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Abstract 30 

Background. The Yunnan section of the Nujiang River (YNR) Basin acrossin the alpine-valley 31 

area is one of the most critical areas of debris flow in China.  32 

Methods. To assess the susceptibility of alpine-valley-area debris flows and explore the 33 

assessment methods, we selected 20 factors to compare and analyzeWe analyzed the applicability 34 

of three machine learning algorithms forto modeling, namely, of susceptibility to debris flow - 35 

the random forest (RF), the linear kernel support vector machine (Linear SVM)), and the radial 36 

basis function support vector machine (RBFSVM), and dissectedcompared 20 factors to 37 

determine the dominant factors ofones in debris flow occurrence in the region.  38 

Results. The results show We found that (1) the RF, which is more suitable for the DFS research, 39 

outperforms the outperformed RBFSVM and Linear SVM in terms of accuracy., (2) In YNR 40 

Basin, topographic conditions are prerequisitesdetermined, and the regional settingcombination 41 

of geology, precipitation, vegetation, and anthropogenic influence play a crucial role inwas 42 

critical to forming debris flows. In additionAlso, the relative elevation difference is found to 43 

bewas the most prominent evaluation factor, followed by the watershed area, among 20 factors. 44 
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(3) Susceptibility of debris flow susceptibility, and (3) susceptibility maps based on RF’s DFS 45 

showdebris flow susceptibility (DFS) showed that zones with very high susceptibility zones 46 

arewere distributed along the mainstream of the Nujiang River in the study area, and are mostly 47 

located in counties such as Gongshan, Fugong, and Lushui. The. These findings of this study can 48 

provide underlying techniques for alpine-valley-area debris flow assessment.methodological 49 

guidance and reference for improvement of DFS assessment. It enriches the content of DFS 50 

studies in the alpine-valley areas. 51 

 52 

Keywords 53 

debris flow susceptibility, random forest model, support vector machine, Nujiang River, alpine-54 

valley-area  55 

Introduction 56 

Debris flow is a natural disaster widely distributedcharacterized by water and sand movement 57 

occurring frequently in countriesareas around the world with special terrain and geomorphic 58 

conditions. The process of water and sand accumulation is very complex and is influenced by 59 

various natural and human factors.  60 

The Yunnan section of the Nujiang River (YNR) Basin, located in the transitional zone 61 

between China’s first and second terraces, is the core of the Kunlun-Qinling Mountains, is the 62 

southwestcenter of southwestern longitudinal ridges and valleys. It has huge undulations in the 63 

ridge and valley area. The terrain is undulating with a relative elevation difference of over 4700 64 

m (Tang, 2005; Xu, 2016). This region frequently experiences prolonged and intense precipitation 65 

during the rainy seasonseasons, increasing the moisture content in the area of the rocky and 66 

unconsolidated sediment (Ming, 2006a). UnderDebris flows form under the surface 67 

hydrodynamic action, debris flows seriously  and imperil the lives and property locally. 68 

According to literature statisticsof the local population.  69 

On average, there has beenare 8 debris flows per 10 km2 on average in the YNR Basin, 70 

which is one of the world'sworld’s most severe debris flow areas (Tang, 2005; Yang et al., 2017). 71 

BasedA total of 283 debris flows occurred in the basin from 1999 to 2008, based on the 72 

geological hazard investigation and zoning records of Yunnan Province spanning from 1999 to 73 

2008, a total of 283 debris flows occurred in the basin. On the. In two specific incidents alone, 74 

hugemassive debris flows happenedoccurred in  Gongshan County on July 26 and August 18, 75 

2010 and resultedresulting in nearly 100 deaths and hundreds of millions of yuanYuan in 76 

economic losses (Min et al., 2013).  It is critical to clarify the spatiotemporal correlation between 77 

debris flows and driving factors, as well as to scientifically predict the debris flow susceptibility 78 
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(DFS) in YNR Basin. 79 

Generally, research on the DFS assessment method can be divided into heuristic, physical 80 

modelling, and data-driven approaches (Chang et al., 2019; Dou et al., 2019; Reichenbach et al., 81 

2018; Sun et al., 2021; Zhou et al., 2020). Traditional research work was dominated by heuristic 82 

approaches, which were quite time-consuming and costly, unsuitable for large-scale promotion 83 

and application. In addition, the study results lack comparability due to non-uniform metrics 84 

(Dou et al., 2019; Huang et al., 2022). Physical models are mainly used to simulate the 85 

mechanism of debris flow movement and make predictions. For example, a shallow water model 86 

based on the finite volume method to predict the potential magnitude of debris flows, which can 87 

accurately and efficiently solve the fluid flow problem in irregular terrain (Bao et al., 2019). 88 

Nevertheless, the processes of model building are complex and with high expense, which is 89 

fulfilling to assess the susceptibility of single-gully debris flows, rather than larger regions (Luo 90 

& Liu, 2018). Other conventional methods such as fuzzy logic (Li et al., 2017), hierarchical 91 

analysis (LiouNguyen & Li, 2017), and network analysis (Sujatha & Sridhar, 2017) have some 92 

defects in revealing the spatial distribution pattern of non-linearity. With the rapid development 93 

of artificial intelligence methods and techniques, emerging data-driven approaches have been 94 

widely adopted in large-scale study areas, such as support vector machine (Chang et al., 2019), 95 

random forest model (Liang et al., 2020), and convolutional neural network (Zhang et al., 2019) 96 

owing to their higher accuracy and more precise prediction results (Oh & Lee, 2017). 97 

Up to now, although lots of researches have discussed the relative merits in terms of the 98 

accuracy and prediction results of various models in different study areas, there are few 99 

comparative research on susceptibility models and driving factors of alpine-valley-area debris 100 

flow (Liang et al., 2020; Zhang et al., 2019). Besides, current models have been developed and 101 

designed mainly for specific application needs of a certain research area, lacking a uniform 102 

general model (LanaCastro & Lana, 2022; Reichenbach et al., 2018). 103 

To explore a research model applicable to the alpine-valley typologies on account ofA clear 104 

understanding of the spatiotemporal relationships between debris flows and their evolution 105 

factors holds profound implications for society. Firstly, authorities and residents will be able to 106 

implement targeted preventive measures by effectively identifying and assessing potential debris 107 

flow risk areas, significantly enhancing society's overall preparedness and ultimately reducing 108 

casualties and property losses. Secondly, accurate susceptibility analysis will help avoid 109 

construction in potentially hazardous debris flow areas, while spatiotemporal correlation analysis 110 

will aid planners in assessing potential impact areas and frequency of debris flows. This will 111 

contribute to reducing the impact of disasters on urban infrastructure and enhancing overall 112 
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resilience of cities. Further, understanding of the spatiotemporal relationships between debris 113 

flows and their evolution factors will facilitate more efficient allocation of resources. The 114 

proactive deployment of emergency rescue resources ensures a swift and organized response in 115 

an event of a disaster, minimizing the overall impact. Additionally, susceptibility analysis serves 116 

as the foundation for establishing an effective early warning system. Through monitoring 117 

potential debris flow risk areas, timely identification of signs of potential debris flows, and rapid 118 

issuance of warnings, residents can take appropriate preventive and evacuation measures, thus 119 

maximizing the reduction of casualties. Finally, an in-depth spatiotemporal correlation analysis 120 

aids scientists in gaining a better understanding of the formation mechanisms and evolutionary 121 

patterns of debris flows, providing a more accurate foundation for risk management (Janizadeh et 122 

al., 2019). 123 

Table 1: Classification of DFS assessment methods. 124 

Despite numerous studies addressing the accuracy of various models and the relative merits 125 

of predictive outcomes for different areas (Table 1), comparative research on susceptibility and 126 

evaluation factors of debris flows in alpine-valley areas is limited. The scarcity can be attributed 127 

to the challenging nature of collecting data in these remote regions, which are characterized by 128 

limited transportation, poor road conditions, and inherent difficulties of accessing high 129 

mountainous terrain. Additionally, existing studies often rely on conventional debris flow 130 

susceptibility assessment methods, which exhibit lower accuracy and fail to meet practical 131 

requirements (Liang et al., 2020; Zhang et al., 2019). 132 

To enhance the accuracy and precision of DFS assessment, in alpine-valley areas and to 133 

research vitalexplore the key factors in the influencing debris flow formation of debris flows and 134 

DFS classificationalong with the spatial distribution map in YNR Basinof debris flow 135 

classifications, we tried to construct and compare DFS assessment models based on random 136 

forestcollected debris flow data from satellite images, vector images, raster images, reports, 137 

papers, books, and statistical data, and verified them with local records and data-driven 138 

approaches that can effectively integrate multiple sources and capture the nonlinear and complex 139 

relationships among them. We then constructed DFS models based on Random Forest (RF), 140 

radial basis function support vector machineRadial Basis Function Support Vector Machine 141 

(RBFSVM), and linear kernel support vector machineLinear Kernel Support Vector Machine 142 

(Linear SVM) in YNR Basin. ). The modelmodels yielded accuracy, predictionpredictive 143 

performance, and prediction results were obtained and used as evaluation metrics for models’ 144 

applicability, looking forward to provide the underlying techniques for enriching the research 145 

means of outcome assessments. This study provides methodological guidance and reference for 146 
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the improvement of DFS assessment and improves the accuracy of susceptibility studies of debris 147 

flows in alpine-valley-area debris flow. This study is of practical significance to enrich the study 148 

of alpine-valley-area debris flows and to facilitate the debris flow disaster reduction  areas. It also 149 

contributes to the enhancement of disaster mitigation and prevention planning in urban and rural 150 

areas of the YNR Basin.  151 

 152 

Study area 153 

The YNR Basin, between 23°07′–28°23′N and 98°07′–100°30′E, spanning approximately 30000 154 

km2, is located in the longitudinal ridges and valleys belt of western Yunnan Province (Fig. 155 

between 23°07′–28°23′N and 98°07′–100°30′E covering approximately 30 000 km2 (Fig. 1), 156 

and); the area is at the southeastern edge of the strong extrusion zone between the Asian and 157 

European plates and the Indian Ocean plate, with strong geological and tectonic movements (Ma, 158 

1999). The geomorphological development is controlled by the deep and large fractures of the 159 

Nujiang River, and debris flows are distributed in bands along the fracture zones and gullies 160 

(GuoLuo & Tang, 2015). This section is located in the southwest  monsoon area with distinct wet 161 

and dry features(Guo, Luo & Tang, 2015). Study area is located in the southwest monsoon area 162 

with distinct wet and dry periods, and the rainy season is concentrated from April to September 163 

(Ming, 2006b). 164 

Considering differences in topography and vegetation cover in the study area, theThe YNR 165 

basin was used to be divided into the upstream and the downstream section by the boundary 166 

between Lushui County and Longyang District considering differences in topography and 167 

vegetation cover in the study area (Xu, 2016)(Xu, 2016). The upstream area is ofhas a typical 168 

alpine-valley landscape characterized by high mountains, deep valleys, steep slopes, and swiftly 169 

flowing water (Huang et al., 2020a). WhereThere are the Gaoligong mountain range and, the 170 

Gawa Gap, the Bilo and Meri snow mountains tower aloft, the . The relative height difference 171 

reaches 3000m.3000 m between the highest and lowest points of the study area. The Nujiang 172 

River, is extremely long and narrow, runs through in these large mountains, with a maximum 173 

basin width of 267 km and a narrowest of only 21 km. The downstream has relatively flat terrain 174 

on both sides, with many hills and alluviaalluvial fans of uneven sizes. The vegetation 175 

Vegetation cover of the Yunnan section of the Nujiang River Basin is relatively high, with 176 

dominant dry-hot river valley shrub-grassland flanking both sides of the valley. The 177 

vegetationVegetation types change in order asfrom an evergreen forest, semi-evergreen forest, 178 

deciduous forest, mixed broad-leaved coniferous forest, coniferous forest, and alpine shrubs from 179 

valleys to ridges (Luo, 2009; Xu, 2016).(Luo, 2009; Xu, 2016). The majority of soil types are red-180 
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yellow soils with loose texture, poor erosion resistance, and water retention in the basin, and shift 181 

in the order of the red loam, the yellow-red loam, the yellow-brown loam, the brown loam, the 182 

dark brown loam, the grey-brown forest soil, and the alpine meadow soil along with the rising 183 

elevation rising (Liu, 2017). With the rapid 184 

Rapid socio-economic development, of the area accelerates the changes in geologic 185 

environment due to human activities such as town and rural built-land expansion, steep slope 186 

cultivation, road construction, and mining engineering further accelerate changes in the 187 

geological environment. According to the literature,. Literature indicates that the Nujiang River 188 

basin is the most serious geological hazard among the 6 major basins in Yunnan Province, 189 

especially upstream of the YNR Basin (Huang et al., 2020b; Tang  & Zhu, 2003).  190 

Fig. 1: YNR basin (Study area). 191 

Methods and data 192 

3.1 Research Methodology 193 

The overall method flow is shown in Fig. 2. 194 

 195 

Fig. 2: Research methodology. (a) General procedure. (b) Detailed procedure of the methods 196 

construction in the general procedure. 197 

3.1.1 The Random forest model 198 

The random forest model is an integrated algorithm consisting of multiple unrelated decision 199 

trees, where the final output is determined by all decision trees in the forest together, which 200 

wasThe random forest model is effective in capturing and simulating complex nonlinear 201 

relationships between debris flows and evaluation factors, and can handle large-scale, high-202 

dimensional debris flow datasets without overfitting. Furthermore, the RF indicates the relative 203 

importance of each evaluation factor, guiding the understanding of which factors have the 204 

greatest impact on debris flow susceptibility. It also demonstrates good adaptability to noise and 205 

outliers in the data, making it less susceptible to interference. Therefore, RF exhibits excellent 206 

applicability to assessments of debris flow susceptibility(Duan et al., 2022; Zhang & Wu, 2019). 207 

The RF is an integrated algorithm consisting of multiple unrelated decision trees that 208 

determine the DFS, in which the final output is determined by all decision trees together, and is 209 

defined as (Breiman, 2001), 210 
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 𝐻(𝑥) = 𝑎𝑟𝑔
𝑚𝑎𝑥
𝑧 ∑𝐼(ℎ𝑖(𝑥) = 𝑍)

𝑘

𝑖=1

(1) 

 

 

 

 

where 𝐻(𝑥) denotes the model outputresults of the model's predicted DFS for each watershed 211 

unit, ℎ𝑖(𝑥) denotes athe 𝑖th decision tree, x denotes attributes,  ℎ𝑖(𝑥) = 𝑍 is the prediction of 212 

variable 𝑍 using the 𝑖th tree in variable x, and 𝐼(∙) is the prediction of each decision tree. 213 

Given a database, the RF can be interpreted via the 3 following three steps:. Firstly, sample 214 

subsets are extracted using the Bootstrap resampling method. In other wordsSpecifically, n 215 

sample subsets of the same size as the original sample are extracted using the put-back method. 216 

Secondly, construct a decision tree is constructed for each sample subset. Among the attributes of 217 

the sample subset, k attributes are randomly selected. Then, select the best partitioning attributes 218 

of the nodes between decision trees are selected based on the Gini Index, which wasis calculated 219 

as  220 

𝐺𝑖𝑛𝑖(𝑝) = ∑𝑝𝑘(1 − 𝑝𝑘) = 1 −∑𝑝𝑘
2

𝑘

𝑘=1

𝑘

𝑘=1

(2) 221 

where 𝑝𝑘 indicates the probability that the selected sample belongs to category 𝑘. The 222 

smallerSmaller Gini Index meansIndexes mean that the probability of a selected sample in the set 223 

being misclassified is smaller. Finally, n decision trees are combined to generate a random forest.  224 

(Fig. 3).  225 

Fig. 3: The Process of the RF model. 226 

Hyperparameters of the RF model can be divided into two categories: those that determine 227 

the sampling method, such as bootstrap and the number of classifiers that determine the 228 

sampling method, and the number of decision trees, respectively. And those. Parameters that 229 

determine the decision tree, such as maximum depth (max_depth, ), minimum number of samples 230 

for a leaf node (min_samples_leaf, ), minimum number of samples required to split an internal 231 

node (min_samples_split, ), the maximum number of features randomly selected as candidates 232 

for splitting (max_features,), and a criterion that determinedetermines the maximum depth, 233 

minimum number of samples for a leaf node, minimum number of samples required to split an 234 

internal node, the maximum number of features randomly selected as candidates for splitting, and 235 

a criterion for the optimal split attribute. 236 

3.1.2 The Support vector machine 237 

The Support Vector Machine (SVM) demonstrates superior classification performance on unseen 238 

data due to its outstanding generalization capability, laying a crucial foundation for the credibility 239 
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and practicality of the model in real-world applications. In practical applications, areas prone to 240 

debris flows encompass complex environmental features, and SVM's excellent handling of high-241 

dimensional data provides robust support for assessing susceptibility considering multiple 242 

evaluation factors. Additionally, by employing various kernel functions, SVM exhibits flexibility 243 

in modeling nonlinear relationships in high-dimensional space, thereby enhancing its 244 

applicability in the assessment of DFS. These attributes position SVM as a powerful tool when 245 

facing real and complex datasets, providing a reliable analytical framework for accurately 246 

evaluating DFS. 247 

There are two cases of linearly divisible and linearly indivisible sample data in the feature 248 

space. The basic principle of SVM is to find the optimal classification hyperplane for two types 249 

(Fig. 4). As an example of binary data, a binary classification space 𝐷(𝑋𝑖 , 𝑌𝑖), 𝑖 =250 

1, … , 𝑙. 𝑋𝑖𝜖𝑅𝑛, 𝑌𝑖𝜖{1, −1}, where, 𝑙 represents the number of samples, and n denotes input 251 

dimensionality. The hyperplane 𝜔𝑥 + 𝑏 = 0 can be found in the original space when the sample 252 

data are linearly divisible. separating the two classes of samples completely. When the sample 253 

data isare linearly indivisible, the input space it is necessary to perform nonlinear mapping 𝛷(𝑥), 254 

mapping it from the input space to a certain feature space, the classification hyperplane can be 255 

expressed as 𝜔𝛷(𝑥) + 𝑏 = 0; meantime, the optimal hyperplane that requires 2/‖𝜔‖ is the 256 

largest, and the problem is transformed into a high-dimensional feature space through a non-257 

quadratic programming problem, with the application of the Lagrange multiplier method for the 258 

solution, namely, 259 

{
 
 

 
 𝑚𝑖𝑛

‖𝜔‖2

2
+ 𝐶∑𝜀𝑖

𝑙

𝑖=1

,

𝑠. 𝑡. 𝑦𝑖(𝜔 ∙ 𝑥𝑖 + 𝑏) ≥ 1 − 𝜀𝑖 ,
𝜀𝑖 ≥ 0, 𝑖 = 1,2, . . . , 𝑙

(3) 260 

 261 

where 𝜀𝑖 is the slack variable and C is the penalty factor. According to the Kuhn-Tucker (K-T) 262 

condition, the following dyadic problem can be obtained: 263 

𝑚𝑎𝑥∑𝑎𝑖 −
1

2

𝑙

𝑖=1

∑∑𝑎𝑖𝑎𝑗𝑦𝑖𝑦𝑗𝜑(𝑥𝑖) ∙ 𝜑(𝑥𝑗),

𝑙

𝑗=1

𝑙

𝑖=1

𝑠. 𝑡.  0 ≤ 𝑎𝑖 ≤ 𝐶,∑𝑎𝑖𝑦𝑖 = 0

𝑙

𝑖=1

(4) 264 

By solving the dyadic problem of this quadratic programming, the discriminant function is 265 

obtained as: 266 
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𝑓(𝑥) = 𝑠𝑖𝑔𝑛∑𝑎𝑖𝑦𝑖[𝛷(𝑥𝑖) ∙ 𝛷(𝑥𝑗)] + 𝑏

𝑙

𝑖=1

(5) 267 

According to the relevant theory of generalized functions, as long as a kind of kernel function 268 

𝐾(𝑥𝑖, 𝑦𝑖) satisfies the Mercer condition, it corresponds to an inner product in a certain 269 

transformed space, 𝐾(𝑥𝑖, 𝑦𝑖)= 𝛷(𝑥𝑖) ∙ 𝛷(𝑥𝑗), and linear classification of a certain nonlinear 270 

transformation definedcan be achieved by theusing a different inner product function. Then a 271 

linear judgment function is constructed in this high-dimensional feature space to find the optimal 272 

classification hyperplane, achieving linearly divisible datasurface (Suykens & Vandewalle, 1999).  273 

Linear Kernel, Polynomial Kernel, Sigmoid Kernel, and the Radial Basis Function (RBF) are 274 

commonly used in support vector machine models, where,  275 

Linear Kernel 276 

𝐾(𝑦, 𝑦′) = 𝑦𝑇𝑦′ (3) 277 

𝐾(𝑦, 𝑦′) = 𝑦𝑇𝑦′ (6) 278 

RBF 279 

𝐾(𝑦, 𝑦′) = exp (−
1

2𝜎2
‖𝑦 − 𝑦′‖2) (4) 280 

𝐾(𝑦, 𝑦′) = exp (−
1

2𝜎2
‖𝑦 − 𝑦′‖2) (7) 281 

where 𝑦 and 𝑦′are both basis vectors in the feature space, and 𝜎 is a model’s hyperparameter. 282 

Compared with the Linear Kernel, Thethe RBF can transform the features’ dimensionality for 283 

reducing the computational complexity, which is extremely suitable for predicting DFS in high-284 

dimensional feature spaces (Lin & Lin, 2003).The penalty parameter C, an empirical parameter in 285 

the SVM model, is employedused to control the tolerance of systematic outliers, allowing for a 286 

few outliers to exist in the opponent classification. A higher value of the penalty parameter leads 287 

to fewer outliers in the opponent classification. What’s more, the radial basis function kernel has 288 

an additional kernel parameter γ i.e.., kernel bandwidth to be optimized, where γ = 1/2σ2. As γ 289 

increases, the fit changes towards non-linear. 290 

Fig. 4: Support vector machine models. (a) Linearly divisible case. (b) Linearly indivisible 291 

case. 292 

3.1.3 Accuracy evaluation metrics 293 

Evaluation of model’s accuracy is critical for decision-makers and relevant institutions. High-294 

precision model predictions contribute to more precise decision-making, ensuring that measures 295 

taken are scientifically sound and effective. Comparing the accuracy of different models in 296 

practical applications contributes to the selection of the most suitable model for a given region or 297 
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topography, thereby bolstering the credibility of predictions. Additionally, accuracy evaluation 298 

provides feedback on the current model performance, guiding continuous improvement efforts. 299 

Accuracy, Precision, Recall, Kappa, F1-score, Receiver Operating 300 

CharacteristicsCharacteristic (ROC),) curve, and Area Under ROC (AUC) are employedused as 301 

the accuracy evaluation metrics. Accuracy indicatesrepresents the proportion of correctly 302 

classified debris flow samples., serving as a key indicator for overall model performance. 303 

Precision refers to the proportion of the samples with positive cases that are correctly predicted. 304 

which are critical for reducing false positives and ensuring the rational use of limited resources. 305 

Recall indicates the proportion of positive cases that are correctly predicted in the true sample. 306 

The, and is essential for minimizing the risk of overlooking potential hazard zones. F1-score is 307 

used for the overall evaluation of Precision and Recall, and the offers a balanced assessment of 308 

precision and recall, guiding the establishment of reasonable warning and management strategies. 309 

A higher the value, the higher theF1-score indicates greater model accuracy. Kappa measures the 310 

model consistency. The larger, indicating its ability to make similar judgments under different 311 

conditions or at different times. In the value, the higher thecontext of dynamic changes in debris 312 

flow risk, model stability is essential for providing continuous and effective risk assessments. A 313 

higher Kappa means greater classification accuracy. The ROC curve is generatedaids decision-314 

makers in balancing sensitivity and specificity by using True Positive Rate (TPR) as the vertical 315 

axis and False Positive Rate (FPR) as the horizontal axis. The AUC is, obtained by integrating the 316 

ROC curve and, reflects the model's classification effect of the model. The value of effectiveness. 317 

Even in situations with imbalanced positive and negative samples, a higher AUC is closer to 1, 318 

the more accurate thevalue indicates superior model isaccuracy. Their definitions are as follows, 319 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
(5) 320 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(6) 321 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(7) 322 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(8) 323 

𝐾𝑎𝑝𝑝𝑎 =
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝑝𝑒

1 − 𝑝𝑒
(9) 324 

𝑝𝑒 =
(𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑃 + 𝐹𝑁) + (𝐹𝑁 + 𝑇𝑁) ∗ (𝐹𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁) ∗ (𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁)
(10) 325 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
(8) 326 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(9) 327 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(10) 328 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(11) 329 

𝐾𝑎𝑝𝑝𝑎 =
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝑝𝑒

1 − 𝑝𝑒
(12) 330 

𝑝𝑒 =
(𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑃 + 𝐹𝑁) + (𝐹𝑁 + 𝑇𝑁) ∗ (𝐹𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁) ∗ (𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁)
(13) 331 

The ROC curve is generated using the True Positive Rate (TPR) as the vertical axis and False 332 

Positive Rate (FPR) as the horizontal axis. The AUC is obtained by integrating the ROC curve 333 

and it reflects the classification effect of the model. The closer its value is to 1, the better and 334 

more accurate the model is. The calculation is as follows, 335 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(11) 336 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
(12) 337 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(14) 338 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
(15) 339 

where in Equations 5–128–15, TP standstands for the true positive rate, FP represents the false 340 

positive rate, TN signifies the true negative rate, and FN denotes the false negative rate. 341 

Equal spacing, equal quantile, and natural breakpoint methods are the most widely used 342 

methods of data discretizationTo facilitate horizontal comparisons of model predictions, many 343 

studies use the equal spacing method to classify DFS into five zones and confirm the method’s 344 

applicability (Liang et al., 2020; Liu, Miao & Tian, 2017). Therefore, in this study, we divided 345 

the predicted debris flow susceptibility calculated by the three models into five classes, from low 346 

to high, corresponding to the very low susceptibility zones (0 to <0.2), low susceptibility zones 347 

(0.2 to <0.4), medium susceptibility zones (0.4 to <0.6), high susceptibility zones (0.6 to <0.8) 348 

and very high susceptibility zones (0.8 to <1), respectively (Zhang & Wu, 2019). To facilitate 349 

horizontal comparisons of model predictions, many studies use the equal spacing method to 350 

classify DFS into five zones and confirm the method’s applicability (Liang et al., 2020; LiuMiao 351 

& Tian, 2017). Therefore, in this study, we divide the predicted susceptibility of the three models 352 

into five classes at a constant interval scale, from low to high, corresponding to the very low 353 

susceptibility zones (0–0.2), the low susceptibility zones (0.2–0.4), the medium susceptibility 354 
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zones (0.4–0.6), the high susceptibility zones (0.6–0.8) and the very high susceptibility zones 355 

(0.8–1), respectively. 356 

3.2 Data and processing 357 

3.2.1 Evaluation units 358 

Raster cells and watershed units in DEM are commonly used for susceptibility 359 

assessmentassessments (Zou et al., 2017). Raster cells are more convenient for modelling and 360 

calculation because of their regular shape and uniform size, while watershed units can represent 361 

integrated geomorphological characteristics of hydrological processes, and that helphelps in 362 

obtaining the actual conditions of debris flow (Liu et al., 2018; Qiang et al., 2019; Zhang et al., 363 

2022). Therefore, we adopted watershed units as the basic evaluation units and used ArcMap’s 364 

hydrological analysis tools to categorize the 30 m spatial resolution DEM data of the YNR Basin. 365 

Finally, the study area was divided into 1070 watershed units. 366 

3.2.2 Evaluation factors 367 

The formation of debris flows is determined by a combination of factors (Huang et al., 368 

2022).(Huang et al., 2022). After conducting a thorough investigation, data collection, and 369 

preliminary analysis of existing data on the historical background, geological structure, 370 

topography and geomorphology, hydro-meteorology, soil and vegetation, and human activities in 371 

the study area, we selected evaluation factors from five aspects: topographic conditions, rainfall 372 

conditions, geological conditions,, and vegetation conditions, and human activities. (Table 2). 373 

(1) Topographic conditions. Topographic conditions play a crucial role in are critical to the 374 

formation of debris flows. Drawing on the results of others' research (Liu & Tang, 1995; Sun et 375 

al., 2021), weWe chose relative elevation difference and slope to represent the potential energy of 376 

watersheds and the ability to carry the rocky soil, respectively, and selected the watershed area to 377 

reflect the for runoff and sediment yield. calculations based on previous research in this area by 378 

(Liu & Tang, 1995; Sun et al., 2021). Therefore, based on the DEM with a spatial resolution of 30 379 

meters, the mean relative elevation difference and average slope of each watershed unit had 380 

beenwere calculated using the ArcMap function of zonal statistics as a table, and the area of each 381 

watershed unit had beenwas extracted using the “calculate geometry” function. 382 

(2) Rainfall conditions. Rainfall is necessary for debris flow incubating and triggering 383 

(CuiYangCui, Yang & Chen, 2003; LiuMiaoLiu, Miao & Tian, 2017; Xu, 2016). 384 

EarlierAntecedent rainfall serves mainly serves to wet or soften the soil and reduce the stability 385 

of rocky soil. Short-duration heavy rainfall bringsrainfalls create a strong mechanical impact on 386 

the soil that is about to be saturated or almost saturated, and disruptsdisrupt the equilibrium of the 387 
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slope, and is extremely prone to cause causing debris flows (Pan et al., 2012; TanYangTan, Yang 388 

& Shi, 1990; Zhang & Guo, 2021). To address the effect of rainfall, we choseselected three 389 

factors to characterize the triggering effect of heavy rainfall on debris flows in 2020,: the number 390 

of heavy rainstorms, the number of rainstorms, and the number of heavy rains. Based on the 391 

distinctive interannual variationvariability in precipitation distribution in the study area between 392 

dry and rainy seasons, we chose the average rainfall during the rainy season (April to September) 393 

to characterize the effect of earlyantecedent precipitation on nurturingdeveloping debris flows. 394 

Therefore, a total of 183 daily precipitation data were extracted for dates from 2020/04/01 to 395 

2020/09/30 in the study area had been extracted, and the field calculator and the regional 396 

statistical function of ArcMap had beenwas used to calculate the average rainfall offor the 2020 397 

rainy season for each watershed unit. Using ArcMap's model builder, a total of 366 daily 398 

precipitation data infor 2020 were sequentially screened for the number of heavy rainstorms with 399 

a cumulative daily precipitation of 100-250-100 mm, the number of rainstorms of with 50-100 400 

mm-50 mm, and the number of heavy rains of 50 mm-25-50 mm, and; then using the field 401 

calculator to add up, we summed the number of days in compliance with the raster cells, and 402 

finally using ArcMap function of zonal statistics as table to calculate using the field calculator, 403 

and calculated the average number of heavy rainstorms, the average number of rainstorms, and 404 

the average number of heavy rainfall for each watershed unit with the ArcMap function of zonal 405 

statistics table. 406 

(3) Geological conditions. Fracture zones affect the continuity and stability of rocky soil, 407 

meanwhile, theand surface soil provides a rich sediment source for debris flows (Pham et al., 408 

2016). Consequently, we used fracture zone density and soil texture to characterize the influence 409 

of geological conditions on debris flows. Fracture zone density was calculated by dividing the 410 

length of the fracture zone in each watershed unit by the watershed area. Soil texture was 411 

calculated separately forusing the average content of clay, silt, and sand within the watershed unit 412 

usingand the function of zonal statistics as table. 413 

Vegetation conditions. The roots of plants have the function of fixing the rock and soil mass, 414 

and helping to improve soil erosion resistance (Huang et al., 2022). To some extent, it inhibits 415 

erosion and hinders the sliding of the topsoil (ZhaoWu & Wang, 2006). Therefore, we used 416 

ArcMap function of zonal statistics as table to calculate the average Normalized Difference 417 

Vegetation Index of each watershed unit to characterize vegetation cover. 418 

(4) Vegetation conditions. Plant roots stabilize the rock and soil mass, and increase soil 419 

resistance to erosion (Huang et al., 2022). To some extent, plant roots inhibit erosion and hinder 420 

the sliding of the topsoil (Zhao, Wu & Wang, 2006). We used the ArcMap function of zonal 421 
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statistics to calculate the average Normalized Difference Vegetation Index of each watershed unit 422 

to characterize vegetation cover. 423 

(5) Human activities. The geologicalGeological structure and surface become unstable under 424 

the efforts of with land use change. Meanwhile, a great deal of generatedchanges, which also 425 

generate loose deposit providesdeposits providing material sources for debris flows (Huang et al., 426 

2022; Tien Bui et al., 2017; Xu, 2016). Road transportation is the harbinger of social production, 427 

road network construction could be an indication of thecan indicate regional land development 428 

intensity to a great extent. Thereout, The . We used the ArcMap function of zonal statistics as 429 

table was used to calculate the land use typetypes with the largest proportion ofproportions for 430 

each watershed unit. Highway Densities of highway density, railway density, density of, urban 431 

primary roads, density of urban secondary roads, density of urban tertiary roads, density of urban 432 

quaternary roads, density ofand county and town roads were calculated using highway length, 433 

railway length, urban primary roads length, urban secondary roads length, urban tertiary roads 434 

length, and urban quaternary roads length,corresponding road type lengths divided by the 435 

watershed area, respectively. 436 

Table 2: Selected evaluation factors and their data sources. 437 

3.2.3 Data pre-processing 438 

Due toWe used the presence of Random Forest (RF) model to reduce the noise, which impairs in 439 

the data qualitysets and model performance, The literature to select evaluation factors following 440 

the approach of (Kursa & Rudnicki, 2011) has demonstrated that preprocessing data with the 441 

Random Forest (RF) model is a reliable and effective approach. Therefore, we employ this 442 

approach to select the evaluation factors. 443 

Firstly.  444 

First, a RF model was built with all the evaluation factors in Python. Secondly after 445 

digitizing, data formatting, and unifying georeferencing. Second, the model was trained again 446 

using the GridSearchCV module, which iterates through all permutations of incoming parameters 447 

to find the best hyperparameter. Thirdly, the contributionThird, contributions of the evaluation 448 

factors waswere obtained and ranked. Finally, we filtered out the evaluation factors. were filtered. 449 

Through analyzing the initial factors and their contribution in Table 13, we founddetermined that 450 

the contribution of six6 factors, namely railway density, highway density, the density of urban 451 

primary roads, the density of urban secondary roads, the density of urban tertiary roads, the 452 

density of urban quaternary roads, were all less than 0.01%%, and they apparently did not in the 453 

same order of magnitude as other factors. Therefore, we considered these six6 factors as noisy 454 

data and removed them. Eventually, theFrom further evaluation indicators. The remaining 455 
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evaluation factors are shown in Fig. 25. 456 

Fig. 25: Processed factors affecting debris flows susceptibility. 457 

 (a) Relative elevation difference. (b) Average slope. (c) Watershed area. (d) Average rainfall 458 

during the rainy season. (e) Number of heavy rainstorms. (f) Number of rainstorms. (g) Number 459 

of heavy rains. (h) Fracture zone density. (i) Sand content. (j) Silt content. (k) Clay content. (l) 460 

NDVI. (m) Land use. (n) Density of county and town roads. 461 

Table 13: Contribution of evaluation factors before and after pre-processing. 462 

Data annotation. We chose 274 historical debris flows that occurred in YNR Basin up until 463 

2019 to mark(1) Data annotation. The debris flow inventory was derived from the nationwide 464 

geohazard census done by the Resource and Environment Science and Data Center 465 

(www.resdc.cn/). After data verification with local histories, books, reports, statistic data, relevant 466 

field surveys, and related literature, a total of 274 debris flow hazards in the study area were 467 

found as of the end of 2019, and the attribute information included the field number, geographic 468 

location, damage, groundwater grade, and the current degree of stability, and so on. We used this 469 

inventory to annotate each watershed unit. Those units that had experienced debris flows were 470 

assigned a label of ‘1’, while those that had not were assigned a label of ‘0’. The entire set of 471 

watershed units was subsequently divided into two groups, namely of ‘debris flow’ and ‘no debris 472 

flow’. 473 

(2) Data sampling. In order toTo prevent sample imbalance from affecting model accuracy, 474 

we employedused the synthetic minority oversampling technique (SMOTE) to balance the 475 

sample size, which analyzed a small number of samplesdata and added simulated new 476 

samplesdata to the dataset (WuYang & Niu, 2020; ZJ & Yu, 2022).when needed (Wu, Yang & Niu, 477 

2020; ZJ & Yu, 2022). Eventually, the watershed units’unit ratio with ‘debris flow’ to those with 478 

‘no debris flow’ was 1:1, and the total sample size was 2140 items. 479 

Data division. The whole dataset has been divided into two subsets with a ratio of 7:3 for 480 

DFS model training and testing (Huang et al., 2022)(3) Datasets division. The whole dataset was 481 

divided into two subsets of 7 to 3 for DFS model training and testing, respectively (Huang et al., 482 

2022). 483 

Experiments and analysis of results 484 

4.1 Model construction 485 

The RF and SVM models were trained by using the scikit-learn library within Python, which 486 

integrates various machine-learning methods. FirstlyFirst, RF was generated using the Random 487 

Forest Classifier method, and Linear SVM and RBFSVM were generated using the SVC method. 488 
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SecondlySecond, we then adjusted the hyperparameters, taking into account the relationship 489 

between model complexity and generalization error, to minimize the generalization error and 490 

improve the accuracy and generalization ability of the model (Duan et al., 2022). Based on the 491 

effect of each hyperparameter on the model complexity, the RF model was adjusted in the order 492 

of the number of classifiers, the maximum depth, the minimum number of samples of the leaf 493 

nodes, the condition limiting the continuation of the subtree division, the maximum number of 494 

features, and the decision tree algorithm. Specifically, we employed the ten-fold cross-validation 495 

method to generate learning curves for each hyperparameter within a large interval. Once we 496 

determined the range of subintervals with the highest accuracy, we used the grid search method to 497 

determine the optimal values. Ultimately, the optimal hyperparameters for the RF model were 91, 498 

21, 1, 2 and 11 corresponding to the number of classifiers, the maximum depth, the minimum 499 

number of samples of the leaf nodes, the condition limiting the continuation of the subtree 500 

division, and the maximum number of features, respectively.  As the SVM model had fewer 501 

hyperparameters, we adjusted it only using the grid search method. The optimal penalty 502 

parameter C of 1search range and hyperparameter values for each model are shown in Linear 503 

SVM and 5 in RBFSVM. In addition, the dimensionality parameter Gamma in RBFSVM of 504 

0.05Table 4. 505 

After the above processes, the susceptibility evaluationTable 4: Hyperparameter values for 506 

each model. 507 

DFS models for the YNR Basin were developed based on the optimal hyperparameters for 508 

the RF, Linear SVM, and RBFSVM methods, respectively. In response to the characteristics of 509 

alpine-valley areas with distinct wet and dry conditions and complex debris flow genesis in the 510 

context of geographic big data, and based on the applicability of the RF and the SVM models in 511 

dealing with high-dimensional, non-linear data, the model usesused average rainfall during the 512 

rainy season to assess the impact of rainfall on debris flow, and usesused RF and SVM to 513 

quantitatively assess the drivers and study area susceptibility. 514 

4.2 Analysis of results 515 

4.2.1 Analysis of the pre-processing results 516 

The AUC of the RF model on theusing test data improvedincreased from 0.73 to 0.97. The ROC 517 

curve was closer to the upper left corner as shown in (Fig. 3. In addition, the6). Further, model 518 

training time was reduceddecreased by 23%, from 105 seconds to 84 seconds. 519 

Fig. 36: ROC curves. 520 

Data preprocessing eliminated the impact of redundant data on the model and on the 521 
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remaining evaluation factors, so the contribution rate of the remaining evaluation factors has 522 

changed. The total contribution rate ofsuch as topographic conditions, human activities, and 523 

vegetation conditions increased by 0.068, 0.065, and 0.017, respectively. While, while those of 524 

rainfall conditions and geological conditions decreased by 0.115 and 0.035, respectively (Fig. 525 

47). In addition, the contribution rate of the most important evaluation indicator (relative 526 

elevation difference) increased by 0.09 (Table 13). 527 

Fig. 47: The contribution rate of the five main categories of evaluation factors before 528 

and after pre-processing. 529 

4.2.2 Analysis of evaluation factors 530 

Experimental results presentedindicated that topographic conditions arewere the decisive factors 531 

during the formation of debris flow in the YNR Basin, and geological conditions, rainfall 532 

conditions, human activities, and vegetation conditions arewere important factors, with 533 

contribution rate corresponding to 0.425, 0.195, 0.173, 0.133, and 0.074 (Fig. 47), respectively.  534 

The top 3 factors areexplanatory conditions were topographic, geological, and rainfall conditions. 535 

In terms of the 14 evaluation factors, theThe relative elevation difference (contribution rate: 536 

0.274) iswas the most vitalimportant evaluation indicator and playswith a key role in the 537 

formation of debris flows. This iswas followed by watershed area, NDVI, and density of county 538 

and town roads ranking third3rd and fourth4th, respectively. The rest factors areothers were in the 539 

order of average slope, average rainfall during the rainy season, land use, sand content, silt 540 

content, clay content, the number of heavy rainstorms, fracture zone density, and the number of 541 

heavy rains. The number of rainstorms is found to havehad a relatively smalllesser impact on the 542 

formation of debris flows (Fig. 58). 543 

Fig. 5: Contribution rate8: The contribution of evaluation factors to the total variability 544 

in debris flow formation. 545 

4.2.3 Model accuracy analysis 546 

The evaluation results of the RF model effectiveness indicate that RF hashad higher values of 547 

Accuracy, Precision, Recall, F1-score, and Kappa (Table 25), and theits ROC curve of RF 548 

convergesconverged faster than that of RBFSVM and Linear SVM (Fig. 6). It means9). This 549 

indicated that the RF model enables a comprehensiveRF was most suitable of the three models 550 

for examination of the spatial correlation between historical debris flows and elevation factors, 551 

improving the assessment accuracy of DFS. 552 

Table 25: Comparison of model accuracy. 553 

Fig. 69: The ROC curves. 554 
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4.2.4 Susceptibility analysis 555 

According to the evaluation criterion, there is a positive correlation between the susceptibility 556 

Susceptibility class and the density distribution of debris flows, were positively correlated with a 557 

higher density of debris flows leading to higher susceptibility classes. The difference in density 558 

between very high and very low susceptibility zones serves as an indicator of the predictive 559 

performance of the model (Li et al., 2022)(Li et al., 2022). The experimentalOur results 560 

presentshowed that the prediction performance of the RF iswas better than thethat of RBFSVM, 561 

and the while that of Linear SVM iswas the worstlowest (Fig. 7). While all10).  562 

All three models demonstratedemonstrated an increase in debris flow density with increasing 563 

susceptibility class, but the difference in debris flow density between the very high and very low 564 

susceptibility zones iswas greatest for the RF model, with 47 debris flows per 1000 km2, followed 565 

by RBFSVM with 37 debris flows per 1000 km2, and the lowest for Linear SVM with 11 debris 566 

flows per 1000 km2. These results indicateindicated that the RF model iswas more adept at 567 

discriminating very high and heigh susceptibility zones and exhibitsexhibited superior predictive 568 

performance when compared to the other two models. 569 

Fig. 710: Density of debris flows in each of the three models’ susceptibility zones of the three 570 

models. 571 

Fig. 811: Susceptibility zoning in the upstream section of the YNR Basin. (a) RF model. (b) 572 

RBF SVM model. (c) Linear SVM model. 573 

Based on the analysis of historical debris flows and the overlap in susceptibility zones 574 

overlapping (Fig. 8), the 11), we determined that RF and RBFSVM are more reasonable for 575 

modellingmodelled susceptibility zones in the YNR Basin better than the Linear SVM in YNR 576 

Basin.. The Linear SVM predicted many of the very high and high susceptibility zones which 577 

havehad no historical debris flow distribution,flows, therefore the credibility of its predictions 578 

iswas low. The high dimensionality of debris flow data may be a contributing factor, as Linear 579 

SVM had difficulty effectively capturing the complex nonlinear relationships in the dataset. This 580 

resulted in tendency to overfit the training data, reducing its accuracy in predicting susceptibility 581 

to debris flow hazards. The Kappa value of the Linear SVM model was only 0.37 (Table 5), 582 

indicating that the model was unable to make consistent predictions at different conditions or 583 

times, indirectly confirming the existence of the overfitting problem. This instability limits the 584 

applicability of the model to DFS prediction.  585 

The results of the RF’s DFS classification spatial distribution map showobtained with RF 586 

showed that the very high susceptibility zones in the upstream section of the YNR Basin arewere 587 

mainly distributed along the mainstream of the Nujiang River. The dominant factors arewere 588 
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topographic and geological conditions in the very high susceptibility zones of Gongshan, Fugong, 589 

and Lushui counties due to theassociated with active neotectonic movementmovements resulting 590 

in the development of numerous bulge structures and compressional folds. The swiftly flowing 591 

water, driven by the effects of tectonic activity and fluvial erosion, results in the formation of 592 

steep riverbanks. After the Holocene, the bulge of the mountains and the deepening of the river 593 

valleys had led to the formation of alpine-valley landscapes. Furthermore, the deep and large 594 

fractures of the Nujiang River, along with numerous tectonic fractures and joint fissures, control 595 

the geomorphological development in the area, leading to extremely developing gravity 596 

geomorphology, including debris flow.extreme gravity geomorphology, including debris 597 

flows(Liu & Tang, 1995; Tang  & Zhu, 2003). 598 

Fig. 912: Susceptibility zoning in the downstream section of the YNR Basin. (a) RF model. 599 

(b) RBF SVM model. (c) Linear SVM model. 600 

Based onThe RF model performed more robustly for susceptibility zoning in the YNR Basin 601 

(Fig. 12), as shown by the overlap between historical debris flows and susceptibility areas, as 602 

well as and by the analysis of model accuracy (Fig. 9), the RF model performs more robustly for 603 

susceptibility zoning in YNR Basin.. The modeling resultresults of RBFSVM showshowed an 604 

overall higher susceptibility than the actual situation. Compared to the predicted result of the 605 

Linear SVM model and that indicated by historical debris flow data, we find that .  In the Linear 606 

SVM, many historical debris flow areas arewere distributed in very low and low susceptibility 607 

areaszones and few historical debris flowsflow areas arewere distributed in some high 608 

susceptibility areaszones, which makes therendered predictions less reliable. Accordingly,, lead to 609 

overfitting of the training data, and resulted in lower accuracy in predicting the susceptibility to 610 

debris flow disasters.  611 

Consequently, the RF model was used for susceptibility zoning in the downstream section of 612 

the YNR Basin, the. The results revealedshowed that areas with very high and high susceptibility 613 

to debris flows are predominantlywere concentrated in northern Longling County, northern 614 

Longyang District, eastern and southeastern Zhenkang County, eastern Shidian County, and 615 

central Yongde County, and debris flowthose of susceptibility probability is aboutresponse to 616 

0.86, 0.85, 0.84, and 0.81, respectively. 617 

Conclusion 618 

Taking the Yunnan section of the Nujiang River (YNR) Basin as a case study, this article 619 

discussed the performance of three popular supervised machine learning algorithms in analyzing 620 

debris flow susceptibility in the alpine-valley area throughout a data-driven perspective. And the 621 

results indicate that the RF model outperforms both the RBFSVM model and Linear SVM model 622 
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in terms of accuracy of prediction results, and prediction performance. It implies that the RF 623 

model is more suitable for susceptibility assessing of debris flow in YNR Basin.  624 

Based on the contribution rate of the evaluation factors generated by the RF model, 625 

topographic conditions are the decisive factor in the formation of debris flows in YNR Basin. 626 

Geological conditions, rainfall conditions, human activities, and vegetation conditions are 627 

essential to forming debris flows. In addition, among the 20 evaluation factors, the relative 628 

elevation difference plays a vital role in the formation and occurrence of debris flows in our study 629 

area.  630 

The results of the RF-based DFS classification spatial distribution map indicate that the very 631 

high susceptibility zones are mainly distributed along the mainstream of the Nujiang River in the 632 

study area. Very high susceptibility zones are primarily situated in Gongshan County, Fugong 633 

County, Lushui County, northern Longling County, northern Longyang District, eastern and 634 

southeastern Zhenkang County, eastern Shidian County, and central Yongde County where the 635 

terrain and geological conditions are extremely conducive to the development of gravity 636 

geomorphy. 637 

Discussion 638 

This study further demonstrates thedemonstrated applicability of the RF model to assess DFS. (1) 639 

In terms of model accuracy, the in the YNR Basin. The RF model exhibitsexhibited a comparable 640 

AUC to the research results utilizingthat obtained with the Backpropagation Neural Network and 641 

hashad higher Accuracy and a greater overlap between the predicted very high and high 642 

susceptibility zones and historical debris flows (Wang et al., 2010). In addition, the difference in 643 

AUC, very high and very low susceptibility zone debris flow density for the RF model are all 644 

outperformance ofoutperformed the deterministic coefficient model (LiYang & Wei, 2019)(Li, 645 

Yang & Wei, 2019). (2) In terms of methodology,Further, the methods in the RF model doesdo not 646 

rely on expert experience, making it more objective and scientificaccurate than the numerical 647 

division of the sensitivity of each factor (Tang, 2005) and the method of assigning different 648 

weights to each factor (Tang, 2005). (3) In terms of prediction results, this work further validates 649 

the research inferences of Tang and Li from the perspective of more detailed results (LiYang & 650 

Wei, 2019; Tang, 2005). Nevertheless, based on the overlap between historical debris flows and 651 

susceptibility zones, and the analysis of model accuracy, the distribution of very high and high 652 

susceptibility zones in the study is more similar to historical debris flows and has a higher AUC 653 

compared with research inferences of Tang and Li (LiYang & Wei, 2019; Tang, 2005), making the 654 

results of the susceptibility zones in this study more reliable. (4) the conclusions of the Nujiang 655 

River basin by Xu and Guo We also further validated the inferences of Tang and Li and others 656 
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regarding more detailed results (Li, Yang & Wei, 2019; Tang, 2005). Nevertheless, the distribution 657 

of very high and high susceptibility zones in this study aligned with historical debris flows better 658 

and had a higher AUC than that exhibited in the study of Li and Tang (Li, Yang & Wei, 2019; 659 

Tang, 2005), indicating a higher reliability of susceptibility zone prediction in this study. Finally, 660 

Guo and Xu (GuoLuoGuo, Luo & Tang, 2015; Xu, 2016) showed that topography, source of 661 

debris flow, and rainfall arewere the three main conditions for forming debris flows, which 662 

coincide with in Nujiang River Basin, reflecting the resultsranking of debris-flow contributing 663 

factors in this study in terms of contribution ranking. 664 

The dataData pre-processing based on the contribution rate of evaluation factors generated 665 

by the RF model iswas reliable. Multicollinearity has relatively little influence onrarely 666 

influences the proposed model, due to a large number of training samples. Thus, we used the RF 667 

to deal with thereduce noise, which hashad a great effect on the accuracy of the model, and the 668 

accuracy iswas significantly improved. The reasonThis is thatpossible because nodes of thisthe 669 

RF model are randomly selected with equal probability to construct decision trees,; the evaluation 670 

factors with a lower contribution may negatively affect the model performance and increase 671 

generalization error (Rogers & Gunn, 2006). Furthermore, thisthe proposed model measures the 672 

importance of the evaluation factors not exclusively in terms of their contribution to the predicted 673 

results, but rather in terms of their ability to contribute to predicted results in thisproposed model 674 

rather than exclusively in terms of their contribution to the predicted results (Zhang et al., 2019). 675 

In addition, the increasedhigher AUC and thea better-performing ROC curve after data pre-676 

processing of the model further validate that taking the RF to deal with theeliminating noise is 677 

reliablewith RF leads to more accurate results.  678 

The prePre-processing removed six6 evaluation indicators, but it does not mean that they do 679 

not influence the formation of debris flows. As variables. Variables with a higher number of 680 

categories in the RF will tend to higher contribution,contribute more; 80% of the existing roads in 681 

the study area are roads below Class IV, and with; the relatively few railways, highways, urban 682 

quaternary roads, urban tertiary roads, urban secondary roads, and urban primary roads, resulting 683 

result in thea low number of categories for these six6 evaluation factors. To address thisthe issue, 684 

the next stepwe will be to explore the impact of railways, highways, and urban roads, on debris 685 

flow using more rational characterizations or adding weights to find out the impact of road 686 

construction on debris flows. What’s more. Additionally, the number of rainstorms data arein the 687 

dataset was relatively sparse, resulting in small information gain during decision tree generation. 688 

Thus, its contribution is low. As a consequenceConsequently, future research will cluster include 689 

clustering of indicators of the number of heavy rains, number of rainstorms, and number of heavy 690 
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rainstorms, and perform spatial correlation analysis to reveal the impact differences in effects 691 

caused by the uneven distribution of rainstorms during the rainy season in the study area. 692 

The elevation factors of debris flows perform dissimilar effects under the different study 693 

scales. At the studyModel applicability. (1) The RF and RBFSVM models are well suited  to DFS 694 

assessments which require high-dimensional data; in addition, related literature shows that they 695 

have higher accuracy in landslide, flood, and other disaster susceptibility assessments than other 696 

models (Fang et al., 2022; Prasad et al., 2022). The Linear SVM model cannot capture complex 697 

nonlinear relationships well and is prone to overfitting, thus not applicable to DFS assessment. In 698 

this study, the Linear SVM model predicted many zones with very high and high debris flow 699 

susceptibility but without historical debris flow distribution, therefore, its prediction credibility 700 

was low. (2) The RF and RBFSVM models have some limitations. Training the RBFSVM model 701 

with high-dimensional data is time-consuming, sensitive to noise and outliers, and demands 702 

meticulous data cleaning and filtering. Additionally, predictions of the RBFSVM, relying on 703 

nonlinear mapping, are relatively challenging to interpret. On the other hand, the RF model tends 704 

to favor lower contributions when presented with sparse data. Six evaluation indicators were 705 

removed in the preprocessing portion of this study, but they may, in fact, contribute to the 706 

formation of debris flow; The results of the quantitative ranking of factor contributions to DFS in 707 

the study area need to be investigated further. (3) This study clarifies the applicability, accuracy, 708 

and limitations of the three models, providing researchers with methodological references and 709 

directions for model improvement; in addition, it provides scientific basis for disaster prevention 710 

and avoidance in the alpine-valley area. 711 

Elevation factors of debris flows had dissimilar effects at different scales. At the scale of the 712 

Yunnan section of the Nujiang River Basin, the major evaluation factors for debris flows arewere 713 

topographic, geological, and rainfall conditions. However, when scaled down to the scale of each 714 

county, the main evaluation factors may change when scaled down to each county  (ChengYu & 715 

L; , 2010). Through scientific literature search, it was discovered that precipitation significantly 716 

impacts Longling County, Zhenkang County, Shidian County, and Yongde County(Cheng, Yu & 717 

Chang, 2010). Thus, precipitation significantly impacts Longling, Zhenkang, Shidian, and 718 

Yongde Counties, resulting in an increased likelihood of debris flows, floods, and other disasters. 719 

Longling County, Longyang District, and Zhenkang County experience extensive human 720 

activities, including construction projects such asfor water conservancyconservation, road 721 

construction, mining, and logging, leading to severe soil erosion. The geological 722 

environmentGeology also plays a crucial role insignificantly affects these areas, such as Longling 723 

County, which features a large number of fractures on the eastern side of Chongshan, and; 724 
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Zhenkang County has fractures and folds in varying directions contributing to a complex and 725 

variable geological structure. In addition, Yongde County has a high concentration of mudstones, 726 

sandstones, and slatesslate with looser textures and more developed joint fissures. The 727 

analysis(Cheng et al., 2000; Hou et al., 2005; Wu, Li & Qian, 1993; Xiao & Wu, 1992; Zhang & 728 

Li, 1997). Analysis of the drivingevaluation factors of debris flows must be tailored to different 729 

regional scales in complex terrain areas. 730 

This study providestested the underlying techniques of the model for evaluating the 731 

susceptibility of alpine-valley-typeareas to debris flows, which has certain promotion andan 732 

application value for the similar researches on research at watershed scales. However, there are 733 

some limitations that need to be further improved. FirstlyFirst, we did not consider the temporal 734 

distribution of debris flows in the model due to insufficient statistical data. Treating debris flows 735 

occurring at different times as a type of marker sample would affect the accuracy of the cause 736 

analysis of debris flows (Huang et al., 2022)(Huang et al., 2022). SecondlySecond, the 737 

assessment of the strengths and weaknesses of the predictions was based on the assumption that 738 

the higher the susceptibility class and the higher the density of debris flow distribution (Li et al., 739 

2022)are correlated (Li et al., 2022). If extensiveExtensive field research could be combined in 740 

future studies, combined with modeling will significantly improve reliability of the results may 741 

be. 742 

Conclusions 743 

Data acquisition for debris susceptibility assessments in the Yunnan section of the Nujiang 744 

River (YNR) Basin is challenging; the predominant use of traditional debris flow susceptibility 745 

assessment methods results in low accuracy that fails to fulfill practical needs. Here, we 746 

addressed these issues with systematical collection and processing of relevant debris flow data, 747 

including an analysis of the performance of three machine learning algorithms in analyzing debris 748 

flow susceptibility in the alpine-valley area. The results indicated that the RF model outperforms 749 

both the RBFSVM and the Linear SVM models in terms of accuracy and precision of prediction 750 

indicating that the RF model is more convincing. 751 

suitable for susceptibility assessment of debris flow in the YNR Basin. This study provides 752 

valuable methodological analysis and directions for improvement of the model. 753 

The contribution rate of the evaluation factors generated by the RF model showed that 754 

topographic conditions were the decisive factor in the formation of debris flows in the YNR 755 

Basin. Geology, rainfall conditions, human activities, and vegetation conditions are essential to 756 

forming debris flows. In addition, the relative elevation difference was vital among the 20 757 

evaluation factors in the formation and occurrence of debris flows in our study area.  758 
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The results of the RF-based DFS classification distribution map indicated that the very high 759 

susceptibility zones are mainly distributed along the mainstream of the Nujiang River. Very high 760 

susceptibility zones are primarily situated in Gongshan County, Fugong County, Lushui County, 761 

northern Longling County, northern Longyang District, eastern and southeastern Zhenkang 762 

County, eastern Shidian County, and central Yongde County where the terrain and geological 763 

conditions are extremely conducive to the development of gravity geomorphology. These results 764 

support efforts in implementing more targeted preventive measures in very high and high 765 

susceptibility zones, significantly enhancing overall preparedness for debris flows. 766 
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