

A new species of *Languidipes* Hubbard (Ephemeroptera, Polymitarcyidae) from Borneo (#93881)

1

First submission

Guidance from your Editor

Please submit by **5 Feb 2024** for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Author notes

Have you read the author notes on the [guidance page](#)?

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the [materials page](#).

5 Figure file(s)

1 Other file(s)

Custom checks

New species checks

Have you checked our [new species policies](#)?

Do you agree that it is a new species?

Is it correctly described e.g. meets ICZN standard?

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING**
- 2. EXPERIMENTAL DESIGN**
- 3. VALIDITY OF THE FINDINGS**
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

When ready [submit online](#).

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your [guidance page](#).

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context. Literature well referenced & relevant.
- Structure conforms to [PeerJ standards](#), discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see [PeerJ policy](#)).

EXPERIMENTAL DESIGN

- Original primary research within [Scope of the journal](#).
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed. *Meaningful* replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

3

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57- 86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

1. Your most important issue
2. The next most important item
3. ...
4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

A new species of *Languidipes* Hubbard (Ephemeroptera, Polymitarcyidae) from Borneo

Guillermo Eduardo Hankel^{Corresp., 1}, Carlos Molineri¹

¹ Instituto de Biodiversidad Neotropical (IBN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Yerba Buena, Tucumán, Argentina

Corresponding Author: Guillermo Eduardo Hankel
Email address: guillehankel@gmail.com

The genus *Languidipes* is currently represented by three species distributed in southeastern Asian, India, and Sri Lanka. *Languidipes corporaali* is the most widely distributed species, and both, male and female imagos, as well as nymphs, are known. In contrast, the other species, *L. trapobanes* and *L. lithophagus*, are only known from nymphs. Here, we describe a new species, *Languidipes janae*, based on male imagos collected from Borneo, Indonesia. This new species is characterized by the presence of ommation on mesonotum, and penis almost completely divided, with sub-quadrata base and a small outer projection basal to the long and slender distal arms. This constitutes the first record of the genus for Borneo. A cladistic analysis of the subfamily Asthenopodinae corroborates its taxonomic status.

1 **A new species of *Languidipes* Hubbard (Ephemeroptera, Polymitarcyidae) from**
2 **Borneo**

3

4 Guillermo Eduardo Hankel¹, Carlos Molineri¹

5

6 ¹ Instituto de Biodiversidad Neotropical (IBN), Consejo Nacional de Investigaciones Científicas
7 y Técnicas (CONICET), Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad
8 Nacional de Tucumán, Yerba Buena, Tucumán, Argentina.

9

10 Corresponding author:

11 Guillermo E. Hankel

12 Tornquist s/n (alt. 1200), Colonia Juan Posse – Lastenia, Tucumán, CP 4111, Argentina.

13 guillehankel@gmail.com

14

15 **Abstract**

16 The genus *Languidipes* is currently represented by three species distributed in southeastern
17 Asian, India, and Sri Lanka. *Languidipes corporaali* is the most widely distributed species, and
18 both, male and female imagos, as well as nymphs, are known. In contrast, the other species, *L.*
19 *trapobanes* and *L. lithophagus*, are only known from nymphs. Here, we describe a new species,
20 *Languidipes janae*, based on male imagos collected from Borneo, Indonesia. This new species is
21 characterized by the presence of ommation on mesonotum, and penis almost completely divided,
22 with sub-quadrata base and a small outer projection basal to the long and slender distal arms.
23 This constitutes the first record of the genus for Borneo. A cladistic analysis of the subfamily
24 Asthenopodinae corroborates its taxonomic status.

25

26 **Introduction**

27 Polymitarcyidae (Ephemeroptera), with a worldwide distribution, includes large to medium-sized
28 mayflies with burrowing nymphs (Kluge 2004, McCafferty 2004). Strong mandibular tusks of
29 the immature forms are used to dig tunnels in varied kinds of underwater sediments, including
30 mud, clay and even siliceous rocks (Molineri, Salles & Peters 2015, Bolotov et al. 2022). The
31 additional particularity of producing silk in the malpighian ducts, allows them to coat their

32 burrowings with a thin mesh of this material (Sattler 1967), or even to construct silk cases where
33 tunnels are impossible to dig (Molineri & Emmerich 2010, Pai et al. 2023). Furthermore, adults
34 are so short-lived, that they do not present functional legs (except for the male forelegs, used to
35 grab females in copula), spending their entire life in flight. This forces them to make their
36 subimaginal molt in a unique manner, not shading their cuticle in the classic form (as an entire
37 piece) but in flakes that come off the body and wings (Molineri 2010). Because of their unique
38 biology, including nymphs hidden in the substrates and extremely short-lived adults, specimens
39 of this group are infrequently collected.

40 The genus *Languidipes* was originally described for *Asthenopus corporaali* Lestage, 1922 from
41 Java, Indonesia. *Languidipes corporaali* (Lestage) was subsequently recorded from other
42 Indonesian localities (Sumatra and Simeulue), as well as from Malaysia and Thailand
43 (Baumgardner et al. 2012). The genus *Languidipes* also includes the species *L. trapobanes*
44 (Hubbard 1984, Rathinakumar et al. 2019, Pai et al. 2023), from India and Sri Lanka, and the
45 recently described *L. lithophagus* (Bolotov et al. 2022) from Myanmar.

46 A phylogenetic framework has been proposed for the subfamily Asthenopodinae, where
47 *Languidipes* is included together with partially sympatric *Povilla* and other three South
48 American genera (Molineri, Salles & Peters 2015).

49 Here we describe a new species of *Languidipes* based on male imagos from Borneo, Indonesia,
50 and test its phylogenetic relationships inside the subfamily.

51

52 **Materials & methods**

53 Specimens are fixed in alcohol 70°, wings of one of them were removed and mounted dry in
54 microscope slides. Genitalia was dissected and temporarily mounted in gel alcohol for study and
55 drawings with a camera lucida attached to a Olympus BX51 microscope. Photographs were
56 taken with a Zeiss Axiocam ICc5 attached to a Zeiss Stemi 508 stereo microscope. Some images
57 were processed with CombineZP software (Hadley, 2010) to improve focus.

58 Material is deposited in the following Institution: IBN (Instituto de Biodiversidad Neotropical,
59 Tucumán), and FAMU (Florida A&M University, Tallahassee, FL).

60 The morphological matrix published in Molineri, Salles & Peters (2015) was revised, the new
61 species amended, and some characters of *L. corporaali* were modified following the description
62 of Baumgardner et al. (2012). All other taxa and characters in the matrix were not modified

63 (Appendix 1). TNT (Goloboff, Farris & Nixon 2008) was used to searching most parsimonious
64 trees. Heuristic searches were conducted under implied weights (Goloboff, Mattoni & Quinteros
65 2006) with $k = 3$ and 100 replicates of tree bisection and reconnection. All characters were
66 treated as non-additive except for continuous characters (chars. 0 to 26), for additional details see
67 Molineri, Salles & Peters (2015). Group support was calculated with the method of frequency
68 difference (Goloboff et al. 2003), using 1000 replications of symmetric jackknifing.

69 The electronic version of this article in Portable Document Format (PDF) will represent a
70 published work according to the International Commission on Zoological Nomenclature (ICZN),
71 and hence the new names contained in the electronic version are effectively published under that
72 Code from the electronic edition alone. This published work and the nomenclatural acts it
73 contains have been registered in ZooBank, the online registration system for the ICZN. The
74 ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed
75 through any standard web browser by appending the LSID to the prefix <http://zoobank.org/>. The
76 LSID for this publication is: [LSIDurn:lsid:zoobank.org:act:048403BC-2E75-4C1B-AE70-
77 8DDF826FF9CA]. The online version of this work is archived and available from the following
78 digital repositories: PeerJ, PubMed Central SCIE and CLOCKSS.

79

80 **Results**

81 Description

82 *Languidipes janae* sp. nov. (Figures 1 – 3)

83 Type material. Holotype male imago from Indonesia (Borneo): Kalimantan, Timur Prov., Lake
84 Semayang, nr. Kota Bangun, attracted to light on boat, 3.vii.1985, M. Christensen, specimen
85 number IBN – E 6370. Paratypes: 4 male imagos, same data, all deposited in IBN (IBN – E –
86 6371, IBN – E – 6372, IBN – E – 6373 and IBN – E – 6374).

87 Additional material. We also examined 1 larvae of *L. trapobanes*, paratype, FAMU E2109, from
88 Ceylon, Kollonawe, iv.1954 (no more data).

89 Diagnosis. The male imago of this species is characterized by the presence of ommat on
90 mesonotum, and penis divided almost completely, with sub-quadrata base, small outer projection
91 basally to the long and slender distal arms; distal arms with pointed apex.

92 Male imago. Length (mm): body, 10.0–14.0; forewing, 12.2–13.0; hind wing, 4.0–5.0; cercus,
93 26.0, terminal filament, 0.5-1.1. Head. Compound eyes large, black, covering most of head,

94 separated in the middle of head by a distance equal to 1/3 of the width of an eye (Figs. 1A, 1C);
95 lateral ocelli large and pedunculated (Fig. 1C). Head brown dorsally, shaded with black mainly
96 at the base of ocelli; ventrally much paler. Remnants of mouthparts whitish yellow. Antenna:
97 scape and pedicel yellowish (flagellum broken-off and lost). Thorax. Pronotum reddish brown
98 with black stippling on central area; anterior membranous portion blackish; sternum and pleura
99 whitish. Mesonotum reddish brown slightly paler medially, shaded with black between PSP;
100 ommation (oval whitish median area in basal ¼ of mesonotum) present (arrow in Fig. 1C);
101 pleura and sternum light yellowish brown, furcasternal median impression translucent.
102 Metanotum reddish brown shaded with black on median area and posterior margin, pleura
103 yellowish, sternum whitish translucent. Forelegs relatively short (slightly shorter than ½ of body
104 length), yellowish white (Fig. 1B). Middle and hind legs whitish, weak (Fig. 1D). Forewings
105 (Fig. 2A) hyaline shaded with gray along costal margin and on membrane basal to vein A.
106 Hindwings (Fig. 2A) hyaline, shaded with gray at costal and basal half of subcostal areas, and at
107 base. Veins of both wings brownish, lighter toward apex, except cross veins on apical half of
108 wing, translucent. Abdomen. Dorsum brownish shaded with black, ventrally whitish. Genitalia
109 (Figs. 2B to 2E, 3A and 3B): forceps one-segmented, robust, distally with a patch of short and
110 curved setae along the inner margin. Penis divided almost completely, penis base sub-quadrata
111 with a small outer projection (arrow in Figs. 2E and 3B), distal arms long and slender with
112 pointed apex. Cerci: whitish, shaded with light gray basally. Terminal filament as long as tergum
113 X, whitish and thin.

114 Etymology. The specific name (noun in the genitive case) is a tribute to Janice Peters (“Jan”),
115 who facilitated the material of the new species, and for her constant support.

116 Notes. In forewings, ICu veins presented variations among specimens. Frequently ICu1 is
117 basally fused to CuA but may be basally free or joined to ICu2, additionally ICu2 may be basally
118 free or fused to CuP.

119 Distribution. Data here presented constitute the first record of a *Languidipes* species in Borneo
120 Island (Fig. 4).

121

122 Phylogenetic study

123 Only one shortest tree was recovered (Fig. 5), with a tree length of 270.8, a total fit of 5.8, and an
124 adjusted homoplasy of 15.2. A high support was obtained for *Languidipes* (95%) and for the

125 sister group *Languidipes* + *Povilla* (87%). The synapomorphies supporting the genus *Languidipes*
126 (two species included) are: 1) ratio length second foretarsite / foretibia (char. 1 changes from
127 0.584-0.645 to 0.480), 2) ratio FW / foreleg length (char. 2, from 1.661-1.736 to 2.800), 3) ratio
128 FW / cercus length (char. 3, from 0.339-0.347 to 0.375-0.464), 4) FW ratio length / width (char.
129 4, from 2.000-2.214 to 2.265), 5) ratio length FW / HW (char. 5, from 2.302-2.447 to 2.790), 6)
130 penes, ratio basal width / subapical width (char. 17, from 1.300 to 2.000), 7) FW Cu sector, ICus
131 joining hind margin on different sides of tornus (char. 35): ICu1 close to tornus, ICu2 on
132 basitornal margin, and 8) median plate of styliger (char 41) absent. The autapomorphies found
133 for *Languidipes janae* are: 1) ratio subapical width of foretibia / subbasal width of tarsite 2 (char.
134 0, from 1.700 to 1.040), 2) ratio FW / cercus length (char. 3, from 0.375-0.464 to 0.500), 3) ratio
135 marginal length between main longitudinal veins/imv length (mean of all values in a wing) (char.
136 9, from 1.653 to 1.745), 4) Rs stem length (FW male) / Rs from fork to margin (char. 10, from
137 0.235-0.241 to 0.220), 5) ratio total length of forceps / basal width (char. 13, from 4.545 to
138 4.300-4.500), 6) ratio length / basal width of penile lobe (char. 15, from 4.706-5.200 to 2.600), 7)
139 penes, ratio basal width / subapical width (char. 17, from 2.000 to 3.125), and 8) male foretarsite
140 1 subrectangular (char. 29).

141

142 Discussion

143 The species of *Languidipes* seem restricted to southeastern Asia (Fig. 4). The range of
144 *Languidipes corporaali* is the widest of the genus, being recorded in some Indonesian islands
145 (Java, Sumatra, and Simeulue), Thailand, and Malaysia; with a doubtful record for Assam, India
146 (Chopra 1927, cited in Hubbard 1984). Hubbard (1984) affirms that probably this last record will
147 be a new species.

148 Most species of *Languidipes* are only known from nymphs. *Languidipes trapobanes* is known
149 from Sri Lanka and the south of India, while *L. lithophagus* was recently described from
150 Myanmar (Bolotov et al. 2022). It is possible that the males described here as *L. janae* represent
151 the adult stage of one of them, but this seems unlikely. Nevertheless, we prefer to describe the
152 new species because it constitutes the unique record from Borneo, and its size is relatively
153 smaller than the other species (Hubbard 1984; Rathinakumar et al. 2019; Bolotov et al. 2022; Pai
154 et al. 2023).

155 Styliger in *Languidipes* is reduced to pedestals, which appear to be the basal segment of forceps.
156 Median plate of styliger is not present, contrary to *Povilla* and other Asthenopodinae, but similar
157 to Campsurinae (Kluge 2004; Molineri, Salles & Peters 2015). Following this interpretation,
158 forceps of *Languidipes* are one-segmented, and the diagnosis proposed by Baumgardner et al.
159 (2012) including the statement “male genitalia without a remnant of styliger plate” should be
160 amended to “male genitalia without a remnant of the median plate of styliger”.

161 Surprisingly, a weak small circular area in the center of the mesonotum (Fig. 1B) is present in
162 the specimens here studied. This structure, much resembling the ommation of Caenidae and
163 Neoephemeridae (Wang et al. 1997), is unique in the family Polymitarcyidae, and most probably
164 is an independent acquisition.

165 Among the species of *Languidipes*, only *L. corporaali* is known from the male adult, and it
166 presents a penis structure strongly different to *L. janae* sp. nov. The basal portion of the penis are
167 wide and laterodistally rounded in *L. corporaali*, but is sub-quadrata and with an acute projection
168 in outer margin in *L. janae*. Penis arms in *L. corporaali* ends more acutely than in the species
169 described here. Finally, penis is divided from the base of the arms to the apex in *L. corporaali*,
170 but *L. janae* presents a much deeper division including most of the basal portion of penis.

171 The previous phylogenetic hypothesis (Molineri, Salles & Peters 2015) is not modified by the
172 inclusion of *Languidipes janae*. As expected, this species is grouped with *L. corporaali* in a well-
173 defined group, sister to *Povilla*.

174

175 Acknowledgments

176 We thank Luciana Cristobal for the map, and Janice Peters for providing the specimens here
177 described.

178

179 Bibliography

180 Baumgardner, D. E., Peters, J. G., Ghani, I. A. & Hubbard, M. D. (2012). The adult stage of
181 *Languidipes corporaali* (Lestage, 1922), new status and the validity of *Povilla* (Navas)
182 (Ephemeroptera: Polymitarcyidae: Asthenopodinae). *Aquatic Insects* 34, 107–113.
183 <https://doi.org/10.1080/01650424.2012.713487>

184 Bolotov, I. N., Kondakov, A. V., Potapov, G. S., Palatov, D. M., Chan, N., Lunn, Z., Bovykina
185 G. V., Chapurina Y. E., Kolosova Y. S., Spitsyna E. A., Spitsyn V. M., Lyubas A. A.,
186 Gofarov M. Y., Vikhrev I. V., Yapaskurt V. O., Bychkov A. Y. & Pokrovsky, O. S.
187 (2022). Bioerosion of siliceous rocks driven by rock-boring freshwater insects. *npj*
188 *Materials Degradation*, 6(1), 3. <https://doi.org/10.1038/s41529-022-00216-6>

189 Chopra B. (1927). The Indian Ephemeroptera (mayflies). Part I. - The suborder Ephemeroidea:
190 Families Palingeniidae and Polymitarcidae – Records of the Indian Museum 29, 91-138,
191 pl. 8-10.

192 Goloboff P.A., Farris J.S., Kallersjo M., Oxelman B., Ramirez M.J., Szumik C.A. (2003).
193 Improvements to resampling measures of group support. *Cladistics* 19, 324–332.
194 <https://doi.org/10.1111/j.1096-0031.2003.tb00376.x>

195 Goloboff P.A., Farris J.S., Nixon K. (2008). TNT, a free program for phylogenetic analysis.
196 *Cladistics* 24, 774–786. <https://doi.org/10.1111/j.1096-0031.2008.00217.x>

197 Goloboff P.A., Mattoni C., Quinteros S. (2006). Continuous characters analyzed as such.
198 *Cladistics*, 22: 589–601. <https://doi.org/10.1111/j.1096-0031.2006.00122.x>

199 Hadley A. (2010). CombineZP software.
200 <http://www.hadleyweb.pwp.blueyonder.co.uk/CZP/Installation.htm>

201 Hubbard, M. D. (1984). A revision of the genus *Povilla* (Ephemeroptera: Polymitarcyidae).
202 Aquatic Insects 6, 17–35. <https://doi.org/10.1080/01650428409361158>

203 Kluge N.J. (2004) The phylogenetic system of Ephemeroptera. Kluwer, 442 pp.

204 Lestaje, J. A. (1922). Notes sur les genres *Asthenopus* - *Povilla* (Ephemeroptera) et description
205 d'une espèce javanaise nouvelle (*Asthenopus corporaali*). Annales de la Société
206 Entomologique de Belgique 62.

207 McCafferty W.P. (2004). Higher classification of the burrowing mayflies (Ephemeroptera:
208 Scaphodonta). Entomological News 115: 84–92.

209 Molineri C (2010) A cladistic revision of *Tortopus* Needham & Murphy with description of the
210 new genus *Tortopsis* (Ephemeroptera: Polymitarcyidae). Zootaxa 2481: 1–36.

211 Molineri C, Emmerich D (2010) New species and new stage descriptions of *Campsurus major*
212 species group (Polymitarcyidae: Campsurinae), with first report of silk-case construction
213 in mayfly nymphs. Aquatic Insects 32: 265–280. doi: 10.1080/01650424.2010.533131

214 Molineri, C., Salles, F. F., & Peters, J. G. (2015). Phylogeny and biogeography of
215 *Asthenopodinae* with a revision of *Asthenopus*, reinstatement of *Asthenopodes*, and the
216 description of the new genera *Hubbardipes* and *Priasthenopus* (Ephemeroptera,
217 Polymitarcyidae). ZooKeys, (478), 45. doi: 10.3897/zookeys.478.8057

218 Pai, S. G., Kalleshwaraswamy, C. M., Varanashi, K., Ranjith, M., & Rajkumar, M. (2023). First
219 record of Mayfly *Povilla (Languidipes) taprobanes* Hubbard from Karnataka. Indian
220 Journal of Entomology, 610-616. <https://doi.org/10.55446/IJE.2021.392>

221 Rathinakumar, T., Kubendran, T., & Balasubramanian, C. (2019). New record of the Genus
222 *Povilla* (Navas, 1912) (Ephemeroptera, Polymitarcyidae) from southern Western Ghats,
223 India. Journal of Entomological Research, 43(1), 89-92. DOI: 10.5958/0974-
224 4576.2019.00018.5

225 Sattler W. (1967). Über die Lebensweise, insbesondere das Bauverhalten, neotropischer
226 Eintagsfliegen-Larven (Ephemeroptera, Polymitarcidae). Beiträge zur Neotropischen
227 Fauna 5:89–110. doi: 10.1080/01650526709360399

228 Wang, T. Q., McCafferty, W. P., & Bae, Y. J. (1997). Sister relationship of the Neoephemeridae
229 and Caenidae (Ephemeroptera: Pannota). Entomological News, 108, 1: 52-56.

Figure 1

Languidipes janae sp. nov., male imago

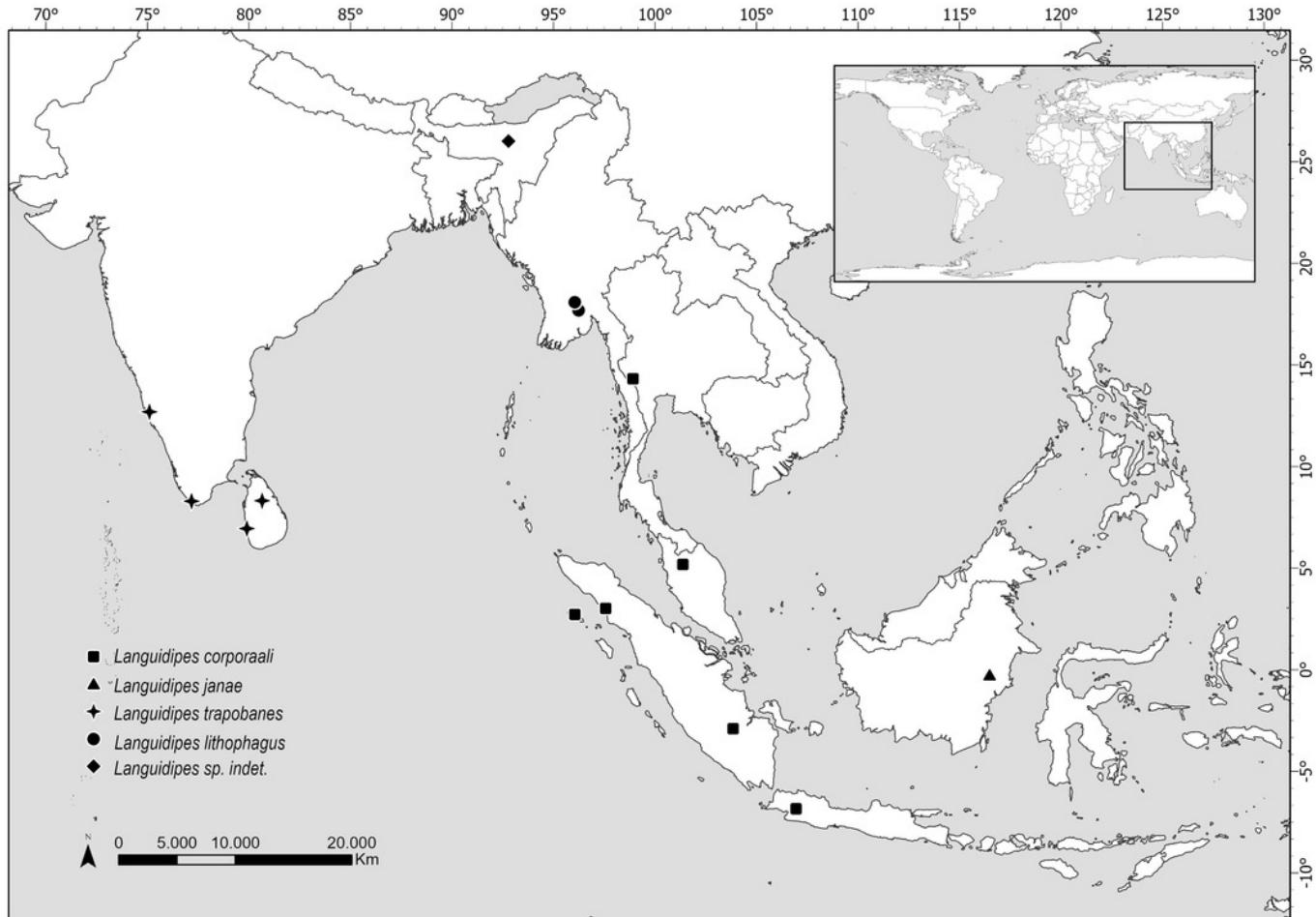
1A, lateral habitus; 1B, foreleg, dorsal; 1C, dorsal habitus (wings removed); 1D, ventral habitus (wings removed).

Figure 2

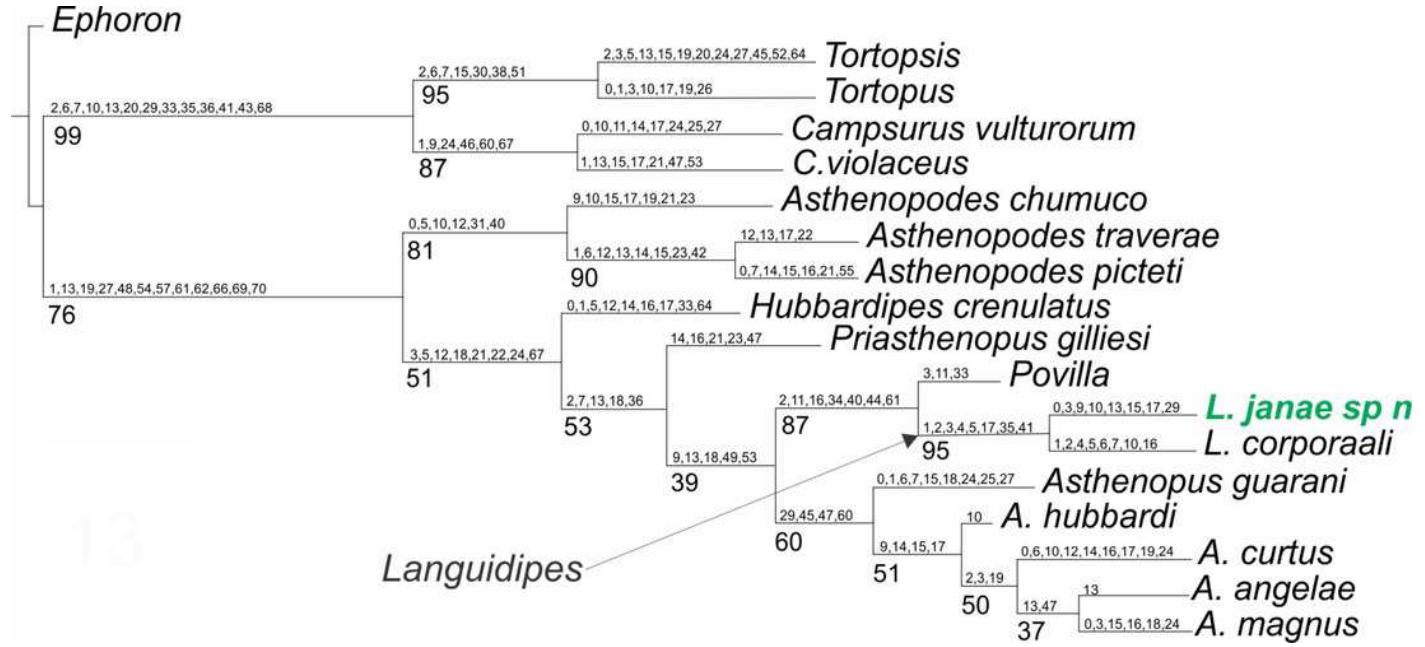
Languidipes janae sp. nov., male imago


2A, wings; 2B, genitalia, lateral; 2C, same, latero-dorsal; 2D, ventral; 2E, dorsal.

Figure 3


Languidipes janae sp. nov., male imago

3A, genitalia, ventral; 3B, penis, dorsal.


Figure 4

Map showing the distribution of all known *Languidipes* species.

Figure 5

Phylogenetic tree of the Asthenopodinae subfamily, incorporating *Languidipes janae*.

