
Measuring multi-year changes in the
Symbiodiniaceae algae in Caribbean corals
on coral-depleted reefs
Ross Cunning1, Elizabeth A. Lenz2 and Peter J. Edmunds3

1 Conservation Research Department, John G. Shedd Aquarium, Chicago, Illinois, United States
2 University of Hawai Sea Grant College Program, University of Hawai at Mānoa, Honolulu,
Hawaii, United States

3 Department of Biology, California State University, Northridge, Northridge, California,
United States

ABSTRACT
Monitoring coral cover can describe the ecology of reef degradation, but rarely can it
reveal the proximal mechanisms of change, or achieve its full potential in informing
conservation actions. Describing temporal variation in Symbiodiniaceae within
corals can help address these limitations, but this is rarely a research priority. Here,
we augmented an ecological time series of the coral reefs of St. John, US Virgin
Islands, by describing the genetic complement of symbiotic algae in common corals.
Seventy-five corals from nine species were marked and sampled in 2017. Of these
colonies, 41% were sampled in 2018, and 72% in 2019; 28% could not be found and
were assumed to have died. Symbiodiniaceae ITS2 sequencing identified 525 distinct
sequences (comprising 42 ITS2 type profiles), and symbiont diversity differed among
host species and individuals, but was in most cases preserved within hosts over 3 yrs
that were marked by physical disturbances from major hurricanes (2017) and the
regional onset of stony coral tissue loss disease (2019). While changes in symbiont
communities were slight and stochastic over time within colonies, variation in the
dominant symbionts among colonies was observed for all host species. Together,
these results indicate that declining host abundances could lead to the loss of rare
algal lineages that are found in a low proportion of few coral colonies left on many
reefs, especially if coral declines are symbiont-specific. These findings highlight the
importance of identifying Symbiodiniaceae as part of a time series of coral
communities to support holistic conservation planning. Repeated sampling of tagged
corals is unlikely to be viable for this purpose, because many Caribbean corals are
dying before they can be sampled multiple times. Instead, random sampling of large
numbers of corals may be more effective in capturing the diversity and temporal
dynamics of Symbiodiniaceae metacommunities in reef corals.

Subjects Conservation Biology, Ecology, Marine Biology, Climate Change Biology, Environmental
Impacts
Keywords Metabarcoding, Symbiosis, ITS2 rDNA, Ecological time-series, Scleractinian

INTRODUCTION
Over the last several decades, symbiotic reef corals have been dying at high rates in tropical
seas (Hughes et al., 2017), with population trajectories of some species indicating that
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extirpation (Jones et al., 2021) or extinction (Carpenter et al., 2008) is likely. With
extinction already expected to be imminent for some corals (Sheppard, Sheppard & Fenner,
2020; Neely et al., 2021), studies of the mechanisms by which corals might avoid this
outcome are urgently required (e.g., Smith et al., 2014). Recent work has highlighted the
potential for various mechanisms to promote persistence of symbiotic corals, for example,
through epigenetic effects, genetic adaptation, and variation in the complement of their
viral, microbial, and algal symbionts (Putnam, 2021; Lachs et al., 2023). Further analyses of
these effects are required to understand how corals will respond to changing
environments, and to formulate conservation strategies that can best increase the ability to
protect coral reefs (Hoegh-Guldberg et al., 2018; Bellwood et al., 2019).

Corals can respond to changing conditions through phenotypic plasticity (i.e.,
acclimatization; Putnam, 2021), genetic adaptation by the host or their symbionts (Matz
et al., 2018), or changes in symbiotic partners (Cunning, Silverstein & Baker, 2015a) to
create emergent holobiont phenotypes. A total of 30 years ago, Buddemeier & Fautin
(1993) proposed the adaptive bleaching hypothesis (ABH) which posited that shifts in algal
symbiont taxa in corals could be beneficial in responding to elevated temperature. Much
has changed since this contribution, notably to reveal genetic diversity within the
Symbiodiniaceae (LaJeunesse et al., 2018), and to reinterpret the concept of coral
“symbiosis” to embrace microbial, algal, and viral taxa (van Oppen & Blackall, 2019). It is
now accepted that many (but not all) corals can undergo changes in holobiont
composition (van Oppen & Blackall, 2019), particularly with respect to Symbiodiniaceae
(Cunning, Silverstein & Baker, 2015a). In considering how corals will respond to changing
conditions (e.g., Hughes et al., 2017), and whether these responses could be harnessed in
conservation efforts (Voolstra et al., 2021), expansion of ecological time series of coral
communities (e.g., Howells, Bay & Bay, 2022) to include genetic characterization of
Symbiodiniaceae communities (e.g., Baker, 2003; Palacio-Castro et al., 2023) is desirable.

Here we discuss the implementation of this vision on Caribbean reefs that have been
studied for decades, but in a location where implementation of this plan is challenged by
low coral abundance, high coral mortality, and a stringent permitting framework.
The present study describes a time-series established in 2017 to test for variation in
Symbiodiniaceae in scleractinian corals on the fringing reefs of St. John, U.S. Virgin
Islands. The objective was to sample tagged colonies over multiple years to test for
differences among species in the way their associated symbionts change over time. Corals
were tagged and sampled in July and August 2017, 1 month before the island was hit with
two Category 5 hurricanes (Edmunds, 2019). A second sampling took place in 2018 in a
field season expurgated by the damage inflicted by the storms, and a third sampling was
completed in the summer of 2019. We use our results to show how abundances of
Symbiodiniaceae changed, and offer interpretations of these effects developed through the
prism of conservation needs for coral reef ecosystems.
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MATERIALS AND METHODS
Project design and field sampling
In the summer of 2017, nine scleractinian species (Table 1) from six genera were selected
based on their high abundance and ecological importance. A total of 75 coral colonies were
sampled from 7–10 m depth at White Point, East Tektite, and Cabritte Horn on the south
shore of St. John (Fig. S1), where the reefs have been monitored since 1992 (Edmunds,
2018). Colonies were haphazardly selected along 40 m transects at each monitoring site
(Edmunds, 2018) between 27 July and 7 August 2017, and their positions were identified
using cartesian coordinates. The colonies were selected based on ease of location and size
(>20 cm diameter to support multiple samplings), and marked with aluminum tags
epoxied to the substratum. Following tagging, a tissue biopsy (<1-cm diameter) was
removed from the upper surface of each colony using stainless steel clippers. Samples were
placed in Whirl-Pak bags and processed within 2 h of sampling.

We searched for the tagged colonies in 2018 (13–15 August), 11 months after
Hurricanes Irma and Maria, and in 2019 (24–29 July). Colonies were located using
underwater maps, site photographs, and an underwater metal detector (Vibraprobe 580,
Treasure Products, CA) to find their tags. When located, a tissue biopsy was collected using
the identical procedure established in 2017. Sampling in 2018 was limited due to the
lingering effects of the hurricanes on island infrastructure. Sampling was comprehensive in
2019, and the reefs were exhaustively searched for tagged colonies to increase confidence
that missing colonies were dead rather than not located. These collections were completed
under permits issued by the Virgin Islands National Park (VIIS-2017-SCI-0037, VIIS-
2018-SCI-0019, VIIS-2019-SCI-0023) and the Government of the Virgin Islands
(DFW18088J, DFW19044J).

Table 1 Summary of coral species tagged and sampled (number of colonies) at the three sites in each
year.

Cabritte Horn East Tektite White Point

Species 2017 2018 2019 2017 2018 2019 2017 2018 2019

Orbicella annularis 2 1 1 1 0 0 2 n/a 2

Montastraea cavernosa 3 3 3 3 3 3 4 n/a 3

Orbicella faveolata 2 2 1 1 0 0 2 n/a 2

Orbicella franksi 1 1 1 1 1 2 2 n/a 2

Porites furcata 2 0 0 6 0 1 3 n/a 0

Diploria labrynthiformis 3 2 2 5 3 4 2 n/a 2

Colpophyllia natans 3 3 3 5 4 4 2 n/a 1

Siderastrea siderea 3 2 3 2 2 2 6 n/a 5

Pseudodiploria strigosa 2 1 2 3 3 2 4 n/a 3

Total 21 15 16 27 16 18 27 n/a 20

Note:
White Point was not sampled in 2018 (n/a).
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DNA extraction and sequencing
On shore, coral biopsies were individually transferred to microcentrifuge tubes filled with
500 µL of 1% sodium dodecyl sulfate DNA buffer using sterilized forceps, and heated to
65 �C for 1.5 h. Samples were shipped to the Hawai‘i Institute of Marine Biology where
genomic DNA was extracted using an organic extraction protocol (Baker & Cunning,
2016). Symbiodiniaceae diversity was characterized through the amplification and
sequencing of the ribosomal Internal Transcribed Spacer 2 (ITS2) region (LaJeunesse,
2001; Davies et al., 2022). DNA samples were sent to the University of Texas at Austin for
library preparation with ‘itsD’ and ‘its2rev2’ primers (Stat et al., 2009) and sequencing on
an Illumina MiSeq platform with 2 × 300 paired-end read chemistry. The paired forward
and reverse reads from each sample were submitted to SymPortal to resolve ITS2 type
profiles based on repeated co-occurrence of purported intragenomic variants (Hume et al.,
2019).

Data analysis
Symbiodiniaceae ITS2 sequence variants and type profiles within each sample were
visualized as stacked bar graphs. Variation over time and among host species was
visualized for each algal genus using non metric multidimensional scaling (NMDS) of
Bray-Curtis dissimilarity matrices from relative (or square-root transformed) abundances.
Differences among host species were tested by PERMANOVA, and rain cloud plots (Allen
et al., 2021) were used to compare variation in symbiodiniaceaen communities between
and within colonies by species. All data analysis was conducted using R (v4.0.0) (R Core
Team, 2020).

RESULTS
Overview
In 2017, 75 coral colonies from nine species were tagged and sampled (Table 1). A total of
11 months after Hurricanes Irma and Maria when the 2018 sampling occurred, the
benthos was disorganized with abundant coral rubble, and impairment of island
infrastructure restricted the capacity to conduct fieldwork. As a result, some corals were
not found as they had been dislodged and killed (e.g., Porites furcata), limited underwater
time restricted the capacity to find other colonies, and there was insufficient time to search
at White Point. In 2018, 71% of the tagged colonies were found at Cabritte Horn, 59% at
East Tektite, and none at White Point (Table 1). In 2019, more time was available for
surveys, and 72% of all the tagged colonies were found and sampled (Table 1). We assume
the remaining 28% had died.

Symbiodiniaceae communities
ITS2 sequencing and processing by SymPortal (Hume et al., 2019) resulted in a dataset
with 3,104,278 post-MED sequences across 160 samples. Ten samples with <1,000
sequences were removed from downstream analyses, and the remaining samples had a
mean of 18,962 (±9,136 S.D.) sequences per sample (excluding one high outlier). Since
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Symbiodiniaceae are known for high intragenomic ITS2 sequence variation (Davies et al.,
2022), SymPortal uses repeated co-occurrences of variants to collapse assumed
intragenomic variation into putative taxa, or ITS2 type profiles (Hume et al., 2019). Here,
we present and analyze results at the level of both sequence variants (Fig. 1A) and profiles
(Fig. 1B) for complementary interpretation. Overall, sequences comprised 525 ITS2
sequence variants and 42 ITS2 type profiles belonging to Symbiodinium (27 sequences,
four profiles), Breviolum (224 sequences, 13 profiles), Cladocopium (234 sequences, 21
profiles), Durusdinium (38 sequences, four profiles), and Gerakladium (two sequences, 0
profiles) (Fig. 1A).

Coral species hosted different Symbiodiniaceae communities (Figs. 1A and 1B). Faviids
(Colpophyllia natans, Diploria labyrinthiformis, Pseudodiploria strigosa) were mostly
dominated by Breviolum, and less commonly by Cladocopium, and two colonies of
C. natans were the only corals found dominated by Durusdinium. Merulinids (Orbicella
annularis, O. faveolata, andO. franksi) andMontastraea cavernosawere mostly dominated

Figure 1 Symbiodiniaceae communities. (A) Relative abundance of all ITS2 sequence variants (>0.1%; upper bars) in each sample, with unique
sequence variants given distinct colors (greys = Symbiodinium, greens = Breviolum, blues = Cladocopium, reds = Durusdinium). Samples (columns)
are ordered by species, site (CH = Cabritte Horn, ET = East Tektite, WP =White Point), colony number, then year. The lower set of bars indicates the
corresponding SymPortal ITS2 type profiles in each sample, with profile names and colors provided in the legend. (B) Network analysis of the
associations between coral host species and dominant ITS2 type profiles, where the number of connections (network edges, gray curved lines)
between each host and symbiont profile indicate the number of individual colonies of that coral species that were found dominated (>50%
abundance) by that ITS2 type profile at any time. Full-size DOI: 10.7717/peerj.17358/fig-1
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by Cladocopium, and rarely by Symbiodinium or Breviolum. Siderastrea siderea
(Rhizangiidae) was mostly dominated by Cladocopium (and rarely Breviolum), and Porites
furcata (Poritidae) was associated with Symbiodinium and Cladocopium in varying
proportions.

Within each genus of Symbiodiniaceae, distinct ITS2 type profiles were associated
strongly, but not completely, with different coral species (Figs. 1A and 1B). The three
Faviids, C. natans,D. labyrinthiformis, and P. strigosa, as well asM. cavernosa, tended to be
dominated by species-specific Breviolum profiles (Fig. 1B). In contrast, when O. franksi
(n = 2) and S. siderea (n = 1) colonies were occasionally dominated by Breviolum, these
were profiles more commonly found in other host species, such as B1-B1x-B1t-B14b-B1af-
B1ae-B1ag from P. strigosa, B19/B5af-B19e-B19c-B5ag-B19d-B19f-B40a-B19h from
C. natans, and B1-B1z-B1aa-B1ad-B1ac-B1ab from D. labyrinthiformis (Fig. 1B). These
patterns in host-Breviolum specificity were also supported by significant differences in
composition of all Breviolum sequence variants in all pairwise comparisons of host species
(PERMANOVA, p < 0.05), except those involving S. siderea or O. franksi (Fig. 2, Table S1,
Fig. S2).

Cladocopium ITS2 profiles were also structured by host species (Figs. 1A and 1B);
profiles characterized by C7 variants were mostly associated with Orbicella spp., C40g and
C3an with M. cavernosa, C3fe with C. natans and P. strigosa, C54a and C54b with
D. labyrinthiformis, C3a and C16a with S. siderea, and C47, C42.2, and C45a with
P. furcata. Orbicella spp. were mostly dominated by the same Cladocopium profile (C7/
C7d/C12c-C12b-C12e-C7h-C3-C7g; Fig. 1B), or very closely related ones (C7/C12c-C7d-
C12b-C12e; C3/C7), and the composition of Cladocopium sequences was not different
among Orbicella species (Fig. 2; PERMANOVA, p = 1). When P. strigosa and C. natans
colonies were occasionally Cladocopium-dominated, it was by the same profile (C3fe-C3-
C3fg-C3b-C3ag-C21; Fig. 1B) with similar sequence variant composition (Fig. 2;
PERMANOVA, p = 0.87). Dominant Cladocopium profiles differed between all other host

Figure 2 NMDS ordination of sequences within each Symbiodiniaceae genus, for samples where the genus was present at ≥5% relative
abundance. Points represent sequences within each Symbiodiniaceae genus from individual colonies, colored by host species, and samples from
the same colony (different years) are connected by line segments. Full-size DOI: 10.7717/peerj.17358/fig-2
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species (Fig. 1B), as did the composition of Cladocopium sequence variants (Fig. 2;
PERMANOVA, p < 0.05; except between D. labyrinthiformis (n = 2) versus P. furcata
(n = 4) where low sample size restricted statistical power (Table S2, Fig. S3).
The Symbiodinium and Durusdinium profiles also showed host species-specific
associations (Figs. 1b and 2), although low sample sizes also reduced statistical power for
these comparisons (PERMANOVA, p > 0.1).

Within colonies, changes in the dominant symbiont profile over time were uncommon.
A change in the genus of the dominant symbiont occurred in one colony of C. natans
(from Durusdinium to Breviolum), one colony of O. annularis (from Symbiodinium to
Cladocopium), and two colonies of O. franksi (from Cladocopium to Breviolum) (Fig. 1A).
A change in the dominant ITS2 type profile (within the same symbiont genus) occurred in
another 13 coral colonies (representing all species except P. furcata, for which only one
colony was repeatedly sampled). The remaining 70% of colonies sampled in multiple years
(n = 39/56) had the same dominant ITS2 type profile at each time.

Changes in the abundance of non-dominant symbiont genera (representing <50% of
sequences) within colonies over time were more common. Of all colonies sampled, 91%
(n = 64) had at least one additional non-dominant genus at >0.1% relative abundance, and
47% (n = 33) had a non-dominant genus at >1% relative abundance. Among colonies
sampled in multiple years, 48% (n = 27, including all species except P. furcata) showed a
change in the number of genera at >1% relative abundance. However, changes over time in
ITS2 assemblages were generally small and inconsistent, as revealed by small and irregular
movement in 2-D ordination space (Fig. 3). The only consistent change over time was
observed inM. cavernosa, where colonies showed an increase in non-dominant Breviolum
from <1% in 2017 to ~10% relative abundance in 2018, followed by a reversion to <1% in
2019 (Figs. 1A and 3). These relative abundances should be interpreted with caution, as
compositional change in mixed communities is complicated by unquantified yet
potentially high copy number variation across taxa (e.g., 1% of sequences may not reflect
1% of symbiont cells; Davies et al., 2022).

The generally low variability in Symbiodiniaceae communities over time within colonies
contrasted with high variability observed among colonies (Fig. 4). Variation among
colonies at any one time was greater (from 1.8-fold inO. annularis to 9.5-fold in C. natans)
than variation within a colony over time for all species exceptM. cavernosa (and P. furcata
for which only one colony was re-sampled).

DISCUSSION
Scleractinian corals are drastically declining in abundance on many coral reefs (Jackson
et al., 2014;Hughes et al., 2017), and there is an urgent need to understand the implications
of rapidly dwindling coral populations. Yet despite this urgency, the extent to which one of
the most important aspects of reef corals, their Symbiodiniaceae communities, changes
over time is not fully understood (Thornhill et al., 2006; Edmunds et al., 2014; Cunning,
2021; Palacio-Castro et al., 2023). Many corals harbor multiple Symbiodiniaceae taxa
(Silverstein, Correa & Baker, 2012), often with numerous rare genotypes (Quigley et al.,
2014), and both the types and relative abundances of these algae can change in some corals
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over time (Chen et al., 2005; Cunning, Silverstein & Baker, 2018; Palacio-Castro et al.,
2023), which can better match the holobiont phenotype to environmental conditions
(Buddemeier & Fautin, 1993). Beneficial changes in symbiont types may therefore increase
holobiont fitness (Buddemeier et al., 2004) in response to environmental fluctuation or
disturbance, such as by reducing the sensitivity of corals to thermal stress (Silverstein,
Cunning & Baker, 2015). Motivated by these discoveries, the present study was initiated to
augment ecological analyses of coral reefs in St. John (e.g., Edmunds, 2018, 2019) with the
ability to describe how their algal symbionts are changing at the same time.

Our results contribute to the fields of coral biology and conservation biology charged
with managing coral reefs to enhance their ecological persistence (Hoegh-Guldberg et al.,
2018; Bellwood et al., 2019). First, we reveal a high diversity of Symbiodiniaceae in nine
species of corals, and demonstrate high variation among host species and colonies. In all
species sampled, the dominant symbiont type profile varied among colonies, and many of
these profiles were relatively rare across all colonies. Second, the symbionts within colonies
were relatively stable over 3 years, despite substantial impacts from physical (i.e.,
hurricanes (Edmunds, 2019)) and biological disturbances, for example, stony coral tissue
loss disease (SCTLD), which is thought to infect Symbiodiniaceae algae rather than the
host (Beavers et al., 2023). This disease was first reported in the US Virgin Islands (St.

Figure 3 Change in Symbiodiniaceae community structure over time within individual tagged
colonies. NMDS was performed on square-root transformed relative abundances of all ITS2 sequence
variants. Samples collected in 2017 (green circles), 2018 (red triangles), and 2019 (blue squares) from the
same tagged individual are connected by black arrows. Full-size DOI: 10.7717/peerj.17358/fig-3
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Thomas) in January 2019 (Brandt et al. 2021), and although it is likely that it was affecting
corals in St. John (~3.5 km east of St. Thomas) throughout 2019, mortality from this cause
was not prominent on the south shore of St. John until the summer of 2020 (PJ Edmunds,
2020, personal observation). These two major findings from our study support the
inference that algal diversity within coral host species may be lost as coral abundances
decline, especially if colonies with select symbiont taxa are more vulnerable to disturbances
(Starko et al., 2023). Wide-scale mortality of coral colonies could therefore lead to
reef-scale depletion of Symbiodiniaceae diversity, unless these symbionts are maintained at
low abundances within colonies dominated by other symbiont taxa, or retained in other
microhabitats within the reef ecosystem (Cunning et al., 2015b; Fujise et al., 2021).
Reduced Symbiodiniaceae diversity or availability could also constrain the potential for
future beneficial changes in symbiotic algal communities within corals (sensu Quigley, Bay
& Willis, 2017).

Given previous observations of changes in algal symbionts in Caribbean corals over
time (Baker, 2003; Cunning, Silverstein & Baker, 2015a), when the present study began in
2017, it was reasonable to expect that some changes would be detected at either the genus
or type profile level. This expectation was reinforced by evidence that the abundances of
different symbiont genera within Orbicella annularis at 14-m depth in Lameshur Bay
changed between 1994 and 2010 in at least some colonies (Edmunds et al., 2014).
Moreover, the two Category 5 hurricanes followed by heavy rains and turbid seawater in

Figure 4 Differences in Symbiodiniaceae communities between colonies (sampled in the same year)
and within the same colonies (sampled in different years) for each coral species. All pairwise
Bray-Curtis dissimilarities by group are visualized as rain cloud plots with boxplots, scatter plots of data
(left for each category), and probability density function distributions (right for each category). Box plots
show median and interquartile ranges (IQR) with whiskers showing the range of values within 1.5 *
IQR. Full-size DOI: 10.7717/peerj.17358/fig-4
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the autumn following initial sampling in 2017 (Edmunds, 2019) represented large
disturbances to which symbiodiniacean communities in corals might be expected to
respond (cf Kennedy et al., 2016; Claar et al., 2020). While our results reveal a high
variation among species and colonies (Fig. 1), consistent with contemporary expectations
(Baker, 2003; Dougan et al., 2022), the change within colonies over 3 years was small.

While it was beyond the scope of this study to address the biological meaning of this
temporal stability, there are three hypotheses that are consistent with the present results.
First, it is possible that the disturbances occurring in St. John over 2017–2019 were not
effective in eliciting a change in Symbiodiniaceae communities. Second, by sampling at
~12 month intervals, it is possible that changes and reversions went undetected. Third, it is
possible that the Symbiodiniaceae were challenged by ecologically meaningful
disturbances, and that their stability reflects high resistance to the disturbance regimes.
The value of testing these hypotheses in the future provides compelling reasons to further
develop symbiodiniacean time series for Caribbean corals, but as we describe below, there
are challenges in realizing this vision.

In the Caribbean, corals are rapidly succumbing to mortality on a scale of years (Jackson
et al., 2014; Edmunds, 2018, 2019), making repeated sampling of tagged colonies a risky
prospect, because tagged corals are likely to die before being sampled more than once.
The high probability of this outcome (i.e., dying before subsequent sampling), along with
the general stability in symbiont community structure that we observed within colonies
over time, suggests that sampling to develop a time series for Symbiodiniaceae
communities in corals on coral-depleted Caribbean reefs should target a large number of
randomly selected corals rather than a small number of corals that are permanently
marked. Such random sampling could maximize the number of different colonies sampled,
which is where most variation in algal taxa was detected here. Moreover, this sampling
design would capture changes in the relative abundance of coral colonies with different
symbiont taxa that may occur through differential mortality, providing insights into how
disturbances and stressors might select for certain host-symbiont combinations. Indeed,
random sampling may better reveal ecologically meaningful changes in Symbiodiniaceae
communities by capturing both symbiont shuffling and differential mortality of
host-symbiont associations, even though it cannot distinguish between these two
mechanisms. When the mechanism causing Symbiodiniaceae communities to change is of
particular interest, then tagged corals should be resampled, or a hybrid approach
considered, in which some colonies are tagged for repeated sampling and some colonies
are randomly selected (and not tagged). However, when expecting that symbiont shuffling
may be infrequent, that differences in Symbiodiniaceae communities between colonies
may be high, and that there are elevated risks of individual colonies dying, then random
sampling may be a more effective and viable strategy to monitor Symbiodiniaceae changes
on reefs.

Our study has implications for conservation biology as it pertains to coral reefs, because
the degraded state of many reefs (Hughes et al., 2017), and the likely future trajectories of
declining coral populations (Riegl, Berumen & Bruckner, 2013; Mason, Bozec & Mumby,
2023), argues for solution-oriented science that can aid in conservation. Part of such efforts
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requires augmentation of ecological monitoring to support tests of the genetic basis of
survival and mortality in coral hosts and their symbionts (Howells, Bay & Bay, 2022).
Yet at a time when the needs for this work are acute, the permitting frameworks to support
such efforts are becoming more conservative as the natural resources being protected
dwindle in size. The logistical requirements for this type of work typically include an
extensive application process for permits to collect biopsies, particularly for less common
species. Permission also must be sought to permanently mark coral colonies, and in many
cases, international permits must be secured to export DNA for analysis.

As we describe here for St. John, corals that are attractive targets for genetic time series
of their symbionts have a high chance of dying before multiple samplings occur, and if they
do not die, their low abundance requires extensive searching to relocate them, and the
tagging materials require regular maintenance. Our results suggest that random sampling
of large numbers of corals may be more tractable with higher returns on the investment of
time and resources, notably with sampling to support species contrasts of algal symbiont
types (and relative abundances) at each timepoint. Such an approach would generate
higher community-level resolution of symbiont dynamics over time compared to
repeatedly sampling tagged colonies.
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