration).

R2
= 1−

∑n
i=1(Meansurementi−Predicatedi)2∑n

i=1(Measurementi−Mean(Meantsurement))2

RPDp (Ratio of standard deviation of the validation set to standard error of prediction
of Prediction).

RPDc (Ratio of standard deviation of the validation set to standard error of prediction
of Calibration).

RPD=
SD

RMSEP
.

RESULTS
Various eggplant varieties have differing levels of anthocyanin
content and demonstrate distinct average reflectance spectra
The results indicate that eggplants of different colors contain varying types of anthocyanins
(Figs. 2A and 2B, Table S1). The peels of 138 eggplants contained cyanidin and delphinidin,
while the peels of 67 eggplants contained petunidin and delphinidin. Additionally, 21
eggplants contained cyanidin, delphinidin, and petunidin. Notably, none of the 277
eggplants analyzed contained pelargonidin, peonidin, or malvidin. Except for two white
eggplants that contained 0.9834 µg/g and 0.6368 µg/g of delphinidin, the remaining white
and green eggplants had undetectable anthocyanin content. Cyanidin content ranged from
0 to 9.7430 µg/g, delphinidin content ranged from 0 to 660.177 µg/g and petunidin content
ranged from 0 to 17.3905 µg/g. The total anthocyanins content ranged from 0 to
668.049 µg/g.
The average reflectance varied among eggplants of different colors. Both the green and

green-purple fruits exhibited an average reflectance model characteristic of green plants,
with a peak at 550 nm. However, the green-purple eggplant fruit had lower reflectance
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Figure 1 The flowchart of PLSR analysis.
Full-size DOI: 10.7717/peerj.17379/fig-1

compared to the green eggplant fruit due to the presence of anthocyanins in the green-
purple variety. White eggplants demonstrated the highest reflectance between 400–700
nm, while dark-purple eggplants had the lowest reflectance. Light-purple and dark-purple
eggplants displayed a minimum reflectance around 500 nm (Fig. 2C).

Hyperspectral data preprocessing analysis
In order to establish reliable prediction models, we applied five pretreatment methods to
the spectral data and extracted the feature variables using CARS. The results indicated that
the average reflectance became more concentrated after pretreatment, compared to the
non-preprocessed reflectance (Fig. 3).

To enhance the accuracy and robustness of the diagnosticmodels, the CARSwere utilized
to extract feature variables from the pool of 128 variables. In the case of petunidin, only
five feature variables were present without any preprocessing. However, after pretreatment,
the number of feature variables increased to 128 for SNV, six for AUT, five for NOR, 12
for SG, and four for MC pretreatment, as shown in Table S2 and Fig S1. Similarly, in the
case of cyanidin, there were initially only five feature variables without any preprocessing.
However, after pretreatment, the number of feature variables increased to 128 for SNV,
six for AUT, five for NOR, 12 for SG, and four for MC pretreatment, as indicated in Table
S2 and Fig S2. Likewise, for delphinidin, the number of feature variables was initially
5 without any preprocessing. However, following pretreatment, the number increased
to 128 for SNV, six for AUT, 24 for NOR, 20 for SG, and five for MC pretreatment, as
provided in Table S2 and Fig S3. Finally, in the case of total anthocyanins, the initial count
of feature variables without any preprocessing was five. However, after pretreatment, the
number increased to 128 for SNV, 25 for AUT, nine for NOR, 32 for SG, and 15 for MC
pretreatment, as described in Table S2 and Fig S4.
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Figure 2 The HPLC chromatogram and spectral reflectance of eggplant peel with different colors. (A)
The eggplant peel with different colors. (B) The HPLC chromatogram of eggplant peel with different col-
ors. (C) The spectral reflectance of eggplant peel with different colors.

Full-size DOI: 10.7717/peerj.17379/fig-2

Modeling and validation of the regression models
In this study, the PLSR and LS-SVM models were utilized to develop estimation models
for cyanidin, delphinidin, petunidin, and total anthocyanins. The performance of the PLS
regression model on the cyanidin was evaluated. Despite the SNV-PLSR model having the
highest Rc

2 (0.3604) and R2
P (0.3825), the respective RMSEC and RMSEP values were

3.3993 and 3.6949 (Fig. 4). This result indicates a significant disparity between themeasured
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Figure 3 Preprocessing of spectral data with different algorithms. Standard normalized variate (SNV),
autoscales (AUT), normalization (NOR), Savitzky-Golay convolutional smoothing (SG), and mean cen-
tering (MC).

Full-size DOI: 10.7717/peerj.17379/fig-3

and predicted cyanidin content. Interestingly, the LS-SVM model demonstrated superior
predictive performance compared to the PLSR model. However, the perfect predictive
outcome of the SNV LS-SVM model may be unreliable due to warnings from Matlab
software suggesting potential issues with singularity or improper scaling, thereby resulting
in inaccurate predictions. The NOR preprocessing LS-SVMmodel achieved the best results
with with an Rc

2 value of 9955, and Rp
2 value of 0.9918. Additionally, the RMSEC and

RMSP values were 0.0183 and 0.0275, respectively, The RPDc and and RPDp values were
14.5478 and 10.91075, respectively (Fig. 5).
To further enhance prediction accuracy, feature variables extracted by CARSwere used to

build the LS-SVMmodel. Similar caution should be exercised regarding the reliability of the
SNV-CARS LS-SVMmodel. The optimalmodel was the NOR-CARS preprocessed LS-SVM
model, which achieved Rc

2 and Rp
2 values of 0.9953 and 0.9880, respectively. Additionally,

the RMSEC and RMSEP values were 0.0195 and 0.0303, respectively. Moreover, the RPDc
and and RPDp values were 14.5494 and 8.9784, respectively (Fig. 6).

Moving on to the modeling and validation of delphinidin, it was found that the
predictions from the PLSRmodel were unreliable. Applying preprocessing techniques such
as SNV, AUT, NOR, SG, and MC did not improve the accuracy rate of the predictions
(Fig. 7).
In contrast, for the LS-SVM model, the SNV LS-SVM also exhibited a perfect accuracy

rate, but cautionmust be exercised regarding its reliability. TheNORLS-SVMmodel yielded
the highest accuracy rate, with an Rc

2 value of 1.000 and R2
p value of 0.9967. Moreover, the

corresponding values for RMSEC and RMSEP were notably low, measuring 0.0000 and
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Figure 4 Prediction results of cyanidin content in PLSRmodels based on all-band.
Full-size DOI: 10.7717/peerj.17379/fig-4

Figure 5 Prediction results of cyanidin content in LS-SVMmodels based on all-band.
Full-size DOI: 10.7717/peerj.17379/fig-5

0.0203, respectively. Additionally, the RPDc and and RPDp values were 31,992.5331 and
17.7166, respectively (Fig. 8).
Furthermore, for the NOR-CARS LS-SVM model, the predicted result achieved an Rc

2

value of 0.9997 and R2
p value of 0.9959 The corresponding values for RMSEC, RMSEP
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Figure 6 Prediction results of cyanidin content in LS-SVMmodels based on CARS extracted feature
variables.

Full-size DOI: 10.7717/peerj.17379/fig-6

Figure 7 Prediction results of delphinidi content in PLSRmodels based on all-band.
Full-size DOI: 10.7717/peerj.17379/fig-7

were notably low, measuring 0.0061, 0.0210, respectively and the the RPDc and and RPDp
values were 57.9594 and 15.3560, respectively (Fig. 9).
Then, in the modeling and validation of petunidin, the PLSR analysis indicated that all of

the predicted outcomes were not satisfactory. The SNV PLSR model displayed the highest
level of accuracy, with an Rc

2 value of 0.6938 and Rp
2 value of 0.5935. However, the RMSEP
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Figure 8 Prediction results of delphinidi content in LS-SVMmodels based on all-band.
Full-size DOI: 10.7717/peerj.17379/fig-8

Figure 9 Prediction results of delphinidi content in LS-SVMmodels based on CARS extracted feature
variables.

Full-size DOI: 10.7717/peerj.17379/fig-9

and RMSEC values for this model were 2.7460 9 and 2.7413 respectively. Additionally, the
RPDc and and RPDp values were 1.9109 and 1.6605, respectively (Fig. 10).

Similarly, the SNV LS-SVM model exhibited a perfect accuracy rate in its predictions,
although caution should be exercised regarding their reliability. The NOR LS-SVM model
had the highest accuracy rate, with an Rc

2 value of 0.9979 and RP
2 value of 0.9977.

Furthermore, the RMSEC and RMSEP values for this model were 0.0141 and 0.0158
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Figure 10 Prediction results of petunidin content in PLSRmodels based on all-band.
Full-size DOI: 10.7717/peerj.17379/fig-10

Figure 11 Prediction results of petunidin content in LS-SVMmodels based on all-band.
Full-size DOI: 10.7717/peerj.17379/fig-11

respectively. Additionally, the RPDc and and RPDp values were 21.8766 and 21.0938,
respectively (Fig. 11).

Additionally, the NOR-CARS LS-SVM model produced an Rc
2 value of 0.9894. and

Rp
2 value of 0.9889, with corresponding RMSEC and RMSEP values of 0.0339 and
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Figure 12 Prediction results of petunidin content in LS-SVMmodels based on CARS extracted feature
variables.

Full-size DOI: 10.7717/peerj.17379/fig-12

0.0311 respectively. Additionally, the RPDc and and RPDp values were 9.4040 and 9.6236
respectively (Fig. 12).

Lastly,the results of the PLSR analysis indicated that all of the predicted outcomes
for total anthocyanin were not satisfactory(Fig. 13). Similarly, the SNV LS-SVM model
displayed a high level of accuracy in its predictions. Nevertheless, these results should be
interpreted with caution, as they may not be entirely reliable. The NOR LS-SVM model
produced the highest accuracy rate, with an Rc

2 value of 1.0000 and Rp
2 value of 0.99673.

The corresponding RMSEC and RMSEP values were 0.0009 and 0.0161 respectively.
Additionally, the RPDc and and RPDp values were 375.334 and 19.2105 respectively
(Fig. 14).

Furthermore, the NOR-CARS LS-SVM model yielded promising predicted results. Its
Rc

2 value of 0.999 and Rp
2 value of 0.997. The corresponding RMSEP and RMSEC values

were 0.0036 and 0.0202 respectively. Additionally, the RPDc and and RPDp values were
91.0856 and 18.4801 respectively (Fig. 15).

DISCUSSION
The color of eggplant fruit is determined by the type and content of anthocyanins and
chlorophyll (Liu et al., 2015). The perception of fruit color by the human eye is influenced
by various factors. In the present study, two eggplants were observed to have a white color,
but they contained a minimal amount of delphinidin. Therefore, it is important to measure
the content and type of anthocyanins using appropriate instruments and equipment.

HPLC has been widely used for detecting the content and type of anthocyanins
in eggplant (Todaro et al., 2009; Ferarsa et al., 2018). The HPLC results of this study
revealed that out of the 8 white and 28 green eggplants tested, none contained any type
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Figure 13 Prediction results of total anthocyanin content in PLSRmodels based on all-band.
Full-size DOI: 10.7717/peerj.17379/fig-13

Figure 14 Prediction results of total anthocyanin content in LS-SVMmodels based on all-band.
Full-size DOI: 10.7717/peerj.17379/fig-14

of anthocyanin. Although eggplants exhibit a variety of colors, to the best of our best
knowledge, only petunidin, delphinidin, and cyanidin have been reported in eggplant
peel (Basuny, Arafat & El-Marzooq, 2012; Niño Medina et al., 2017; Todaro et al., 2009).
Pelargonidin, peonidin, and malvidin have not been reported, which is consistent with
our results (Basuny, Arafat & El-Marzooq, 2012; Niño Medina et al., 2017; Todaro et al.,
2009). However, it should be noted that this study focused on purple long eggplants.
Further research is needed to determine if other types or genotypes of eggplant contain
pelargonidin, peonidin, and malvidin.

Ma et al. (2024), PeerJ, DOI 10.7717/peerj.17379 14/21

https://peerj.com
https://doi.org/10.7717/peerj.17379/fig-13
https://doi.org/10.7717/peerj.17379/fig-14
http://dx.doi.org/10.7717/peerj.17379


Figure 15 Prediction results of total anthocyanin content in LS-SVMmodels based onCARS extracted
feature variables.

Full-size DOI: 10.7717/peerj.17379/fig-15

Hyperspectral imaging detector primarily detect the specular and scattered waves, while
the secondary metabolites demonstrate distinctive absorption peaks (Sarić et al., 2022).
In particular, the absorption peaks of chlorophyll were observed at approximately 500
nm and 700 nm. Consequently, the green and green-purple eggplants exhibited lower
reflectance levels around these wavelengths. Additionally, the green-purple eggplant
contains anthocyanin, resulting in even lower reflectance compared to the green eggplant.
On the other hand, delphinidin displayed absorption peaks around 550 nm, leading to
reduced reflectance at this specific wavelength for light-purple eggplants. It is widely
recognized that higher color intensity corresponds to a lower reflectance and darker
shades exhibit a lower reflectance. Therefore, the white eggplant demonstrated the highest
reflectance values, while the dark-purple eggplant displayed the lowest reflectance ranging
from 400 nm to 700 nm. The variation in reflectance among different colored eggplants
serves as the basis for the non-destructive detection of eggplant peels through hyperspectral
imaging.

The reflectance spectral data still contain background interference and noise caused
by the current of the hyperspectral system. It is necessary to pretreat the spectral data
to minimize background interference and improve model prediction accuracy (Liu et al.,
2015). However, it is uncertain which method will yield the best result (Zhang et al., 2017).
In the present study, five pretreatment methods were applied to the spectral data and the
content of anthocyanins. The NOR pretreatment method yielded the best result for the
LS-SVM model.

The PLS regression model has been widely utilized in hyperspectral analysis as it relates
independent variables to an integer representing the sample class (Burnett et al., 2021; Chen
et al., 2015; Pandey et al., 2017;Zhang et al., 2022). The LS-SVMhas the advantages of speed
and good generalization ability for regression (Mehrkanoon & Suykens, 2012). Zhang et al.
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(2017) and Chen et al. (2015) showed that support vector regression (SVR) models behave
globally better than PLSR for the estimation of anthocyanin in wine grapes. Overall, the
PLSR and LS-SVM models showed varying levels of accuracy in our predictions, with the
NOR LS-SVM model consistently outperforming the others.

Although NOR LS-SVM models yielded ideal predicted results, most of the models
exhibit scattered points throughout the figure. Certain parameters show a high
concentration of points in a small region, with only a few points distant from this cluster.
The lower R2 value and high RMSE value indicate that the majority of models were not
ideal. This lack of accuracy may be attributed to significant variations in anthocyanin
content, which impairs the predictive ability of the models. Additionally, the average
reflectance of white and dark-colored eggplants differs significantly, further diminishing
the models’ predictive ability. Consequently, the NOR and SNV preprocessing methods
yielded more ideal prediction outcomes. The presence of chlorophyll in green and green
samples, whichmay not directly correlate with anthocyanin content, limits the applicability
of prediction models to all samples.

Previous research has shown that the biosynthesis pathway of anthocyanins in eggplant
peel is similar to that of other crops, involving multiple genes involved in the biosynthesis
and regulation of eggplant anthocyanins (Zhang et al., 2014). Recently, researchers have
conducted QTL mapping based on visual discrimination. Several transcription factors
that regulate eggplant anthocyanin synthesis have been cloned by Guan et al. (2022), You
et al. (2022), Zhang et al. (2014), and Zhou et al. (2020). However, these transcriptional
regulations only determine whether eggplants can synthesize anthocyanins or not,
without explaining how eggplants utilize the same substrate to produce different types
of anthocyanins. The relative lag in related research is due to the inability to accurately
determine the types and contents of anthocyanins during phenotype identification. Our
study addresses this gap by establishing a non-destructive detection method for different
types of anthocyanins in eggplant peel, providing a viable approach to QTL mapping of
eggplant anthocyanin biosynthesis. We have already constructed the relevant mapping
population and will employ the models developed in this study for QTL mapping, aiming
to enrich and elucidate the biosynthetic mechanisms of anthocyanins in eggplant peel.

CONCLUSIONS
In this study, 20 different varieties of eggplant were selected and we utilized the SVN, AUT,
NOR, SG, and MC methods to preprocess the hyperspectral reflected data. Additionally,
we used the CARS method was used to screen out feature variables. The PLSR and LS-SVM
models were applied to predict the anthocyanin content in the eggplant peel. Notably,
the NOR-CARS LS-SVM yielded the best results, with an R2

p and Rc
2v alue exceeding

0.9000 for cyanidin, petunidin, delphinidin, and total anthocyanin. These findings suggest
that the combination of hyperspectral imaging and NOR-CARS LS-SVM enables fast,
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non-destructive, and high-precision detection of anthocyanin content. This advancement
will greatly benefit eggplant breeding.
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