1 A new species of *Languidipes* Hubbard (Ephemeroptera, Polymitarcyidae) from

2 Borneo

3

4 Guillermo Eduardo Hankel¹, Carlos Molineri¹

5

- ¹ Instituto de Biodiversidad Neotropical (IBN), Consejo Nacional de Investigaciones Científicas
- 7 y Técnicas (CONICET), Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad
- 8 Nacional de Tucumán, Yerba Buena, Tucumán, Argentina.

9

- 10 Corresponding author:
- 11 Guillermo E. Hankel
- 12 Tornquist s/n (alt. 1200), Colonia Juan Posse Lastenia, Tucumán, CP 4111, Argentina.
- 13 guillehankel@gmail.com

14

17

15 Abstract

- 16 The genus *Languidipes* is currently represented by three species distributed in southeastern Asia,
 - India, and Sri Lanka. Languidipes corporaali is the most widely distributed species, and both,
- male and female imagos, as well as nymphs, are known. In contrast, the other species, L.
- 19 trapobanes and L. lithophagus, are only known from nymphs. Here, we describe a new species,
- 20 Languidipes janae sp nov, based on male imagos collected from Borneo, Indonesia. This new
- 21 species is characterized by the presence of ommation on mesonotum, and penis almost
- 22 completely divided, with sub-quadrate base and a small outer projection basal to the long and
- 23 slender distal arms. This constitutes the first record of the genus for Borneo. A cladistic analysis
- of the subfamily Asthenopodinae corroborates its taxonomic status.

25 26

Introduction

- 27 Polymitarcyidae (Ephemeroptera), with a worldwide distribution, includes large to medium-sized
- 28 mayflies with burrowing nymphs (Kluge 2004, McCafferty 2004). The strong mandibular tusks
- 29 of the immature forms are used to dig tunnels in varied kinds of underwater sediments, including
- mud, clay and even siliceous rocks (Molineri, Salles & Peters 2015, Bolotov et al. 2022). The
- 31 additional particularity of producing silk in the malpighian ducts, allows them to coat their

Inês Corrêa Gonçalves 25/1/2024 10:59

Deleted: n

Inês Corrêa Gonçalves 25/1/2024 11:16

Deleted: Strong

burrowings with a thin mesh of this material (Sattler 1967), or even to construct silk cases where 34 tunnels are impossible to dig (Molineri & Emmerich 2010, Pai et al. 2023). Furthermore, adults 35 36 are so short-lived, that they do not present functional legs (except for the male forelegs, used to grasp females during copula), spending their entire life in flight. This forces them to make their 37 subimaginal molt in a unique manner, not shading their cuticle in the classic form (as an entire 38 piece) but in flakes that come off the body and wings (Molineri 2010). Because of their unique 39 biology, including nymphs hidden in the substrates and extremely short-lived adults, specimens 40 of this group are infrequently collected. 41 The genus Languidipes was originally described for Asthenopus corporaali Lestage, 1922 from 42 Java, Indonesia. Languidipes corporaali (Lestage) was subsequently recorded from other

- 43
- Indonesian localities (Sumatra and Simeulue), as well as from Malaysia and Thailand 44
- (Baumgardner et al. 2012). The genus *Languidipes* also includes the species *L. trapobanes* 45
- (Hubbard 1984) (Hubbard 1984, Rathinakumar et al. 2019, Pai et al. 2023), from India and Sri 46
- Lanka, and the recently described L. lithophagus (Bolotov et al. 2022) from Myanmar. 47
- A phylogenetic framework has been proposed for the subfamily Asthenopodinae, where 48
- Languidipes is included together with partially sympatric Povilla and other three South American 49
- genera (Molineri, Salles & Peters 2015). 50
- Here we describe a new species of Languidipes based on male imagos from Borneo, Indonesia, 51
- and test its phylogenetic relationships inside the subfamily. 52

Materials & methods

53

54

- Specimens are fixed in alcohol 70°, wings of one of them were removed and mounted dry in 55
- microscope slides. Genitalia was dissected and temporarily mounted in gel alcohol for study and 56
- drawings with a camera lucida attached to an Olympus BX51 microscope. Photographs were 57
- taken with a Zeiss Axiocam ICc5 attached to a Zeiss Stemi 508 stereo microscope. Some images 58
- were processed with CombineZP software (Hadley, 2010) to improve focus. 59
- Material is deposited in the following Institution: IBN (Instituto de Biodiversidad Neotropical, 60
- 61 Tucumán), and FAMU (Florida A&M University, Tallahassee, FL).
- The morphological matrix published in Molineri, Salles & Peters (2015) was revised, the new 62
- 63 species amended, and some characters of L. corporaali were modified following the description
- 64 of Baumgardner et al. (2012). All other taxa and characters in the matrix were not modified

Inês Corrêa Gonçalves 25/1/2024 11:36 Deleted: grab

Inês Corrêa Gonçalves 25/1/2024 11:42

Comment [1]: The first is mandatory species author citation. The second are paper references.

- 66 (Appendix 1). TNT (Goloboff, Farris & Nixon 2008) was used to searching most parsimonious
- 67 trees. Heuristic searches were conducted under implied weights (Goloboff, Mattoni & Quinteros
- 2006) with k = 3 and 100 replicates of tree bisection and reconnection. All characters were
- 69 treated as non-additive except for continuous characters (chars. 0 to 26), for additional details see
- 70 Molineri, Salles & Peters (2015). Group support was calculated with the method of frequency
- 71 difference (Goloboff et al. 2003), using 1000 replications of symmetric jackknifing.
- 72 The electronic version of this article in Portable Document Format (PDF) will represent a
- 73 published work according to the International Commission on Zoological Nomenclature (ICZN),
- 74 and hence the new names contained in the electronic version are effectively published under that
- 75 Code from the electronic edition alone. This published work and the nomenclatural acts it
- 76 contains have been registered in ZooBank, the online registration system for the ICZN. The
- 77 ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed
- 78 through any standard web browser by appending the LSID to the prefix http://zoobank.org/. The
- 79 LSID for this publication is: [LSIDurn:lsid:zoobank.org:act:048403BC-2E75-4C1B-AE70-
- 80 8DDF826FF9CA]. The online version of this work is archived and available from the following
- 81 digital repositories: PeerJ, PubMed Central SCIE and CLOCKSS.

Results

82

83

- 84 Description
- 85 Languidipes janae sp. nov. (Figures 1-3)
- 86 Type material. Holotype male imago from Indonesia (Borneo): Kalimantan, Timur Prov., Lake
- 87 Semayang, nr. Kota Bangun, attracted to light on boat, 3.vii.1985, M. Christensen, specimen
- number IBN E 6370. Paratypes: 4 male imagos, same data, all deposited in IBN (IBN E –
- 89 6371, IBN E 6372, IBN E 6373 and IBN E 6374).
- 90 Additional material. We also examined 1 larvae of *L. trapobanes*, paratype, FAMU E2109, from
- 91 Ceylon, Kollonawe, iv.1954 (no more data).
- 92 Diagnosis. The male imago of this species is characterized by the presence of ommation on
- 93 mesonotum, and penis divided almost completely, with sub-quadrate base, small outer projection
- basally to the long and slender distal arms; distal arms with pointed apex.
- 95 Male imago. Length (mm): body, 10.0–14.0; forewing, 12.2–13.0; hind wing, 4.0–5.0; cercus,
- 96 26.0, terminal filament, 0.5-1.1. Head. Compound eyes large, black, covering most of head,

Inês Corrêa Gonçalves 4/2/2024 12:25

Comment [2]: Standardize figure plates. The first uses upper key letters the other do not

97	separated in the initidie of head by a distance equal to 1/3 of the width of an eye (Figs. 1A, 1C),
98	lateral ocelli large and pedunculated (Fig. 1C). Head brown dorsally, shaded with black mainly at
99	the base of ocelli; ventrally much paler. Remnants of mouthparts whitish yellow. Antenna: scape
100	and pedicel yellowish (flagellum broken-off and lost). Thorax. Pronotum reddish brown with
101	black stippling on central area; anterior membranous portion blackish; sternum and pleura
L02	whitish. Mesonotum reddish brown slightly paler medially, shaded with black between PSP;
103	ommation (oval whitish median area in anterior 1/4 of mesonotum) present (arrow in Fig. 1C);
L04	pleura and sternum light yellowish brown, furcasternal median impression translucent.
105	Metanotum reddish brown shaded with black on median area and posterior margin, pleura
106	yellowish, sternum whitish translucent. Forelegs relatively short (slightly shorter than ½ of body
L07	length), yellowish white (Fig. 1B). Middle and hind legs whitish, weak (Fig. 1D). Forewings (Fig.
108	2A) hyaline shaded with gray along costal margin and on membrane basal to vein A. Hindwings
109	(Fig. 2A) hyaline, shaded with gray at costal and basal half of subcostal areas, and at base. Veins
110	of both wings brownish, lighter toward apex, except cross veins on apical half of wing,
111	translucent. Abdomen. Dorsum brownish shaded with black, ventrally whitish. Genitalia (Figs.
L12	2B to 2E, 3A and 3B): forceps one-segmented, robust, distally with a patch of short and curved
113	setae along the inner margin. Penis divided almost completely, penis base sub-quadrate with a
114	small outer projection (arrow in Figs. 2E and 3B), distal arms long and slender with pointed apex.
115	Cerci: whitish, shaded with light gray basally. Terminal filament as long as tergum X, whitish
116	and thin.
117	Etymology. The specific name (noun in the genitive case) is a tribute to Janice Peters ("Jan"),
118	who facilitated the material of the new species, and for her constant support.
119	Notes. In forewings, ICu veins presented variations among specimens. Frequently ICu1 is basally
120	fused to CuA but may be basally free or joined to ICu2, additionally ICu2 may be basally free or
l21 l22	fused to CuP. Distribution. Data here presented constitute the first record of a <i>Languidipes</i> species in Borneo
123	Island (Fig. 4).
123	101th (1 1g. 1 <i>j</i> .
125	Phylogenetic study

Only one shortest tree was recovered (Fig. 5), with a tree length of 270.8, a total fit of 5.8, and an

adjusted homoplasy of 15.2. A high support was obtained for Languidipes (95%) and for the

sister group Languidipes + Povilla (87%). The synapomorphies supporting the genus

126

127

128

Inês Corrêa Gonçalves 4/2/2024 12:10

Comment [3]: Not sure I am interpreting photo correctly but posterior margin of pronotum looks whitish

Inês Corrêa Gonçalves 4/2/2024 12:13

Comment [4]: Posterior scutal protuberance? Provide the full name of structure

Inês Corrêa Gonçalves 4/2/2024 12:14

Deleted: basal

- 130 Languidipes (two species included) are: 1) ratio length second foretarsite / foretibia (char. 1
- 131 changes from 0.584-0.645 to 0.480), 2) ratio FW / foreleg length (char. 2, from 1.661-1.736 to
- 132 2.800), 3) ratio FW /cercus length (char. 3, from 0.339-0.347 to 0.375-0.464), 4) FW ratio length
- 133 / width (char. 4, from 2.000-2.214 to 2.265), 5) ratio length FW / HW (char. 5, from 2.302-2.447
- to 2.790), 6) penes, ratio basal width / subapical width (char. 17, from 1.300 to 2.000), 7) FW Cu
- sector, ICus joinning hind margin on different sides of tornus (char. 35): ICu1 close to tornus,
- 136 ICu2 on basitornal margin, and 8) median plate of styliger (char 41) absent. The autapomorphies
- found for Languidipes janae are: 1) ratio subapical width of foretibia / subbasal width of tarsite 2
- 138 (char. 0, from 1.700 to 1.040), 2) ratio FW / cercus length (char. 3, from 0.375-0.464 to 0.500), 3)
- ratio marginal length between main longitudinal veins/imv length (mean of all values in a wing)
- (char. 9, from 1.653 to 1.745), 4) Rs stem length (FW male) / Rs from fork to margin (char. 10,
- from 0.235-0.241 to 0.220), 5) ratio total length of forceps / basal width (char. 13, from 4.545 to
- 4.300-4.500), 6) ratio length / basal width of penile lobe (char. 15, from 4.706-5.200 to 2.600), 7)
- penes, ratio basal width / subapical width (char. 17, from 2.000 to 3.125), and 8) male foretarsite
- penes, ratio basar width / subapical width (char. 17, from 2.000 to 3.123), and 8) male foretaisite
- 144 1 subrectangular (char. 29).

Discussion

145

146

- 147 The species of Languidipes seem restricted to southeastern Asia (Fig. 4). The range of
- 148 Languidipes corporaali is the widest of the genus, being recorded in some Indonesian islands
- 149 (Java, Sumatra, and Simeulue), Thailand, and Malaysia; with a doubtful record for Assam, India
- (Chopra 1927, cited in Hubbard 1984). Hubbard (1984) affirms that probably this last record will
- be a new species.
- Most species of Languidipes are only known from nymphs. Languidipes trapobanes is known
- from Sri Lanka and the south of India, while L. lithophagus was recently described from
- Myanmar (Bolotov et al. 2022). It is possible that the males described here as L. janae represent
- the adult stage of one of them, but this seems unlikely. Nevertheless, we prefer to describe the
- new species because it constitutes the unique record from Borneo, and its size is relatively
- smaller than the other species (Hubbard 1984; Rathinakumar et al. 2019; Bolotov et al. 2022; Pai
- 158 et al. 2023).
- 159 Styliger in *Languidipes* is reduced to pedestals, which appear to be the basal segment of forceps.
- 160 Median plate of styliger is not present, contrary to *Povilla* and other Asthenopodinae, but similar
- to Campsurinae (Kluge 2004; Molineri, Salles & Peters 2015). Following this interpretation,
- forceps of Languidipes are one-segmented, and the diagnosis proposed by Baumgardner et al.
- 163 (2012) including the statement "male genitalia without a remnant of styliger plate" should be
- amended to "male genitalia without a remnant of the median plate of styliger".

Surprisingly, a weak small circular area in the center of the mesonotum (Fig. 1c) is present in the 165 specimens here studied. This structure, much resembling the ommation of Caenidae and 166 Neoephemeridae (Wang et al. 1997), is unique in the family Polymitarcyidae, and most probably 167 is an independent acquisition. 168 169 Among the species of *Languidipes*, only *L. corporaali* is known from the male adult, and it presents a penis structure strongly different to L. janae sp. nov. The basal portion of the penis are 170 wide and laterodistally rounded in L. corporaali, but is sub-quadrate and with an acute projection 171 172 in outer margin in L. janae. Penis arms in L. corporaali ends more acutely than in the species described here. Finally, penis is divided from the base of the arms to the apex in L. corporaali, 173 but L. janae presents a much deeper division including most of the basal portion of penis. 174 The previous phylogenetic hypothesis (Molineri, Salles & Peters 2015) is not modified by the 175 inclusion of Languidipes janae. As expected, this species is grouped with L. corporaali in a well-176

Inês Corrêa Gonçalves 4/2/2024 12:44

Deleted: 1B

Formatted: Font:Italic

Inês Corrêa Gonçalves 4/2/2024 12:45

Formatted: Font:Italic

Inês Corrêa Gonçalves 4/2/2024 12:45

Formatted: Font:Italic

Acknowledgments

defined group, sister to Povilla.

We thank Luciana Cristobal for the map, and Janice Peters for providing the specimens here described.

183 Bibliography

177

178

179

182

184

185

186

193

194 195

196

197

198

201

202

Baumgardner, D. E., Peters, J. G., Ghani, I. A. & Hubbard, M. D. (2012). The adult stage of *Languidipes corporaali* (Lestage, 1922), new status and the validity of *Povilla* (Navas) (Ephemeroptera: Polymitarcyidae: Asthenopodinae). Aquatic Insects 34, 107–113. https://doi.org/10.1080/01650424.2012.713487

https://doi.org/10.1080/01650424.2012.713487

Bolotov, I. N., Kondakov, A. V., Potapov, G. S., Palatov, D. M., Chan, N., Lunn, Z., Bovykina G. V., Chapurina Y. E., Kolosova Y. S., Spitsyna E. A., Spitsyn V. M., Lyubas A. A.,

Gofarov M. Y., Vikhrev I. V., Yapaskurt V. O., Bychkov A. Y. & Pokrovsky, O. S.

(2022). Bioerosion of siliceous rocks driven by rock-boring freshwater insects. npj

Materials Degradation, 6(1), 3. https://doi.org/10.1038/s41529-022-00216-6

Chopra B. (1927). The Indian Ephemeroptera (mayflies). Part I. - The suborder Ephemeroidea: Families Palingeniidae and Polymitarcidae – Records of the Indian Museum 29, 91-138, pl. 8-10.

Goloboff P.A., Farris J.S., Kallersjo M., Oxelman B., Ramırez M.J., Szumik C.A. (2003). Improvements to resampling measures of group support. Cladistics 19, 324–332. https://doi.org/10.1111/j.1096-0031.2003.tb00376.x

Goloboff P.A., Farris J.S., Nixon K. (2008). TNT, a free program for phylogenetic analysis.
 Cladistics 24, 774–786. https://doi.org/10.1111/j.1096-0031.2008.00217.x

Goloboff P.A., Mattoni C., Quinteros S. (2006). Continuous characters analyzed as such. Cladistics, 22: 589–601. https://doi.org/10.1111/j.1096-0031.2006.00122.x

Hadley A. (2010). CombineZP software.
 http://www.hadleyweb.pwp.blueyonder.co.uk/CZP/Installation.htm
 Hubbard, M. D. (1984). A revision of the genus *Povilla* (Ephemeroptera: Polymitarcyidae).
 Aquatic Insects 6, 17–35. https://doi.org/10.1080/01650428409361158
 Kluge N.J. (2004) The phylogenetic system of Ephemeroptera. Kluwer, 442 pp.

- Lestage, J. A. (1922). Notes sur les genres *Asthenopus Povilla* (Ephemeroptera) et description d'une espèce javanaise nouvelle (*Asthenopus corporaali*). Annales de la Société Entomologique de Belgique 62.
- McCafferty W.P. (2004). Higher classification of the burrowing mayflies (Ephemeroptera: Scapphodonta). Entomological News 115: 84–92.
- Molineri C (2010) A cladistic revision of *Tortopus* Needham & Murphy with description of the new genus *Tortopsis* (Ephemeroptera: Polymitarcyidae). Zootaxa 2481: 1–36.
- Molineri C, Emmerich D (2010) New species and new stage descriptions of Campsurus major species group (Polymitarcyidae: Campsurinae), with first report of silk-case construction in mayfly nymphs. Aquatic Insects 32: 265–280. doi: 10.1080/01650424.2010.533131
- Molineri, C., Salles, F. F., & Peters, J. G. (2015). Phylogeny and biogeography of Asthenopodinae with a revision of Asthenopus, reinstatement of Asthenopodes, and the description of the new genera *Hubbardipes* and *Priasthenopus* (Ephemeroptera, Polymitarcyidae). ZooKeys, (478), 45. doi: 10.3897/zookeys.478.8057
- Pai, S. G., Kalleshwaraswamy, C. M., Varanashi, K., Ranjith, M., & Rajkumar, M. (2023). First record of Mayfly *Povilla* (*Languidipes*) *taprobanes* Hubbard from Karnataka. Indian Journal of Entomology, 610-616. https://doi.org/10.55446/IJE.2021.392
- Rathinakumar, T., Kubendran, T., & Balasubramanian, C. (2019). New record of the Genus *Povilla* (Navas, 1912) (Ephemeroptera, Polymitarcyidae) from southern Western Ghats, India. Journal of Entomological Research, 43(1), 89-92. DOI: 10.5958/0974-4576.2019.00018.5
- Sattler W. (1967). Über die Lebensweise, insbesondere das Bauverhalten, neotropischer
 Eintagsfliegen-Larven (Ephemeroptera, Polymitarcidae). Beiträge zur Neotropischen
 Fauna 5:89–110. doi: 10.1080/01650526709360399
- Wang, T. Q., McCafferty, W. P., & Bae, Y. J. (1997). Sister relationship of the Neoephemeridae and Caenidae (Ephemeroptera: Pannota). Entomological News, 108, 1: 52-56.

Deleted: j