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ABSTRACT
The azalea (Rhododendron simsii Planch.) is an important ornamental woody plant
with various medicinal properties due to its phytochemical compositions and
components. However little information on the metabolite variation during flower
development in Rhododendron has been provided. In our study, a comparative
analysis of the flavonoid profile was performed in Rhododendron pulchrum sweet at
three stages of flower development, bud (stage 1), partially open flower (stage 2), and
full bloom (stage 3). A total of 199 flavonoids, including flavone, flavonol, flavone C-
glycosides, flavanone, anthocyanin, and isoflavone were identified. In hierarchical
clustering analysis (HCA) and principal component analysis (PCA), the
accumulation of flavonoids displayed a clear development stage variation. During
flower development, 78 differential accumulated metabolites (DAMs) were
identified, and most were enriched to higher levels at the full bloom stage. A total of
11 DAMs including flavone (chrysin, chrysoeriol O-glucuronic acid, and chrysoeriol
O-hexosyl-O-pentoside), isoflavone (biochanin A), and flavonol (3,7-di-O-methyl
quercetin and isorhamnetin) were significantly altered at three stages. In particular,
3,7-di-O-methyl quercetin was the top increased metabolite during flower
development. Furthermore, integrative analyses of metabolomic and transcriptomic
were conducted, revealing that the contents of isoflavone, biochanin A, glycitin, and
prunetin were correlated with the expression of 2-hydroxyisoflavanone dehydratase
(HIDH), which provide insight into the regulatory mechanism that controls
isoflavone biosynthesis in R. pulchrum. This study will provide a new reference for
increasing desired metabolites effectively by more accurate or appropriate genetic
engineering strategies.
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INTRODUCTION
Evergreen azalea is an important ornamental woody plant in an environment where the
temperature ranges from 20 �C to as low as −10 �C. The flower development of azaleas
extended over two seasons. In the first season, the shoot apical meristems transformed into
floral meristems and formed flower buds in August. From November to February, the
flower buds were in a dormant state. After the dormancy, the development of flowers
enters the partially open flower period in March, and then after the fully open flower
period in April (Cheon, Nakatsuka & Kobayashi, 2011; Cheon et al., 2012, 2013).
Anthocyanin compositions and components are the most important factors for various
flower colors (Tanaka, Sasaki & Ohmiya, 2008;He & Giusti, 2010). There are many studies
on the distribution of floral anthocyanins in Rhododendron (Mizuta et al., 2009; Albert,
Davies & Schwinn, 2014; Du et al., 2018). Anthocyanin composition analysis of evergreen
azaleas showed that the anthocyanin constitution of the purple group flowers is more
varied than that of the red group flowers. Red series pigments are cyanidin and peonidin,
and blue series pigments are delphinidin, petunidin, and malvidin (Mizuta et al., 2009).
Moreover, flavonols containing the 3-hydroxy flavone backbone are also essential for
flower colors (Sheehan et al., 2016; Tan et al., 2019). In azaleas, the red petal flavonol is
quercetin and azaleatin, and the petals of the purple group had one to four flavonols:
quercetin, azaleatin, myricetin and methyl-myricetin (Mizuta et al., 2009).

Except for the aesthetic value of the azalea flower, it has been used as a traditional
Chinese medicine in China. The medicinal value of Rhododendron is perhaps due to the
presence of various secondary metabolites. Plant secondary metabolites are crucial in
regulating plant growth and development, and plant adaptive growth under biotic and
abiotic stresses (Chaves-Silva et al., 2018; Li et al., 2018; Xue et al., 2021; Zhan et al., 2022).
Generally, plant secondary metabolites include phenylpropanoids, terpenoids, and
alkaloids. Flavonoids, a class of the most widespread phenylpropanoids in plants, are
involved in many plant functions including pigmentation, plant reproduction, and
protection against UV light and pathogens. The antioxidant, antimicrobial, and anticancer
activity of flavonoids is becoming more attractive for humans (Feng et al., 2016; Wang
et al., 2016; Perez-Vizcaino & Fraga, 2018; Kopustinskiene et al., 2020). Flavonoids are
classified into six major subgroups: flavones, flavonols, flavanones, flavan-3-ols,
anthocyanins, and isoflavones (Routaboul et al., 2012; Dong et al., 2014). Further
modification reactions, such as glycosylation and acylation, raise the diversity of flavonoids
(Dong et al., 2014; Tan et al., 2019).

Flavonoids are synthesized through the phenylpropane biosynthetic pathway. In this
metabolic pathway, the precursors coumaryl-CoA and malonyl-CoA are catalyzed to
naringenin sequentially by chalone synthesis (CHS) and chalcone isomerase (CHI).
Naringenin is a key metabolite in the branch pathway for flavones, flavonols, isoflavone,
and anthocyanins (Nakatsuka et al., 2008; Tan et al., 2019). In the flux of naringenin into
the synthesis pathway for flavonols, flavonone-3-hydroxylase (F3H), flanonone-3′-
hydroxylase (F3′H) and flavonol synthase (FLS) are key enzymes. In plants, myricetin,
quercetin and kaempferol are the major flavonol form. It has been established that
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flavonols biosynthesis was regulated by R2R3-MYB transcriptional factors including
MYB11, MYB12, MYB21, and MYB111 (Zhang et al., 2021). Phytohormone also regulates
flavonol biosynthesis. Recent work by Shan et al. (2020) revealed that gibberellic acid (GA)
inhibits flavonol biosynthesis in Freesia hybrida. In Arabidopsis, auxin and ABA negatively
correlated with root flavonol content. The ABA signaling pathway regulated flavonol
biosynthesis, and in turn, flavonol may regulate the ABA signaling network (Brunetti,
Sebastiani & Tattini, 2019). In addition, isoflavone is a distinct class among flavonoids and
the isoflavone skeleton is derived from 2S-flavanones, such as naringenin and
liquiritigenin. Isoflavones were mostly available in leguminous plants. Their biosynthesis
has been proven to consist of two steps. The first step is catalyzed by a member of the
CYP93C subfamily of cytochrome P450, 2-hydroxyisoflavanone synthase (IFS). The IFS
product, 2-hydroxy-2,3-dihydrogenistein or 2,7,4′-trihydroxyisoflavanone is then
dehydrated by 2-hydroxyisoflavanone dehydratase (HID) yielding daidzein or genistein in
leguminous (Akashi, Aoki & Ayabe, 2005;Du, Huang & Tang, 2010; Sohn et al., 2021). This
isoflavone participate in disease resistance and have a range of pharmaceutical and
nutraceutical properties. For instance, daidzein is a common precursor to major
phytoalexins, including medicarpin, biochanin A, and glyceollin (Suzuki, Nishino &
Nakayama, 2007; Wang, 2011; Szeja, Grynkiewicz & Rusin, 2017).

As a result of population and universality in omics technologies, there are many studies
on metabolomics analysis of different flower colors and transcriptomic analysis during
flower development. For Rosaceae, flower flavonol, and anthocyanin distribution, phenolic
content changes during flower development have been studied (Schmitzer et al., 2010;
Kanani et al., 2021). For Rhododendron species, transcriptome analysis at different flower
development stages and characterization of anthocyanins and flavonoids underlying
flower color divergence have been conducted (Du et al., 2018; Xia, Gong & Zhang, 2022; Ye
et al., 2021). Rhododendron pulchrum sweet is one of the most popular garden azalea
cultivars and is a widely planted species in China, with attractive red purplish flowers.
Transcriptomic analysis of flower development in R. pulchrum has been performed (Yang
et al., 2020). To better understand the physiological, and biochemical processes that
contribute to the visual changes underlying flower development, comprehensive flavonoid
profiling of three flower development stages based on LC-MS were performed in this
study. Additionally, integrated metabolomics and transcriptomics analysis were
conducted. This research will provide valuable information to further elucidate the
molecular mechanism of flower development in R. pulchrum and also provide an effective
approach for the large-scale commercial production of health care value of azalea flowers.

MATERIALS AND METHODS
Plant material
The flowers of Rhododendron pulchrum sweet used in this study were harvested from
Huanggang Botanical Garden in Hubei Province, China. The flowers of different
developmental stages were respectively collected on Marth 20th, April 6th, and April 22th,
2018 (Wang et al., 2018). The samples (at least six flowers of each sample) were
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immediately frozen in liquid nitrogen and stored at −80 �C for subsequent analysis. There
were two biological replicates per sample.

Metabolite extraction
Samples of R. pulchrum flowers at three stages of development were selected for
metabolomic analysis using ultra-performance liquid chromatography electrospray
ionization tandem mass spectrometry (UPLC-ESI-MS/MS) system. The freeze-dried
samples were ground to powder. Metabolites were extracted from 100 mg powder
using 1.0 mL of 70% aqueous methanol solution overnight at 4 �C. The extracted
solution was then filtered through a 0.22 mM microporous membrane and injected into
LC-MS vials.

Metabolic profiling of flavonoids
Exactly 5 mL of the sample were injected and analyzed using a Shim-pack UFLC
SHIMADZU CBM30A system (Kyoto, Japan). Chromatographic separation conditions
were as follows: column, Waters ACQUITY UPLC HSS T3 C18 column; the temperature
of column oven, 40 �C; solvent system, A (0.04% formic): B (acetonitrile with 0.04%
formic); flow rate, 0.4 mL/min. The eluting gradient program consisted of 0–11 min,
95–5% A; 11–12 min, 5% A; 12–12.1 min, 5–95% A; 12.1–15 min, 95% A. The QC sample
was prepared by mixing aliquots of all the sample extracts and was injected after every set
of 10 samples.

The effluent was connected to a triple quadrupole-linear ion trap mass spectrometer, the
AB4500 Q TRAP system, and controlled by Analyst 1.6.3 software. The effluent was
connected to a triple quadrupole-linear ion trap mass spectrometer, the AB4500 Q TRAP
system, and controlled by Analyst 1.6.3 software. Metabolites qualitative and quantitative
analysis followed the methods of Chen et al. (2013). Based on the self-built database
(Metware Biotechnology Co. Ltd., Wuhan, China), high-through quantification of
metabolites was carried out by multiple reaction monitoring (MRM) for widely targeted
metabolomics analysis. Based on the fragmentation pattern, retention time (RT), and
mass-to-charge-ratio (m/z) values, metabolites in Metware’s database were annotated by
comparing with that of commercial standards or purified compounds, or searching the
public databases, including MassBank, KNApSAcK, HMDB, MoTo DB, and METLIN.
The QQQ scans were acquired as MRM experiments with the collision gas (nitrogen) set to
5 psi. Declustering potential (DP) and collision energy (CE) for each precursor-product
ion (Q1–Q3) were done with further DP and CE optimization.

Data analysis
To investigate the flower development-controlled accumulation of flavonoids, hierarchical
clustering analysis (HCA), principal component analysis (PCA), and partial least
squares-discriminate analysis (PLS-DA) were conducted. PCA and PLS-DA were
performed using the SIMCA-P version 14.0 software. For HCA and PCA, the metabolite
data were log2-transformed and followed by a min-max normalization. The heatmap was
generated by the “heatmap.2” function in the “gplot” R-package. Differentially
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accumulated metabolites (DAMs) were identified based on the thresholds of log2 (fold
change) ≥1 and variable importance for the projection (VIP) ≥1 in PLS-DA. One-way
ANOVA was used in this study (p ≤ 0.5).

Transcriptome data were derived from previously published studies (Wang et al., 2018).
We mapped the differentially expressed genes and DAMs simultaneously to the KEGG
pathway database. Canonical correlation analysis (CCA) was carried out using the Vegan
R package.

RESULTS
Flavonoid accumulation of R. pulchrum
Liquid chromatography tandem mass spectrometry (LC-MS) based metabolome analysis
of R. pulchrum flowers at three stages (bud stage, partially open flower stage, and fully open
flower stage), was performed to investigate the changes in flavonoid accumulation (Fig. 1).
A total of 199 flavonoids, including 57 flavone, 42 flavonol, 32 flavone C-glycosides, 21
flavanone, and 12 isoflavone, were detected in our study (Table S1). To further investigate
flavonoid accumulation in the different development stages, the flavonoid profile was
statistically analyzed by hierarchical clustering analysis (HCA). Samples were divided into
three groups according to the development stage, indicating that the accumulation of
flavonoids displayed a clear development stage variation in terms of their abundance in
different stages. In the fully open flower stage, almost half flavonoids reached the highest
levels, followed by the bud and partially open flower stage (Fig. 2A).

We also analyzed the metabolite accumulation patterns by principal component
analysis (PCA). The PCA results also showed a clear grouping of the metabolites into three
distinct groups (Fig. 2B). The three main PCs (PC1, PC2, and PC3) accounted for 86% of
the total system variability. The variables that also contributed to the PCs are listed in
Table S2. The first component (PC1, 49.24%) separated the fully open flower stage from
the bud and partially open flower stages, whereas the second component (PC2, 22.21%)
separated the bud stage from the partially open flower and fully open flower stage,
reflecting a major difference in metabolite levels among these three stages.

Developmentally-controlled flavonoids in R. pulchrum
To determine the flavonoid accumulation patterns of R. pulchrum in flower development,
a comparative metabolite analysis was performed. To identify flavonoids that mainly
contribute to the separation of the different flower stages, partial least squares discriminant
analysis (PLS-DA) was conducted, and the variable importance for the projection (VIP)
values were used to identify the differentially altered metabolites (DAMs). Based on fold
change (FC) ≥2 or ≤0.5 and VIP ≥ 1, we identified a total of 25 DAMs between the bud and
partially open flower stage. 63 DAMs between and fully open flower stage, and 60 DAMs
between bud and fully open flower stage. Compared with the bud stage, there were 14
DAMs upregulated and 11 downregulated in the partially open flower stage. From the
partially open flower stage to the fully open flower stage, 49 DAMs were upregulated and
11 DAMs were downregulated (Fig. 3A). The numbers of metabolites upregulated were
comparable to or higher than the number of downregulated metabolites. Most
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anthocyanins, flavones, flavone C-glycosides, and flavonols were significantly higher at the
fully open flower stage than the bud stage including delphinidin, pelargonin, chrysoeriol
O-glucuronic acid, and kaempferol, indicating developmentally-controlled flavonoids
accumulation in R. pulchrum.

Furthermore, the developmentally-controlled accumulation pattern of DAMs was
compared among the three stages, and the results of clustering analyses showed that the

Figure 1 Three flowering stages of R. pulchrum. (A) Stage 1: bud; (B) stage 2: pre-flowering; (C) stage 3:
fully open flower. Full-size DOI: 10.7717/peerj.17325/fig-1

Figure 2 HCA and PCA of flavonoids in R. pulchrum during flower development. (A) Heatmap of flavonoids detected in the total samples.
Red indicates high abundance, and green indicates low abundance. (B) Score plot of PCA in different flower development stages. Each point
represents a sample from three stages and mixed samples. Stages 1, 2, and 3 represent the bud, pre-flowering, and fully open flower stages,
respectively. The mix represents quality control (QC) sample, from the mixture of all samples. Full-size DOI: 10.7717/peerj.17325/fig-2
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metabolites were grouped into three clusters (Fig. 3B). A deeper analysis of the metabolites
in cluster 2 showed that anthocyanins, flavone, flavone C-glycoside, and isoflavone
accumulated at higher levels at stage than at other two stages.

Figure 3 Analysis of differential accumulation of metabolites (DAMs) during flower development.
(A) Numbers of upregulated or downregulated DAMs in the three comparisons. (B) Heat maps of 78
DAMs identified during flower development. Red indicates high abundance, and green indicates low
abundance. All DAMs were divided into three clusters (1,2,3) according to their change trend. Ace, acetyl;
Ade, adenosine; Api, apigenin; Aca, Acacetin; Chr, chrysoeriol; Cya, Cyanidin; GR, glucopyranoside;
Dim, dimethyl; Eri, Eriodictyol; Fer, feruloyl; GE, b-guaiacylglyceryl ether; Glu, glucoside; Gly, glycerin;
Gua, guanosine; Gluc, Glucuronic acid; Gen, Genistein; Hex, hexoside; hexosyl; Kae, Kaempferol; Ino,
Inosine; Iso, Isorhamnetin; Isos, Isosakuranetin; Lut, luteolin; mal, malonyl; met, methyl; Nar, Nar-
ingenin; neo, neohesperidoside; Pen, pentoside;rut, rutinoside; oct, octadecatetraenoic acid; que, quer-
cetin; Rob, robinoside; rha, rhamnoside; Ros, Rosinidin;Phe, phenylformic acid; Pen, pentosyl; Pel,
Pelargonidin; Que, Quercetin; Sac, saccharopine; Sin, sinapoyl; SE, syringyl alcohol ether; syr, syringic
acid; SA, saccharic acid; Tri,Tricin. Full-size DOI: 10.7717/peerj.17325/fig-3
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To visualize the differences during flower development, the 78 DAMs were presented in
Venn diagrams (Fig. 4A, Table S3). Several DAMs were shared between two comparisons:
12, 15, and 54 were shared between the bud/early and early/full, bud/early and early/full,
and bud/early and bud/full comparisons, respectively. A total of 11 DAMs, including six
flavones, three flavonols, one isoflavone, and one flavone C-glycoside, were in common
during flower development. Among the 11 DAMs, the accumulation of niene metabolites
significantly increased in R. pulchrum from bud to partially open flower to fully open
flower stage and displayed the highest accumulation levels in the fully open flower stage,
including 3,7-di-O-methyl quercetin, acacetin O-glucuronic acid, chrysoeriol O-hexosyl-
O-pentoside, biochanin A, chrysin, chrysoeriol 6-C-pentosyl-O-rutinoside, velutin,

Figure 4 Differential accumulation of metabolites (DAMs) in R. pulchrum during flower development. (A) Venn diagram of DAMs shared by
two comparisons or all three comparisons. (B) The 11 DAMs shared among the three comparisons. (C) five DAMs specifically exhibited a significant
difference in accumulation between the pre-flowering (stage 2) and the fully open flower stage (stage 3). (D) The eight DAMs specifically exhibited a
significant difference in accumulation between the bud (stage 1) and the pre-flowering stage (stage 2). The dentification of DAMs among different
flowering stages was determined by PLSDA with the VIP values >1 and ANOVA (p ≤ 0.05). The data in B, C, D are means ± SD from two biological
replicates. Api, apigenin; Chr, chrysoeriol; Fer, feruloyl; Gluc, glucuronic acid; Hex, hexosyl; Kae, kaempferol; Met, methyl; Pen, pentoside; Que,
quercetin; Rut, rutinoside; Ros, rosinidin; Tri, tricin. Full-size DOI: 10.7717/peerj.17325/fig-4
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amentoflavone and kumatakenin (Fig. 4B). Chrysoeriol O-glucuronic acid and
isorhamnetin were downregulated in the partially open flower stage and then upregulated
in the fully open flower stage.

Differences in development stages may result in different accumulations of flavonoids.
Nine metabolites specifically exhibited a significant difference accumulation between the
bud and partially open flower stage, indicating that these metabolites may play roles in
azalea from the bud to partially open flower stage (Fig. 4C). Syringetin, rosinidin O-
hexoside, prunetin, glycitin, kaempferol 3-O-robinobioside (Biorobin), and nobiletin were
down-regulated in the partially open flower stage, while C-hexosyl-apigenin O-hexosyl-O-
hexoside, chrysoeriol 6-C-hexoside, and kaempferol 3-O-rutinoside (Nicotiflorin) were
upregulated in the partially open flower stage.

During the flowering of R. pulchrum, five metabolites including tricin 5-O-
feruloylhexoside, isosakuranetin-7-neohesperidoside (Poncirin), tricin O-saccharic acid,
naringenin chalcone, and cyanidin, were characterized by a change exclusively in
comparison between partially open flower and fully open flower stage, which may play
roles in azalea from partially open flower stage to fully open flower (Fig. 4D).

Differentially altered flavonol during flower development
Multiple functional roles of flavonoids in plant development have been reported. Flavonol
is a major class of UV-absorbing compounds in plants, which are present in the upper
epidermis of plant organs consistent with their role in UV protection. Copigmentation is
an association between flavonols and anthocyanin pigments. The 78 DAMs identified in
R. pulchrum during flowering included 17 flavonols, 23 flavones, 12 flavone C-glycoside,
eight isoflavones, nine flavanones, and seven anthocyanins. From the bud to the partially
open flower stage, eight flavonols were differentially accumulated. The content of 3,7-di-
O-methyquercetin and chrysoeriol 6-C-pentosyl-O-rutinoside was 425 and 152-fold
higher in the partially open flower stage, respectively (Fig. 5A).

During R. pulchrum flower development, significant differences were observed between
the fully open flower stage and the other stage. The top ten elevated metabolites between
the partially open flower stage and fully open flower stage included three flavonols:
isorhamnetin, quercetin-3,4′-O-di-beta-glucopyranoside, and kumatakenin, which was 30,
21, 15-fold higher in the fully open flower stage. In addition, the top five reduced
metabolites include three flavonols: quercetin 5-O-malonylhexosyl-hexoside, syringetin 3-
O-hexoside, and myricetin (Fig. 5B).

Identification of candidate enzymes involved in isoflavone biosynth-
esis during R. pulchrum flower development
To further explore the molecular mechanisms of flavonoid biosynthesis during flower
development, integrative analyses of metabolomic and transcriptomic were conducted.
The impacts of flower development on gene expression have been studied by comparative
transcriptome before (Wang et al., 2018). The transcriptomic data were used to explore
changes in flavonoids biosynthesis. We examined the expression of genes and the
accumulation of metabolites during flower development. Based on the KEGG pathway
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assignment, the isoflavone and flavonol biosynthesis pathway in R. pulchrum was
constructed (Fig. 5). Significantly differential unigenes encoding putative enzymes
involved in flavonoid biosynthesis have been shown. As illustrated in Fig. 6, transcription
analysis showed that shikimate O-hydroxycinnamoyl transferase (HCT) and caffeoyl-CoA
O-methyltransferase unigenes were down-regulated during flower development. While the
expression level of naringenin 3-dioxygenase and flavonoid 3′-monooxygenase (CYP75B1)
increased significantly during flower development. In addition, naringenin chalcone,
biochanin A, kaempferol, and myricetin contents were highly accumulated in the fully
open flower stage, whereas the contents of naringin, and 2-hydroxy genistein showed the
highest level in the bud stage.

In particular, gene-metabolites networks analysis showed that the expression of HIDH
(2-hydroxyisoflavanone dehydratase, K13258, TRINITY_DN75801_c0_g1) was 18-fold
higher at the fully open flower stage than bud stage, a result consistent with the high
content of biochanin A, while the production of hydroxylation modification of genistein,
2′-hydroxygenistein was significantly downregulated in the fully open flower stage.
The expression ofHIDH (TRINITY_DN66446_c1_g3) was five fold change at the partially
open flower stage than bud stage, which is likely to participate in the higher accumulation
of prunetin in the partially open flower stage (Fig. 6 and Fig. S1). These findings suggest
that HIDH encodes function dehydratase, which is a critical determinant of isoflavone
productivity during R. pulchrum flower development.

Figure 5 Top 20 upregulated and downregulated DAMs in the two comparisons. (A) Bud vs partially open flower stage, (B) partially open flower
vs fully open flower stage. Api, apigenin; Chr, chrysoeriol; Cya, cyanidin; Fer, feruloyl; Glu, glucoside; Gluc, glucuronic acid; Hex, hexosyl; Kaem,
kaempferol; Lut, luteolin; Mal, malonyl; Met, methyl; Nar, naringenin; Pen, pentoside; Que, quercetin; Rut, rutinoside; Ros, rosinidin; Robi,
robinobioside. Full-size DOI: 10.7717/peerj.17325/fig-5
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DISCUSSION
Using the widely targeted metabolomics method, a total of 199 flavonoids were detected in
R. pulchrum flower. Coinciding with previous reports in evergreen azalea, cyanidin,
delphinidin, quercetin, and their glycosides were the main types of anthocyanins or
flavonols in R. pulchrum (Du et al., 2018). In contrast, pelargonidin (Pe), Pe 3-O-beta-D-
glucoside, kaempferol, and its glycosides were newly detected in R. pulchrum. In the
flowers of Meconopsis, flavonol glycosides such as kaempferol 3-O-glucoside, kaempferol
3-O-sophoroside also have been identified (Yokoyama et al., 2018). The presence of
various flavonoid modifications suggested their important functions in flower
developmental processes.

Figure 6 Expression pattern of unigenes and accumulation profiles of DAMs in flavonoids biosynthesis pathway in R. pulchrum during flower
development (three stages: bud, partially open flower, and fully open flower stage). The color scale from blue (low) to orange (high) represents the
FPKM values. The unigene names are indicated at the side of each step. The color scale from green (low) to red (high) represents the abundance of
the metabolites. Unigene names were abbreviated as follows: trans-cinnamate 4-monooxygenase (CYP73A), shikimate O-hydroxycinnamoyl
transferase (HCT), 2-hydroxyisoflavanone synthase (CYP93C), naringenin 3-dioxygenase (F3H), isoflavone 7-O-glucosyltransferase (IF7GT), fla-
vonoid 3′,5′-hydroxylase (CYP75B), flavonol synthase (FLS), flavonoid 3′,5′-hydroxylase (CYP75A), flavonoid O-methyltransferase (AOMT).

Full-size DOI: 10.7717/peerj.17325/fig-6
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Flowers were considered as a strong sink of assimilates and the leaves continued to
import dry matter to the corolla throughout its development until the final stage of
senescence. During flower development, sustainable changes in the concentration of
flavonoids happen. Research on the rose indicated that the petal accumulates total and
specific phenolics until the full bloom stage (Schmitzer et al., 2010). In the present study, a
similar accumulation pattern of flavonoids is established. The largest amount of flavonoids
was also detected in the full flowering stage, such as kaempferol, myricetin, naringin, and
delphinidin, which indicates that the full flowering stage is the best stage for obtaining
those flavonoids to be used in pharmaceutical and therapeutic processes. Eridictyol,
myricetin, prunetin and glycerin content were the highest at the bud stage. For rose,
flavonoid content was also highest at the full open flower stage (Kanani et al., 2021). These
results suggest that flower is a valuable source of flavonoids to promote human health.
Based on developmentally dependent accumulation patterns of flavonoids, the different
stage meets the demand for the special compound. To enhance the application value of
azalea, harvesting the bud stage or the full flower stage is recommended.

Flavonol plays essential roles in plant growth, development, and communication with
other organisms. Flavonol is also a major class of UV-absorbing compounds in plants,
which absorbs light in the relevant range near-UV light (Dudek et al., 2020). Flavonol
accumulation can be regulated by developmental stages and multiple environmental
conditions such as light. Here, we found that nine flavonol contents increased from the
bud to the fully open flower stage, such as 3,7-Di-O-methyquercetin, kaempferol 3-O-
robinobioside, and kaempferol 3,7-O-diglucoside 8-prenyl (Fig. 4, Table S3). R2R3 MYBs
and bZIP transcription factors are regulators of flavonol biosynthesis, such asMYB11/111/
12, LONG HYPOCCOTYL5 (HY5), and HY5-like HYH (Bhatia et al., 2021). Those
transcription factors enhance the expression of flavonoids biosynthesis genes such as
chalcone synthase (CHS), chalcone isomerase (CHI), flanonol synthase (FLS), and
flavonoid 3’-hydroxylase (F3′H). HY5 is a central regulator of fundamental developmental
processes such as seeding development, pigment accumulation, and abiotic stress response,
which can regulate the transcription of numerous genes (Gangappa & Botto, 2016).
In Arabidopsis, HY5 acts downstream of the constitutive photomorphogenesis 1 (COP1)
for regulating flavonol accumulation in response to UV-B (Bhatia et al., 2018). Here, gene
expression abundance during azalea flower development was quantified by calculating
FPKM value, showing thatHY5 homologous was at least 3-fold up-regulated (Fig. S2). F3H
expression level also increased during flower development. Further research on HY5 and
F3H will validate its function in flavonol biosynthesis during R. pulchrum flower
development.

Isoflavones are the third largest family metabolites of the higher plants and are known
for health-promoting phytoestrogenic functions. The 2-hydroxy isoflavones are early
products of the isoflavonoids pathway and are then dehydrated by 2-hydroxyisoflavanone
dehydratase (HIDH) to yield isoflavone including 4′-hydroxylated isoflavone and 4′-
methoxylated isoflavone. In this study, 12 isoflavones were identified, including ten 4′-
hydroxylated isoflavone and two 4′-methoxylated isoflavones (Table S1). Differential
altered metabolites analysis showed that 2′-hydroxy daidzein, biochanin A, daidzin,

Yang et al. (2024), PeerJ, DOI 10.7717/peerj.17325 12/17

http://dx.doi.org/10.7717/peerj.17325/supp-7
http://dx.doi.org/10.7717/peerj.17325/supp-3
http://dx.doi.org/10.7717/peerj.17325/supp-5
http://dx.doi.org/10.7717/peerj.17325
https://peerj.com/


genistin, and sissotrin were significantly upregulated during R. pulchrum flower
development. Especially, the content of biochanin A was 97-fold higher at the fully open
flower stage than at the bud stage. We also analyzed the expression patterns of HIDH
homologous during flower development. Furthermore, combined transcriptome and
metabolite profiling revealed that HIDH expression levels were significantly correlated
with biochanin A accumulation (Fig. S1), suggesting that HIDH regulates isoflavone
biosynthesis in R. pulchrum. Similarly, HIDH has been proven to be a critical determinant
of isoflavone productivity in hairy root cultures of Lotus japonicus (Shimamura et al.,
2007).

HIDH proteins were members of a large carboxylesterase family which has distinct
substrate specificity toward 4′-hydroxylated and 4′-methoxylated 2-hydroxyisoflavanones
has been characterized. Kinetic studies revealed that G. echinata HIDH is specific to 2,7-
dihydroxy-4′-methoxyisoflavanone, while soybean HIDH has broad substrate specificity
toward 4′-hydroxylated and 4′-methoxylated 2-hydroxyisoflavanones (Akashi, Aoki &
Ayabe, 2005; Du, Huang & Tang, 2010). In this study, though 4′-hydroxylated isoflavone
was the main type identified in R. pulchrum, the two identified 4′-methoxylated
isoflavones, biochanin A and sissotrin, were produced by the two steps: dehydration by
HIDH and subsequent 4′-O-methylation catalyzed by HI4OMT. Therefore, further
characterization of HIDH substrate specificity will provide insight into the regulatory
mechanism that controls isoflavone biosynthesis in R. pulchrum.

CONCLUSIONS
In this study, we analyzed the flavonoids profile during R. pulchrum flower development. A
total of 199 flavonoids were detected, including 78 differential accumulated metabolites.
Flavonoids displayed a developmentally controlled accumulation pattern, and most DAMs
reached higher levels at the fully open flower stage. The flavonol, such as 3,7-di-o-
methyquercetin content was differentially changed, suggesting that flavonol is an
important factor during flower development. Additionally, through the combined analysis
of the transcriptome and metabolomic data, we screened out the key enzyme HIDH which
participates in isoflavone accumulation. The results of this study provide a deeper
understanding of the molecular mechanism of flavonoid accumulation during R. pulchrum
flower development.
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