Leeches *Baicalobdella* sp. feed on hemolymph but do not affect the cellular immune response of amphipod *Eulimnogammarus verrucosus* (Amphipoda, Crustacea) from Lake Baikal (#93789)

First submission

Guidance from your Editor

Please submit by **3 Jan 2024** for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the materials page.

Custom checks

7 Figure file(s)

1 Table file(s)

DNA data checks

- Have you checked the authors <u>data deposition statement</u>?
- Can you access the deposited data?
- Has the data been deposited correctly?
- Is the deposition information noted in the manuscript?

Vertebrate animal usage checks

- Have you checked the authors <u>ethical approval statement?</u>
- Were the experiments necessary and ethical?
- Have you checked our <u>animal research policies</u>?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Leeches *Baicalobdella* sp. feed on hemolymph but do not affect the cellular immune response of amphipod *Eulimnogammarus verrucosus* (Amphipoda, Crustacea) from Lake Baikal

Anna Nazarova ¹, Andrei Mutin ¹, Denis Skafar ^{2, 3}, Nadezhda Bolbat ¹, Sofya Sedova ¹, Polina Chupalova ¹, Polina Chupalova ¹, Anton Gurkov ^{1, 4}, Maxim Timofeyev ^{Corresp. 1}

Corresponding Author: Maxim Timofeyev Email address: m.a.timofeyev@gmail.com

Lake Baikal is one of the largest and oldest freshwater reservoirs on the planet with a huge endemic diversity of amphipods (Amphipoda, Crustacea). These crustaceans have various symbiotic relationships, including the rarely described phenomenon of leech parasitism on amphipods. It is known that leeches feeding on the hemolymph of crustacean hosts can influence their physiological status, especially under stressful conditions. Here we show that leeches Baicalobdella sp. found on the gills of the amphipod Eulimnogammarus verrucosus, one of the most abundant amphipods in the Baikal littoral zone, indeed feed on the hemolymph of their host. However, the leech infection had no effect on such immune parameters as hemocyte concentration and phenoloxidase activity, as well as glycogen content. The intensity of hemocyte reaction to foreign bodies in a primary culture was identical between leech-free and leech-infected animals. Artificial infection with leeches also had almost no modulating effect on bacterial influence on the hemocyte concentration and composition in hemolymph of amphipods after the injection modeling the microbial outburst. Thus, our study shows that the influence of a few leeches on E. verrucosus is probably negligible, and leech-infected amphipods can be used at least for some types of ecophysiological experiments.

¹ Institute of Biology, Irkutsk State University, Irkutsk, Russia

² Faculty of Biology, Department of Aquatic Bioresources and aquaculture, Kuban State University, Krasnodar, Russia

³ Krasnodar department, Azov estuaries sector, Azov-Black Sea Branch of the Russian Federal Research Institute of Fisheries and Oceanography, Rostov-on-Don. Russia

⁴ Baikal Research Centre, Irkutsk, Russia

- 1 Leeches Baicalobdella sp. feed on hemolymph but do not
- 2 affect the cellular immune response of amphipod
- з Eulimnogammarus verrucosus (Amphipoda, Crustacea) from
- 4 Lake Baikal

- 6 Anna Nazarova ¹, Andrei Mutin ¹, Denis Skafar ^{2,3}, Nadezhda Bolbat ¹, Sofya Sedova ¹, Polina
- 7 Chupalova ¹, Polina Drozdova ^{1,4}, Anton Gurkov ^{1,4}, Maxim Timofeyev ¹

8

- 9 ¹ Institute of Biology, Irkutsk State University, Irkutsk, Russia
- 10 ² Faculty of Biology, Department of Aquatic Bioresources and aquaculture, Kuban State
- 11 University, Krasnodar, Russia
- 12 ³ Krasnodar department, Azov estuaries sector, Azov-Black Sea Branch of the Russian Federal
- 13 Research Institute of Fisheries and Oceanography, Rostov-on-Don, Russia
- 14 ⁴ Baikal Research Centre, Irkutsk, Russia

15

- 16 Corresponding Author:
- 17 Maxim Timofeyev ¹
- 18 Lenin street, 3, Irkutsk, 336003, Russia
- 19 Email address: m.a.timofeyev@gmail.com

20

21 Abstract

- 22 Lake Baikal is one of the largest and oldest freshwater reservoirs on the planet with a huge
- 23 endemic diversity of amphipods (Amphipoda, Crustacea). These crustaceans have various
- 24 symbiotic relationships, including the rarely described phenomenon of leech parasitism on
- amphipods. It is known that leeches feeding on the hemolymph of crustacean hosts can influence
- 26 their physiological status, especially under stressful conditions. Here we show that leeches
- 27 Baicalobdella sp. found on the gills of the amphipod Eulimnogammarus verrucosus, one of the
- 28 most abundant amphipods in the Baikal littoral zone, indeed feed on the hemolymph of their
- 29 host. However, the leech infection had no effect on such immune parameters as hemocyte
- 30 concentration and phenoloxidase activity, as well as glycogen content. The intensity of hemocyte
- 31 reaction to foreign bodies in a primary culture was identical between leech-free and leech-
- 32 infected animals. Artificial infection with leeches also had almost no modulating effect on
- 33 bacterial influence on the hemocyte concentration and composition in hemolymph of amphipods
- 34 after the injection modeling the microbial outburst. Thus, our study shows that the influence of a
- 35 few leeches on *E. verrucosus* is probably negligible, and leech-infected amphipods can be used
- 36 at least for some types of ecophysiological experiments.

37 38

Introduction

- 39 Various parasites are now considered as a significant environmental factor influencing survival
- 40 of aquatic animals under stressful conditions and sometimes acting synergistically with such
- 41 factors as pollution [1,2]. In particular, some parasites have been shown to manipulate behavior,
- 42 distort sex ratio, modify energy budget and compromise the immune defense in amphipods
- 43 (Amphipoda, Crustacea), one of the most important groups of freshwater invertebrates [3].
- 44 Leeches are annelid worms (Hirudinea, Annelida), many species of which parasitize various
- animals and feed on the host blood or hemolymph. Importantly, saliva components of these
- 46 parasites can have anticoagulant, anti-inflammatory and other roles, but such bioactive
- 47 components and their effects are mostly studied in medically important species [4,5,6]. Leeches
- 48 and crustaceans can exist in different types of ecological relationships. For example, leeches of
- 49 the species Myzobdella lugubris Leidy, 1851 are parasites of crabs Callinectes bocourti Milne-
- Edwards, 1879 feeding on their hemolymph and laying eggs on the surface of the crab body [7].
- 51 The South African leech *Marsupiobdella africana* is a facultative ectoparasite of the amphibian
- 52 *Xenopus laevis* and has a phoretic relationship (i.e. promoting spreading of the attached phoront)
- with the freshwater crab *Potamonautes perlatus* Milne-Edwards, 1837. The sex of the host crab
- has been shown to be important in leech infestation. In addition, the period of residence of the
- 55 leeches on crabs corresponds to the development of leech eggs, which may indicate additional
- benefits of these relationships for leeches [8]. The crayfish *Orconectes rusticus* (Girard, 1852)
- 57 has the cleaning leech-like symbiont *Cambarincola fallax* Hoffman, 1963 that removes fouling
- organisms and thus improves growth rates of the host [9,10,11]. The fish leech *Johanssonia*
- 59 arctica (Johansson, 1898) is also an epibiont of the red king crab Paralithodes camtschaticus
- 60 (Tilesius, 1815) [12,13].
- 61 Lake Baikal is among the largest and most ancient freshwater reservoirs on the planet and also
- 62 the birthplace of outstanding endemic diversity of amphipods playing various roles in the lake
- ecosystem [14]. Over 350 morphological species and subspecies of amphipods have been
- 64 described from Baikal, constituting about 19% of all known freshwater species and
- demonstrating tremendous morphological variety [15,16]. Yet, symbionts and parasites of Baikal
- amphipods and their potential influence on physiology of these crustaceans are understudied. It is
- 67 known that the hemolymph of the amphipods can contain various bacteria [17] and DNA of
- 68 microsporidians [18]. Baikal endemic amphipods are also known to be intermediate hosts for
- 69 acanthocephalans, but the fraction of infected individuals is generally low [19].
- However, the parasites that can be most easily found on amphipods in Lake Baikal are leeches.
- According to our observations, leeches are mostly attached to the gills of the largest
- 72 morphological species in the Baikal littoral zone such as *Eulimnogammarus verrucosus*
- 73 (Gerstfeldt, 1858) or *Pallasea cancellus* (Pallas, 1772) and much less often to a smaller *E*.
- 74 *vittatus* (Dybowsky, 1874). The hypothesis that the parasites prefer larger species as hosts is also
- 75 supported by observations of leeches on even larger deep-water Baikal amphipods [20]. Again,
- according to our previous observations in *E. verrucosus*, leeches can infect a substantial
- proportion of the population on the order of dozens of percents at least in some seasons. These
- 78 parasites of *E. verrucosus* belong to the genus *Baicalobdella* containing at least two species,

- 79 B. cottidarum Dogiel, 1957 and B. torquata (Grube, 1871) [21,22,23]. E. verrucosus is a
- 80 widespread and abundant morphological species in the littoral zone of Lake Baikal [24] and yet
- 81 influence of leeches on its physiology is fairly unstudied. Moreover, the whole phenomenon of
- 82 leeches infecting amphipods seems to be very rare if not unique to Lake Baikal, which might be
- 83 related to the larger size of many Baikal endemics in comparison to most freshwater amphipods.
- 84 Literature search gave us no other examples of such a phenomenon, and a recent review
- 85 categorizing parasites of amphipods do not mention leeches at all [25].
- 86 If leeches indeed feed on hemolymph of amphipods in Lake Baikal, the infection may directly
- 87 impair their immune defense and indirectly lower the available energy resources besides the
- 88 potential effects of leech saliva. The crustacean immune system relies on hemolymph
- 89 components such as hemocytes (i.e. circulating cells) and the phenoloxidase system. Hemocytes
- 90 perform phagocytosis and encapsulation of foreign bodies, while phenoloxidase is responsible
- 91 for the melanization process, which is also a part of foreign body encapsulation and hemolymph
- 92 clotting after injury [26]. So, in this study we mostly concentrated on testing the effects of leech
- 93 infection on these immune factors in E. verrucosus from Lake Baikal.

96

Materials & Methods

Animal sampling and handling

- 97 All experimental procedures were conducted in accordance with the EU Directive 2010/63/EU
- 98 for animal experiments and the Declaration of Helsinki; the protocol of the study was registered
- and approved before the start of the experiments by the Animal Subjects Research Committee of
- the Institute of Biology at Irkutsk State University (protocol #2022/11). Leech-free and leech-
- infected amphipods Eulimnogammarus verrucosus (Gerstfeldt, 1858) were collected by kick
- sampling with a hand net in Baikal littoral zone near the Listvyanka village (51°52'05.5"N
- 103 104°49'47.1"E) at depths 0-1.2m (the animals belong to the W barcoding species [27]).
- Amphipods were acclimated to the laboratory conditions in well aerated 3 L plastic aquaria at
- 105 6°C in MIR-254 incubators (Sanyo, Osaka, Japan) for at least 3 days prior to any experiments.
- 106 Typically, leeches were attached to the gills of amphipods (Figure 1A,B).

107108

Identification of leech species

- After samplings in October 2022, February and April 2023 all clearly visible leeches were
- detached from amphipods in and fixed in 96% ethanol for further species identification.
- Morphological analysis of fixed specimens was performed on a stereo microscope SPM0880
- 112 (Altami, Russia) according to the standard keys (Bauer, 1987; Lukin, 1976). DNA extraction
- from the posterior sucker of leeches was performed using the S-sorb kit (Syntol, EX-516,
- Russia). PCR amplification of the cytochrome oxidase subunit I (COI) gene fragment was
- performed with a 5× Screen Mix (Evrogen, Russia), the Folmer primers (LCO1490/HCO2198
- 116 [28]) and the following program: 94°C for 1 min, 30 cycles of 94°C for 20 s, 43°C for 2 min, and
- 117 72°C for 1 min.

144

- 118 The sequencing reactions were performed in both directions using BigDye Terminator v3.1
- 119 Cycle Sequencing kit (Life Technologies, USA) and analyzed with a Nanophor-05 Sanger
- 120 sequencer (Syntol, Russia). Sequencing reads were basecalled with the programs Mutation
- 121 Surveyor v5.1 and Chromas v2.6.6. Consensus sequences were compiled with UGENE v41.0
- 122 [29] using the sequence from *Baicalobdella* sp. (NCBI Genbank accession MN854834) as the
- reference COI fragment. Sequences were aligned with the MAFFT algorithm [30] and trimmed
- to 559 bp in the UGENE program. The sequences were deposited to the NCBI GenBank
- database with accession numbers OR077511-OR077525. Similar sequences were searched with
- 126 BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) in the nt database. Phylogenetic tree was built
- with the IQ-Tree web server (http://www.iqtree.org/) using automatic model selection with
- Model Finder [31] and ultrafast bootstrap for assessment of the branch support values [32]. The
- resulting phylogeny was visualized with iTOL (https://itol.embl.de/) [33].

Injection of fluorescent latex beads into amphipods and further visualization

- After sampling in June 2023, we analyzed the ability of leeches *Baicalobdella* sp. to consume
- amphipod hemolymph. For this, leeches were detached from amphipod gills with tweezers and
- kept in aquaria separately from hosts for ~24 h. Next, 10 non-infected individuals of E.
- 135 verrucosus were injected with 1 μl of suspension containing about 3*106 latex microbeads
- 136 (L3030, Sigma-Aldrich) using a IM-9B microinjector (Narishige, Tokyo, Japan). Right after the
- injection, the amphipods were placed in aquaria with free leeches, which attached to the new
- 138 hosts during 30 min.
- 139 Four hours post injection we anesthetized the amphipods in clove oil suspension (50 µL of clove
- oil per 50 mL of Baikal water) and detached leeches and two pieces of gills from each individual
- 141 for further observation under an inverted fluorescent microscope Celena S (Logos Biosystems,
- Republic of Korea). Prior to the visualization, the leeches were placed into sterile 1.5-mL
- microtubes and homogenized with 50 µL of phosphate buffered saline using a plastic pestle.
- 145 Hemolymph extraction of characterization of hemocytes
- Before the hemolymph extraction, the dorsal side of the amphipod pereon surface was always
- sterilized with 70% ethanol. The central hemolymph vessel was punctured with a sterile needle,
- and hemolymph was collected with a sterile glass capillary. The amphipod hemolymph was
- mixed (1:1) with the isotonic anticoagulant solution (150 mM NaCl, 5 mM Na2HPO4, 30 mM
- sodium citrate, 10 mM EDTA, pH 8.0; filtered through a 0.45 µm syringe filter) on ice to avoid
- degranulation of granulocytes [17]. Amphipod hemolymph was always extracted before
- detachment of leeches. Hemocytes were visualized using the Celena S inverted microscope
- 153 (Logos Biosystems, Republic of Korea) or the Mikmed-2 microscope (LOMO, Russia). Total
- hemocyte count (THC) and granulocyte percentage was estimated in disposable hemocytometers
- 155 (Aptaca, Italy).
- 156 Characterization of hemocyte types was performed with a CytoFLEX flow cytometer (Beckman
- 157 Coulter, USA, CA). Hemolymph of 8 non-infected amphipods E. verrucosus was extracted and

158 measured for forward (allows for the discrimination of cells by size) and side scatter (gives the information about cell complexity). 159 160 161 Biochemical measurements of phenoloxidase activity and glycogen content Along with estimation of THC, part of infected and non-infected animals collected in October 162 2022, February or April 2023 were used for measurements of phenoloxidase activity and 163 glycogen content. For phenoloxidase measurements, hemolymph was collected between the 7th 164 and 8th segments of mesosome as described above, mixed 1:1 with a buffer solution (150 mM 165 NaCl, 10 mM Na2HPO4, 7 mg/mL phenylmethanesulfonyl fluoride, pH 8.0) and frozen at -80 166 167 °C. The samples were melted at 4°C and centrifuged for 10 min at 500 g and 4°C to precipitate the cellular pellets. 10 µl of hemolymph extract were mixed with 40 µl of buffer solution, 280 168 uL of distilled water, and 40 ul of 4 mg/ml 3.4-dihydroxy-L-phenylalanine. Measurements were 169 performed with the CLARIOstar Plus microplate reader (BMG Labtech, Germany) at 490 nm 170 171 (absorbance) for 40 min. Activity of phenoloxidase was assessed in arbitrary units as the slope of the reaction curve during the linear phase [17]. 172 Glycogen extraction was performed as described previously [34] with modifications. Frozen 173 amphipod tissues (after hemolymph extraction) were ground into a powder, mixed with the 174 solution (0.5 mL per 100 mg of wet weight) containing 0.6 M HClO4, and further homogenized 175 in a Potter-Elvehiem tissue grinder until no visible particles remained. Next. 20 uL of the 176 homogenate was mixed with 75 ul of 1% amyloglucosidase (10115-5G-F. Sigma-Aldrich. 177 Germany; 5250 U/µL) in a 0.2 M acetic acid buffer (acetic acid/sodium acetate; pH 4.8). The 178 mix was incubated at 40°C for two hours and then 62.5 µl of 0.6 M HClO4 and 100 µl of 1 M 179 180 KHCO3 were added. The supernatant was centrifuged at 13000 rpm for 15 minutes. Glycogen concentration was measured with the kit "Glucose-Vital" (Vital Development, Russia), 40 µl of 181

184 185 186

182

183

Assessing encapsulation of Sephadex beads by amphipod hemocytes in primary culture

experimental sample was added to 190 µl of "Glucose-Vital" monoreagent and incubated at

25 °C for 15 minutes. Light absorption was measured at 510 nm with a CLARIOstar plus

Sephadex microbeads (G100120-50G, Sigma-Aldrich, United States) were washed with 5 mg/ml

streptomycin and 5000 U/mL penicillin solution (1.3.18, Biolot, Russia). The bead suspension was pipetted into a sterile 96-well plate (GT204-0096DV, Minimed, Russia) in a laminar flow

190 box. Then, 100 μL of complete medium 1X L-15 (Leibovitz medium with L-glutamine, L4386-

191 10X1L, Sigma-Aldrich, United States) containing 15% fetal bovine serum (FBS-HI-11A,

192 Capricorn Scientific, Germany) was added, and the beads were imaged under Mikmed-2

193 microscope (LOMO, Russia) with attached EOS 1200D camera (Canon, Taiwan) and counted

194 using the Count Things application (CountThings.com). Since the amount of microbeads per

195 well varied substantially, for further tests we used only the wells with approximately the same

number of beads (on average 230±70 beads per well).

microplate reader (BMG Labtech, Germany).

- 197 Hemolymph was extracted from 10 leech-free and 12 leech-infected amphipods (collected in
- 198 April 2023) as described above and was pooled within each group. 10-μL aliquotes were
- 199 collected from the pools to estimate the hemocyte concentrations. Then, each pool of
- 200 hemolymph was divided to the selected wells with microbeads contolling for the equal amounts
- of hemocytes for leech-free (15 wells) and leech-infected (11 wells) groups (on average,
- 202 $1\pm0.4*10^5$ cells per well).
- 203 After cell sedimentation to the well bottom, the upper layer of the suspension was collected, and
- 204 100 μL of fresh medium was added. The hemocyte response to the Sephadex microbeads was
- analyzed after 24 hours of incubation, and the number of microbeads with hemocyte aggregates
- 206 was counted under the Celena S inverted fluorescent microscope (Logos Biosystems, Republic
- of Korea). We categorized 4 stages of the encapsulation reaction: no reaction, low reaction,
- 208 medium reaction, the stage showing partially encapsulated beads, and the intense reaction
- showing fully covered beads (Figure 1C,D). The hemocyte nuclei were stained with 10 µg/mL
- 210 4',6-diamidino-2-phenylindole (DAPI, A4099, AppliChem, Germany) to visually contrast the
- 211 encapsulation reaction (Figure 1D). Cell viability was assessed by staining with 1 µg/mL
- 212 propidium iodide (81845-100MG, Sigma-Adrich, Germany).

Artificial infection of amphipods with leeches and bacteria

- 215 In this research, we used the bacterial strain *Pseudomonas* sp. H5-2 (belongs to the *P*.
- 216 fluorescens species group) that was previously extracted from the hemolymph of E. verrucosus
- 217 collected in the same location [17]. For the cultivation, we used the tryptic soy broth (TSB)
- 218 medium (casein peptone, dipotassium hydrogen phosphate, glucose, NaCl, soy peptone) as
- suggested previously [35,36]. For injection into amphipods, *Pseudomonas* sp. cells were washed
- by centrifugation and resuspended in physiological solution (150 mM NaCl, 10 mM Na₂HPO₄).
- 221 2.5 μ L of physiological solution with 10⁵ Pseudomonas sp. cells per 1 μ L was injected into the
- 222 central hemolymph vessel of amphipods between 5th and 6th segments with an IM-9B
- 223 microinjector (Narishige, Tokyo, Japan).
- 224 After ~15-30 min, the amphipods with and without the bacterial injection were infected by
- leeches as described above with 1:1 parasite to host ratio. After 1.5 hours, 1 and 3 days
- 226 hemolymph was extracted from amphipods and mixed 1:1 with anticoagulant solution (150 mM
- NaCl, 5 mM Na₂HPO₄, 30 mM sodium citrate, 10 mM EDTA, 50 mM EDTA-Na₂, pH 8.0). This
- 228 adjusted anticoagulant solution allows to fix hemocytes in the state when nulei and granules are
- visible more clearly [37] and was applied to later visually distinguish granulocytes among all
- 230 hemocytes. THC and granulocyte proportion were estimated under the Mikmed-2 microscope
- 231 (LOMO, Russia) in a glass hemocytometer.
- All experimental groups for 1.5 h and 1 day timepoints included 10 animals per group and
- showed no mortality both with and without bacterial infection (since hemolymph samplings
- always failed for part of animals, the number of analyzed hemolymph samples could be reduced
- down to 7 for some groups). The first round for 3-day timepoint also included 10 animals per
- each experimental group but showed high mortality specifically for animals injected with

bacteria (60% for leech-free and 50% for leech-infected) with no mortality for amphipods without injection. Since this high mortality could be an artifact of specific injection procedure, we performed the second round of the experiment with bacterial injection into 9 animals per experimental group. Both leech-free and leech-infected animals showed no mortality during 3 days post injection, and their hemolymph was used for the tests along with hemolymph of the animals from the first round.

243244

Statistical analysis

- 245 Statistically significant differences between experimental groups were always estimated using
- 246 Mann-Whitney U test with the Holm's correction for multiple comparisons. Mann-Whitney tests
- 247 were performed in the program Past 4.03 [38], and Holm's corrections were applied in R v.4.3.1
- 248 [39]. The differences were considered statistically significant with p < 0.05.
- 249 Specifically for the experiment with artificial infections with bacteria and leeches we applied a
- 250 generalized linear model (GLM) for analysis of factor effects in R v.4.3.1 [39]. The model was
- 251 fitted using the glm() function with gaussian distribution to three independent factors (time as
- 252 numeric variable, absence or presence of leech and injected bacteria) and all of their interactions.
- 253 The assumptions for GLM were mostly met for the dataset: the outcome with time was
- acceptably linear (slightly violated specifically for THC), the residuals were always
- 255 homoscedastic and the normality assumption was slightly violated only for THC.

256257

258

Results

Infection rate and identification of leeches

- 259 We collected amphipods E. verrucosus infected with leeches at the same location in Lake Baikal
- but in different seasons. The infection rate was not estimated precisely, but it clearly varied
- greatly. In October 2022, ~80 % of individuals were infected, while in February and April 2023
- 262 the rate was substantially lower on the order of \sim 5 %. There were from one to nine leeches per
- animal with 2-4 parasites found on most individuals.
- 264 Morphological analyses showed us that all 42 leeches sampled in these seasons belong to one
- 265 genus *Baicalobdella* with prevalence of morphospecies *B. torquata*. Several leeches were
- 266 identified as potentially belonging to morphospecies B. cottidarum but recent data [40] indicate
- 267 that B. torquata may have significant morphological variability, so identification of these
- specimens remained uncertain. In order to clarify the diversity of the leeches, we performed
- sequencing of the COI gene fragment in 15 specimens in total; all samples with ambiguous
- 270 morphological identification were included in the analysis, and the rest identified as *B. torquata*
- were chosen randomly from all three samplings.
- 272 The phylogenetic tree clearly showed that all 15 leeches belong to the same species (Figure 2).
- 273 They were found to be approximately 90% similar to the available sequence of *Baicalobdella sp.*
- 274 (#MN854837.1). However, the sequence of *B. torquata* (#MN854834) belongs to a different
- 275 group. Previously, it was found that morphological species *B. torquata* may in fact be a complex
- of cryptic species [41], and the leeches found in our study could belong to one of them but we

have no means to identify the species more precisely. However, since *E. verrucosus* was found to be infected with only one species of *Baicalobdella* locally, we had the possibility to test the physiological influence of these leeches onto the amphipods.

Leeches Baicalobdella sp. consume amphipod hemolymph

The assumption that the leeches attached to gills of amphipods also feed on their hemolymph is obvious, but these ectosymbionts may simply be in phoretic relationships with specifically these hosts. In order to test this assumption, we injected fluorescent microbeads into the hemolymph of *E. verrucosus* and tracked their distribution. Five hours post injection the microbeads were easily observable in amphipod gills and also inside some ciliates that were found to be attached to gills (Figure 3A,B). The homogenate of 5 out of 10 tested leech bodies also contained these fluorescent microbeads (Figure 3C). Since the leech oral apparatus is not suitable for consumption of ciliates [22], our data unambiguously confirms that the leeches *Baicalobdella* sp. indeed can feed on hemolymph of amphipods *E. verrucosus*.

Characterization of amphipod hemocytes

Since hemocytes are an important component of the crustacean immune system, before further analysis we investigated their possible subdivision into populations. Flow cytometry clearly differentiated hemocytes of *E. verrucosus* into two main groups, one with smaller cell size and lower internal complexity and the other with larger cell size and higher internal complexity (Figure 4). The groups are usually called hyalinocytes and granulocytes respectively [42] and can also be observed with common phase contrast microscopy. In particular, larger size of granulocytes is evident right after the sample is placed under the microscope, while higher amount of vesicular structures in granulocytes is better visualized after attachment to the surface (Figure 4). Additionally, we observed hemocytes with intermediate internal complexity and size between granulocytes and hyalincytes, i.e. semi-granulocytes, but their proportion was only ~10%.

Influence of leeches on hemocyte concentration and other parameters of amphipods in different seasons

We used the amphipods collected in October 2022, February and April 2023 for discriminating the effects of leech infection on several physiological parameters of *E. verrucosus* in different seasons. The consumption of hemolymph by leeches may directly reduce the hemocyte concentration and phenoloxidase content in the hemolymph and indirectly reduce the available glycogen due to the compensation of the tissue loss.

Total hemocyte count (THC) varied with season, but leech-infected and non-infected amphipods never had a statistically significant difference in this parameter (Figure 5A). Moreover, median THC in February 2023 was even slightly higher in infected than in non-infected animals despite the fact the size of leeches was the largest (Figure 5B,C) and hemolymph consumption would be associated to be the highest. It sould be highest that he made much as a support of the supp

316 expected to be the highest. It could be hypothesized that hemolymph consumption, on the

- 317 contrary, lowers specifically for the largest leeches that are ready to switch their host.
- 318 Interestingly, there was indeed a statistically significant difference between infected amphipods
- 319 in October and February (Figure 5A), which partially supports this hypothesis. Since most
- 320 amphipods were infected with 2-4 leeches, we could not check the correlation between THC and
- 321 leech size directly, but the dependence between THC and summarized leech width per host was
- 322 absent or even indicated slightly higher THC in amphipods with higher biomass of leeches
- 323 (Figure 5D). In general, these data show that influence of leeches on THC is either negligible or
- 324 the hemocyte loss is compensated by the host.
- 325 Similarly, phenoloxidase activity of *E. verrucosus* hemolymph (analyzed only in April 2023)
- was not significantly different between infected and non-infected amphipods (Figure 5E).
- 327 Finally, glycogen content was also almost identical between the groups, which indicates no
- 328 prominent energetic burden of the infection.
- Overall, our data suggest that infection with leeches does not have substantial deleterious effects
- 330 for amphipods *E. verrucosus* at least in the analyzed seasons.

Cellular immune response of infected and non-infected amphipods estimated in vitro

- 333 Despite the fact that leeches did not substantially affect the amounts of immune components in
- amphipod hemolymph, they might modulate intensity of the immune response through bioactive
- 335 components in their saliva. For preliminary testing of this hypothesis, we chose the primary
- 336 culture of amphipod hemocytes as a convenient model system and Sephadex microbeads
- 337 (consisting of specifically processed dextran) as model foreign bodies. The primary hemocyte
- 338 culture allows for observing the behavior of these immune cells and quantitative estimation of
- their reactions such as aggregation and further encapsulation of foreign bodies.
- 340 In particular, we measured the fraction of Sephadex beads encapsulated by hemocytes originally
- extracted from leech-infected and non-infected amphipods 24 h after contact with the beads. This
- 342 time point was previously shown to be enough for development of strong immune reaction even
- 343 to artificial non-microbial foreign bodies [43]. We found no difference in the intensity of the
- immune reaction between the experimental groups since the proportions of fully encapsulated
- 345 (~10%) and partially encapsulated microbeads (~85%) were equal for hemocytes from infected
- and non-infected amphipods (Figure 6A). Some of the beads were not encapsulated at all, and
- 347 there was a high mortality of hemocytes around Sephadex microbeads in contrast to free
- hemocytes, as indicated by propidium iodide staining (Figure 6B).
- 349 However, the humoral components of hemolymph were mostly removed during hemocyte
- transfer into culture medium (dilution was $\sim 12x$), which could alleviate the potential influence of
- 351 leech infection during the experiment. Thus, here we could not fully exclude the possible minor
- 352 effects of *Baicalobdella* sp. saliva on the intensity of cellular immune response in amphipods of
- 353 Lake Baikal.

354 355

Changes in hemocyte concentration and composition after injection of bacteria and

356 artificial leech infection

PeerJ

Finally, in order to evaluate the potential synergistic effects of leeches and other immunity-357 related factors we experimentally tested the influence of leeches on the ability of amphipods to 358 deal with bacterial infection. In this study we performed (i) an artificial infection of leech-free 359 E. verrucosus with the Pseudomonas sp. strain originally extracted from hemolymph of the same 360 361 species and (ii) an artificial infection with leeches. The amount of injected bacterial cells was comparable to the number of circulating hemocytes in the animal hemolymph to model a 362 significant microbial outburst. Some of the amphipods were then infected with one leech per 363 animal, and such parameters as hemocyte concentration in the hemolymph and the fraction of 364 granulocytes were evaluated for three days (Figure 7: Table 1). 365 The mortality during the three-day experiment was mostly low, and it never was higher for 366 leech-infected animals than for leech-free ones. The generalized linear model indicated that 367 infection with leeches itself and time after the infections had no statistically significant effects on 368 369 both the concentration of hemocytes in amphipod hemolymph and the fraction of granulocytes 370 among them, while the injection of bacteria clearly leads to a statistically significant decrease in hemocyte concentration by ~2800 cells per ul on average and an increase in granulocyte 371 proportion by ~16% (Table 1). Interestingly, the interaction between bacterial injection and 372 infection with leeches, oppositely, led to a statistically significant decrease in the fraction of 373 granulocytes by 12% but caused no statistically significant changes in hemocyte concentration 374 375 (Table 1). Other interactions between factors even being statistically significant in the case of granulocytes percentage did not exceed 1% by module in the estimated effect. However, pair-376 wise comparisons between leech-free and leech-infected animals gave no statistically significant 377 differences between any experimental groups not only in hemocyte concentration but also in 378 379 granulocytes fraction during the whole experiment (all adjusted p > 0.05; Figure 7). Thus, the effect of leech infection partially compensating the effect of bacterial infection specifically for 380 hemocyte composition deserves further attention, but overall our results clearly demonstrated no 381 synergistic interaction between these two factors. 382

383 384

Discussion

Our research group focuses on environmental physiology of the amphipods endemic to Lake
Baikal, and almost exclusively the previously published experiments were made with amphipods
without visible leech infection [44,45,46,47] since the infected individuals were considered as
potentially weakened. Here we questioned this assumption.

Sequencing of leeches from *E. verrucosus* collected in three independent sampling campaigns

clearly demonstrated that the parasites in the used sampling location belong to the same species,

391 and thus their influence on these amphipods can be studied without preliminary species

392 identification. Since the phylogeny and diversity of leeches in Lake Baikal are still being revised

393 [48,20,49,50], we could not identify the species precisely but it belongs to the genus

394 Baicalobdella (Figure 2). Our tests also showed that the leeches can consume amphipod

395 hemolymph (Figure 3), and thus the effects of the infection on amphipod physiology are worth

396 studying. However, within the 4-hour experiment, only a half of the artificially attached leeches

PeerJ

consumed hemolymph, and according to our observations, in nature the leeches were mostly 397 attached to gills with their posterior sucker, which indicates that these parasites do not consume 398 hemolymph constantly. 399 The studies investigating the host-symbiont relationships of amphipods commonly use such 400 401 techniques as histological analysis, spectrophotometry, metagenomics, PCR and microscopy, while such an important component of the immune system as hemocytes is rarely mentioned 402 [25]. Rigaut and Moret studied phenoloxidase activity of Gammarus pulex (Linnaeus, 1758) and 403 G. roeselii and found a correlation between infection by acanthocephalans and a decrease in the 404 enzyme activity [51]. Another freshwater amphipod G. fossarum (Koch, 1835) was used as a test 405 organism to investigate potential pollutant-parasite interactions for infection with larvae of the 406 acanthocephalan species *Polymorphus minutus* (Zeder, 1800). Phenoloxidase activity, glycogen, 407 and lipid concentrations showed a significant increase in infected gammarids [52]. In the other 408 case acanthocephalan infection was associated with reduction of the phenoloxidase activity and 409 410 the hemocyte concentration [53]. Here we were looking for any substantial effects of leech infection on hemocytes and other 411 related parameters of amphipods. Most studies on crustacean hemocytes have been performed 412 for decapods and revealed three main types of these immune cells with different morphology and 413 functions: hyalinocytes (hyaline cell), semi-granulocytes (semi-granular cells) and granulocytes 414 (granular cells) [42]. Such information for amphipods is less abundant. Using light and electron 415 microscopy the following hemocyte types were found in the body of the amphipod G. setosus 416 (Dementieva, 1931): granulocytes, adipohemocytes, plasmatocytes, and rare prohemocytes [54]. 417 In the hemolymph of the amphipod G. pulex four types of circulating cells were identified with 418 419 microscopy and histochemical staining: hyalocytes I (cells with a transparent cytoplasm), hyalocytes II (cells with a slightly basophilic cytoplasm), granulocytes, and adipohemocytes 420 (with large nucleus surrounded by granules) [55]. In the case of *Parhyale hawaiensis* (Dana, 421 1853), it was shown that hemolymph contained tree typical type of hemocytes: granulocytes, 422 423 semi-granulocytes and hyalinocytes with semi-granulocytes being rare [56]. Our research on E. verrucosus seems to be the first or among the first studies checking amphipod hemocyte 424 diversity with flow cytometry, which demonstrated the prevalence of two types of hemocytes, 425 granulocytes and hyalinocytes, while the intermediate semi-granulocytes were found to be 426 427 relatively rare (Figure 4). We used leech-free and leech-infected amphipods from the same samplings and of similar size in 428 order to compare the concentration of hemocytes in hemolymph, phenoloxidase activity and 429 glycogen content and found no influence of leeches on these parameters (Figure 5). Hemocyte 430 concentration varied greatly with sampling campaigns and could be partially influenced by the 431 432 reproduction season, which starts in autumn for E. verrucosus. Interestingly, the infection rates were also very different in different months (dropped from ~80% to ~5% from October to April). 433 which indirectly indicates that the same individual of this species can be infected with different 434 435 leeches multiple times during their lifespan of about five years. A previous transcriptomic study 436 indicated that even E. verrucosus without visible leech infection sometimes can bear the

- parasites, so the mentioned values might be an underestimate [44]. However, the infection seems
- 438 to substantially affect neither immune defense, nor energy budget of the animal. This discovery
- sheds some light into the host-symbiont relationships of *E. verrucosus* and *Baicalobdella* sp.
- showing that the infection with leeches is probably more natural for large amphipods of Lake
- 441 Baikal than we would assume.
- Next, we checked for potential influence of leech saliva on reaction intensity of hemocytes to
- 443 artificial foreign bodies in the primary cell culture. Hemocytes from leech-free and leech-
- infected animals demonstrated the same results (Figure 6), but since humoral components of
- hemolymph were diluted for ~12 times during extraction into the primary culture, we can only
- exclude a very intense influence of the saliva components. Finally, we checked for potential
- synergistic interaction, of leeches with artificial bacterial infection and found no or even a slight
- antagonistic interaction, as indicated by the estimates of granulocyte fraction among all
- hemocytes (Figure 7; Table 1). Artificial infection with leech did not influence hemocyte
- 450 concentration or granulocyte percentage in the amphipod hemolymph at all, while injection of
- bacteria clearly decreased the first and increased the second (Figure 7; Table 1). The decrease in
- 452 THC was expected from a number of studies [57,58,59,60]. The increase in fraction of
- 453 granulocytes among all hemocytes probably reflects high mortality of hyalinocytes during the
- 454 immune response to bacteria but possible discharge of granulocytes from some tissues also
- 455 cannot be excluded. The antagonistic interaction of leech infection with bacterial injection
- 456 specifically in the case of the granulocyte fraction among all hemocytes might be speculatively
- 457 explained by a potential decrease in the concentration of bacteria due to hemolymph
- 458 consumption by the leech, but this effect clearly demands further exploration.
- 459 An unexpected finding of our research was the discovery of numerous parasitic ciliates on the
- 460 gills of *E. verrucosus* that clearly consumed amphipod hemolymph (Figure 3B). It is known that
- 461 ciliates of the genus *Lagenophryidae* can seat on gills of amphipods *E. verrucosus* [61].
- However, their potential influence on the amphipods is a subject for a separate research.
- Overall, our study indicated no substantial influence of leeches on the amphipods *E. verrucosus*
- 464 from Lake Baikal. Therefore, the individuals infected with *Baicalobdella* sp. can or sometimes
- even should be included into ecophysiological experiments for performing them on the
- 466 representative part of the population.

468 Acknowledgements

467

472

473

- The flow cytometry measurements were obtained with the equipment kindly provided by the
- 470 Helicon Company (Moscow, Russia). This research was supported by the Russian Science
- 471 Foundation (project #23-14-00165, https://rscf.ru/en/project/23-14-00165/).

References

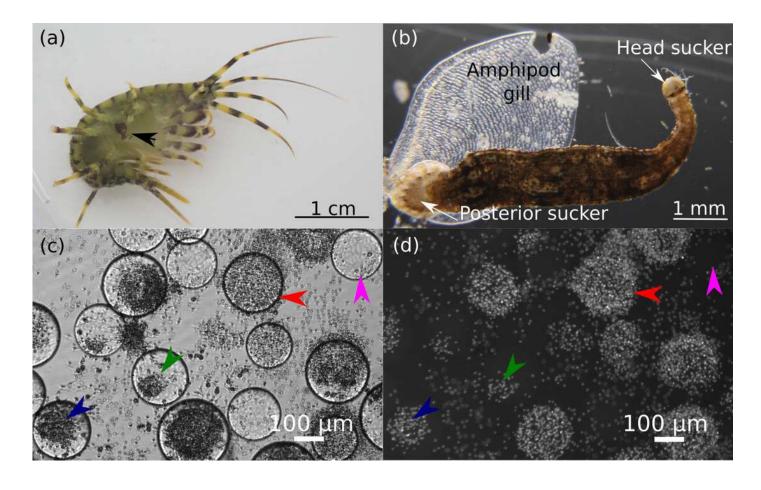
- 1. Sures, B. How Parasitism and Pollution Affect the Physiological Homeostasis of Aquatic Hosts. *J Helminthol* **2006**, *80* (2), 151–157. https://doi.org/10.1079/joh2006346.
- 476 2. Öktener, A.; Bănăduc, D. Ecological Interdependence of Pollution, Fish Parasites, and Fish

- in Freshwater Ecosystems of Turkey. *Water* **2023**, *15*, 1385.
- 478 <u>https://doi.org/10.3390/w15071385</u>
- Giari, L.; Fano, E. A.; Castaldelli, G.; Grabner, D.; Sures, B. The Ecological Importance of Amphipod–Parasite Associations for Aquatic Ecosystems. *Water* 2020, *12* (9), 2429.
 https://doi.org/10.3390/w12092429.
- 482 4. Salzet, M. Anticoagulants and Inhibitors of Platelet Aggregation Derived from Leeches. *FEBS Lett* **2001**, *492* (3), 187–192. https://doi.org/10.1016/s0014-5793(01)02212-8.
- Zaidi, S. M. A.; Jameel, S. S.; Zaman, F.; Jilani, S.; Sultana, A.; Khan, S. A. A Systematic
 Overview of the Medicinal Importance of Sanguivorous Leeches. *Altern Med Rev* 2011, *16* (1), 59–65.
- Liu, Z.; Tong, X.; Su, Y.; Wang, D.; Du, X.; Zhao, F.; Wang, D.; Zhao, F. In-DepthProfiles of Bioactive Large Molecules in Saliva Secretions of Leeches Determined by Combining Salivary Gland Proteome and Transcriptome Data. *J Proteomics* 2019, 200, 153–160.
 https://doi.org/10.1016/j.jprot.2019.03.009.
- Zara, F. J.; Reigada, A. L. D.; Passero, L. F. D.; Toyama, M. H. Myzobdella Platensis
 (Hirundinida: Piscicolidae) Is True Parasite of Blue Crabs (Crustacea: Portunidae). *The Journal of Parasitology* 2009, *95* (1), 124–128. https://doi.org/10.1645/GE-1616.1.
- Badets, M.; Preez, L. Phoretic Interaction between the Kangaroo Leech *Marsupiobdella Africana* (Hirudinea: Glossiphoniidae) and the Cape River Crab *Potamonautes Perlatus* (Decapoda: Potamonautidae). *International Journal for Parasitology: Parasites and Wildlife* 2014, 3, 6–11. https://doi.org/10.1016/j.ijppaw.2013.10.001.
- Brown, B.L., Creed, R.P. & Dobson, W.E. *Branchiobdellid* annelids and their crayfish hosts:
 are they engaged in a cleaning symbiosis? *Oecologia* 2002, *132*, 250–255.
 https://doi.org/10.1007/s00442-002-0961-1
- 501 10. Keller, T. The Effect of the Branchiobdellid Annelid *Cambarincola Fallax* on the Growth Rate and Condition of the Crayfish *Orconectes Rusticus*. *Journal of Freshwater Ecology* 503 1992, 7, 165–171. https://doi.org/10.1080/02705060.1992.9664681.
- 11. Lee, J. H.; Kim, T. W.; Choe, J. C. Commensalism or Mutualism: Conditional Outcomes in a Branchiobdellid–Crayfish Symbiosis. *Oecologia* **2009**, *159* (1), 217–224. https://doi.org/10.1007/s00442-008-1195-7
- 12. Dvoretsky, A. G.; Dvoretsky, V. G. New Echinoderm-Crab Epibiotic Associations from the Coastal Barents Sea. *Animals* **2021**, *11* (3), 917. https://doi.org/10.3390/ani11030917
- Dvoretsky, A. G.; Dvoretsky, V. G. Some Aspects of the Biology of the Amphipods
 Ischyrocerus Anguipes Associated with the Red King Crab, *Paralithodes Camtschaticus*, in
 the Barents Sea. *Polar Biol* 2009, 32 (3), 463–469. https://doi.org/10.1007/s00300-008-512
- Health at Lake Baikal. Wiley Interdisciplinary Reviews: Water 2021, 8.
 https://doi.org/10.1002/wat2.1528.
- 516 15. Väinölä, R.; Witt, J. D. S.; Grabowski, M.; Bradbury, J. H.; Jazdzewski, K.; Sket, B. Global Diversity of Amphipods (Amphipoda; Crustacea) in Freshwater. *Hydrobiologia* **2008**, *595* (1), 241–255. https://doi.org/10.1007/s10750-007-9020-6.
- 16. Takhteev, V. V.; Berezina, N.; Sidorov, D. A. Checklist of the Amphipoda (Crustacea) from
 Continental Waters of Russia, with Data on Alien Species. *Arthropoda Selecta* 2015, 24,
 335–370. https://doi.org/10.15298/arthsel.24.3.09.
- 522 17. Shchapova, E.; Nazarova, A.; Vasilyeva, U.; Gurkov, A.; Ostyak, A.; Mutin, A.; Adelshin,

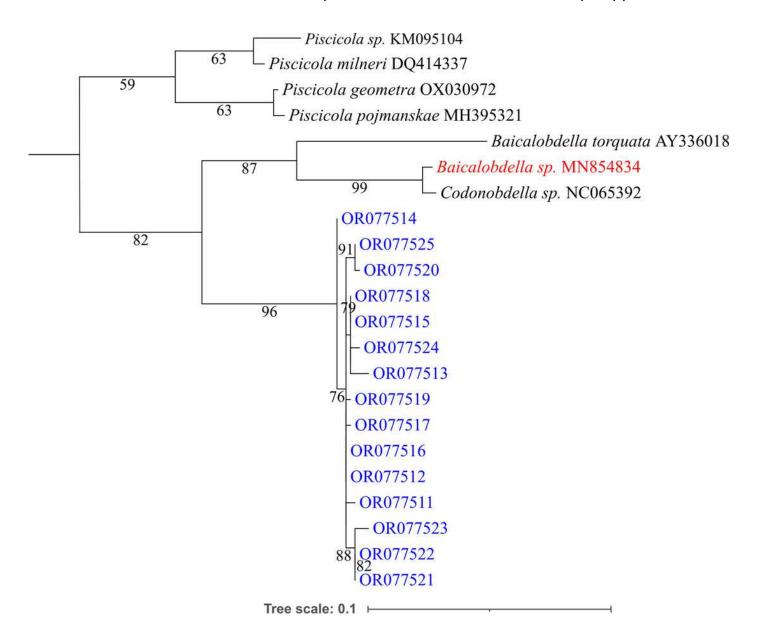
- R.; Belkova, N.; Timofeyev, M. Cellular Immune Response of an Endemic Lake Baikal Amphipod to Indigenous *Pseudomonas* Sp. *Marine Biotechnology* **2021**, *23*. https://doi.org/10.1007/s10126-021-10039-2.
- 18. Dimova, M.; Madyarova, E.; Gurkov, A.; Drozdova, P.; Lubyaga, Y.; Kondrateva, E.;
 Adelshin, R.; Timofeyev, M. Genetic Diversity of Microsporidia in the Circulatory System
 of Endemic Amphipods from Different Locations and Depths of Ancient Lake Baikal. *PeerJ* 2018, 6, e5329. https://doi.org/10.7717/peeri.5329.
- 19. Baldanova D.R. and Pronin N.M. Acanthocephalans (Acanthocephala) of rhe Lake Baikal.
 Morphology and ecology. *Novosibirsk: Science* 2023, p.158. [Russian].
- 532 20. Kaygorodova, I. A. Annotated Checklist of the Leech Species Diversity in the Maloe More
 533 Strait of Lake Baikal, Russia. *Zookeys* 2015, No. 545, 37–52.
 534 https://doi.org/10.3897/zookeys.545.6053.
- Lukin, E.I. Leeches of Fresh and SalineWaters. In Fauna of the USSR; Nauka: Leningrad,
 USSR, 1976, P. 485. [Russian].
- 537 22. Bauer O.N. Key boock for determination of freshwater fishes parasites in fauna of the USSR. Leningrad **1987**, P. 584. [Russian].
- 539 23. Timoshkin, O. Lake Baikal: Diversity of fauna, problems of its immiscibility and origin, 540 ecology and "exotic" Communities. *Index of animal species inhabiting Lake Baikal and its* 541 *catchment area* **2001**. *I*, 74-113.
- 542 24. Gurkov, A.; Rivarola-Duarte, L.; Bedulina, D.; Fernández Casas, I.; Michael, H.; Drozdova,
 543 P.; Nazarova, A.; Govorukhina, E.; Timofeyev, M.; Stadler, P. F.; Luckenbach, T. Indication
 544 of Ongoing Amphipod Speciation in Lake Baikal by Genetic Structures within Endemic
 545 Species. *BMC Evolutionary Biology* 2019, 19 (1), 138. https://doi.org/10.1186/s12862-019-1470-8.
- 547 25. Bojko, J.; Ovcharenko, M. Pathogens and Other Symbionts of the Amphipoda: Taxonomic Diversity and Pathological Significance. *Dis Aquat Organ* **2019**, *136* (1), 3–36. 549 https://doi.org/10.3354/dao03321.
- 550 26. Söderhäll, K., & Cerenius, L. Crustacean immunity. *Annual Review of Fish Diseases* **1992**, 551 2, 3-23. https://doi.org/10.1016/0959-8030(92)90053-Z.
- 27. Drozdova, P.; Saranchina, A.; Madyarova, E.; Gurkov, A.; Timofeyev, M. Experimental
 Crossing Confirms Reproductive Isolation between Cryptic Species
 within *Eulimnogammarus verrucosus* (Crustacea: Amphipoda) from Lake Baikal. *Int. J. Mol. Sci.* 2022, 23, 10858. https://doi.org/10.3390/ijms231810858
- 556 28. Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA Primers for Amplification of Mitochondrial Cytochrome c Oxidase Subunit I from Diverse Metazoan Invertebrates.

 558 *Mol Mar Biol Biotechnol* **1994**, *3* (5), 294–299.
- Okonechnikov, K.; Golosova, O.; Fursov, M.; UGENE team. Unipro UGENE: A Unified Bioinformatics Toolkit. *Bioinformatics* 2012, 28 (8), 1166–1167.
 https://doi.org/10.1093/bioinformatics/bts091.
- 562 30. Katoh, Kazutaka, and Daron M. Standley. MAFFT multiple sequence alignment software
 563 version 7: improvements in performance and usability. *Molecular biology and* 564 *evolution*, 2013, 30, 772-780. https://doi.org/10.1093/molbev/mst010
- 31. Kalyaanamoorthy, Subha, et al. ModelFinder: fast model selection for accurate phylogenetic estimates. *Nature methods*, **2017**, *14* (6), 587-589. https://doi.org/10.1038/nmeth.4285
- 567 32. Hoang, Diep Thi, et al. "UFBoot2: improving the ultrafast bootstrap approximation." *Molecular biology and evolution*, **2018**, *35* (2), 518-522.

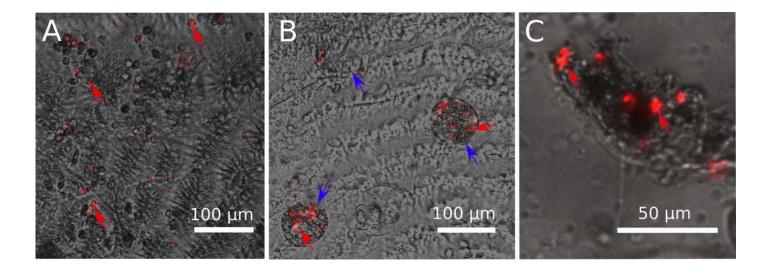
- https://doi.org/10.1093/molbev/msx281.
- 570 33. Letunic, Ivica, and Peer Bork. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. *Nucleic acids research*, **2021**, *49*, W293-W296. https://doi.org/10.1093/nar/gkab301.
- 34. Vereshchagina, K. P.; Lubyaga, Y. A.; Shatilina, Z.; Bedulina, D.; Gurkov, A.; AxenovGribanov, D. V.; Baduev, B.; Kondrateva, E. S.; Gubanov, M.; Zadereev, E.; Sokolova, I.;
 Timofeyev, M. Salinity Modulates Thermotolerance, Energy Metabolism and Stress
 Response in Amphipods Gammarus Lacustris. *PeerJ* 2016, 4, e2657.
- 577 <u>https://doi.org/10.7717/peerj.2657.</u>
- 578 35. Robach MC. Efect of potassium sorbate on the growth of *Pseudomonas fuorescens*. *J Food* 579 *Sci* **1978**, *43*, 1886–1887
- 580 36. Murali A, Bhargava A, Wright ES IDTAXA: a novel approach for accurate taxonomic classification of microbiome sequences. *Microbiome* **2018**, *6*, 1–14. https://doi.org/10.1186/s40168-018-0521-5.
- 37. Skafar, D. N., O. V. Strelkova, and D. V. Shumeyko. Hematological Parameters of the
 Australian Red Claw Crayfish *Cherax quadricarinatus* (Decapoda: Parastacidae) When
 Exposed to Air. *Inland Water Biology* 2023, *16*, 945-953.
 https://doi.org/10.1134/S0022093022060060.
- 38. Hammer, O.; Harper, D. A. T.; Ryan, P. D. PAST: Paleontological Statistics Software
 Package for Education and Data Analysis.
- 589 39. R Core Team. *R: A Language and Environment for Statistical Computing;* R Foundation for Statistical Computing: Vienna, Austria, **2022**.
- 591 40. Matvienko E.Yu. Species composition, distribution and molecular-genetic cpasportisation of the fauna of leeches of the family Pisciculidae Johanston, 1865 (Clitellata, Hirudinea) of the Baikal region. *PhD thesis* **2023**, P.175. [Russian].
- 41. Matveenko, E. Yu, and I. A. Kaygorodova. Ecological zonation of the Baikal endemic
 piscine leeches of the genus *Baicalobdella* (Hirudinea, Piscicolidae). *Limnology and* Freshwater Biology 2020, 801-802.
- 42. Rowley, A. F. The Immune System of Crustaceans. In *Encyclopedia of Immunobiology*;
 Ratcliffe, M. J. H., Ed.; Academic Press: Oxford, 2016; pp 437–453.
 https://doi.org/10.1016/B978-0-12-374279-7.12005-3.
- 43. Shchapova, E., Nazarova, A., Gurkov, A., Borvinskaya, E., Rzhechitskiy, Y., Dmitriev, I.,
 Meglinski, I. and Timofeyev, M. Application of PEG-covered non-biodegradable
 polyelectrolyte microcapsules in the crustacean circulatory system on the example of the
 amphipod *Eulimnogammarus verrucosus*. *Polymers* 2019, *11* (8), 1246.
 https://doi.org/10.3390/polym11081246.
- 44. Drozdova, P.; Rivarola-Duarte, L.; Bedulina, D.; Axenov-Gribanov, D.; Schreiber, S.;
 Gurkov, A.; Shatilina, Z.; Vereshchagina, K.; Lubyaga, Y.; Madyarova, E.; Otto, C.;
 Jühling, F.; Busch, W.; Jakob, L.; Lucassen, M.; Sartoris, F. J.; Hackermüller, J.; Hoffmann,
 S.; Pörtner, H.-O.; Luckenbach, T.; Timofeyev, M.; Stadler, P. F. Comparison between
- Transcriptomic Responses to Short-Term Stress Exposures of a Common Holarctic and Endemic Lake Baikal Amphipods. *BMC Genomics* **2019**, *20* (1), 712.
- 611 <u>https://doi.org/10.1186/s12864-019-6024-3.</u>
- 612 45. Jakob, L.; Axenov-Gribanov, D. V.; Gurkov, A. N.; Ginzburg, M.; Bedulina, D. S.;
- Timofeyev, M. A.; Luckenbach, T.; Lucassen, M.; Sartoris, F. J.; Pörtner, H.-O. Lake Baikal Amphipods under Climate Change: Thermal Constraints and Ecological Consequences.


- 615 Ecosphere **2016**, 7 (3), e01308. https://doi.org/10.1002/ecs2.1308.
- 46. Axenov-Gribanov, D. V.; Baduev, B.; Kondrateva, E. S.; Gubanov, M.; Zadereev, E.;
 Sokolova, I.; Timofeyev, M. Salinity Modulates Thermotolerance, Energy Metabolism and
 Stress Response in Amphipods *Gammarus Lacustris*. *PeerJ* 2016, *4*, e2657.
 https://doi.org/10.7717/peerj.2657.
- 47. Bedulina, D. S.; Evgen'ev, M. B.; Timofeyev, M. A.; Protopopova, M. V.; Garbuz, D. G.;
 Pavlichenko, V. V.; Luckenbach, T.; Shatilina, Z. M.; Axenov-Gribanov, D. V.; Gurkov, A. N.; Sokolova, I. M.; Zatsepina, O. G. Expression Patterns and Organization of the Hsp70
 Genes Correlate with Thermotolerance in Two Congener Endemic Amphipod Species
 (Eulimnogammarus Cyaneus and E. Verrucosus) from Lake Baikal. Mol Ecol 2013, 22 (5),
- 624 (Eulimnogammarus Cyaneus and E. Verrucosus) from Lake Baikal. Mol Ecol **2013**, 22 (5) 625 1416–1430. https://doi.org/10.1111/mec.12136.
- 48. Kaygorodova, I. A.; Sorokovikova, N. V. Mass Leech Infestation of Sculpin Fish in Lake
 Baikal, with Clarification of Disease-Prone Species and Parasite Taxonomy. *Parasitology International* 2014, 63 (6), 754–757. https://doi.org/10.1016/j.parint.2014.06.009.
- 49. Bolbat, A.; Bukin, Y.; Kaygorodova, I. Genome-Based Taxa Delimitation (GBTD): A New
 Approach. *Diversity* 2022, *14* (11), 948. https://doi.org/10.3390/d14110948.
- Kaygorodova, I.; Matveenko, E. Diversity of the Piscicola Species (Hirudinea, Piscicolidae)
 in the Eastern Palaearctic with a Description of Three New Species and Notes on Their
 Biogeography. *Diversity* 2023, *15*, 98. https://doi.org/10.3390/d15010098.
- 51. Rigaud, T.; Moret, Y. Differential Phenoloxidase Activity between Native and Invasive
 635 Gammarids Infected by Local Acanthocephalans: Differential Immunosuppression?
 636 Parasitology 2004, 127, 571–577. https://doi.org/10.1017/S0031182003004050.
- 52. Rothe, L. E.; Loeffler, F.; Gerhardt, A.; Feld, C. K.; Stift, R.; Weyand, M.; Grabner, D.;
 Sures, B. Parasite Infection Influences the Biomarker Response and Locomotor Activity of
 Gammarus Fossarum Exposed to Conventionally-Treated Wastewater. *Ecotoxicology and Environmental Safety* 2022, 236, 113474. https://doi.org/10.1016/j.ecoenv.2022.113474.
- 53. Cornet, S.; Franceschi, N.; Bauer, A.; Rigaud, T.; Moret, Y. Immune Depression Induced by Acanthocephalan Parasites in Their Intermediate Crustacean Host: Consequences for the Risk of Super-Infection and Links with Host Behavioural Manipulation. *International Journal for Parasitology* 2009, 39, 221–229. https://doi.org/10.1016/j.ijpara.2008.06.007.
- 54. Steele, V. J.; MacPherson, B. R. Morphological Features of Sessile and Circulating
 Hemocytes in the Cephalon of *Gammarus Setosus* Dementieva (Crustacea: Amphipoda) by
 Light and Electron Microscopy. *Journal of Morphology* 1981, *170* (2), 253–269.
 https://doi.org/10.1002/jmor.1051700210.
- 55. Schroder, V.; Doicescu, D.; Arcuş, M. The Cytomorphology of the Haemocytes at
 Gammarus Pulex Balcanicus (Amphipoda, Crustacea) and Their Changes after Colchicine
 Exposure. Annals of the Romanian Society for Cell Biology 2017, XXII, 10–16.
- 56. dos Santos, A.; Botelho, M. T.; Joviano, W. R.; Gomes, V.; da Silva, J. R. M. C.; de Aragão Umbuzeiro, G. Characterization of Hemocytes from the Marine Amphipod *Parhyale Hawaiensis* (Dana 1853): Setting the Basis for Immunotoxicological Studies. *Invertebrate Biology* 2023, *142* (1), e12394. https://doi.org/10.1111/ivb.12394.
- 57. Sung, H.-H.; Hwang, S.-F.; Tasi, F.-M. Responses of Giant Freshwater Prawn
 (*Macrobrachium Rosenbergii*) to Challenge by Two Strains of Aeromonas Spp. *Journal of Invertebrate Pathology* 2000, 76 (4), 278–284. https://doi.org/10.1006/jipa.2000.4981.
- 58. Sarathi, M.; Ahmed, V. P. I.; Venkatesan, C.; Balasubramanian, G.; Prabavathy, J.; Hameed,
 A. S. S. Comparative Study on Immune Response of Fenneropenaeus Indicus to Vibrio

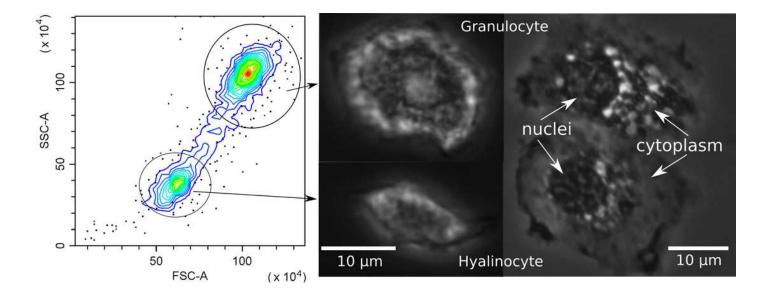
- 661 Alginolyticus and White Spot Syndrome Virus. *Aquaculture* **2007**, *271* (1), 8–20. 662 https://doi.org/10.1016/j.aquaculture.2007.07.002.
- 59. Ji, P.-F.; Yao, C.-L.; Wang, Z.-Y. Reactive Oxygen System Plays an Important Role in Shrimp Litopenaeus Vannamei Defense against -Vibrio Parahaemolyticus and WSSV Infection. *Diseases of Aquatic Organisms* 2011, *96* (1), 9–20.
 https://doi.org/10.3354/dao02373.
- 667 60. Gao, Y.; Huang, W.; Jiang, N.; Fang, J. K. H.; Hu, M.; Shang, Y.; Wang, Y. Combined
 668 Effects of Microfibers and Polychlorinated Biphenyls on the Immune Function of
 669 Hemocytes in the Mussel Mytilus Coruscus. *Marine Environmental Research* 2023, 192,
 670 106214. https://doi.org/10.1016/j.marenvres.2023.106214.
- 61. Mayén-Estrada, R.; Clamp, J. C. An Annotated Checklist of Species in the Family
 672 Lagenophryidae (Ciliophora, Oligohymenophorea, Peritrichia), With a Brief Review of
 673 Their Taxonomy, Morphology, and Biogeography
 674 492. https://doi.org/10.11646/zootaxa.4132.4.1.


Representative photos of the research objects.

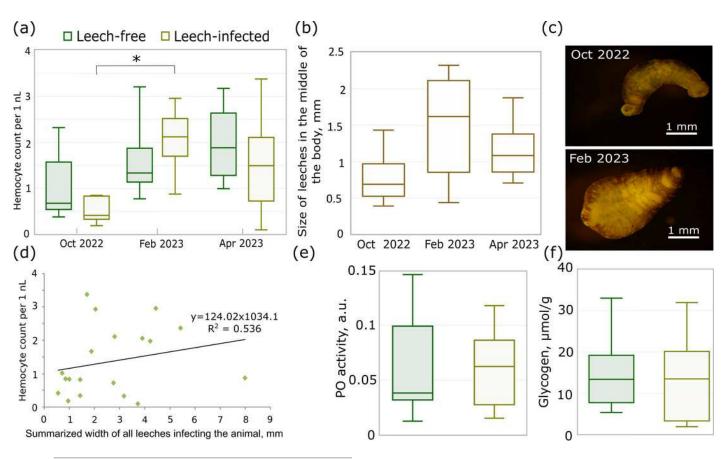
(a) Photo of amphipod *Eulimnogammarus verrucosus* with a leech attached to its gills indicated by the black arrow. (b) Microscopic photo of a leech with amphipod gill after detachment. (c,d) Hemocytes of *E. verrucosus* and stages of their encapsulation reaction to Sephadex beads after DAPI staining. c, bright field channel; d, DAPI channel of the fluorescent microscope. Pink arrows, no response; green arrows, low response; dark blue arrows, intermediate response; red arrows, intense response.


Phylogenetic tree of partial COI gene sequences of leech samples detached from amphipods *E. verrucosus* collected in Baikal littoral zone nearby Listvyanka village (highlighted in blue) and sequences of other closely related leeches.

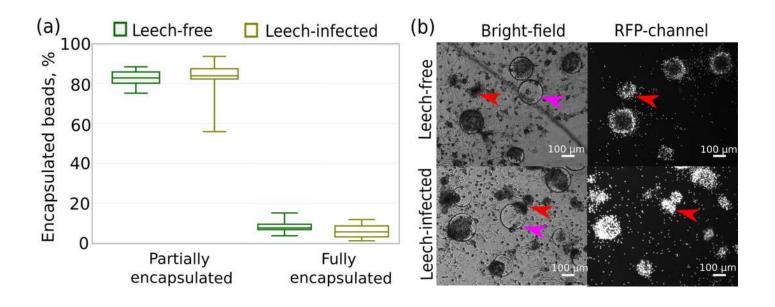
The numbers next to the nodes mean percent of their ultrafast bootstrap support.


Distribution of latex microbeads 5 hours after injection into the central amphipod hemolymph vessel.

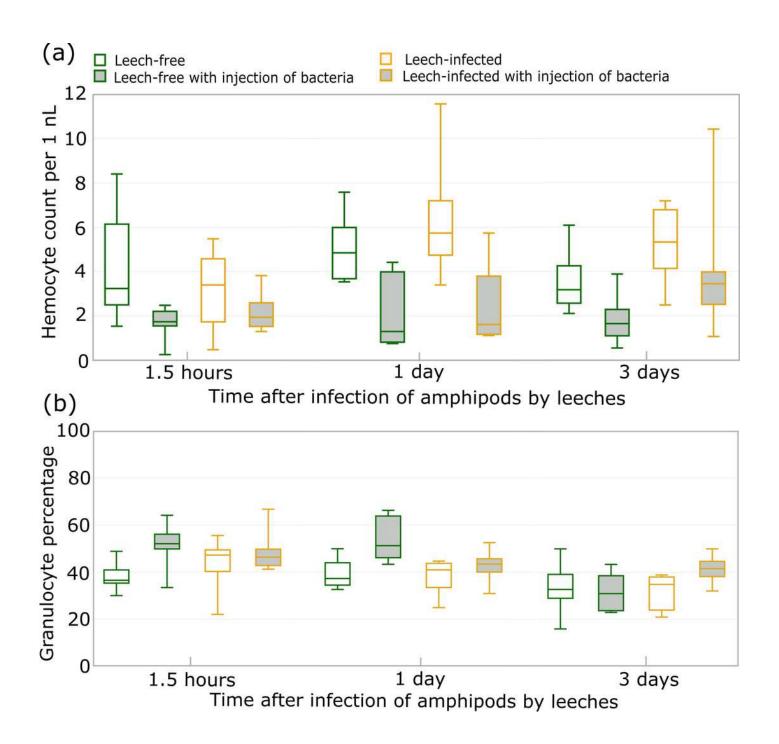
(a) Amphipod gill with latex microbeads and hemocytes. (b) Ciliate cells on the surface of gills with the microbeads inside them. (c) Content of leech body with latex microbeads. The pictures are merged photos obtained in brightfield and RFP channels with the same camera settings. Red arrows, latex microbeads; blue arrows, ciliates with microbeads inside.


Characterization of *E.verrucosus* hemocytes using flow cytometry and microscopy.

Left panel shows the internal complexity (side scatter, SSC) against the cell size (forward scatter, FSC) of hemocyte populations (hyalinocytes and granulocytes), and other panels depict their respective phase contrast photos before (center) and after (right) attachment to a glass surface.


Different parameters of leech-infected non-infected amphipods *E.verrucosus* collected from natural environment and the leeches in different seasons.

(a) Total hemocyte count of infected and non-infected *E.verrucosus* collected in different seasons (n = 5-10). (b) Width of leeches in the middle of the body in different seasons. (c) Representative photos of leeches detached from *E.verrucosus* in different seasons. (d) Dependence of hemocyte count on summarized width of all leeches infecting the animal. The difference of the regression coefficient from zero is not statistically significant (p = 0.34). (e) Phenoloxidase activity in hemolymph of leech-free and leech-infected *E. verrucosus* collected in April 2023 (n = 10). Color legend is identical to panel (a). (f) Amount of glycogen in leech-free and leech-infected *E. verrucosus* collected in October 2022, February and April 2023 (n = 10-11). Color legend is identical to panel (a).


Intensity of the cellular immune response of hemocytes extracted in primary culture from leech-free and leech-infected amphipods *E. verrucosus*.

(a) Fractions of Sephadex microbeads partially and fully encapsulated by hemocytes after 24 hours of contact. (b) Example photos of microbeads' encapsulation in hemocyte primary culture, propidium iodide staining. Pink arrows — Sephadex microbeads, red arrows — aggregates of hemocytes. Photos in RFP channel were obtained at the same camera settings in different groups, but time of staining could be different.

Immune cells in the hemolymph of leech-free and artificially leech-infected amphipods with and without bacterial injection.

(a) Total hemocyte count (n = 7-13). (b) Granulocyte fraction among all hemocytes (n = 7-13). The legend is identical for (a) and (b). Injection of bacteria to amphipod central hemolymph vessel was performed about 15 minutes before leech infection. Pair-wise comparisons of leech-free and leech-infected animals in each time point with Mann-Whitney U test with Holm's correction for multiple comparisons gave no statistically significant differences both for amphipods with and without bacterial infection.

Table 1(on next page)

Output of generalized linear model with the Gaussian distribution fitted to total hemocyte count and granulocyte percentage in leech-free and artificially leech-infected amphipods with and without bacterial injection (see Figure 7).

All interactions between factors were allowed, but the results only for three independent factors and their statistically significant interactions with substantial effect estimates are depicted here.

Variable	Total hemocyte count		Granulocyte percentage	
	Estimate, cells/µl	P-value	Estimate, %	P-value
Time	-15.1	0.248	-0.061	0.284
Leech	-514.1	0.537	4.149	0.256
Bacteria	-2846.1	< 0.001 ***	16.457	< 0.001 ***
Leech:Bacteria	603.3	0.601	-12.223	0.019 *

2