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Abstract

Background. The Yunnan section of the Nujiang River (YNR) Basin aeressin the alpine-valley
area is one of the most critical areas of debris flow in China,

Methods.

assessment-methodsweselected 20-factors-to-compare-and-analyzeWe analyzed the applicability
of three machine learning algorithms ferto ’modeling,—ﬁamel% of “susceptibility to debris flow -

the random forest (RF), the linear kernel support vector machine (Linear SVM)), and the radial
basis function support vector machine (RBF SVMX, and disseetedcompared 20 factors to
determine the dominant faeters-efones in debris flow occurrence in the region.

Results. Theresults-show-We found that (1) the-RF-which-is-meresuitable-for the DESreseareh;
eutperforms-the outperformed RBFSVM and Linear SVM in terms of accuracy=, (2) ’{H%LNR
Basin;-topographic conditions are-prerequisitesdetermined, and the regional-settingcombination
of geology, precipitation, vegetation, and anthropogenic influence play-a-eruecial-role-inwas
critical to forming debris ﬂows“ InadditienAlso, the relative elevation difference is-found-to

bewas the most prominent evaluation factor;-feHewed by-the-watershed-area,ameng 20-factors:
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3)-Suseeptibility of debris flow susceptibility, and (3) susceptibility maps based on RF’s BES
shewdebris flow susceptibility (DES) showed that zones with very high susceptibility zeres
arewere distributed along the mainstream of the Nujiang River-in-the study-area;-and-are-mostly
located in counties such as Gongshan, Fugong, and Lushui. The. These findings of this study can
provide vnderlyingtechniquesforalpine~valley-area-debris How-assessmentmethodological

guidance and reference for improvement of DFS assessment. It enriches the content of DFS

studies in the alpine-valley areas.

Keywords
debris flow susceptibility, random forest model, support vector machine, Nujiang River, alpine-

valley-area
Introduction

Debris flow fis a natural disaster widely-distributedcharacterized by water and sand movement
occurring frequently in esuntriesareas around the world with special terrain and geomorphic

conditions.

The Yunnan section of the Nujiang River (YNR) Basin, located in the transitional zone
between China’sfirst-and-second-terraces,is-the-eere-ofthe Kunlun-Qinling Mountains, is the

southwestcenter of southwestern longitudinal ridges-and-valleystthas-hugeundulationsin-the

ridge and valley area. The terrain_is undulating with a relative elevation difference of over 4700

m (Tang, 2005, Xu, 2016). This region frequently experiences prolonged and intense precipitation
during the rainy seasesaseasons, increasing the moisture content in-the-area-of the rocky and
unconsolidated sediment (Ming, 2006a). YaderDebris flows form under the surface

hydrodynamic action;-debris-flows-serieusly- and imperil the lives and property leealy:

Aeccording-to-literaturestatistiesof the local population.
On average, there has-beenare 8 debris flows per 10 km? en-average-in the YNR Basin, «

fwhich is one of the werld'sworld’s most severe debris flow areas (Tang, 2005, Yang et al., 201 7)L
BasedA total of 283 debris flows occurred in the basin from 1999 to 2008, based on the

geological hazard investigation and zoning records of Yunnan Province-spanning-from1999-te
2008 a-total-o£ 283-debris flows-oceurred-in-the-basin—On-the. In two specific incidents alone,
hugemassive debris flows happenedoccurred in Gongshan County on July 26 and August 18,
2010 and-resultedresulting in nearly 100 deaths and hundreds of millions of ysanYuan in

economic losses (Mm etal, 2013). M&%&al%e—eka%rﬁy—the—sp&ﬂe&empeﬁﬂ—ee%@-&&e&be%weeﬂ
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understanding of the spatiotemporal relationships between debris flows and their evolution

factors holds profound implications for society. Firstly, authorities and residents will be able to

implement targeted preventive measures by effectively identifying and assessing potential debris

flow risk areas, significantly enhancing society's overall preparedness and ultimately reducing
casualties and property losses. Secondly, accurate susceptibility analysis will help avoid

construction in potentially hazardous debris flow areas, while spatiotemporal correlation analysis
will aid planners in assessing potential impact areas and frequency of debris flows. This will

contribute to reducing the impact of disasters on urban infrastructure and enhancing overall




113 resilience of cities. Further, understanding of the spatiotemporal relationships between debris
114  flows and their evolution factors will facilitate more efficient allocation of resources. The

115  proactive deployment of emergency rescue resources ensures a swift and organized response in
116  an event of a disaster, minimizing the overall impact. Additionally, susceptibility analysis serves

L17  as the foundation for establishing an effective early warning system. Through monitoring

118 potential debris flow risk areas, timely identification of signs of potential debris flows, and rapid
119 issuance of warnings, residents can take appropriate preventive and evacuation measures, thus
120 maximizing the reduction of casualties. Finally, an in-depth spatiotemporal correlation analysis
121  aids scientists in gaining a better understanding of the formation mechanisms and evolutionary
122  patterns of debris flows, providing a more accurate foundation for risk management (Janizadeh et

23  al.,2019).
124 Table 1: Classification of DFS assessment methods.

125 Despite numerous studies addressing the accuracy of various models and the relative merits

126 of predictive outcomes for different areas (Table 1), comparative research on susceptibility and

127  evaluation factors of debris flows in alpine-valley areas is limited. The scarcity can be attributed

128 to the challenging nature of collecting data in these remote regions, which are characterized by

129 limited transportation, poor road conditions, and inherent difficulties of accessing high

130  mountainous terrain. Additionally, existing studies often rely on conventional debris flow

131  susceptibility assessment methods, which exhibit lower accuracy and fail to meet practical
132  requirements (Liang et al., 2020; Zhang et al., 2019).

133 To enhance the accuracy and precision of DFS assessment; in alpine-valley areas and te -~ [ha formattato: Colore carattere: Automatico
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137  ferestcollected debris flow data from satellite images, vector images, raster images, reports,

138  papers, books, and statistical data, and verified them with local records and data-driven

139  approaches that can effectively integrate multiple sources and capture the nonlinear and complex

140  relationships among them, We then constructed DFS models based on Random Forest (RF), [Commentato [MR9J: Unclear, please specify
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the improvement of DFS assessment and improves the accuracy of susceptibility studies of debris
flows in alpine-valley-area-debrisflow—Thisstady-is-of practical significanece-to-enrich-the stady

is-flows-and-to-factlitate-the-debris-flow-disaster reduetion- areas. It also

contributes to the enhancement of disaster mitigation and prevention planning in urban and rural
areas of the YNR Basin. ‘

Study area

kan?; is located in the longitudinal ridges and valleys belt of western Yunnan Province (Fig:
between 23°07'-28°23'N and 98°07'—100°30'E covering approximately 30 000 km? (Fig. 13

and); the area is at the southeastern edge of the strong extrusion zone between the Asian and
European plates and the Indian Ocean plate, with strong geological and tectonic movements (Ma,
1999). The geomorphological development is controlled by the deep and large fractures of the
Nujiang River, and debris flows are distributed in bands along the fracture zones and gullies

and-dry-featares(Guo, Luo & Tang, 2015). Study area is located in the southwest monsoon area
with distinct wet and dry periods, and the rainy season is concentrated from April to September
(Ming, 2006D).

onsiderine differencesintoposgraphy-and-vesetationcoverinthestudy-a ea; T_heYNR

basin was used-te-be-divided into the upstream and the-downstream section by the boundary
between Lushui County and Longyang District considering differences in topography and
vegetation cover in the study area (Xu;2646)(Xu, 2016). The upstream area is-othas a typical
alpine-valley landscape characterized by high mountains, deep valleys, steep slopes, and swiftly
flowing water (Huang et al., 2020a). WhereThere are the Gaoligong mountain-range-and, the
Gawa Gap, the Bilo and Meri snow mountains-tewer-aleft-the-. The relative height difference
reaches 3000m-3000 m between the highest and lowest points of the study area. The Nujiang

River;_is extremely long and narrow;+uns-threugh in these large mountains, with a maximum

basin width of 267 km and a narrowest of only 21 km. The downstream has relatively flat terrain

on both sides, with many hills and alteviaalluvial fans of uneven sizes. The-vegetation
Vegetation cover of the Yunnan section of the Nujiang River Basin is relatively high, with

dominant dry-hot river valley shrub-grassland flanking both sides of the valley. Fhe

vegetation Vegetation types change in-erder-asfrom an evergreen forest, semi-evergreen forest,

deciduous forest, mixed broad-leaved coniferous forest, coniferous forest, and alpine shrubs from

valleys to ridges (£uo; 2009 Xu2046)-(Luo, 2009, Xu. 2016). The majority of soil types are red-
6
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yellow soils with loose texture, poor erosion resistance, and water retention in the basin, and shift
in the order of the-red loam, the-yellow-red loam, the-yellow-brown loam, the-brown loam, the
dark brown loam, the-grey-brown forest soil, and the-alpine meadow soil along with the rising
elevation-rising (Liu, 2017). With-therapid

Rapid socio-economic development; of the area accelerates the changes in %eeleg&e ‘

environment due to human activities such as town and rural built-land expansion, steep slope
cultivation, road construction, and mining engineering-further-aceelerate-changesin-the
geological-environment-—Aeccordingto-the literature;. Literature indicates that the Nujiang River
basin is the most serious geological hazard among the 6 major basins in Yunnan Province,
especially upstream of the YNR Basin (Huang et al., 2020b; Tang & Zhu, 2003).

Fig. 1: YNR basin (Study area).

Methods and data
3.1 Research Methodology

The overall method flow is shown in Fig. 2.

Fig. 2: Research methodology. (a) General procedure. (b) h)etailed procedure of the methods

construction in the general procedure.
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3.1.1 The Random forest model

wasThe random forest model is effective in capturing and simulating complex nonlinear

relationships between debris flows and evaluation factors, and can handle large-scale, high-

dimensional debris flow datasets without overfitting. Furthermore, the RF indicates the relative

importance of each evaluation factor, guiding the understanding of which factors have the

greatest impact on debris flow susceptibility. It also demonstrates good adaptability to noise and

outliers in the data, making it less susceptible to interference. Therefore, RF exhibits excellent

applicability to assessments of debris flow susceptibility(Duan et al., 2022, Zhang & Wu, 2019).

The RF is an integrated algorithm consisting of multiple unrelated decision trees that

determine the DFS. in which the final output is determined by all decision trees together, and is
defined as (Breiman, 2001),
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H(x) = arg 1(hy(x) = 2) e
)

where H(x) denotes the mredel-eutputresults of the model's predicted DFS for each watershed

unit, h;(x) denotes athe ith decision tree, x denotes attributes, h;(x) = Z is the prediction of

variable Z using the ith tree in variable x, and I(+) is the prediction of each decision tree.

Given a database, the RF can be interpreted via the 3-following three steps:. Firstly, sample
subsets are extracted using the Bootstrap resampling method. tr-etherswerdsSpecifically, n
sample subsets of the same size as the original sample are extracted using the put-back method.
Secondly, eonstruet-a decision tree_is constructed for each sample subset. Among the attributes of
the sample subset, k attributes are randomly selected. Then,seleet the best partitioning attributes
of the nodes between decision trees are selected based on the Gini Index, which wasis calculated

as

k k
Gini(p) = Zpk(l -p)=1 —Zpkz )
k=1 k=1

where p;, indicates the probability that the selected sample belongs to category k. The
smallerSmaller Gini Index-meansIndexes mean that the probability of a selected sample in the set
being misclassified is smaller. Finally, » decision trees are combined to generate a random forest-
(Fig. 3).

Fig. 3: The Process of the RF model.

Hyperparameters of the RF model can be divided into two categories: those that determine <

the sampling method, such as bootstrap and the number of classifiers that determine the
sampling method, and the number of decision trees;respeetively-And-these. Parameters that
determine the decision tree, such as maximum depth (max_depth;-), minimum number of samples

for a leaf node (min_samples_leaf;-), minimum number of samples required to split an internal

node (min_samples_split;-), the maximum number of features randomly selected as candidates
for splitting (max_features;), and a criterion that determinedetermines the maximum depth,

minimum number of samples for a leaf node, minimum number of samples required to split an

internal node, the maximum number of features randomly selected as candidates for splitting, and
a criterion for the optimal split attribute.
3.1.2 The Support vector machine

The Support Vector Machine (SVM) demonstrates superior classification performance on unseen

data due to its outstanding generalization capability, laying a crucial foundation for the credibility

8
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and practicality of the model in real-world applications. In practical applications, areas prone to

debris flows encompass complex environmental features, and SVM's excellent handling of high-

dimensional data provides robust support for assessing susceptibility considering multiple

evaluation factors. Additionally, by employing various kernel functions, SVM exhibits flexibility

in modeling nonlinear relationships in high-dimensional space, thereby enhancing its

applicability in the assessment of DFS. These attributes position SVM as a powerful tool when

facing real and complex datasets, providing a reliable analytical framework for accurately

evaluating DFS.
There are two cases of linearly divisible and linearly indivisible sample data in the feature

space-

(Fig. 4). As an example of binary data, a binary classification space D (X;,Y;), i =

1,..,l. X;eR,, Y;e{1, —1}, where. [ represents the number of samples, and » denotes input

dimensionality. The hyperplane wx + b = 0_can be found in the original space when the sample

data are linearly divisible- separating the two classes of samples completely. When the sample

data isare linearly indivisible, the-input-spaee-it is necessary to perform nonlinear mapping @ (x),

mapping it from the input space to a certain feature space, the classification hyperplane can be

expressed as w®(x) + b = 0; meantime, the optimal hyperplane that requires 2/||w|| is the

largest, and the problem is transformed into a high-dimensional feature space-through-anon-

quadratic programming problem, with the application of the Lagrange multiplier method for the

solution, namely,

l
— 0]
min > +CZei,
!
1s.t.y(w-x;+b)y=1—¢,
§=0i=12,..,1

3

where ¢; is the slack variable and C is the penalty factor. According to the Kuhn-Tucker (K-T)

condition, the following dyadic problem can be obtained:

! €

By solving the dyadic problem of this quadratic programming, the discriminant function is
obtained as:
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f(x)= signz ayi[@(x) - @(x)] + b ©

=1

According to the relevant theory of generalized functions, as long as a kind of kernel function

K (x;, y;)_satisfies the Mercer condition, it corresponds to an inner product in a certain

transformed space, K (x;, ¥;)=@(x;) * @ (x;).and linear classification of a certain nonlinear

transformation definedcan be achieved by theusing a different inner product function—FThen-=a
linearjudement-function-is-constructed in-this-high-dimenstonal-feature-space-to-find the optimal
classification hyperplane;achieving linearly-divisible-datasurface (Suykens & Vandewalle, 1999).

Linear Kernel, Polynomial Kernel, Sigmoid Kernel, and the Radial Basis Function (RBF) are«

commonly used in support vector machine models, where;

Linear Kernel

K (g ag? — 2ot 2
LA oI A R S 7
K@.y)=y"y' (6)
RBF
L2 L LA B * 1o a #u%\ 40
77 J "‘P\ 2g2z7 o / T
1
K(,y") = exp (—ZTZIIy—y IIZ) @)

where y and y'are both basis vectors in the feature space, and o is a model’s hyperparameter.
Compared with the Linear Kernel, Thethe RBF can transform the features’ dimensionality for
reducing-the computational complexity, which is extremely suitable for predicting DFS in high-
dimensional feature spaces (Lin & Lin, 2003).The penalty parameter C, an empirical parameter in
the SVM model, is employedused to control the tolerance of systematic outliers, allowing for a
few outliers to exist in the opponent classification. A higher value of the penalty parameter leads
to fewer outliers in the opponent classification. What’s more, the radial basis function kernel has
an additional kernel parameter y i.e-.. kernel bandwidth to be optimized, where y = 1/2¢°. As y
increases, the fit changes towards non-linear.

Fig. 4: Support vector machine models. (a) Linearly divisible case. (b) Linearly indivisible

case.
3.1.3 Accuracy evaluation metrics

Evaluation of model’s accuracy is critical for decision-makers and relevant institutions. High-

precision model predictions contribute to more precise decision-making, ensuring that measures

taken are scientifically sound and effective. Comparing the accuracy of different models in

practical applications contributes to the selection of the most suitable model for a given region or

10
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topography. thereby bolstering the credibility of predictions. Additionally, accuracy evaluation

provides feedback on the current model performance, guiding continuous improvement efforts.

Accuracy, Precision, Recall, Kappa, F1-score, Receiver Operating «

CharaeteristiesCharacteristic (ROC);) curve, and Area Under ROC (4UC) are employedused as
the-aeeuraey-evaluation metrics. Accuracy ndieatesrepresents the proportion of correctly

classified debris flow samples-, serving as a key indicator for overall model performance.

Precision refers to the proportion of the-samples with positive cases that are correctly predicted-

which are critical for reducing false positives and ensuring the rational use of limited resources.,

Recall indicates the proportion of positive cases that are correctly predicted in the true sample-
Fhe, and is essential for minimizing the risk of overlooking potential hazard zones. F'I-score s
used-forthe-overall-evaluation-of Preeision-and-Reeatl-and-the-offers a balanced assessment of
precision and recall, guiding the establishment of reasonable warning and management strategies.
A higher the-valuethe highertheF /-score indicates greater model accuracy. Kappa measures the
model consistency—Fhetarger, indicating its ability to make similar judgments under different
conditions or at different times. In the valuethe-higherthecontext of dynamic changes in debris

flow risk, model stability is essential for providing continuous and effective risk assessments. A

higher Kappa means greater classification accuracy. The ROC curve is-generatedaids decision-

makers in balancing sensitivity and specificity by using True Positive Rate (TPR) as the vertical

axis and False Positive Rate (FPR) as the horizontal axis. The 4UC-is, obtained by integrating the
ROC curve-and, reflects the model's classification effeet-ofthe-modelThe-value-efcffectiveness.

Even in situations with imbalanced positive and negative samples, a higher AUC is-elosertot;

the-mere-aceurate-thevalue indicates superior model isaccuracy. Their definitions are as follows,

TP+ TN
A yd =aY
Acenracy &)
P
Daco oy 1099 = LEN
Precission 6
P
Ra ) - LN
Reeatt A
: F“ . Recall
L1 90 L£ON
= SE€6TE B " R “ )
Slesiiere e o
Kappa= - 9
—pe
— E E E z E ; E 5 10N
Pz TP+ EP—+ EN—TNy (TP P+ ENTNS A
P TP + TN .
ccuracy =
YETPYFP+FN+TN ®
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TP

Precission = TP+ FP 9
TP
Recall = TP+ FN (10)
_ 2 xPrecision x Recall
[ = score = Precision + Recall ab
Kappa = Accuracy — p, 12)
1- Pe

(TP + FP) = (TP + FN) + (FN + TN) * (FP + TN)

Pe = (TP + FP + FN + TN) « (TP + FP + FN + TN) (13)

The ROC curve is generated using_the True Positive Rate (TPR) as the vertical axis and False
Positive Rate (FPR) as the horizontal axis. The AUC is obtained by integrating the ROC curve

and it reflects the classification effect of the model. The closer its value is-to 1, the better and

more accurate the model-s. The calculation is as follows,

e
Tpp (11N
Ep
DD £
ERR a2
TPR = e 14
" TP+FN a
FPR = b TN (1)

where in Equations 52815, TP standstands for the true positive rate, FP represents the false
positive rate, TN signifies the true negative rate, and FN denotes the false negative rate.

methods-of data-diseretizationTo facilitate horizontal comparisons of model predictions, many
studies use the equal spacing method to classify DFS into five zones and confirm the method’s
applicability (Liang et al., 2020; Liu, Miao & Tian, 2017). Therefore, in this study, we divided

the predicted debris flow susceptibility calculated by the three models into five classes, from low

to high, corresponding to the very low susceptibility zones (0 to <0.2), low susceptibility zones
(0.2 to <0.4), medium susceptibility zones (0.4 to <0.6), high susceptibility zones (0.6 to <0.8)
and very high susceptibility zones (0.8 to <1). respectively (Zhang & Wu, 2019).Fofaeiitate




3.2 Data and processing

3.2.1 Evaluation units

Raster cells and watershed units in DEM are commonly used for susceptibility
assessmentassessments (Zou et al., 2017). Raster cells are more convenient for modelling and
calculation because of their regular shape and uniform size, while watershed units can represent
integrated geomorphological characteristics of hydrological processes, and that helphelps in
obtaining the actual conditions of debris flow (Liu et al., 2018; Qiang et al., 2019; Zhang et al.,
2022). Therefore, we adopted watershed units as the basic evaluation units and used ArcMap’s
hydrological analysis tools to categorize the 30 m spatial resolution DEM data of the YNR Basin.
Finally, the study area was divided into 1070 watershed units.

3.2.2 Evaluation factors

The formation of debris flows is determined by a combination of factors (Huenget-cl

2022y (Huang et al., 2022). After conducting a thorough investigation, data collection, and

preliminary analysis of existing data on the historical background, geological structure,
topography and geomorphology, hydro-meteorology, soil and vegetation, and human activities in
the study area, we selected evaluation factors from five aspects: topographic-eenditiens, rainfall
eonditions, geological-eonditions;, and vegetation conditions, and human activities- (Table 2).
(1) Topographic conditions. Topographic conditions play-a-erueialrele-in-are critical to the

al

formation of debris flows.

at—=2021—~weWe chose relative elevation difference and slope to represent the-potential energy of
watersheds and the ability to carry the-rocky soil, respectively., and seleeted-the-watershed area to
refleet-the-for runoff and sediment yield- calculations based on previous research in this area by

(Liv & Tang, 1995, Sun et al., 2021). Therefore, based on the DEM with a spatial resolution of 30

meters, the mean relative elevation difference and average slope of each watershed unit had

beenwere calculated using the ArcMap function of zonal statistics as a table, and the area of each
watershed unit had-beenwas extracted using the “calculate geometry” function.

Q)_JRainfall conditions. Rainfall ﬁs necessary for debris flow incubating and triggering
(EuiYangCui, Yang & Chen, 2003; LivdiaoLiu, Miao & Tian, 2017; Xu, 2016).

HarlierAntecedent rainfall serves mainly serves-to wet or soften the soil and reduce the stability

of rocky soil. Short-duration heavy rainfal-bringsrainfalls create a strong mechanical impact on
the soil that is abeutte-be-saturated-or-almost saturated, and disruptsdisrupt the equilibrium of the
13
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slopesandis-extremelyprone-to-ecause causing debris flows (Pan et al., 2012; TanYanglan, Yang
& Shi, 1990; Zhang & Guo, 2021). To address the effect of rainfall, we eheseselected three

factors to characterize the triggering effect of heavy rainfall on debris flows in 2020;: the number
of heavy rainstorms, the number of rainstorms, and the number of heavy rains. Based on the
distinctive interannual variatienvariability in precipitation distribution in the study area between
dry and rainy seasons, we chose the average rainfall during the rainy season (April to September)
to characterize the effect of earbyantecedent precipitation on aurtarirgdeveloping debris flows.
Therefore, a total of 183 daily precipitation data were extracted for dates from 2020/04/01 to
2020/09/30 in the study area-had-been-extracted, and the field calculator and the regional
statistical function of ArcMap kad-beenwas used to calculate the average rainfall effor the 2020

rainy season for each watershed unit. Using ArcMap's model builder, a total of 366 daily
precipitation data infor 2020 were sequentially screened for the number of heavy rainstorms with
a cumulative daily precipitation of 100-250-+08 mm, the number of rainstorms ef-with 50-100
mm-56-mm, and the number of heavy rains of 56-mm-25-50 mm;-and; then-usingthefeld
caleulatorto-add-up, we summed the number of days in compliance with the raster cells;-and
finally-using AreMap-function-of zonal statisties-as-table-to-ealeulate using the field calculator
and calculated the average number of heavy rainstorms, the-average-numberofrainstorms, and
the average number-ofheavy rainfall for each watershed unit with the ArcMap function of zonal

statistics table.

(3) Geological conditions. Fracture zones affect the continuity and stability of rocky soil,
meanwhile-theand surface soil provides a rich sediment source for debris flows (Pham et al.,
2016). Consequently, we used fracture zone density and soil texture to characterize the influence
of geological conditions on debris flows. Fracture zone density was calculated by dividing the
length of the fracture zone in each watershed unit by the watershed area. Soil texture was
calculated separately forusing the average content of clay, silt, and sand within the watershed unit

usingand the function of zonal statistics-as-table.

(4) Vegetation conditions. Plant roots stabilize the rock and soil mass, and increase soil

resistance to erosion (Huang et al., 2022). To some extent, plant roots inhibit erosion and hinder
the sliding of the topsoil (Zhao, Wu & Wang, 2006). We used the ArcMap function of zonal

14
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statistics to calculate the average Normalized Difference Vegetation Index of each watershed unit

to characterize vegetation cover.

(5) Human activities. FhegeologiealGeological structure and surface become unstable under

the-efforts-of with land use ehange—Meanwhile;-agreat-deal-of generatedchanges, which also

generate loose depesttprovidesdeposits providing material sources for debris flows (Huang et al.,
2022; Tien Bui et al., 2017; Xu, 2016). Road transpertationis-the-harbinger of secial produection;

read-network-construction eeuld-be-an-indication-of-thecan indicate regional land development

intensity-te-a-great-extent—Thereout; The-. We used the ArcMap function efzenal-statistiesas
table-was-used-to calculate the-land use typetypes with the largest i roportions for

each watershed unit. Highway-Densities of highway density, railway-density-density-of, urban

primary roads, density-efurban secondary roads, density-efurban tertiary roads, density-efurban
quaternary roads, densrtye#and county and town roads were calculated using mw%%%%h

leng%h—aﬂd—bmb&n—q&a%emaﬂ%e&dﬂeﬂg&h—corrc%nondmg road type ICHLthQ divided by the
watershed area;respeetively.

Table 2: Selected evaluation factors and their data sources,

3.2.3 Data pre-processing

Due-toWe used the presenee-of Random Forest (RF) model to reduce the noise;which-impaits_ in

the data gualitysets and medel performanceThe Hterature-to select evaluation factors following
the approach of (Kursa & Rudnicki, 2011)44a&éemeﬁs&a$ed—tha%p¥ep¥eeessmgda%a%&hﬂqe

First, a RF model was built with all the evaluation factors in Python-—Seeondly after

digitizing, data formatting, and unifying georeferencing. Second, the model was trained again
using the ‘GridSearchCV moduleL which iterates through all permutations of incoming parameters

to find the best hyperparameter. Thirdly-the-eontributionThird, contributions of the evaluation

factors swaswere obtained and ranked. Finally, we-filtered-eutthe-evaluation factors- were filtered.

Through analyzing the initial factors and their contribution in Table 13, we feunddetermined thai
the contribution of six6 factors, namely railway-density, highway density, the density of urban
primary roads, the density of urban secondary roads, the density of urban tertiary roads, the
density of urban quaternary roads, were at-less than 0.01%%. and they apparently did not in the
same order of magnitude as other factors. Therefore, we considered these six6 factors as noisy
data and removed them. EventaalbytheFrom further evaluation-indieators. The remaining

t
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56  evaluation factors are shown in Fig. 25.
tS? Fig. 25: Processed factors affecting debris flows susceptibility.
458 (a) Relative elevation difference. (b) Average slope. (¢c) Watershed area. (d) Average rainfall
459  during the rainy season. (¢) Number of heavy rainstorms. (f) Number of rainstorms. (g) Number
460  of heavy rains. (h) Fracture zone density. (i) Sand content. (j) Silt content. (k) Clay content. (1)
461 NDVI (m) Land use. (n) Density of county and town roads.
462 Table 13: Contribution of evaluation factors before and after pre-processing.
163 : i
464  2049-te-mark(1) Data annotation. The debris flow inventory was derived from the nationwide
A65  geohazard census done by the Resource and Environment Science and Data Center
466  (www.resdc.cn/). After data verification with local histories, books, reports, statistic data, relevant

o h o adin NR B SEREESN
W d a t

n67  field surveys, and related literature, a total of 274 debris flow hazards in the study area were

n68  found as of the end 0f 2019, and the attribute information included the field number, geographic

A69  location, damage, groundwater grade, and the current degree of stability, and so on. We used this
A70  inventory to annotate each watershed unit. Those units that had experienced debris flows were

471  assigned a label of ‘1°, while those that had not were assigned a label of ‘0’. The entire set of

472  watershed units was subsequently divided into two groups, namely of ‘debris flow’ and ‘no debris

473 flow’, [ ha formattato: Evidenziato

474 (2) Data sampling. In-erderteTo prevent sample imbalance from affecting model accuracy,
475  we empleyedused the synthetic minority oversampling technique (SMOTE) to balance the

476  sample size, which analyzed a small number of samplesdata and added simulated new

A77  samplesdata to the dataset (Hat¥ang & Nin 20202 & Y, 2022)-when needed (Wu, Yang & Niu
A78  2020; ZJ & Yu. 2022). Eventually, the watershed units’unit ratio with ‘debris flow’ to those with
479  ‘no debris flow’ was 1:1, and the total sample size was 2140-items.

480 Data-division. The-whole dataset-has-been-divided-into-two

A81  DES-medeltrainingandtesting-(Huranget-al2022)(3) Datasets division. The whole dataset was

482  divided into two subsets |of 7 to 3 ffor DFS model training and testing, respectively (Huang et al. [Commentato [MR16]: Do you mean 70 and 30%?
483  2022).

484 Experiments and analysis of results
485 4.1 Model construction

86  The RF and SVM models were trained by using the scikit-learn library swithin Python, which
87  integrates various machine-learning methods. EirstlyFirst, RF was generated using the Random

488  Forest Classifier method, and Linear SVM and RBFSVM were generated using the SVC method.
16
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SeeendlySecond, }\Ne—then adjusted }the hyperparameters, taking into account the relationship
between model complexity and generalization error, to minimize the generalization error and
improve the accuracy and generalization ability of the model (Duan et al., 2022). Based on the
effect of each hyperparameter on the-model complexity, the RF model Mas adjustedl in the order
of the number of classifiers, the-maximum depth, the minimum number of samples of the leaf
nodes, the condition limiting the-continuation of the subtree division, the maximum number of
features, and the decision tree algorithm. Specifically, we employed the ten-fold cross-validation
method to generate learning curves for each hyperparameter within a large interval. Once we

determined the range of subintervals with the highest accuracy, we used the grid search method to

determine the optimal values. Ultimately;-the-optimal-hyperparametersfor-the RFE-medel-were 91

. i —As the SVM model had fewer
hyperparameters, we adjusted it only using the grid search method. The eptimal-penalty
parameter-C-ofdsearch range and hyperparameter values for each model are shown in Einear

N nd nRB LV n
Vv-a v 0 a

S, a e a
5

on he dime on a meto 4133 n RBE NM-o
’ 3 v

0-05Table 4.

Table 4: Hyperparameter values for

each model.

DFS models for the YNR Basin were developed based on the optimal hyperparameters for
the-RF, Linear SVM, and RBFSVM methods;respeetively. In response to the characteristics of
alpine-valley areas with distinct wet and dry conditions and complex debris flow genesis in the
context of geographic big data, and based on the applicability of the RF and the SVM models in
dealing-with-high-dimensional, non-linear data, the model usesused average rainfall during the
rainy season to assess the impact of rainfall on debris flow; and usesused RF and SVM to

quantitatively assess the drivers and study area susceptibility.
4.2 Analysis of results

4.2.1 Analysis of the pre-processing results
The AUC of the RF model en-theusing test data #mprevedincreased from 0.73 to 0.97. The ROC
curve was closer to the upper left corner as-shown-in-(Fig. 3-—In-additien;the6). Further, model
training time was-redueeddecreased by 23%, from 105 seeends-to 84 seconds.
Fig. 36: ROC curves.
Data preprocessing eliminated the impact of redundant data on the model and on the
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remaining evaluation factors, so the contribution rate of the remaining evaluation factors has

changed-—Thetotal-contributionrate-ofsuch as topographic conditions, human activities, and
vegetation conditions increased by 0.068, 0.065, and 0.017, respectively—While, while those of

rainfall eenditions-and geological conditions decreased by 0.115 and 0.035, respectively (Fig.

47). In addition, the contribution rate of the most important evaluation indicator (relative
elevation difference) increased by 0.09 (Table +3).
Fig. 47: The contribution rate of the five main categories of evaluation factors before
and after pre-processing.

4.2.2 Analysis of evaluation factors
Experimental results presentedindicated that topographic conditions arewere the decisive factors
during the formation of debris flow in_the YNR Basin, and geological conditions, rainfall
conditions, human activities, and vegetation conditions arewere important factors, with
contribution rate corresponding to 0.425, 0.195, 0.173, 0.133, and 0.074 (Fig. 47), respectively.
The top 3 facters-areexplanatory conditions were topographic, geological, and rainfall-eenditions.

T-terms-of the H-evaluation-facterstheThe relative elevation difference (contribution rate:
0.274) iswas the most witalimportant evaluation indicator and-playswith a key role in the

formation of debris flows. This iswas followed Tby watershed areaL NDVI, and density of county
and town roads ranking third3™ and fourth4", respectively. The restfactors-areothers were in the
order of average slope, average rainfall during the rainy season, land use, sand content, silt
content, clay content, the number of heavy rainstorms, fracture zone density. and the number of
heavy rains. The number of rainstorms isfeund-to-havehad a relativelysmalllesser impact on the
formation of debris flows (Fig. 58).

Fig. 5:-Contributionrate8: The contribution of evaluation factors_to the total variability

in debris flow formation.

4.2.3 Model accuracy analysis

The evaluationresults-of the RF model effectiveness-indicate-that RF-hashad higher values of
Accuracy, Precision, Recall, F1-score, and Kappa (Table 25), and theits ROC curve ef RE
eenvergesconverged faster than that of RBFSVM and Linear SVM (Fig. 6)—ttmeans9). This
indicated that the RE-medel-enablesa-comprehensiveRF was most suitable of the three models

for examination of the spatial correlation between historical debris flows and elevation factors,

improving the assessment accuracy of DFS.
Table 25: Comparison of model accuracy.
Fig. 69: The ROC curves.
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4.2.4 Susceptibility analysis

Susceptibility class and the-density distribution of debris flows; were positively correlated with a

higher density of debris flows leading to higher susceptibility classes. ’The difference in density
between very high and very low susceptibility zones serves as an indicator of the predictive
performance of the model (£i-et-al52022)(Li et al., 2022). Fl'—h&aepefm&eﬁt—a%m results
presentshowed that the prediction performance of the-RF iswas better than thethat of RBFSVM,
and-the-while that of Linear SVM iswas the werstlowest (Fig. H—While-al110).

All three models demenstratedemonstrated an increase in debris flow density with increasing <

susceptibility class; but the difference in debris flow density between the very high and very low

susceptibility zones iswas greatest for the RF model; with 47 debris flows per 1000 km?, followed
by RBFSVM with 37 debris flows per 1000 km?, and thelowest-forLinear SVM with 11 debris
flows per 1000 km?. These results indieateindicated that the RF model iswas more adept at
discriminating very high and heigh susceptibility zones and exhibitsexhibited superior predictive

performance when compared to the other two models.
Fig. 710: Density of debris flows in each-of-the-three-medels>susceptibility zones of the three
models.
Fig. 811: Susceptibility zoning in the upstream section of the YNR Basin. (a) RF model. (b)
RBF SVM model. (c) Linear SVM model.

Based on the analysis of historical debris flows and the overlap in susceptibility zones
overlapping-(Fig. 8);the-11), we determined that RF and RBFSVM are-mere-reasenable-for
moedeHingmodelled susceptibility zones in the YNR Basin better than the Linear SVM-in-¥YNR
Basi-. [The Linear SVM predicted many of the very high and high susceptibility zones which
havehad no historical debris flow-distributionsflows, therefore the credibility of its predictions

iswas low. [The high dimensionality of debris flow data may be a contributing factor, as Linear

SVM had difficulty effectively capturing the complex nonlinear relationships in the dataset. This

resulted in tendency to overfit the training data, reducing its accuracy in predicting susceptibility
to debris flow hazards. The Kappa value of the Linear SVM model was only 0.37 (Table 5),
indicating that the model was unable to make consistent predictions at different conditions or
times, indirectly confirming the existence of the overfitting problem. This instability limits the
applicability of the model to DFS prediction.

The results-ofthe RFE’s-DFS elassifieation-spatial distribution map shewobtained with RF

showed that the very high susceptibility zones in the upstream section of the YNR Basin arewere

mainly distributed along the mainstream of the Nujiang River. The dominant factors arewere
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topographic and geological conditions in the very high susceptibility zones of Gongshan, Fugong,
and Lushui counties due-te-theassociated with active neotectonic meverentmovements resulting
in the development of numerous bulge structures and compressional folds. The swiftly flowing
water, driven by the effects of tectonic activity and fluvial erosion, results in the formation of
steep riverbanks. After the Holocene, the bulge of the mountains and the deepening of the river
valleys had-led to the formation of alpine-valley landscapes. Furthermore, the deep and large

fractures of the Nujiang River, along with numerous tectonic fractures and joint fissures, control

the geomorphological development in the area, leading to extremely-developing gravity

geomorphology-including-debrisflow-extreme gravity geomorphology. including debris
flows(Liu & Tang, 1995; Tang & Zhu, 2003).

Fig. 912: Susceptibility zoning in the downstream section of the YNR Basin. (a) RF model.
(b) RBF SVM model. (¢) Linear SVM model.
Based-enThe RF model performed more robustly for susceptibility zoning in the YNR Basin

(Fig. 12), as shown by the overlap between historical debris flows and susceptibility arcas;-as

wel-as and by the analysis-ef-model accuracy-(Fig—9);-the RE-model performs-morerobustly-for
suseeptibiity zoningin-YNRBasin-. The modeling resultresults of RBFSVM shewshowed an

overall higher susceptibility than the-actual situation—Compared-to-the predicted-result-of the
Linear SVM-meodel-and-that indicated by historical debris-flow-data;-we-find-that-. In the Linear

SVM. many historical debris flow areas arewere distributed in very low and low susceptibility
areaszones and few historical debris flewsflow areas arewere distributed in some high
susceptibility areaszones, which makes-therendered predictions less reliable-Aeeordingly, lead to

overfitting of the training data, and resulted in lower accuracy in predicting the susceptibility to
debris flow disasters.

Consequently, the RF model was used for susceptibility zoning in the downstream section of
the YNR Basin;-the. The results revealedshowed that areas with very high and high susceptibility
to debris flows are-predeminantlywere concentrated in northern Longling County, northern

Longyang District, eastern and southeastern Zhenkang County, eastern Shidian County, and

central Yongde County, and debris-Hlewthose of susceptibility probability is-abeutresponse to
0.86, 0.85, 0.84, and 0.81, respectively.




Discussion

This study furtherdemenstrates-thedemonstrated applicability of the RF model to assess DFS—+HH
In-terms-of modelaceuraey;-the in the YNR Basin. The RF model exhibitsexhibited a comparable
AUC to theresearchresultsutilizingthat obtained with the Backpropagation Neural Network and

hashad higher Accuracy and a greater overlap between the predicted very high and high

susceptibility zones and historical debris flows (Wang et al., 2010). In addition, the difference in
AUC, very high and very low susceptibility zone debris flow density for the RF model are-alt
outperformanee-ofoutperformed the deterministic coefficient model (Li¥ang&Hei 2049 (Li,
Yang & Wei, 2019). (D -nterms-of methodelegy;Further, the methods in the RF model deesdo not

rely on expert experience, making it more objective and seientifieaccurate than the numerical

division of the sensitivity of each factor (7ang, 2005) and the method of assigning different
s to each factor (7ang, 2005).

weight: i i

Riverbasin-by Xu-and-Gue-We also further validated the inferences of Tang and Li and others
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regarding more detailed results (Li, Yang & Wei, 2019; Tang, 2005). Nevertheless, the distribution

of very high and high susceptibility zones in this study aligned with historical debris flows better
and had a higher 4UC than that exhibited in the study of Li and Tang (Li, Yang & Wei, 2019;
Tang, 2005), indicating a higher reliability of susceptibility zone prediction in this study. Finally,
Guo and Xu (GuelweGuo, Luo & Tang, 2015; Xu, 2016) showed that topography, source of
debris flow, and rainfall arewere the three main conditions for forming debris flows—which
coinetde-with in Nujiang River Basin, reflecting the resultsranking of debris-flow contributing

factors in this study-in-terms-ef contributionranking.
TFhe-dataData pre-processing based on the contribution rate of evaluatien-factors generated

by the RF model iswas reliable. Multicollinearity hasrelativelyHttde-influence-onrarely
influences the proposed model; due to a large number of training samples. Thus, we used the-RF

to deal-with-thereduce noise, which hashad a great effect on the accuracy of the model, and the

accuracy iswas significantly improved. FhereasenThis is thatpossible because nodes of thisthe
RF model are randomly selected with equal probability to construct decision trees;; the evaluation
factors with a lower contribution may negatively affect-the model performance and increase
generalization error (Rogers & Gunn, 2006). Furthermore, thisthe proposed model measures the
importance of the evaluation factors net-exelusively-interms-of theircontributionto-the predieted
restlts-butrather-in terms of their ability to contribute to predicted results in thisproposed model
rather than exclusively in terms of their contribution to the predicted results (Zhang et al., 2019).
In addition, the-inereasedhigher AUC and thea better-performing ROC curve after-data-pre-
proeessing-of the-modelfurther validate that takingthe RF-to-deal-with-theeliminating noise is
reliablewith RF leads to more accurate results.

FheprePre-processing removed six6 evaluation indicators;-butit-deesnotmean-thatthey-deo
notinfluence-the formation-of debrisflows-As-variables. Variables with a higher number of
categories in the RF will tend to higherecentribution;contribute more; 80% of the existing roads in
the study area are roads below Class ['V;-and-with; the relatively few railways, highways, urban

quaternary roads, urban tertiary roads, urban secondary roads, and urban primary roads;+esttting
result in thea low number of categories for these six6 evaluation factors. \To address thisthe issue,
the-nextstepwe will be-te-explore the impact of railways, highways, and urban roads; on debris
flow using more rational characterizations or adding weights to find out the impact of road
construction-en-debris-flows—What’s-mere.|Additionally, the number of rainstorms data-arein the
dataset was relatively sparse, resulting in small information gain during decision tree generation.
Thus, its contribution is low. L&s—a—eeﬁ%eqﬁeﬁeeConseguently, future research will eluster-include

clustering of indicators of the number of heavy rains, number of rainstorms, and number of heavy

22

Commentato [MR22]: What does this mean? Have you
done this or this expresses a “willingness to do” for the
future? If the second case please remove and simply

aknowledge the importance of this issue.

Commentato [MR23]: Can be this related to the type and

resolution of input data are you considering?




691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724

rainstorms; and perform-spatial correlation analysis to reveal the #mpaet-differences in effects
caused by the uneven distribution of rainstorms during the rainy season-ithestudy-area.

seales—At-the-stadyModel applicability. (1) The RF and RBFSVM models are well suited to DFS

assessments which require high-dimensional data; in addition, related literature shows that they

have higher accuracy in landslide, flood, and other disaster susceptibility assessments than other

models (Fang et al., 2022, Prasad et al., 2022). The Linear SVM model cannot capture complex

nonlinear relationships well and is prone to overfitting, thus not applicable to DFS assessment. In

this study, the Linear SVM model predicted many zones with very high and high debris flow

susceptibility but without historical debris flow distribution, therefore, its prediction credibility
was low. (2) The RF and RBFSVM models have some limitations. Training the RBESVM model
with high-dimensional data is time-consuming, sensitive to noise and outliers, and demands
meticulous data cleaning and filtering. Additionally, predictions of the RBFSVM, relying on

nonlinear mapping, are relatively challenging to interpret. On the other hand, the RF model tends
to favor lower contributions when presented with sparse data. Six evaluation indicators were

removed in the preprocessing portion of this study, but they may, in fact, contribute to the

formation of debris flow; The results of the quantitative ranking of factor contributions to DFS in
the study area need to be investigated further. (3) This study clarifies the applicability, accuracy,

and limitations of the three models, providing researchers with methodological references and

directions for model improvement; in addition, it provides scientific basis for disaster prevention

and avoidance in the alpine-valley area.

Elevation factors of debris flows had dissimilar effects at different scales. At the scale of the
Yunnan section of the Nujiang River Basin, the major evaluation factors for debris flows arewere
topographic, geological, and rainfall conditions. However, when-sealed-down-to-the seale-of each
eounty;-the main evaluation factors may change when scaled down to each county (Chens¥i-<&

- 92010 brouch on o o canreh acdiceavered that nrecin OR-Si0
= - Otre aty arehs a a a o

pa cRuhre-ComtethorlareConptShidinn-Covnbeand S enede-Comaed Clhene, T &
Chang, 2010). Thus, precipitation significantly impacts Longling, Zhenkang, Shidian, and
Yongde Counties, resulting in an increased likelihood of debris flows, floods, and other disasters.

Longling County, Longyang District, and Zhenkang County experience extensive human
activities, including construction projects saeh-asfor water eenservaneyconservation, road
construction, mining, and logging, leading to severe soil erosion. Fhe-geological

envirenmentGeology also plays-aeraeialrele-insignificantly affects these areas, such as Longling
County, which features a large number of fractures on the eastern side of Chongshan;-and;
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Zhenkang County has fractures and folds in varying directions contributing to a complex and
variable geological structure. In addition, Yongde County has a high concentration of mudstones,
sandstones, and slatesslate with looser textures and more developed joint fissures—The
analysis(Cheng et al., 2000; Hou et al., 2005; Wu, Li & Qian, 1993, Xiao & Wu, 1992; Zhang &
Li, 1997). Analysis of the drivingevaluation factors of debris flows must be tailored to different
regional scales in complex terrain areas.

This study previdestested the underlying techniques of the model for evaluating the

susceptibility of alpine-valley-typeareas to debris flows, which has eertain-prometion-andan
application value for the-similar researehes-en-research at watershed scales. However, there are

some limitations that need to be further improved. EisthyFirst, we did not consider the temporal
distribution of debris flows in the model due to insufficient statistical-data. Treating debris flows
occurring at different times as a type of marker sample would affect the accuracy of the cause
analysis of debris flows (Huanget-at2022(Huang et al.. 2022). SeeendlySecond, the

assessment of the strengths and weaknesses of the predictions was based on the assumption that

the-higherthe-susceptibility class and the higherthe-density of debris flow distribution{Li-et-ai~
2022are correlated (Li et al., 2022). HextenstveExtensive field research eould-be-combined-in

future studies, combined with modeling will significantly improve reliability of the results-may
be.

Conclusions

Data acquisition for debris susceptibility assessments in the Yunnan section of the Nujiang

River (YNR) Basin is challenging; the predominant use of traditional debris flow susceptibility

assessment methods results in low accuracy that fails to fulfill practical needs. Here, we

addressed these issues with systematical collection and processing of relevant debris flow data,

including an analysis of the performance of three machine learning algorithms in analyzing debris

flow susceptibility in the alpine-valley area. The results indicated that the RF model outperforms

both the RBFSVM and the Linear SVM models in terms of accuracy and precision of prediction

indicating that the RF model is more eonvineing:

suitable for susceptibility assessment of debris flow in the YNR Basin. This study provides

valuable methodological analysis and directions for improvement of the model.

The contribution rate of the evaluation factors generated by the RF model showed that

topographic conditions were the decisive factor in the formation of debris flows in the YNR

Basin. Geology, rainfall conditions, human activities. and vegetation conditions are essential to

forming debris flows. In addition, the relative elevation difference was vital among the 20
evaluation factors in the formation and occurrence of debris flows in our study area.

24



759
760
761
762
763
764
765
766
767

768

769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795

The results of the RF-based DFS classification distribution map indicated that the very high

susceptibility zones are mainly distributed along the mainstream of the Nujiang River. Very high
susceptibility zones are primarily situated in Gongshan County, Fugong County, Lushui County,

northern Longling County, northern Longyang District, eastern and southeastern Zhenkang

County, eastern Shidian County, and central Yongde County where the terrain and geological

conditions are extremely conducive to the development of gravity geomorphology. These results

support efforts in implementing more targeted preventive measures in very high and high

susceptibility zones, significantly enhancing overall preparedness for debris flows.
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